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Abstract

This article provides a Bayesian analysis of pair-copula constructions (Aas et al., 2007 Insurance

Math. Econom.) for modeling multivariate dependence structures. These constructions are

based on bivariate t−copulas as building blocks and can model the nature of extremal events in

bivariate margins individually. According to recent empirical studies (Fischer et al. (2007) and

Berg and Aas (2007)) pair-copula constructions (PCC’s) outperform many other multivariate

copula constructions in fitting multivariate financial data. Parameter estimation in multivariate

copulas is generally performed using maximum likelihood. However confidence intervals for

parameters of PCC’s are not easy to obtain and therefore statistical inference in these models

has not been addressed so far. In this article we develop a Markov chain Monte Carlo (MCMC)

algorithm which allows for interval estimation by means of credible intervals. Our MCMC

algorithm can reveal unconditional as well as conditional independence in the data which can

simplify resulting PCC’s. In applications we consider Norwegian financial returns and Euro

swap rates and are able to identify meaningful conditional independencies in both data sets.

For the Norwegian financial returns data our findings support the view of Norway as a healthy

economy, while for the Euro swap rates data they explain the nature of small twists in the yield

curve.

Keywords: Bayesian inference; Euro swap rates; financial returns; Markov chain Monte Carlo

methods; Metropolis-Hastings algorithm; multivariate copula; pair-copula construction; vine.

JEL classification: C11, C51, C52

Introduction

Multivariate data usually exhibit a complex pattern of dependence. One increasingly popular

approach for constructing high dimensional dependence is based on copulas. Copulas are multi-

variate distribution functions with uniform margins which allow to represent a joint distribution

function as a function of marginal distributions and a copula (Sklar (1959)). Copulas nowadays

are used in different fields of applied sciences and especially heavily in economics, finance and

risk management. We mention some related important papers, however our list does not pretend

to be complete. Embrechts et al. (2003) demonstrated the usefulness of copulas in insurance

and market risk management and illustrated how crucial the choice of the copula may be for

expected losses and portfolio returns. Patton (2004) showed the importance of choosing copulas

with appropriate asymmetric and skewness properties for optimal asset allocation. Nolte (2008)

used a four dimensional Gaussian copula to model price changes, transaction volumes, bid-ask

spreads and intertrade durations jointly and came to the conclusion that information contained

in the transaction volume and the bid-ask processes prevails the information contained in the

trade arrival process.

The class of copulas for bivariate data is very rich in comparison to the one for d−dimensional

data with d ≥ 3. Until recently mostly Gaussian and t−copulas or, more generally, elliptical

copulas have been in use for multivariate data (see Frahm et al. (2003)). The generalization

of bivariate copulas to multivariate copulas of dimension larger than 2 is not straightforward.

There is one simple generalization for Archimedean copulas known as exchangeable Archimedean
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copulas (see Frey and McNeil (2003)). It should be noted that not all bivariate Archimedean

copulas have a corresponding multivariate exchangeable version (see e.g. Nelsen (1999)). In last

years different approaches for constructing multivariate Archimedean copulas of dimension more

than 2 have been developed by Joe (1997), Embrechts et al. (2003), Whelan (2004), McNeil

et al. (2006), Savu and Trede (2006) and McNeil (2007). For other general constructions of

multivariate copulas we refer the readers to Fischer et al. (2007) and Fischer and Köck (2007).

Joe (1996) and Bedford and Cooke (2001, 2002) constructed flexible higher-dimensional cop-

ulas by using only bivariate copulas as building blocks which they called vines. The book by

Kurowicka and Cooke (2006) discusses these vine constructions in detail but restricts the sta-

tistical inference to the case of Gaussian vines. Aas et al. (2007) first appreciated the general

construction principle for deriving multivariate copulas. They used more general bivariate copu-

las than the Gaussian copula and applied these construction methods to financial risk data using

more appropriate pair-copulas such as the bivariate t, Clayton and Gumbel copulas. Further they

considered statistical parameter inference. According to recent empirical investigations of Berg

and Aas (2007) and Fischer et al. (2007), the vine constructions based on bivariate t−copulas

provide a better fit to multivariate financial data than other multivariate copula constructions

such as a hierarchical Archimedean construction (Savu and Trede (2006)), a generalized mul-

tiplicative Archimedean construction (Morillas (2005) and Liebscher (2006)), a multiplicative

construction of Liebscher (2006), a construction of Koehler and Symanowski (1995) and a mul-

tivariate t-copula. Estimation of copula parameters, in general, is often based on classical

maximum likelihood (ML) and its variations. The most common approach is a semiparametric

one where the margins are fitted empirically and the dependence parameters are fitted by ML.

The asymptotic properties of these semiparametric estimates have been rigorously investigated

by Genest et al. (1995). However confidence intervals for dependence parameters are difficult to

obtain since determination of the asymptotic variance is not a simple task in general. Therefore

data analyses often are exclusively based on point estimates of copula parameters.

Alternatively the Bayesian inference approach has become very popular during the last two

decades. It gives solutions for many difficult problems which are not simple to solve in a classical

ML framework. This is due to Markov chain Monte Carlo (MCMC) algorithm introduced by

Metropolis et al. (1953) and Hastings (1970). However the Bayesian literature on copulas

is very poor. Pitt et al. (2006) deal with Gaussian copula regression. The main difficulty

here encountered is to sample a positive definite correlation matrix. Pitt et al. (2006) solved

by employing covariance selection prior of Wong et al. (2003). Dalla Valle (2007) proposes

Bayesian inference based on MCMC for multivariate Gaussian and t− copulas using the inverse

Wishart distribution as a prior for the correlation matrix .

In this paper we develop Bayesian inference for pair-copula constructions (PPC’s) of Aas

et al. (2007) based on bivariate t−copulas. As they pointed out, their method allows to model

tail dependence between two chosen margins individually, while multivariate Gaussian and t−
copulas have the same tail dependence structure for any two chosen margins. A tail depen-

dence coefficient (see e.g. Embrechts et al. (2002)) is accounting for extremal events of margins

occurring simultaneously. It is one of most important characteristics of financial data since

it contains information on heavy-tailedness of multivariate financial data. Parameters of the

considered PCC are association and degrees of freedom (df) parameters of bivariate t−copulas.

Thus the problem of proposing a correlation matrix is here no longer relevant since the asso-

ciation parameters are only restricted to be between -1 and 1. Further the Bayesian approach
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solves the problem of interval estimation in ML framework by means of credible intervals. Cred-

ible intervals for parameters of a PCC can simplify this PCC if they detect conditional and

unconditional independence between pairs of variables. Based on the MCMC iterates of the

parameters of PCC’s, we can also construct credible intervals for quantities derived from the

parameters such as Kendall’s τ , the tail dependence coefficient , the λ−function (see Genest and

Rivest (1993)) and many others.

The paper is organized as follows. In Sections 1 and 2 we review copulas and PPC’s ,

respectively. The MCMC sampling scheme for a PCC with bivariate t−copula as building

blocks is given in Section 3. Section 4 contains two applications of our Bayesian algorithm. In

the first application we revisit Norwegian financial returns data from Aas et al. (2007) while in

the second application we deal with Euro swap rates data. Credible intervals for data sets showed

a good agreement with empirical estimates of Kendall’s τ , the tail dependence coefficient and

the λ−function indicating a good fit of PCC models. Finally, Section 5 summarizes, discusses

results and considers further research.

1 Copulas

Copulas are d-dimensional multivariate distributions with uniformly distributed marginal dis-

tributions on [0, 1]. They are very useful for modeling a dependence structure of multivariate

data. Let X = (X1, . . . ,Xd)
t be a d−dimensional random vector with joint distribution function

F (x1, . . . , xd) and marginal distributions Fi(xi), i = 1, . . . , d. Now according to Sklar’s theorem

(see Sklar (1959)) there exist a copula C(u1, . . . , ud) such that

F (x1, . . . , xd) = C(F1(x1), F2(x2), ...., Fd(xd)) (1.1)

and the copula C(u1, . . . , ud) is unique if the marginal distributions are continuous. More details

can be found in the books by Joe (1997) and Nelsen (1999). From now on we consider only

absolutely continuous distributions with a joint density function f(x1, . . . , xd) and marginal

density functions fi(xi) for i = 1, . . . , d.

Different multivariate distributions may have the same copula which fully describes their

dependence structure. For example consider the following simple bivariate distributions. The

first distribution is a bivariate normal distribution with zero means, unit variances and zero

correlation, while the other one is the product of two independent exponential distributions

with unit rate. Thus these two distributions have the same dependence (namely independence)

but different margins. This cannot be detected by the scatter plot of observed data X = (X1,X2)

with Xi = (Xi1, . . . ,Xin)′ (see top row of Figure 1) but only by the corresponding copula data

U := (U1,U2) = (F1(X1), F2(X2)), where Fi(Xi) := (Fi(Xi1), . . . , Fi(Xin))′ for i = 1, 2. In

Figure 1 we used n = 200.

The copula C(u1, . . . , ud) of a multivariate distribution F (x1, . . . , xd) with margins Fi(xi),

i = 1, . . . , d is given by

C(u1, . . . , ud) = F (F−1
1 (u1), F

−1
2 (u2), . . . , F

−1
d (ud))

and the copula density is given by

c(u1, . . . ud) =
f

(

F−1
1 (u1), F

−1
2 (u2), . . . , F

−1
d (ud)

)

f1

(

F−1
1 (u1)

)

· · · fn

(

F−1
d (ud)

) ,
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Figure 1: Scatter plot of X1 versus X2 (top row) and U1 versus U2 (bottom row) for independent

exponential (first column) and normal (second column) margins , respectively

where F−1
i (ui) is the inverse of the margins Fi(xi) for i = 1, . . . , d. Using (1.1), the multivariate

density f(x1, . . . , xd) is a product of the corresponding copula density with marginal densities

fi(xi), i = 1, . . . , d and is given by

f(x1, . . . , xd) = c(F1(x1), . . . Fd(xd)) · f1(x1) · · · fd(xd), (1.2)

thus separating the dependence structure from the marginal structure.

2 PCC’s for multivariate distributions

Using (1.1) multivariate distributions with given margins can be easily constructed. However

this general approach does not give a solution for the construction of flexible multivariate dis-

tributions which fit desired data well. In this section we give such a construction proposed first

by Joe (1996), organized by Bedford and Cooke (2002) and applied to Gaussian copulas only.

Later Aas et al. (2007) used bivariate Gaussian, t, Gumbel and Clayton copulas as building

blocks.

Let f(x1, . . . , xd) be a d−dimensional density function and c(u1, . . . , ud) be the corresponding

copula density function. In the sequel we denote by fj|i(xj |xi) the conditional density of xj given

xi := (Xi1, . . . ,Xik)
′ for i := (i1, . . . , ik)′. It is well known that the density f(x1, . . . , xd) can be

factorized as

f(x1, . . . , xd) = fd(xd)·fd−1|d(xd−1|xd)·fd−2|(d−1)d(xd−2|xd−1, xd)·. . .·f1|2···d(x1|x2, . . . , xd). (2.1)
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The above factorization is a simple consequence from the definition of conditional densities and

is invariant with respect to permutation of the variables.

The second factor fd−1|d(xd−1|xd) on the right hand side of (2.1) can be represented as a

product of a copula density and the marginal density fd(xd) in the following way. Consider

the bivariate density function f(d−1)d(xd−1, xd) with marginal densities fd−1(xd−1) and fd(xd),

respectively. Using (1.2) for d = 2, we have that the conditional density fd−1|d(xd−1|xd) is given

by

fd−1|d(xd−1|xd) =
f(d−1)d(xd−1, xd)

fd(xd)

= c(d−1)d(Fd−1(xd−1), Fd(xd)) · fd−1(xd−1).

Similarly, the conditional density fd−2|(d−1)d(xd−2|xd−1, xd) is given by

fd−2|(d−1)d(xd−2|xd−1, xd) =
f(d−2)(d−1)|d(xd−2, xd−1|xd)

fd−1|d(xd−1|xd)

=
c(d−2)(d−1)|d(Fd−2|d(xd−2|xd), Fd−1|d(xd−1|xd)) · fd−2|d(xd−2|xd) · fd−1|d(xd−1|xd)

fd−1|d(xd−1|xd)

= c(d−2)(d−1)|d(Fd−2|d(xd−2|xd), Fd−1|d(xd−1|xd)) · c(d−2)d(xd−2, xd) · fd−2(xd−2). (2.2)

Copula density c(d−2)(d−1)|d(·, ·) is the conditional copula density corresponding to the condi-

tional distribution F(d−2)(d−1)|d(xd−2, xd−1|xd). Further Fd−i|d(xd−i|xd) is the conditional distri-

bution function of xd−i given xd for i = 1, 2. Note that in general the conditional copula density

c(d−2)(d−1)|d(Fd−2|d(xd−2|xd), Fd−1|d(xd−1|xd)) depends on the given conditioning value xd.

Relation (2.2) can be generalized for a conditioning vector v of dimension k (1 < k < d− 1).

Here the starting point is

fxvj |v−j
(x|v) = cxvj |v−j

(Fx|v−j
(x|v−j), Fvj |v−j

(vj |v−j)) · fxvj |v−j
(x|v−j),

where vj is an arbitrary chosen component of v and the (k-1)-dimensional vector v−j is the

vector v without the component vj . Finally we can represent each conditional density term on

the right hand side of (2.1) as the product of the corresponding marginal density and copula

density terms. This shows that f(x1, . . . , xd) is the product of marginal densities and pair-

copula density terms. The pair-copula density terms are unconditional copulas evaluated at

marginal distribution function values or conditional copulas evaluated at univariate conditional

distribution function values. The above construction was defined in Aas et al. (2007) and was

called the pair copula construction (PCC) for multivariate distributions. Joe (1996, p. 125)

showed that the conditional distribution function Fu|v(u|v) appearing in the PCC are partial

derivatives with respect to the second argument of the conditional copula given by

Fx|v(x|v) =
∂ Cx,vj |v−j

(F (x|v−j), F (vj |v−j))

∂F (vj |v−j)
. (2.3)

Here Cxvj |v−j
(·, ·) is a bivariate copula distribution function.

It is clear that there are many pair copula constructions for a random vector X. In order to

systemize PCC’s, Bedford and Cooke (2001, 2002) introduced tree representations called regular

vines. In this paper we consider only a particular regular vines, namely D−vines (see Kurowicka

and Cooke (2004) or Aas et al. (2007)). For the convenience of the reader we give here the

construction of D-vines for d random variables.
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Figure 2: Tree representation of a five dimensional D-vine

First of all the random variables should be labeled from 1 to d and this labeling should

remain fixed. The D-vine consists of d − 1 trees Ti, i = 1, . . . , d − 1. Figure 2 displays the

tree representation of a D-vine for 5 variables on which the the construction of D-vine is below

illustrated. The first tree consists of the d labeled nodes. The nodes are placed along a line one

after another according to the value of their labels. Further d − 1 edges connect neighboring

nodes. Now each edge of the first tree gets its label. The edge label are elements of the symmetric

difference of labels of neighboring nodes this edge connects. The symmetric difference of two

sets A and B is defined by A△B := (A\B) ∪ (B\A). For example the symmetric difference of

the sets {1} and {2} is the set {1, 2} and this illustration corresponds to the nodes 1 and 2 of

the tree T1 connected with the edge 12 from Figure 2. In the second tree edges of the first tree

become nodes. Thus the second tree has d−1 nodes. The nodes in the second tree are connected

with an edge if the corresponding edges in the first tree shared a node. There are altogether

d− 2 edges in the second tree. From now on, the edge labels consist of two label sets separated

by a vertical line “|”. The first label set before the vertical line is the symmetric difference of

labels of neighboring nodes the edge connects. The second label set is made of common labels

of the neighboring nodes sharing the edge. Thus the symmetric difference of the sets {1, 2} and

{2, 3} is the set {1, 3} and their intersection is the set {2}. This example corresponds to the

nodes 12 and 23 of the tree T2 connected with the edge 13|2 in Figure 2. In general, the ith

tree Ti consists of d + 1− i nodes. Nodes are connected with an edge if the corresponding edges

in tree Ti−1 share a node. There are altogether d − i edges. Edges are labeled according to the

rule from the second tree treating the two label sets of a node as one set. Thus ignoring the

vertical line the labels of the nodes in the third tree T3 of Figure 2 are obtained as follows. The

symmetric difference of the labels of the first two nodes 13|2 and 24|3 in Tree T3 is the set {1, 4}
and their interaction is the set {2, 3}. Therefore the connecting edge has label 14|23. The last

(d − 1)-th tree consists of two nodes with labels 1(d − 1)|2, . . . , (d − 2) and 2d|3, . . . , (d − 1),

respectively. These two nodes are connected with one edge labeled as 1d|2, . . . , (d−1). Now each

edge corresponds to a pair-copula density and its label indicates the subindex of the pair-copula.

Note that the presence of the vertical line in the edge label indicates that the corresponding

copula is conditional. Further the second label set after the vertical line corresponds to the set

of conditioning variables, while the first label set corresponds to the two variables which will be
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conditioned. For a d−dimensional density f(x1, . . . , xd) the PCC of the D-vine is given in Aas

et al. (2007) as follows

f(x1, . . . , xd) = (2.4)

d
∏

k=1

fk(xk)
d−1
∏

j=1

d−j
∏

i=1

ci,i+j|i+1,...,i+j−1 (F (xi|xi+1, . . . , xi+j−1), F (xi+j |xi+1, . . . , xi+j−1)) .

For simplicity we have dropped the subindex of the conditional distribution functions of type

F (xi|xi+1, . . . , xi+j−1). Thus, the PCC representation for D-vines given in (2.4) is the product

of d marginal densities and d(d − 1)/2 bivariate copulas.

3 Bayesian inference for PCC models based on bivariate t−copula

pairs

From now on, we specify the building pair-copulas of the PCC model (2.4) as bivariate t−copulas.

However the methodology is generic and applies much more widely. Further we assume that the

margins of X are uniform. This is motivated by the standard semiparametric copula estimation

procedure suggested by Genest et al. (1995), where approximate uniform margins are obtained

by applying the empirical probability integral transformation to multivariate data.

The bivariate t−copula (see e.g. Embrechts et al. (2003)) has 2 parameters: the association

parameter ρ ∈ (−1, 1) and the df parameter ν ∈ (0,∞) and its density is given by

c(u1, u2|ν, ρ) =
Γ

(

ν+2
2

)

Γ
(

ν
2

)

√

1 − ρ2
[

Γ
(

ν+1
2

)]2 ·

([

1 +
(t−1

ν (u1))
2

ν

] [

1 +
(t−1

ν (u2))
2

ν

])
ν+1

2

(

1 +
(t−1

ν (u1))
2
+(t−1

ν (u2))
2
−2ρt−1

ν (u1)t−1
ν (u2)

ν(1−ρ2)

)
ν+2

2

,

where t−1
ν (·) is a quantile function of a t−distribution with ν degrees of freedom. Specifying the

pair-copulas and assuming uniform margins, the conditional distribution function in (2.3) for

x = u1 and a scalar v = u2 takes the following form

h(u1|u2, ρ, ν) = tν+1









t−1
ν (u1) − ρ t−1

ν (u2)
√

“

ν+(t−1
ν (u2))

2
”

(1−ρ2)

ν+1









(3.1)

and it is called the h−function for the t−copula with parameters ρ and ν (see Aas et al. (2007)).

For general v the arguments u1 and u2 of the function h(·|·, ρ, ν) are just nested compositions

of the h−functions for bivariate t−copulas and this is illustrated below.

Let UN := (U′
1,U

′
2, . . . ,U

′
N )′ be the concatenated random vector of an i.i.d. sample Un =

(U1,n, U2,n . . . , Ud,n)′ for n = 1, . . . , N from a D-vine specified in (2.4) with bivariate t−copulas as

the building pair-copulas and with uniform margins. Therefore the unknown d(d−1) dimensional

parameter vector θ is given by

θ = (ρ1,2, ν1,2, ρ2,3, ν2,3, . . . , ρ1,d|2,...,d−1, ν1,d|2,...,d−1)
t.
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Hence the log likelihood l(uN |θ) of the D-vine copula for a realization uN of UN is given by

l(uN |θ) =
N

∑

n=1

[

d−1
∑

i=1

log (c (ui,n, ui+1,n|ρi,i+1, νi,i+1)) (3.2)

+
d−1
∑

j=2

d−j
∑

i=1

log
(

c
(

vj−1,2i−1,n, vj−1,2i,n|ρi,i+j|i+1,...,i+j−1, νi,i+j|i+1,...,i+j−1

))

]

,

where for n = 1, . . . , N

v1,1,n := h(u1,n|u2,n, ρ1,2, ν1,2)

v1,2i,n := h(ui+2,n|ui+1,n, ρi+1,i+2, νi+1,i+2) for i = 1, . . . , d − 3,

v1,2i+1,n := h(ui+1,n|ui+2,n, ρi+1,i+2, νi+1,i+2) for i = 1, . . . , d − 3,

v1,2d−4,n := h(ud|ud−1, ρd,d−1, νd,d−1),

vj,1,n := h(vj−1,1,n|vj−1,2,n, ρ1,1+j|2,...,j, ν1,1+j|2,...,j) for j = 2, . . . , d − 2,

vj,2i,n := h(vj−1,2i+2,n|vj−1,2i+1,n, ρi,i+j|i+1,...,i+j−1, νi,i+j|i+1,...,i+j−1) for d > 4,

j = 2, . . . , d − 3 and i = 1, . . . , d − j − 2

vj,2i+1,n := h(vj−1,2i+1,n|vj−1,2i+2,n, ρi,i+j|i+1,...,i+j−1, νi,i+j|i+1,...,i+j−1) for d > 4,

j = 2, . . . , d − 3 and i = 1, . . . , d − j − 2

vj,2d−2j−2,n := h(vj−1,2d−2j,n|vj−1,2d−2j−1,n, ρd−j,d|d−j+1,...,d−1, νd−j,d|d−j+1,...,d−1)

for j = 2, . . . , d − 2.

Since we are following a Bayesian approach the statistical model has to be completed by

specifying the prior distributions for all model parameters. We specify a uniform (−1, 1) prior for

the association parameter ρ of a t−copula pair and a uniform (1, U) prior for the corresponding

df parameter ν since in general we have little prior information available. Here the lower cut

value 1 is chosen instead of 0 to avoid numerical instabilities in evaluating a quantile function of

the bivariate t−distribution. The upper cut value U can be chosen by the data analyst to assess

the closeness to the bivariate Gaussian copula. Finally we assume that prior distributions for ρ

and ν are independent within each pair and independent over all pairs.

Markov chain Monte Carlo (MCMC) methods (see e.g. Chib (2001) for a comprehensive

overview) are necessary to approximate the posterior distribution of the joint parameter vector

θ for the PCC specified in (3.2). Since full conditionals are not available a Gibbs sampler cannot

be applied. Instead we use the Metropolis-Hasting (MH) algorithm (see Hastings (1970) and

Metropolis et al. (1953)). Individual MH steps for each (ρ, ν) pair of θ are performed using

a symmetric normal random walk proposal. Variances of the normal proposals are tuned to

achieve parameter acceptance rates between 20%-80% as suggested by Besag et al. (1995).

4 Application

4.1 Norwegian financial returns

In our first application we consider the data from Aas et al. (2007). It records daily returns from

January 1, 1999 to July 8, 2003 of the Norwegian stock index (T), the MSCI world stock index

(M), the Norwegian bond index (B) and the SSBWG hedged bond index (S). Since the margins
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are time series data and certainly not i.i.d., Aas et al. (2007) applied an AR(1)-GARCH(1,1)-

model separately for each of the 4 margins and transformed the corresponding standardized

residuals using the empirical probability integral transformation to achieve approximate i.i.d.

uniform margins. To facilitate comparison to the models considered in Aas et al. (2007) we now

investigate the following PCC:

c(uS , uM , uT , uB) = cSM · cMT · cTBcST |M · cMB|T · cSB|MT , (4.1)

where the parameter dependence of each bivariate t−copula and their arguments are dropped

to keep the expression short.

We run the MH algorithm specified in Section 3 for 10000 iterations using independent

(1,1000) uniform priors for each df parameter. Proposal variances were determined in pilot runs

and resulted in acceptance rates between 26%-82% for all parameters after 10000 iterations. Au-

tocorrelations among the MCMC iterates suggested sub-sampling to reduce these correlations

and each 20-th iteration was recorded. Table 1 summarizes the estimated posterior distribu-

tions for all parameters based on the recorded iterations. For comparison we also include the

corresponding maximum likelihood estimates (MLE) given in Aas et al. (2007). As Bayesian

Table 1: Estimated posterior mode, mean, median, 2.5% and 97.5% quantiles and MLE for the

transformed Norwegian financial returns data

2.5% Est. 97.5% Est. Post. Est. Post. MLE

Quantile Median Quantile Mean Mode

ρSM -0.316 -0.254 -0.184 -0.253 -0.25 -0.25

νSM 3.483 4.658 7.263 4.849 4.40 4.34

ρMT 0.422 0.466 0.508 0.465 0.47 0.47

νMT 13.304 228.006 948.340 326.388 108.61 16.26

ρTB -0.224 -0.170 -0.106 -0.168 -0.17 -0.17

νTB 12.829 321.556 973.567 383.984 148.08 13.17

ρST |M -0.163 -0.104 -0.047 -0.103 -0.11 -0.11

νST |M 106.098 560.460 964.869 550.005 672.33 300.00

ρMB|T -0.033 0.031 0.090 0.029 0.03 0.03

νMB|T 45.736 514.904 972.857 510.722 632.56 45.59

ρSB|MT 0.226 0.281 0.337 0.282 0.28 0.28

νSB|MT 13.557 285.269 958.333 366.153 127.36 15.04

counterpart of the MLE we consider the posterior mode of the estimated kernel density (see

Figure 3) to the thinned Markov chain.

Figure 3 shows that estimated posterior densities for the association parameters ρSM , ρMT ,

ρTB, ρST |M , ρMB|T and ρSB|MT are quite symmetric and unimodal. Therefore the difference

between posterior mode, mean and median estimate is negligible. For posterior distributions

of the df parameters we observe nonsymmetric distribution. We see that the posterior MCMC

iterations visit almost all regions of the prior support (1, 1000). This indicates that there is

little information in the data to estimate the df parameters precisely.

This also explains why most of the 95%-credible intervals for the df parameters in Table 1

are very wide while the 95%-credible intervals for the association parameters are quite narrow.
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Figure 3: Estimated posterior densities of the parameters for Norwegian return data (vertical

line indicates the posterior mode).

The difference between a t−copula and a Gaussian copula having the same moderate (< 0.5)

association parameter ρ is very small if the df is larger than 10. Therefore the estimation

procedure for the df parameter is very unstable. On the other hand Dakovic and Czado (2008)

demonstrate that the variance of the ML estimate ν̂ for the df parameter derived from the

central limit theorem increases very fast with respect to the magnitude of the df parameter. For

example, in a 2-dimensional t-copula with moderate association parameter ρ = 0.4 and sample

size 500, this variance increases from 0.08 to 25.41 as true value of df increases from 2.1 to

9.5. Therefore we expect confidence intervals for the df parameter to be wide when the true

underlying parameter value is larger than 10. Note that almost all MLE’s of the df parameters

are contained in the corresponding 95%-credible intervals. Further the posterior mode of any

of the association parameters is robust with respect to any meaningful selected kernel density

bandwidth.

The 95% credible interval for the association parameter ρMB|T contains 0 and the corre-

sponding credible interval for the df parameter is far away to contain 10. This implies that

11



conditional independence between M and B given T can be assumed and the PCC specified in

(4.1) reduces to

c(uS , uM , uT , uB) = cSM · cMT · cTB · cST |M · cSB|MT .

The above conditional independence could be a result of stability of the Norwegian economy

and therefore for a given value of the Norwegian stock index there is no influence of the MSCI

world stock index on the Norwegian bond index. Another reason could be that Norway is one

of the largest oil and gas exporters and their export value lie approximately between 40% and

50% of Norway’s total exports. For example the crude oil export in 2006 was accounting for

41% of total exports.

The Bayesian estimation procedure allows to estimate posterior distributions of functions

of the parameters using MCMC iterates. We illustrate this first with Kendall’s τ (see Kruskal

(1958)) which is an alternative dependence measure to the linear correlation coefficient . It

is preferred over the linear correlation coefficient since it is invariant with respect to strictly

increasing nonlinear transformations and does not require the existence of second moments. For

shortcomings and pitfalls of the correlation coefficient we refer to Embrechts et al. (2002). A

key role plays here the following relationship

τ =
2

π
· arcsin ρ (4.2)

proven by Lindskog et al. (2003) for elliptical distributions with continuous margins. We apply

(4.2) to all recorded MCMC iterates for any of the association parameter to sample from the

posterior distribution of τ . Table 2 contains the summary statistics for the estimated posterior

distribution of τ for the pairs SM , MT and TB, respectively. We compare the posterior mode

estimate to the empirical estimate of Kendall’s τ (see Kruskal (1958)) and see good matching,

indicating good model fit.

Table 2: Estimated posterior mode, mean, median, 2.5% and 97.5% quantiles and empirical

estimate of Kendall’s τ for the transformed Norwegian financial returns data

2.5% 50% 97.5% Est. Post. Est. Post Empirical

Quantile Quantile Quantile Mean Mode τ

τSM -0.204 -0.164 -0.1179 -0.163 -0.164 -0.158

τMT 0.277 0.308 0.3393 0.308 0.309 0.313

τTB -0.144 -0.109 -0.0677 -0.108 -0.110 -0.110

In financial applications one is especially interested to measure upper and lower tail depen-

dence (see Embrechts et al. (2003)). For the symmetric t−copula the upper and the lower tail

dependence coefficients coincides and is given by

λ = 2tν

(

−
√

ν + 1

√

1 − ρ

1 + ρ

)

. (4.3)

In contrast the Gaussian copula has zero tail dependence. Since only the posterior mode estimate

of the df parameter for the pair SM is small (≤ 10) we are interested in determining the tail

dependence for this pair. The posterior mode estimate for λSM based on the MCMC iterates is

0.023 with a 95% credible interval given by [0.005, 0.0466]. The empirical estimate of the lower
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(upper) tail dependence coefficient based on the first 34 order statistics (based on the last 34

order statistics) is 0.02941 (0.06). We would like to note that empirical estimates for the tail

dependence coefficients in this data set are quite instable. The Bayesian approach is favored

here since confidence intervals for tail dependence coefficients are difficult to construct.

For a final model check we consider now the λ− function for a bivariate copula C(u1, u2,ψ)

with parameter vector ψ which is defined as

λ(z,ψ) := z − K(z,ψ),

where K(z,ψ) := P (C(u1, u2,ψ) ≤ z). The K-function K(z,ψ) has a simple form for Archime-

dean copulas (see Genest and Rivest (1993)). For large data sets the λ−function can be easily

estimated empirically by using the empirical copula function. Figure 4 shows the posterior mode

estimates (solid line) together with pointwise 95% credible intervals (dashed line) for all uncon-

ditional and conditional pairs. For comparison the empirical λ−function (dotted line) is added.

Here the data for the conditional pairs is generated by using the posterior mode parameter
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Figure 4: Posterior mode estimate of λ−function (solid) with pointwise 95% credible intervals

(dashed) and its empirical estimate (dotted) for Norwegian return data.
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estimates of the copula-pairs involved. For example for the pair ST|M use the transformed data

(u
S|M
i , u

T |M
i ) :=

(

h(uS
i |uM

i , ρ̂SM , ν̂SM ), h(uT
i |uM

i , ρ̂TM , ν̂TM )
)

,

where the h−function for a bivariate t−copula is given in (3.1) and uA
i is the original transformed

data for A = S,M, T , respectively. From these plots we see no lack of fit for the PCC model.

4.2 Euro swap rates

Factor models are commonly applied to model the term structure of interest rates (see Ingersoll

(1983), Litterman and Scheinkman (1993), Bliss (1997) and Audrino et al. (2005)). For effective

risk management of interest rates the stability of the factor loadings has to be assumed. Recently

Audrino et al. (2005) showed that this stability cannot be assumed in the daily factor structure

of interest rates. To overcome this problem they suggest filtering the data using a nonparametric

VAR type model in connection with functional gradient descent estimation. They show that

the filter is successful in removing autocorrelation and cross correlations present in interest rate

levels. This motivates our study of daily swap rates to investigate the dependence structure

present in the data. A precise characterization of the dependence structure of daily swap rates

will also be helpful for risk management of swap rates portfolios. For example it will allow

to construct realistic Monte Carlo simulations to determine risk measures such as VAR and

expected short fall in a swap rate portfolio. Our starting point are daily Euro swap rates

with maturity of 2, 3, 5, 7 and 10 years, respectively. The swap rates are based on annually

compounded zero coupon swaps. The data investigated covers 3182 days starting from December

7, 1998 until May 21, 2001 and is presented in Figure 5. An ARMA(1,1)-GARCH(1,1) model

applied to each of the 5 time series corresponding to different maturity are found sufficient to

achieve independent margins while an AR(1)-GARCH(1,1) was insufficient. The corresponding

standardized residuals of the margins are transformed to achieve approximate uniform margins.

These uniform margins corresponding to 2, 3, 5, 7 and 10 years maturity are denoted by S2, S3,

S5, S7 and S10, respectively. Figure 6 displays pair-plots of S2, S3, S5, S7 and S10 showing the

expected high cross correlation for close maturities.

Joint tail behavior is crucial for VAR and expected shortfall calculations, therefore we fit

bivariate t−copulas to each pair. The association parameter ρ is estimated based on (4.2) and

the empirical estimate of Kendall’s τ . Holding ρ fixed, we estimate the df parameter using

maximum likelihood. The tail dependence coefficient λ is then computed using (4.3) with

the above estimated parameters. Table 3 gives the corresponding estimated df’s, ρ’s and tail

dependence coefficients for all bivariate pairs of S2, S3, S5, S7 and S10 . We used the tail

dependence coefficients from Table 3 to label the variables in the top tree of the D-vine. They

are ordered in such a way that neighboring variables have the highest tail dependence coefficient

among all possible orderings if tail dependence coefficients are compared componentwise from

the left to the right. This gives the order S2, S3, S5, S7, S10 for the top tree of the D-vine. Further

we see that the estimated df’s are quite small, i.e. displaying strong tail dependence between the

pairs. However they are varying between 2.07 and 5.23, thus demonstrating that a multivariate

t−copula model with a single df parameter is not sufficient. We also see that the pair with short

adjacent maturities ((S2, S3)) is less tail dependent than with long maturities ((S7, S10)).

The corresponding PCC contains 10 pair-copulas and is given by

c(uS2
, uS3

, uS5
, uS7

, uS10
) = c

S2S3
c

S3S5
c

S5S7
c

S7S10
c

S2S5|S3
c

S3S7|S5
c

S5S10|S7
(4.4)

× c
S2S7|S3S5

c
S3S10|S5S7

c
S2S10|S3S5S7

,

14



Days

1000

2000

3000
M
aturity

2

4

6

8

10

R
a
te

s
 in

 %

4

6

8

10

Figure 5: Three dimensional plot of the Euro swap rates data

where the arguments and the parameters of the pair-copulas are dropped for simplicity. We run

10000 iterations MCMC and the first 1000 iterations were discarded as burn-in. The acceptance

rates range between 14% and 57%. Autocorrelation functions showed that the chain should be

sub-sampled and each 20-th iteration was recorded.

Figure 7 displays the estimated posterior kernel density for parameters of PCC (4.4) based

on the sub-sampled MCMC iterations and using the Gaussian kernel. Similarly as for the

Norwegian returns data, the estimated posterior densities for the association parameters are

symmetric and strict unimodal indicating stable behavior of the MCMC iterations. In contrast

to the Norwegian returns data, the swap rates data contains more information on df parameters

resulting in strong unimodality of the corresponding estimated posterior densities. Nevertheless

the estimated posterior densities for ν
S2S7|S3S5

and ν
S2S10|S3S5S7

in Figure 7 are not symmetric.

Here we would expect that the Bayesian estimates as well as the ML estimates are larger than

10 and Table 4 justifies this premise. In the trace plots for ν
S2S7|S3S5

and ν
S2S10|S3S5S7

we have

observed that from time to time the MCMC iterations run far away from the posterior mode

estimate. The frequency of such a deviation and its size depends on the difference between the

posterior mode estimate and 10. The larger the difference, the higher is the deviation and the

MCMC iterations move away from the posterior mode estimate more frequently.
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Figure 6: Scatter plots of the transformed to uniform margins standardized residuals for the

swap rate data

Table 4 summarizes the estimated posterior distributions for all parameters. For comparison

we also present the corresponding ML estimates. Here the difference between Bayesian and

ML estimates for df parameters is much smaller compared to the Norwegian financial returns

data. It seems that the estimation procedure involving the df parameters in this data is very

stable. The 95% credible intervals for ρ
S2S10|S3S5S7

and ρ
S2S5|S3

contain 0 and indicate that the

corresponding variables are conditionally uncorrelated. While the estimated posterior mode

for ν
S2S5|S3

is small, the estimated posterior mode for ν
S2S10|S3S5S7

is large, indicating that in

addition to uncorrelatedness we can assume that swap rates with maturity of 2 and 10 years are

independent given swap rates with intermediate maturities of 3, 5 and 7 years. Because of high-

cross correlation of interest levels, the knowledge of swap rates with the intermediate maturities

may determine the swap rates with maturity of 2 and 10 years with high probability and the

lowest and highest maturities move independently. However it is expected that the movement

size (variance) is small and small twists can occur. A twist denotes a change in the shape of the

yield curve and means that interest rates of bonds for some maturities change differently than

interest rates of bonds for other maturities. In general, the credible intervals in Table 4 for the

association parameter ρ of all conditional copulas contain 0 or are close to contain 0. Further
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Table 3: Estimated df’s and tail dependence coefficients for each pair of the transformed swap

rates assuming bivariate t-copula margins.

S3 S5 S7 S10

S2 df 2.87 3.62 4.53 5.23

ρ 0.94 0.88 0.82 0.79

λ 0.75 0.62 0.50 0.43

S3 df 2.86 4.19 4.93

ρ 0.94 0.87 0.84

λ 0.75 0.58 0.51

S5 df 3.00 3.56

ρ 0.92 0.89

λ 0.71 0.64

S7 df 2.07

ρ 0.96

λ 0.83

the corresponding posterior mode estimates are also very close to 0. The difference between the

bivariate independence copula density and a bivariate t−copula density with ρ = 0 and ν = 5

is negligible in the center region of the unit square support [0, 1]2. A difference is observed only

in thin strips around the support borders and especially at the four corners of the support. To

illustrate this point, we simulate two bivariate samples (U1,U2) of length 2000 from the above

copula models and Figure 8 displays the scatter plot of these samples. As one can see in Figure

8 there is no difference in the pattern of scatter plots if the border strip regions are excluded (

cf. scatter plots in the dashed square). Therefore the conditional uncorrelatedness could be here

interpreted as the corresponding conditional independence in the center region. Thus it seems

that PCC model specification (4.4) for the Euro swap rates could be reduced in the center by

all its conditional pair-copulas and the reduced central PCC is given by

c(uS2
, uS3

, uS5
, uS7

, uS10
) ≈ c

S2S3
c

S3S5
c

S5S7
c

S7S10
for central u ∈ [0, 1]5.

This reduction would also be achieved if one assumes a first order Markov dependence between

swap rates with adjacent maturities. Note that an independence between swap rates of 2 and 10

year maturities would fit with the market segmentation theory (see Culbertson (1957)) which

says that individuals have strong maturity preferences resulting that bonds of different maturities

are traded in separate markets. However our analysis confirms only a conditional independence

in the central region given swap rates with intermediate maturities. For the tail dependence we

note that λ varies between 0.058 and 0.009 when ν is between 5 and 16 for ρ = 0, thus only

moderate tail dependence is present for the conditional copula pairs.

We apply (4.3) to all recorded MCMC iterates to sample from the posterior distribution

of the tail dependence coefficient λ. Table 5 displays the estimated posterior distribution of

λ as well as its empirical upper and lower tail dependence coefficients λ̂upper and λ̂lower for

the pairs S2S3, S3S5, S5S7 and S7S10, respectively. The empirical estimate λ̂upper (λ̂lower) is

computed based on upper (lower) order statistics and the exact number of those is chosen to

achieve relative stability of the estimate. The 95% credible intervals contain the corresponding
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Figure 7: Estimated posterior densities of the parameters for the swap rate data
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Table 4: Estimated posterior mode, mean, median, 2.5% and 97.5% quantiles and MLE for the

transformed swap rate data

2.5% 50% 97.5% Est. Post. Est. Post. MLE

Quantile Quantile Quantile Mean Mode

ρ
S2S3

0.93 0.94 0.94 0.94 0.94 0.94

ν
S2S3

2.33 2.73 3.26 2.74 2.72 2.49

ρ
S3S5

0.93 0.94 0.94 0.94 0.94 0.94

ν
S3S5

2.62 3.03 3.54 3.04 3.00 3.08

ρ
S5S7

0.92 0.92 0.93 0.92 0.92 0.92

ν
S5S7

2.62 3.03 3.48 3.04 3.02 2.87

ρ
S7S10

0.95 0.96 0.96 0.96 0.96 0.96

ν
S7S10

1.86 2.12 2.50 2.14 2.11 2.27

ρ
S2S5|S3

-0.01 0.03 0.07 0.03 0.03 0.03

ν
S2S5|S3

4.19 5.32 7.00 5.40 5.27 5.08

ρ
S3S7|S5

0.04 0.08 0.12 0.08 0.08 0.08

ν
S3S7|S5

4.63 5.63 7.36 5.70 5.53 5.30

ρ
S5S10|S7

0.08 0.12 0.15 0.12 0.11 0.12

ν
S5S10|S7

4.64 5.62 7.22 5.67 5.55 5.58

ρ
S2S7|S3S5

-0.10 -0.07 -0.03 -0.07 -0.07 -0.07

ν
S2S7|S3S5

10.84 18.12 55.27 22.21 16.48 11.94

ρ
S3S10|S5S7

-0.11 -0.08 -0.04 -0.08 -0.08 -0.08

ν
S3S10|S5S7

7.10 9.51 14.58 9.90 9.20 7.69

ρ
S2S10|S3S5S7

-0.06 -0.03 0.01 -0.03 -0.03 -0.02

ν
S2S10|S3S5S7

15.37 64.51 954.21 223.08 55.84 16.30

Table 5: Estimated posterior mode, mean, median, 2.5% and 97.5% quantiles and empirical

estimate of the lower and upper tail dependence coefficient for different pairs of the transformed

swap rate data

2.5% 50% 97.5% Est. Post. Est. Post. Empirical Empirical

Quantile Quantile Quantile Mean Mode λ̂upper λ̂lower

λ
S2S3

0.73 0.76 0.77 0.76 0.76 0.76 0.74

λ
S3S5

0.72 0.74 0.76 0.74 0.74 0.75 0.74

λ
S5S7

0.69 0.71 0.73 0.71 0.71 0.73 0.71

λ
S7S10

0.80 0.81 0.83 0.81 0.81 0.82 0.82

empirical estimate of λ and therefore the PCC model captures well the tail dependence present

in the data.
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5 Conclusion and Discussion

The paper considers the flexible modeling of multivariate copulas with PCC models introduced

by Aas et al. (2007) in the Bayesian framework. It is well known that financial data are usually

heavy tailed and therefore we base the PCC models on bivariate t−copulas. In our MCMC

analysis we have also used mixtures of uniform distributions as prior for df parameters and the

results were quite similar to ones presented here. The sampling algorithm was independent of

initial values.

Credible intervals for parameters of PCC’s are obtained and they reveal conditional indepen-

dence between variables. It was found in the Norwegian financial returns data that the MSCI

world stock index (M) and the Norwegian bond index (B) are conditionally independent given

the Norwegian stock index (T). This could indicate that the Norway has a healthy independent

economy and the Norwegian bond index does not depend on the MSCI world stock index if

the Norwegian stock index is given. This could also be the consequence having large oil and

gas reservoirs, which dominate their export balance. The Bayesian analysis of the swap rate

data based on PCC shows that interest rates could be treated as conditionally independent.

This is a consequence of the high cross-correlation of the interest rate levels. The knowledge of

one particular swap rate contains most information on the swap rates of neighboring maturities

years and only small twists of the yield curve may take place. Further, in contrast to the market

segmentation theory, our findings support only conditional independence between swap rates of

2 and 10 years maturities given swap rates with intermediate maturities.

We constructed credible intervals for Kendall’s τ and tail dependence coefficient λ based on

MCMC iterates for parameters of PCC . They illustrate that models based on PCC models fit

the data well and provide a good agreement with model free estimates. In a similar manner

credible intervals for many other characteristics of random vectors can be constructed whose

confidence is difficult to derive.

We have seen that if independence or conditional independence are present in data then

the PCC model can be substantially reduced. Therefore the model selection problem becomes

extremely important for PCC’s. In particular the choice of a decomposition and the choice of

a pair-copula from a catalogue of bivariate copulas including the independence copula needs to

be addressed. Recently Bayesian model selection procedures have found their applications in

a number of complex problems. Here model choice and parameter estimation problems have

to be solved simultaneously. From our point of view, there are two most used methods due

Green (1995) and Carlin and Chib (1995). The method of Green (1995) requires a model jump

mechanism while the method of Carlin and Chib (1995) treats a product space of parameters

of all models. Since even for moderate dimensions like 10 or 20, the number of different models

becomes very huge, we prefer the reversible jump MCMC of Green (1995). The derivation and

implementation of appropriate reversible jump MCMC algorithms for high dimensional data

under PCC model specifications is under current construction and its results will be reported

in a further paper. The method of Carlin and Chib (1995), by its construction, can only be

recommended to the case where only a small set of models is to be compared.

Another open problem is the joint estimation of marginal AR(ARMA)-GARCH and PCC

parameters in the Bayesian framework. Recently Kim et al. (2007) have shown that a separate

estimation of the marginal parameters may have an essential influence on the parameter esti-

mation of multivariate copulas and inference based on joint estimates might be lead to quite

different results compared to the inference ignoring estimation errors in the marginal parameters.
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We expect similar results for PCC’s and this is a topic of future research.
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