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Abstract. Sums of Lévy-driven Ornstein-Uhlenbeck processes seem appropriate for

modelling electricity spot price data. In this paper we present a new estimation method

with particular emphasis on capturing the high peaks, which is one of the stylized features

of such data. After introducing our method we show it at work for the EEX Phelix Base

electricity price index. We also present a small simulation study to show the performance

of our estimation procedure.

1. Introduction

In the last decade, a number of countries have liberalized their electric power sectors.

Before, most power sectors were not free to competition, and prices were set by regulators

according to the cost of generation, transmission and distribution. Therefore, no price risks

existed. Since the liberalization, most electricity is bought through bilateral agreements,

i.e. two market participants negotiate prices for the delivery of electricity over one or

two years. Another share is bought and sold on spot markets of energy exchanges, where

electricity for delivery on the next day is traded. For example, in the European Union the

liberalization of power markets has been driven by the directive 96/92/EC of the European

Parliament and the European Council. The directive is aimed at opening up the member

states’ electricity markets, so that an increasing number of suppliers and consumers can

have the opportunity to freely negotiate the purchase and sale of electricity. Since 1990, a

large number of electricity exchanges have opened in Europe, where prices are determined

purely by supply and demand, the major ones listed in Table 1. In addition to next-day-

delivery of electricity, some of these exchanges (e.g. Nordpool and EEX) also operate a

financial market, where electricity derivatives are traded.

Electricity exchanges trade power generated by different sources, e.g. nuclear power,

power from coal, fuel or gas plants, or hydro and wind power. The composition varies

between different countries. Figures 1 and 2 show energy sources for Germany and Scan-

dinavia as examples. Almost half of the electricity generated in Scandinavian countries

is hydropower, whereas the biggest share of the German power supply is generated by

burning coal.
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Country Date Name

England and Wales 1990 Electricity pool

2001 UK Power Exchange (UKPX)

Norway 1993 Nord Pool

Spain 1998 OMEL

Netherlands 1999 Amsterdam Power Exchange (APX)

Germany 2000 Leipzig Power Exchange (LPX)

2001 European Power Exchange (EEX)

Poland 2000 Polish Power Exchange

France 2001 Powernext

Italy 2004 Gestore Mercato Elettrico (GME)

Table 1. European electricity exchanges and their respective starting years (taken from

[7], p. 259)

Figure 1. Composition of elec-

tricity sources in Germany, 2005.

Source: VDEW (2006)

Figure 2. Composition of elec-

tricity sources in Scandinavia,

2005. Source: Nordel (2007)

The electricity composition is relevant for electricity prices as generating costs vary

between energy sources, different cost structures also determine the role of a particular

energy source. Nuclear power and hydro energy have high fix costs and relatively low

variable costs, so that each extra unit of electricity can be generated at a low price. Thus,

both are used to cover the base electricity demand. Coal and gas power plants on the

other hand have relatively low fixed costs but high variable costs, so that each extra unit

is more expensive than nuclear power and depends on prices for commodities and CO2

allowances. Consequently, thermo energy is usually used to cover peak demand during the

day. Very high demand levels are usually met by burning fuel. Figure 3 visualizes the cost

structure, as it is described in [15].

In contrast to most other commodities, the main characteristic of electricity is its very

limited storability. It is hardly possible to insure against price risks by building reserves.
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Figure 3. Cost Structure. Source: von Hirschhausen et al. (2007)

As a consequence, a sudden rise in electricity demand (e.g. due to weather conditions)

or a production drop (e.g. due to a failure of a power plant) have to be compensated by

generation sources with often extremely high marginal costs. In times of parallel demand

and/or supply shifts, this exploding marginal cost structure together with very inelastic

demand then results in impressive price jumps, most often followed by a rather quick re-

turn of prices to normal levels. These so called price spikes, which are unique to electricity

spot prices, are observed frequently in most electricity markets (see e.g. Figure 5 for EEX

spot prices). Obviously, these price spikes constitute a significant risk to energy market

participants, and a successful risk management requires among others to appropriately

account for spike risk.

In [3], an arithmetic multi-factor non-Gaussian Ornstein-Uhlenbeck model of electric-

ity spot prices is proposed. This model is designed to reproduce path and distributional

properties of spot prices, among them spike behavior (see Section 2 for a description

of stylized features of spot prices). At the same time, due to the arithmetic structure,

the model is analytically tractable. For example, if one makes the usual assumption of

a structure preserving risk neutral pricing measure (in the sense that the model is also

of arithmetic nature under the risk neutral pricing measure), one obtains closed form

formulas for electricity futures and other derivatives prices. See [3] for more details on

this. However, since the model is non-Markovian, the question how to estimate the model

statistically is not obvious and was left open in [3]. The purpose of this paper is now to

propose an estimation procedure for this model, where we focus in particular on appro-

priate modelling of spike risk. To this end we employ tools from extreme value theory.

The frequency of spike occurrence is comparatively rare, spike events are contained in the

tail of the corresponding spot price distribution, which makes reliable statistical infer-

ence rather difficult. Tools and methods from extreme value theory are designed to deal

with these extreme events in that they compensate the lack of empirical information by

a robust model approach based on probabilistic limit theorems.



4 KLÜPPELBERG, MEYER-BRANDIS, AND SCHMIDT

We employ the proposed estimation procedure on daily EEX spot price data, and our

findings are that spike risk must be modelled by distributions with fat tails of polynomial

decay. This means that even when price jumps are introduced into a model by some com-

pound Poisson process with Gaussian or exponentially distributed shocks (as is typically

done in the literature, see e.g. [8], [11]), spike risk is still significantly underestimated.

Our paper is organized as follows. After listing the stylized facts of electricity data we

present our model in Section 2. In Section 3 we summarize results from extreme value

statistics, which we use to estimate the spike component of our model. This is done

in Section 4, together with the fit of the base component. We conclude with a small

simulation study, which shows the performance of our estimation method.

2. The spot price model

For daily electricity spot prices one observes a number of stylized features that a model

should be able to capture. In [12] spot prices from European electricity exchanges have

been analyzed and the following list of qualitative characteristics has been identified:

• Seasonality. Electricity spot prices reveal seasonal behavior both in yearly, weekly

and daily cycles.

• Stationarity. Contrary to stock prices, electricity prices tend to exhibit stationary

behavior. Similarly to other commodities, they are mean reverting to a trend which,

however, may exhibit slow stochastic variations.

• Multiscale autocorrelation. The observed autocorrelation structure of most

European price series is described quite precisely with a weighted sum of exponentials:

ρ̂(h) =

n∑

i=1

wie
−hλi .

Here ρ̂(h) denotes the estimated autocorrelation function (acf) with lag h, and the number

n of factors needed for a good description is 2 or 3. The weights wi add up to 1.

• Spikes. Electricity spot prices show impressive spikes, that is violent upward

jumps followed by rapid return to about the same level. The intensity of spike occurrence

can vary over time. This fundamental property of electricity prices is due to the non-

storability of this commodity.

• Non-Gaussianity. The examination of daily spot prices reveals a highly non-

Gaussian distribution which tends to be slightly positively skewed and strongly leptokur-

tic. This high excess kurtosis is explained by the presence of the low-probability large-

amplitude spikes.

The spot price model we want to consider in this paper is a multifactor model that has

been introduced in [3]. Let S(t) be the spot price at time t. Then S(·) is described by a
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sum of non-Gaussian Orstein-Uhlenbeck processes (hereafter denoted as OU processes):

(2.1) S(t) = Λ(t)

n∑

i=1

Yi(t) , t ≥ 0 ,

where each process Yi is the solution to the OU equation

(2.2) dYi(t) = −λiYi(t) dt + dLi(t).

The function Λ denotes a deterministic seasonality function, and the Li’s are independent,

increasing, possibly time inhomogeneous, pure jump Lévy processes. The increasing nature

of the Li guarantees positive prices despite of the arithmetic structure of the model. The

compensating measure µi(dt, dz) of Li is supposed to be of the form

µi(dt, dz) = ρi(t) dt νi(dz) ,

where the deterministic function ρi(·) controls the possibly time varying jump intensity

and νi(dz) is a Lévy measure with positive support. The parameter λi controls the rate of

mean reversion of the factor Yi. The different OU factors Yi represent the price behavior

on different time scales. Typically, three factors are sufficient for a good description: a

first one for short term spike behavior with high mean reversion, a second one for medium

term behavior, and a third one for long term variation with low mean reversion.

We recall that, given Yi(s), the explicit solution of the OU equation (2.2) for Yi(t) is

given by

(2.3) Yi(t) = e−(t−s)λiYi(s) +

∫ t

s

e−(t−r)λidLi(r) , s < t .

Further, if for all i = 1, . . . , n the jump intensities ρi(t) = ρi are constant, then the Li

are time homogeneous Lévy processes and (2.2) admits a stationary solution, given the

following logarithmic integrability condition on the Lévy measures
∫

|z|>1

ln(z) νi(dz) < ∞ , i = 1, . . . , n .

In that case the sum
∑n

i=1 Yi of OU processes exhibits the desired multiscale autocorre-

lation structure (provided the acf exists) given as

(2.4) ρ(h) :=
n∑

i=1

wie
−hλi ; wi =

Var Yi(1)∑n
j=1 Var Yj(1)

, i = 1, . . . , n.

The spot price model in (2.1) is sufficiently flexible to capture both the distributional

as well as the path properties of electricity spot prices listed above. However, because

the model is not Markovian, statistical estimation is not obvious. In [12] an estimation

method for the model based on results from non-parametric statistics is presented. In the

present paper, we want to develop an estimation procedure that invokes results and tools

from extreme value theory. The violent spike behavior of electricity prices constitutes

a significant risk for agents on energy markets. In order to be able to identify and to
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manage that risk it is thus essential to thoroughly analyze the tail behavior of the price

distribution. By employing tools from extreme value theory we will be able to provide

a model specification and an estimation procedure that appropriately accounts for spike

risk in the distribution tails.

In the next section we will give a short review of those results from extreme value theory

we are going to use, before we present our estimation method in Section 4.

3. Some results from extreme value theory

The following gives a short review of results from extreme value statistics, which we are

going to employ in the next section for the analysis of price spikes. In particular we are

interested in exceedances over a high threshold, including diagnostical tools and estimation

methods. For more details and further references of extreme value theory we refer to [6]

or any other extreme value statistics monograph.

3.1. Exceedances over high thresholds. Consider a sequence of i.i.d. random vari-

ables (Xi)i∈N
with common distribution function F . We are interested in the conditional

distribution of X above a high threshold u, i.e.

Fu(x) = P (X − u ≤ x | X > u) =
F (x + u) − F (u)

1 − F (u)
, x ∈ R .

Fu is called the excess distribution over threshold u. As u approaches xF = sup{x : F (x) <

1}, one often finds a limit distribution function

lim
uրxF

Fu(x) = Gξ,β(x) , x ∈ R .

More precisely, this limit exists exactly for those F that belong to the so called maximum

domain of attraction of the generalized extreme value distribution. In this case Gξ,β is the

generalized Pareto distribution (GPD) defined as

Gξ,β(x) =

{
1 − (1 + ξx

β
)−

1

ξ , ξ 6= 0

1 − exp(−x
β
), ξ = 0,

(3.1)

where β > 0, x ≥ 0 for ξ ≥ 0 and 0 ≤ x ≤ −β/ξ for ξ < 0. We call ξ the shape

parameter and β the scale parameter. Notice that for ξ > 0, the GPD is equal to a Pareto

distribution.

It can be shown, that E(Xk) = ∞ for k ≥ 1/ξ. Thus, for a stationary stochastic process

with marginal distribution function F as above, for ξ ≥ 0.5, variance and autocorrelation

function are not defined and one has to be careful when drawing conclusions from empirical

autocorrelation functions.
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3.2. Estimation. Now assume that X1, X2, . . . , Xn are i.i.d. with excess distribution

function Fu = Gξ,β. This is clearly an idealisation, since the excess distribution is gener-

ally only GPD in the limit. The parameters ξ and β are estimated by fitting Fu = Gξ,β

to the exceedances over the treshold u, i.e. (X(1) − u, X(2) − u, . . . , X(k) − u), where k

equals the number of observations greater than u and X(1) > · · · > X(k) are the upper k

order statistics. In practice, the threshold u has to be chosen appropriately, usually some

high order statistic X(k) is taken. To choose k small brings us closer to the limit model,

but we pay with a high variance for lack of data, to choose k at least moderate results

in a more stable estimate, but we face a high bias for working with a probably wrong

model. There exist data driven optimization methods to solve the involved mean-variance

problem; see [2], Section 5.8. However, such methods can give disastrously wrong results.

The usual remedy is to find a reasonable smallest threshold u through the mean excess

plot. Since the mean excess function is linear if and only if X follows a generalized Pareto

distribution, the mean excess plot should be approximately linear for x > u. Then the

choice of u is based on a plot of the estimator versus the threshold u or the number of

order statistics k used, where one can choose the estimator ξ̂ in dependence of u in an

optimal way. The following are frequently used estimators for ξ (see e.g. [6], Chapter 6).

Maximum likelihood estimator (MLE): Writing gξ,β for the density of the GPD, the

log-likelihood is given by

ln L(ξ, β | X(1) − u, X(2) − u, . . . , X(k) − u) =
k∑

j=1

ln gξ,β(X(j) − u)

= −k ln β −

(
1 +

1

ξ

) k∑

j=1

ln

(
1 + ξ

ξ

β
(X(j) − u)

)

Maximising subject to the constraints β > 0 and (1 + ξ ξ
β
(X(j) − u)) > 0 gives the

MLEs ξ̂ML and β̂. Recall that under weak regularity conditions MLEs are consistent

and asymptotically normal. However, these are asymptotic properties, which require a

large number k of exceedances over u. Moreover, consistency is guaranteed for ξ < 1

and asymptotic normality only holds for ξ < 0.5. As the properties of these estimators for

small samples are not clear, the following alternatives have been considered, concentrating

first on the important shape parameter.

Hill estimator : Note first that it is defined only for ξ > 0. It is based on the fact that

for a Pareto distributed random variable X with distribution tail P (X > x) = x−1/ξ for

some threshold u > 1 we have P (lnX > y) = e−y/ξ for y = ln u > 0. Then it invokes the

mean excess function, which is defined for any positive random variable Y as

e(y) = E(Y − y | Y > y) , y > 0 .

For the exponential distribution with parameter ξ we have e(y) = ξ for all y > 0. The

Hill estimator now conditions these facts on values above the threshold u, and considers
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the empirical mean excess function over the threshold u giving

ξ̂Hill(u) =
1

k

k∑

j=1

(
ln X(j) − ln u

)
.

Regression estimator based on mean excess plot : For ξ < 1 the mean excess function of

a GPD random variable X is given by

e(u) =
β + ξu

1 − ξ
, β + ξu > 0 ;

cf. [6], Theorem 3.4.13(e). The corresponding estimator conditions these facts on values

above the threshold u, and considers the empirical mean excess function over the threshold

u, where it appears as approximately linear. The mean excess plot depicts the empirical

version of e(u) against u. Thus, from the slope of the linear regression line of the mean

excess plot for values greater than u an estimator for ξ can be obtained. Let b̂ be the esti-

mated slope of the linear regression line of the mean excess plot. Then the corresponding

estimator is for ξ given by

ξ̂ME =
b̂

1 + b̂
.

For the linear regression, a robust linear regression [9] should be preferred to an OLS

estimator. This estimates b by an iteratively reweighed least squares algorithm. It is less

sensitive to changes towards the end of the range. These can disturb OLS estimates heavily

due to the sparseness of the data available for estimating e(u) for large u.

Regression estimator based on QQ-plot : For any random sample, a QQ-plot depicts the

empirical quantiles versus the theoretical ones. This was exploited in [10] for a distribution

function with far out Pareto tails, and applies to the GPD model above. It again exploits

the fact that for X Pareto distributed with shape parameter ξ, ln X is exponentially

distributed with parameter ξ. The resulting estimator is given by

ξ̂QQ(u) =

∑k
j=1 − ln

(
1 − j

k+1

) (
k ln(X(j) − u) −

∑k
j=1 ln(X(j) − u)

)

k
∑k

j=1

(
− ln

(
1 − j

k+1

))2
−
(∑k

j=1 − ln
(
1 − j

k+1

))2 ,

which is the slope of the regression line of

(
− ln

(
1 −

j

k + 1

)
, ln
(
X(j) − u

))
, 1 ≤ j ≤ k.

Again we recommend a robust estimator for the same reasons as for the mean excess plot.

After having estimated the shape parameter ξ, we also have to estimate the correspond-

ing scale parameter β of the GPD. This can be done by using a conditional likelihood,

conditioning on the estimate ξ̂.
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Figure 4. Daily trade volume, in MWh, on the EEX market, from 24/09/2006 to

10/11/2006. Bright-colored bars correspond to weekends. Data are downloaded from

EEX website at www.eex.de.

4. Estimation and simulation

In this section we will develop a procedure to estimate our spot price model (2.1). In

particular, we will use the tools from extreme value theory presented in Section 3 in order

to identify and to model the spike component. We employ this procedure to estimate the

model for the European Power Exchange Phelix Base electricity price index (EEX) (see

Figure 5).

The data is daily EEX spot prices provided by Datastream, running from 16/06/2000

to 21/11/2006 exluding weekends. Contrary to stocks, electricity is traded also on week-

ends, however in much smaller volumes than on week days (see Figure 4). This causes

a significant difference in Friday-to-Monday price behavior compared to intra-week price

behavior. However, while weekends introduce a lot of seasonality, they do not account

for interesting statistical features (e.g., no spikes during weekends). In order to make

deseasonalising easier we decided to consider data without weekends.

The EEX data series exhibits all of the in Section 2 listed stylized features of electricity

spot prices. In particular, Figure 5 illustrates clearly the occurrence of very large amplitude

spikes from time to time during which price levels can increase by a factor of 10 in the

course of a day. Further, Table 2 confirms that the data is highly non-Gaussian with an

overall excess kurtosis of 36.93 (recall that the normal distribution has excess kurtosis 3).

Exchange Mean StD Skewness Kurtosis

EEX 35.86 20.08 4.10 36.93

summer (Apr - Sep) 33.85 17.77 6.04 77.63

winter (Oct - Mar) 37.97 22.06 2.93 17.69

Table 2. Summary statistics for daily system prices
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Figure 5. Daily EEX Phelix Base electricity price index from 16/06/2000 to 10/11/2006.

4.1. Model estimation. We now present a procedure how to specify and estimate

model (2.1) for the EEX data. We will in the following assume time homogenous Lévy

processes in (2.2) to model EEX prices, an assumption that will be discussed in the course

of this section. Let S(t) denote the spot price at time t and tj for j = 1, . . . , N the equally

spaced daily observation times, where in the case of the EEX data N = 1679.

For notational simplicity we define S(j) := S(tj) (and respectively for any other time

series). We divide the estimation procedure into three steps.

Step 1 (Deseasonalizing the data): We assume a continuous seasonality function of

cosines including a trend, a weekly, and a yearly cycle of the form Λ(t) = exp(g(t)) with

g(t) = β0 + β1 cos

(
τ1 + 2πt

260

)
+ β2 cos

(
τ2 + 2πt

5

)
+ β3t , t ≥ 0 .

We estimate the seasonality function by fitting g(t) to log-prices using robust least squares

estimation. Here, robust simply means that outliers are cut off as long as they have

a significant impact on the estimation of g(·). The algorithm we use is based on the

following iteration: In the first step, the function g(·) is fitted to ln S(·) with an ordinary

least squares estimation. In each iteration step we only consider log-prices ln(S(i)) that

lie within a certain band around the estimated function ĝi−1(·) of the previous step, i.e.

in the ith iteration, the seasonality function g(j) for j = 1, . . . , N is fitted to the data

ln S(j) if ĝi−1(j) − 1.5 s < ln S(j) < ĝi−1(j) + 1.5 s ,

ĝi−1(j) + 1.5 s if ln S(j) > ĝi−1(j) + 1.5 s ,

ĝi−1(j) − 1.5 s if ln S(j) < ĝi−1(j) − 1.5 s ,

where ĝi−1(j) denotes the estimation of the previous iteration and s the standard devia-

tion of the residuals of the previous iteration. The iteration ends, when two subsequent

estimations are sufficiently close together, i.e. when
∑N

j=1 (ĝi(j) − ĝj−1(t))
2 < 0.01.
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Figure 6. Left: Original series S(·) and estimated Λ̂(·). Right: Deseasonalized series X(·).

The deseasonalized spot price (see Figure 6) is then denoted as

X(t) :=
S(t)

Λ̂(t)
, t ≥ 0 ,

where Λ̂(·) is the estimated seasonality function.

Step 2 (Spike identification): Next, because of the non-Markovianity of the model,

efficient estimation requires the separation of the data X(·) = X1(·) + X2(·) into a spike

component X1(·), which is supposed to be modelled by the first factor Y1(·) in (2.1), and

a remaining base component X2(·).

We start by assessing the rate λ1 with which the spot price mean reverts to the base

component, when a spike occurs.

Let Y (j) for j = 1, . . . , N be equally spaced discrete observations with time space ∆ of

an OU process

dY (t) = −λY (t)dt + dL(t),

which is driven by an increasing Lévy process L. Then one can estimate λ with the

Davis-McCormick estimator given as

(4.1) λ̂ =
1

∆
ln

(
max

1≤j≤N

Y (j − 1)

Y (j)

)
.

For every stationary OU process this estimator is weakly consistent as N → ∞ with ∆

fixed, and it has a limiting distribution under certain assumptions on the distribution of∫ 1

0
e−λ(1−s)dL(s); see [4] and references therein. Our estimation of λ1 is, however, based

on some isolated peaks, so that asymptotic properties are not relevant. One property of

the estimator is, however, that λ̂ ≤ λ, hence λ̂ is biased downwards.

Consequently, if we observed the OU spike path X1(j) for j = 1, . . . , N , then we could

estimate the corresponding rate of mean reversion λ1 by

ln

(
max

1≤j≤N

X1(j − 1)

X1(j)

)
.
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However, in our situation we do not observe X1(j) but only the sum X(j) = X1(j)+X2(j),

whose ratio is given as

X(j)

X(j − 1)
=

X1(j) + X2(j)

X1(j − 1) + X2(j − 1)
=

X1(j)

X1(j − 1)

(
1 −

X2(j − 1)

X(j − 1)

)
+

X2(j)

X(j − 1)
.

Now we observe that, asymptotically for X(j − 1) → ∞ the correction terms X2(j−1)
X(j−1)

and
X2(j)

X(j−1)
tend to zero. This leads us to use

λ̂1 = ln

(
max
j∈J

X(j − 1)

X(j)

)

as an estimator for spike mean reversion, where J is the set of time points such that

X(j) > v for a treshold v > 0. The treshold v has to be chosen such that the big spikes

are included. For our data set, the maximal ratio is obtained for the biggest spike around

day 400 and we find λ̂1 = 1.39.

We now proceed to disentangle the deseasonalized data X = X1 + X2 into a spike

component X1 and base component X2. This will be done by employing tools from ex-

treme value statistics to design a treshold method that filters out spike jumps. That is,

given that price variation is above a certain treshold, we assume this variation is caused

by a spike jump. Motivated by the asymptotic results of Section 3.1, we determine the

threshold such that the spike jump distribution, i.e. the Lévy measure ν1(dz) of L1, is well

described through the generalized Pareto distribution (GPD) from extreme value theory.

More precisely, we model L1 as a compound Poisson process with rate ρ1 (to be specified

later) and a GPD jump distribution with shape parameter ξ > 0.

In order to identify spike jumps in X we consider for known λ1 the autoregressive

transformation

(4.2) Z(j) := X(j) − e−λ1X(j − 1) , j = 1, . . . , N .

Then, as easily seen from (2.3), Z is modelled as

(4.3) Z(j) = X2(j) − e−λ1X2(j − 1) + ǫ(j) , j = 1, . . . , N ,

where all ǫ(j) have the same distribution as
∫ 1

0
e−λ1(1−s)dL1(s) and represent the i.i.d.

spike jumps. Note that ε(j) will be zero most of the time, namely, whenever X is in the

base regime. Only if Z(j) is above a certain threshold, say u, we assume a spike jump has

occurred, corresponding to ε(j) > 0.

Next we want to estimate the spike jump ǫ(j) from (4.3), but face the problem that

X2(j) is unknown. By assuming stationarity of X2(·) (and we shall see that this is justified)

we first replace each X2(j) forall j = 1, . . . , N by its arithmetic mean. Further, we replace

the mean reversion rate λ1 with its estimation λ̂1, which yields the estimate

(4.4) ǫ̂(j) =

(
Z(j) − (1 − e−

bλ1)
1

N

N∑

i=1

X2(i)

)
IZ(j)>u .
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But as already mentioned, we cannot observe X2(j) or their mean directly but only the

sum X1(j)+X2(j). However, with an estimated spike mean reversion rate λ̂1 = 1.39 , the

impact of a spike on spot prices vanishes by 94% within the first two days. Consequently

we can take the arithmetic mean over all data points excluding the first two consecutive

days following a spike jump occurrence. Let M be the length of this adjusted time series.

Then we replace the estimation in (4.4) by

(4.5) ǫ̂(j) =

(
Z(j) − (1 − e−

bλ1)
1

M

N∑

i=2

X(i)I(Z(i−1)≤u and Z(i)≤u)

)
IZ(j)>u .

The spike path X1 is then built following the OU dynamics (2.3) as

(4.6) X1(j) = e−
bλ1X1(j − 1) + ǫ̂(j) , j = 1, . . . , N ,

with initialization X1(0) = ǫ̂(0). Finally, the base component X2 is constructed as

(4.7) X2(j) = X(j) − X1(j) , j = 1, . . . , N .

The essential and remaining task in the above described procedure to filter out the

spike path is the choice of the treshold u. Using the diagnostic and estimation tools from

extreme value theory presented in Section 3, we propose to determine the treshold u

in such a way that the filtered spike jumps are well fitted by a (shifted) GPD. More

precisely, we determine u such that the exceedances (Z(j) − u)IZ(j)>u are well described

by a GPD. From (4.4) we then obtain that the jump size distribution in the compound

Poisson process L1 is a shifted GPD with left endpoint L given by the estimation in (4.5)

as

L̂ = u − (1 − e−
bλ1)

1

M

N∑

i=2

X(j)I(Z(i−1)≤u and Z(i)≤u) .(4.8)

The mean excess plot performed on Z(j) for j = 1, . . . , N in Figure 7 exhibits approxi-

mately a linear slope for thresholds bigger than 0.8 and, consequently, we should choose

u ≥ 0.8. For the estimation of the GPD parameters ξ and β we invoke methods presented

in Section 3.2.

We first concentrate on the estimator for the shape parameter ξ, which we plot as

functions ξ̂(u) of the threshold in Figure 8. From the very definition, it is clear that the

plots based on the Hill and ML estimators vary in a non-smooth way with the number

of order statistics used. The two regression estimators, on the other hand, change more

smoothly, but they are more curved exactly for high thresholds, in particular the one based

on the mean excess plot. Consequently, we choose to read off a particular value rather

from the MLE plot than from any other plot. Also, from a risk management point of view,

choosing the MLE secures against the ’worst case’ because the MLE proposes the highest

values for ξ. Nonetheless, combining all plots we can conclude that for a reasonably high

threshold ξ lies between 1/3 and 1/2, which implies that we have a finite second moment,
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Figure 7. Left: ME plot of Z(·), right: Z(·) with chosen threshold u = 1.62.
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Figure 8. Different estimates of ξ for different thresholds with asymptotic 95% point-

wise confidence bands: left: ξ̂Hill , right: ξ̂MLE , lower left: ξ̂ME , lower right: ξ̂QQ.

but an infinite third moment. We fix our parameters by choosing u = 1.62 and obtain

the MLEs ξ̂ = 0.47 and β̂ = 0.51. Finally, we estimate the left endpoint of the GPD by

the empirical counterpart of (4.8), which is not efficient, but for our purpose sufficiently

close.

Remark 4.1. (1) For illustration we also depict the estimated GPD quantile function

based on the four estimation methods from above for the same threshold u = 1.62.

Although the estimators for ξ and β are fairly different, the estimated quantile functions

in the relevant risk management area as depicted in Figure 9 are remarkably close.
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ment area based on the above different estimates for ξ and β for threshold u = 1.62.

(2) Our explorative analysis clearly indicates that appropriate modelling of spike risk

requires a Pareto-like distribution with polynomial tail. We want thus to emphasize that

jump diffusion type models which account for jump behavior through the introduction of

a compound Poisson process with exponential or Gaussian shocks (as is typically done

in the literature; cf. [8, 11]) significantly underestimate spike risk. This can be seen from

the empirical mean excess function in Figure 7. For an exponential distribution the mean

excess function is constant, whereas for the normal distribution it decreases to 0.

The last parameter we have to identify in order to complete the specification of the first

factor Y1(·) is the jump intensity ρ1. We cannot detect any significant seasonal behavior

in spike occurrence. Consequently, we work with a constant instead of a time varying

intensity ρ1, which is estimated simply as

ρ̂1(t) = ρ̂1 =
1

N
card{j : Z(j) ≥ u , j = 1, . . . , N} .

For our treshold u = 1.62 we count 38 spike jumps ǫ(j) > 0 for i = 1, . . . , 38 (see Figure 7),

which implies a jump intensity ρ̂1 = 0.023.

We want to remark that in the right hand Figure 7 exceedances over thresholds seem

to appear in clusters, which then cannot be modelled by a Poisson process. This would

suggest the introduction of a stochastic spike jump intensity ρ1(t, ω). This is, however,

beyond the scope of this paper and left for future research.

Finally, Figure 10 shows the corresponding separation of the deseasonalized spot prices

into the spike component X1 and the base component X2.

Step 3 (Base component): Performing a Dickey-Fuller test as well as its augmented

version (for details see [16]) on X̂2(j) for j = 1, . . . , n strongly suggests stationarity of

the base component (see Table 3). We thus assume stationarity for the base component

X2(·), which we model as a sum of stationary OU processes.
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Figure 10. Decomposition of X(·) into the spike component X1(·) and the base com-

ponent X2(·).

DF ADF 95%-quantile

-14.7 -8.9 -2.86

Table 3. Dickey-Fuller and augmented Dickey-Fuller test results on X̂2(j) for j = 1, . . . , N .
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Figure 11. Left: Fit of the estimated autocorrelation function of X2 with one factor.

Right: Fit with two factors.

The number n − 1 of remaining factors Y2, . . . , Yn necessary to model X2(·) and their

rates of mean reversion λ2, . . . , λn are determined by analyzing the autocorrelation struc-

ture of X2(·). Figure 11 demonstrates that a multiscale autocorrelation of the form (2.4)

corresponding to two additional factors gives a good fit of the empirical autocorrelation;

i.e. we model the base component as

X2(t) = Y2(t) + Y3(t) , t ≥ 0 .

The fit is based on least squares estimation, and Table 4 reports the corresponding es-

timated mean reversion rates λ̂2 and λ̂3 together with ŵ2 and ŵ3. This means that,

additionally to the fast mean reverting spike factor Y1, we need two more factors Y2 and

Y3 with medium and slow mean reversion, respectively.
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λ̂2 λ̂3 ŵ2 ŵ3 = 1 − ŵ2

0.243 0.0094 0.68 0.32

Table 4. Estimated parameters from fitting the model autocorrelation (2.4) to the

empirical autocorrelation of the base component by robust least squares.

We conclude the estimation procedure with the remaining specification of jump inten-

sities ρ2, ρ3 and Lévy measures ν2(dz), ν3(dz). For this purpose, we first fit the stationary

marginal distribution of the base component to X2(j) = Y2(j) + Y3(j) for j = 1, . . . , n

using quasi-MLE (QMLE). More precisely, we assume that the stationary distribution of

Y2(·) + Y3(·) is given by a density fθ(·) with parameter vector θ, which is estimated by

(4.9) θ̂ = arg max
θ

n∏

j=1

fθ(X2(j)) .

The term quasi-MLE is used because the data X2(1), . . . , X2(n) are not realizations of

independent random variables. However, since the acf of X2(·) is exponentially decreasing,

the estimate in (4.9) has the same asymptotic properties as a classical MLE.

We work with a gamma distribution Γ(a, b) with density f(y) = bae−byxa−1/Γ(a) for

y > 0 as statistical model of Y2(j) + Y3(j) for j = 1, . . . , n. Though the data shown in

Figure 12 are slightly non-symmetric and leptokurtic, the gamma distribution provides an

acceptable fit to the data X2(j) for j = 1, . . . , n and has the advantage that in this model

the single factors are easy to fit and to simulate. QMLE yields a distribution Γ(â, b̂) for

the sum X2(j) = Y2(j) + Y3(j) for j = 1, . . . , n with â = 14.8 and b̂ = 14.4. In order to

specify the single factors we assume distributions Γ(a2, b) and Γ(a3, b) for Y2(j) and Y3(j),

respectively, such that a2 + a3 = a. Then the stationary distribution of the sum X2(j) is

Γ(a, b) as desired.

Finally, for i = 1, 2 we estimate the weights wi and ai from (2.4) together with the

autocorrelation fit (see Table 4), which gives

ŵ2 = 0.68 =
â2

â
.

This gives the unique specification Γ(ŵ2â, b̂) and Γ(ŵ3â, b̂) as stationary distributions

for Y2 and Y3, respectively. Recall from [1] that this implies that the driving Lévy processes

L2 and L3 are compound Poisson processes with jump intensities and Lévy measures

ρi = λiwia and νi(dz) = be−bz1z>0 dz , i = 1, 2 .

This completes the specification and estimation of the model to EEX spot prices.

We summarize the estimation results of this section in Table 5.
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Figure 12. QML-fit of data X2(j) = Y2(j) + Y3(j) for j = 1, . . . , n by a gamma distribution.

mean reversion rate λ̂i jump intensity ρ̂i jump size density νi(dz)/dz parameters

Y1 1.39 0.023 1

β

(
1 + ( ξ

β
(z − L))

)
−

1+ξ
ξ

1z>0 ξ̂ = 0.47

β̂ = 0.51

L̂ = 0.83

Y2 0.243 2.446 b e−b z1z>0 b̂ = 14.4

Y3 0.0094 0.045 b e−b z1z>0 b̂ = 14.4

Table 5. Summary of factor characteristics for model (2.1) from the estimation procedure.

4.2. Simulation. We conclude this section with a simulation study, where we simulate

price paths scenarios of the deseasonalized spot price process X(·) using the model spec-

ifications from Table 5. More precisely, we simulate and add three OU factors of the type

(2.3), which are driven by compound Poisson processes, a task that is easily performed.

Estimating the three factors again is, however, a difficult problem, since mixture models

are always difficult to decompose statistically into their different factors.

To start with a simple eye-test in Figure 13, we see that the simulated paths indeed

mimic well the spot price behavior. Furthermore, the first four moments are acceptably

reproduced as reported in Table 6.

mean std skew kurt

empirical moments 1.067 0.445 6.941 94.02

simulated moments 1.057 0.413 4.932 98.95

Table 6. Comparison of empirical and simulated moments (2000 simulations).

For a more serious analysis of our estimation procedure in Section 4.1 we simulated 100

sample paths of the deseasonalized spot price X(·) with parameter values given in Table 5

and apply our estimation procedure to every simulated path.
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Figure 13. Three simulated paths in comparison with the data X(·) (top left)

We estimate first the spike component X1(·) of (4.6) as explained in Step 2. Based

on the 100 simulated sample paths we summarize the parameter estimation for X1(·)

in Table 5. Since the estimation is based on threshold data, as in every extreme value

statistics procedure we expect to see rather high variation in the estimators. Furthermore,

as stated in Step 2, λ̂1 always underestimates λ1. In Table 7 we present the mean, the

mean squared error, and the mean relative bias of the estimated parameters.

In spite of all the drawbacks, as can be seen in Figure 14 for one specific sample path,

our estimation procedure recovers the spike and base component rather convincingly.

λ̂1 ρ̂1 ξ̂ β̂ L̂

Values 1.39 0.023 0.47 0.51 0.83

m̂ean 1.2030 0.0211 0.5684 0.4632 0.8232

(0.2510) (0.0042) (0.1816) (0.2753) (0.0662)

M̂SE 0.0973 0.0002 0.0361 0.0751 0.0013

(0.1938) (0.0005) (0.0724) (0.1319) (0.0019)

M̂RB −0.1345 −0.0828 0.1145 −0.0145 −0.0037

Table 7. Estimated mean, mean squared error (MSE) and mean relative bias (MRB)

of estimated parameters for X1(·) as in (4.6) from 100 simulated paths with estimated

standard deviations for mean and MSE in brackets.
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Figure 14. The true (top) in comparison with estimated (bottom) spike and base com-

ponent for one simulated spot price path.

Next for every simulated sample path we subtracted the estimated spike component

resulting in the two-factor model X2(·) as in (4.7), and we estimated all parameters as

described in Step 3. The fact that it is still a mixture model affects in particular the

estimation of λ2 and λ3, but also a2 and a3, whereas a and b are slightly overestimated in

mean, but perform reasonably well. The results are documented in Table 8.

λ̂2 λ̂3 â2 â3 â b̂

Values 0.243 0.0094 10.07 4.79 14.8 14.4

m̂ean 0.2664 0.0172 10.9752 4.6554 15.6335 15.1858

(0.1086) (0.0254) (3.0228) (2.3204) (1.7587) (1.7395)

M̂SE 0.0122 0.0007 9.8729 5.3479 3.6669 3.6130

(0.0640) (0.0035) (15.8091) (13.5578) (5.6636) (5.5364)

M̂RB 0.0965 0.8272 0.0903 −0.0275 0.0524 0.0546

Table 8. Estimated mean, mean squared error (MSE) and mean relative bias (MRB)

of estimated parameter sets for X2(·) and X3(·) from 100 simulated sample paths with

estimated standard deviations for mean and MSE in brackets.
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