
Modelling the Value and Measuring the Risk of Private Equity
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Abstract

Private equity firms are blamed for quickly extracting all of a target company’s cash,

and sometimes for going even further by requesting a target company to incur additional

debts – in order to be able to pay investors an additional dividend – and thus driving it into

bankruptcy. Consequently, there is always a trade-off between the benefit of high extra divi-

dends and the associated risk, due to higher debt obligations, which may cause bankruptcy.

In this paper, we apply real-options theory and capital-budgeting techniques to the problem

of assessing a private investor’s risk. We propose a new continuous time DCF model, which

incorporates the four fundamental value drivers, among others a high debt to equity ratio,

and typical characteristics for private investments like a high probability to default. We also

introduce different risk measures by proposing a new measurement model that is based on

the cash flow process, the associated multiple process as well as on the implied IRR of the

transaction. Finally, we give some details of how such a model is implemented to provide

investors as well as debt lenders with a decision support regarding different investments or

investments strategies.
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1 Introduction

Two worlds, which could not be more different, collided in the Swabian small town Metzingen

- the workforce of the fashion label Hugo Boss and the private equity investor Permira. In May

2008 the new owner Permira announced a dividend, including a debt-financed extra dividend, of

500 million (mn) Euro in the annual general meeting, decreasing the equity stake from 50% to

around 25%. Most of the successful board of directors had already left the company at that time.

This kind of innovative financial engineering has recently hit the headlines. Another showcase

for the stereotype of private equity investors is the history of the car wash company IMO, in

which the private equity investor Carlyle invested. After two years with bad weather - car wash

sales are strongly correlated to sunny days in the summer season and cold/icy days in the winter

season - the optimistic sales targets for car washes could not be fulfilled. This combined with

the enormous debt obligations resulted in a failure of the narrowly calculated investment plan.

Senior debt lenders are now on taking over the company, due to breach of covenants. This paper

contributes to the development of a risk assessment procedure for private equity investments.

Currently, private equity investors simply measure an investments’ risk by introducing best and

worst case scenarios in the investment plan. It has become evident in the current crises that

the sole consideration of rates of return without proper risk assessment is only doing well as

long as no unpredicted event occurs that strikes the worst case scenario. Various publications

initiated due to the introduction of the Basel II Accord provide a toolset to assess a bank’s

product range. However, they are not taking into account that banks provide a large portion of

equity to private funds or even run their own private equity divisions that do not only provide

debt to other financial sponsors, but do also purchase their own equity positions.

This paper presents a method that allows for the assessment of complex investment strate-

gies in terms of risk and return. Cashing out the investment allows private equity companies to

achieve returns for their investors in the timeliest manner. Thus upcoming risks from restruc-

turing programmes and environmental changes can be mitigated by early payments to investors.

As financial sponsors are usually judged by the internal rate of return of their investments,

they prefer risk-free early cash flows as opposed to an uncertain value enhancement, whose net

present value is low due to a high discount factor. Thinking beyond a capital pre-drawing the

remaining equity stake becomes usually more risky, hence the overall risk effect is ambiguous.

In order to provide a decision support for different innovative financial engineering strategies

we will analyse the investment strategy in terms of discounted cash flows. Especially changes in

the capital structure, which affect the risk of investments, are used as levers to map a certain

investment strategy to our stochastic model. Within this flexible stochastic model, on the basis

of available historic data samples and expectations raised in the leveraged buyout model Monte-

Carlo techniques are used to provide us with an understanding of the resulting density of the net

present value or internal rate of return. A comparison of different investment strategies within a

risk-return profile allows us to support both financial sponsors and debt lenders in their selection

process of exclusive investments as well as in their selection process of investment strategies.

2



Our paper is organised as follows. In Section 2 we present the model introducing different

cash flow processes in continuous time, the current value of a company is modeled involving a

random multiple, which evolves also dynamically in time. Leverage sizes and default possibilities

are considered as well. The section ends with the determination of the net present value of the

equity exit value as well as the associated distribution of the Internal Rate of Return (IRR),

which is of particular importance to the investor. Section 3 is devoted to the risk assessment of

the investment focussing on the most important downside risk measures. In Section 4 we present

the standard Euler discretisation scheme and list all input variables preparing thus the ground

for our case study in Section 5. For various input scenarios we calculate the corresponding risk

return rate. Finally, we summarize some conclusions in Section 6.

2 The Continuous-Time Model

Private equity investors value possible investments with the same techniques, which are used for

portfolio decisions of liquid financial assets. Generally, cash flows (CFs) over time are typically

composed of the initial equity investment (IV) at time 0, the values drawn from the Free Cash

Flows to Equity (FCFE) during (0, T ), and the price of equity, which is realised at maturity T

- the Exit Value. We will measure the performance of a private equity firm by the cash equity

basis of the investment and the implied IRR.

We derive the price of equity from the Enterprise Value (EV) at time T , which is identifed by

a comparable transactions analysis, which is a specific market approach: The exit value, based

on a multiple (e.g. 10 times of earnings before interest, taxes, depreciation and amortisation)
1, is a simplified pricing procedure and accounts for the market value in comparison to a peer

group2.

We define an investment’s peer group universe by its publicly listed competitors. A consensus

of broker forecasts on peer group financial data helps us to incorporate industry specific long

term growth rates in a robust manner, since on a long term perspective it is not possible for a

company to outgrow its market.

The following sections in this chapter will outline each quantity of the model in detail.

2.1 The Cash Flow Process

We distinguish between two different parts of CFs. On the one hand we have operating CFs Et

like regular dividends. On the other hand, we may also have non-operating CFs, derived by extra

dividends or cash injections, denoted by Jt. We model both parts independently as follows3.

1SCHWARTZ/ MOON (2000) Rational Pricing of Internet Companies, p. 62.
2MEYER (2006) Stochastische Unternehmensbewertung. Der Wertbeitrag von Realoptionen, p. 63.
3We take a two-dimensional standard Brownian motion (Wt)t≥0 = (Wt, W̃t)t≥0 on a filtered probability space

(Ω,F , (Ft)t≥0,P). We assume that Ft = σ(ms, Es : 0 ≤ s ≤ t), 0 ≤ t ≤ T , is the natural filtration generated by

(Wt)t≥0, which satisfies the usual conditions. We will call Ft-measurable quantities path dependent. As we deal

only with problems on the compact interval [0, T ], we will also assume the usual integrability conditions.
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Operating Cash Flows

We model the company’s operating CFs as the solution of the stochastic differential equation

dEt = Et(λtdt+ σEt dWt), E0 > 0,

where the drift is denoted by λt
4 and the diffusion coefficient by σEt . The chosen geometric

model accounts for level-adjusted drift and volatility increments. Obviously, E0 > 0 results in

Et > 0 almost surely. This means that we restrict our operating CF model to positive CFs 5.

Non-operating Cash Flows

Possible unexpected events are, for instance, debt-financed extra dividends (recaps), asset-sales,

covenant breaches, technology purchases, unexpected equipment replacements, legal claims or

cash injections. The occurrence times and their values are uncertain for all aforementioned

events.

We model the event times and values separately. Usually, we will not have any preliminary

knowledge concerning times and sizes. Then, as usual in such situtations, we model the inter

event times by i.i.d. (independent, identically distributed) random variables Gi, which we assume

to be exponentially distributed with intensity g > 0. The values at the event times are assumed

to be independent of the inter event times and they can be positive or negative. We model the

sign as being random denoted by i.i.d δi ∈ {−1, 1} with P(δi = 1) := p ∈ [0, 1]. Finally, we

model the distribution of an absolute event size Si by a lognormal distribution with parameters

µJ and (σJ)2 and we assume that they are independent and independent of the sign.

All these independence assumptions result then in a compound Poisson process

Jt :=
∞∑
i=1

δiSi1{
∑i
j=1Gj≤t}

.

The extraordinary CFs can also be modeled by various extensions of the above compound Poisson

process. Take, for instance, a sum of different compound Poisson processes, to model e.g. by J1
t

possible recaps with intensity g1 > 0, whereas J2
t captures possible cash injections occuring

with intensity g2 > 0. Obviously, the lognormal distribution can be replaced by any other

distribution. Furthermore, the event times can be modeled, for instance, by a non-homogeneous

Poisson process or by any other point process. All this has to be decided based on the statistical

information available. It may also be advisable to introduce further conditions, for instance,

recaps can only be realised if operating CFs exceed a certain level, or cash injections are only

necessary, if operating CFs are below a certain level. These considerations can easily be taken

into account.
4With reference to later sections, one may extend the idea of a time dependent drift λt by λt(Debt). Higher debt

obligations are followed by higher interest payments. Hence, not anticipated interest payments decrease the drift of

future CFs. Not anticipated interests arise from the stochastic character of debt, given by D̃t = η
∫ t
0
Esσ

E
s dWs+Jt.

One may take λt = λt(Debt) = λt
(

1− D̃trf

E0 exp(
∫ t
0 λsds)

)
for all t ∈ [0, T ].

5By assuming E0 > 0, we exclude the modelling of distressed investments.
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Compounded Cash Flows

With respect to our CF analysis, we also incorporate in our model the possibility to repay

debts at a certain percentage η ∈ [0, 1] of the operating CFs. Then the compounded CF process

FCFEt available for investors, including extraordinary events is given by

FCFEt := (1− η)Et + Jt.

2.2 The Multiple Process

We shall define the multiple-process m in reference to a CF process. As the multiple is based

on doubtful expectations and also incorporates market overstatements to industry growth rates,

we will use a stochastic process to describe dynamically the uncertainty that underlies a value

enhancement by multiple expansion or by increasing CFs at an assumed constant multiple. We

use a square-root diffusion process to ensure that almost all sample paths mt of the multiple

process are positive 6, and we use a time dependent mean mt for a more realistic modelling:

dmt = κ(mt −mt)dt+ σm
√
mtdW̃t, m0 ∈ R+.

The parameter κ indicates the mean-reversion rate and σm is the diffusion parameter of the

multiple process.

2.3 Enterprise Value

We will work with an Enterprise Value/Free Cash Flow to the Firm (EV/FCFF)-multiple, as

this is the most accurate multiple measure of the current value of a company 7 yielding

EVt = FCFFt ×mt.

Free Cash Flow to the Firm (FCFF) can be calculated by the relation

FCFFt = FCFEt −∆Debtt + rfDebtt

= FCFEt + ηEt + dJt + rfDebtt,

where rf denotes the risk free rate of return 8. Note that FCFFs are unlevered or debt-free.

This is obvious, because FCFFs do not include interest and so they are independent of debt and

capital structure. Therefore, the EV will also be independent of the underlying capital structure,

and our modelling of the EV is consistent with the capital structure irrelevance principle of

MODIGLIANI/ MILLER 9.

6A proof of the positivity can be found in MAGHSOODI (1996) Solution of the extended CIR term structure

and bond option valuation, p. 92.
7JACOBS (2002) Great companies, bad stocks, p. 1.
8For simplicity reason we take rf constant over time. One may also work with rft = rf (lt) since a higher level

of leverage evolves higher interest premiums, as the company is more likely to fail to pay higher debt burdens.
9Cf. MODIGLIANI/ MILLER (1958) The Cost of Capital, Corporation Finance and the Theory of Investment,

pp. 433-443.
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Since for fixed deterministic t > 0 it holds that dJt = 0 10 we may write

EVt = (Et + rfDebtt)×mt

with

E(Em)t = E0m0 +

∫ t

0
Esmsλsds+

∫ t

0
κEs(ms −ms)ds+

∫ t

0
Esσ

mσEs
√
msds.

We can see that the EV depends on the initial value Em at time 0, but also on the expected

growth in CFs Emλ, which incorporates the value drivers top line growth and operational ef-

ficiency. It also depends on the multiple gap κE(m −m) which can be interpreted as multiple

expansion, as the exit value is pushed towards the projected multiple m. Besides the leverage

effect these are the fundamental value drivers for private equity firms to achieve high contribu-

tions to their investors 11. The last term can be seen as a risk premium; a higher risk in the

industry σm or a riskier investment σE is precipitating in an add-on to the EV at time t, which

is what we indeed observe in equity markets. Investors in riskier assets demand higher returns

as a risk compensation.

Recalling that ηEt of CFs are at any time t ∈ (0, T ) employed to repay debt, and from the

assumption that Jt is debt-financed 12 we conclude that

Debtt = max

(
Debt0 − η

∫ t

0
Esds+ Jt, 0

)
.

2.4 Leverage and Default

The leverage lt measures the current ratio of debt to total capital by

lt := min

(
Debtt
EVt

, 1

)
= min

max
(
Debt0 − η

∫ t
0 Esds+ Jt, 0

)
(Et + rfDebtt)mt

, 1

 .

We define the default time as the time, when the EV strikes the book value of a companies’

debt13. We work under the simplified assumption that our model assumes no recovery or cash

injection at default, since cash injections are already incorporated with Jt.

τ := inf{0 ≤ t ≤ T : lt = 1},

where we define as usual inf ∅ := ∞. If default happens before maturity T , i.e. if τ ≤ T , then

the company enters into insolvency proceedings and then we have Et = 0 for all t ∈ [τ, T ], since

the company devolves to the creditors at default time τ . This also implies that the equity exit

value is worthless, carried out by 14

(1− lt∧τ )EVt = 0 for all τ ≤ t ≤ T.
10Note that for the stochastic jump times Ti =

∑i
j=1Gj it holds that dJTi 6= 0; here we are, however, only

interessted in fixed and deterministic times t.
11Cf. also BCG (2008) The Advantage of Persistence, pp. 12-14.
12Note that debt obligations can either be increased by e.g. recaps and or be decreased by e.g. cash injections.
13Cf. MERTON (1974) On the Pricing of Corporate Debt: The Risk Structure of Interest Rates, p. 44.
14It holds that lt∧τ = 1 for all τ ≤ t ≤ T .
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2.5 Discount Rate

Discounting FCFE at the cost of equity will yield the value of equity in a business 15. Working

on the premises of the CAPM 16 we recall the security market line

rt := rf + (rm − rf )βlevt = rf + (rm − rf )βunlev
(

1

1− lt

)
,

with β denoting the equity beta factor, a measure for the systematic risk of a company’s returns,

rm a market rate of return, and rf the risk free rate of return. Here βlev denotes the levered

equity beta of the company measured by its equity return in dependence on an underlying index

βlev =
σeCorre,I

σI
,

where σI denotes the market/ industry volatility and σe denotes the average equity return volatil-

ity of a publicly listed peer group universe (cf. the Introduction for details). Corre,I measures

the correlation of the peer group universe to the market. Since we want to analyse a private

company, we suggest to employ the average unlevered peer group beta in order to derive the

appropriate, debt free, systematic risk. The unlevered beta factor is derived by decomposing the

levered beta in an unlevered component and a leverage component 17

βlevt = βunlev
(

1

1− lt

)
.

2.6 Cash Flow Risk

We will motivate the equity CF risk in terms of the diffusion coefficient σEt also via the definition

of the equity beta in the CAPM. Stock market returns are driven by distributable FCFE, as

they are the assessment base for possible payouts. Hence, in a long run perspective, stock market

volatility is determined by recurring/ operating FCFE volatility 18. Fragmenting the appropriate

CF risk in a systematic component βunlevσI
Corre,I

, a leverage component
(

1
1−lt

)
, and by introducing

an unsystematic component a, that accounts for market inefficencies we arrive at::

σEt =
βunlevσI
Corre,I

(
1

1− lt

)
a.

In order to understand the motivation for the foregoing formula, consider an increase in debt

at a constant EV. An increase in debt will affect CF risk in two ways. Firstly, the equity share

of total capital is reduced, thus changes of a company’s revenue hit a lower equity basis, and

thus result in a higher volatility of CFs. Secondly, future liabilities soar as interest payments are

increasing, hence the probability of not being able to repay liabilities augments, and thus the

risk to default increases.
15See DAMODARAN (2001) Investment Valuation, Chapter 15, p. 2.
16Refer to SHARPE (1964) Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk,

pp. 425-442.
17For simplicity we assume a tax-free world, expressed by τC = 0. It can, however, be incorporated easily by

setting βlevt = βunlev
(

1−τC lt
1−lt

)
.

18Note that short term variations are caused by unexpected events, hence these are already taken into account

by the modelling of CF jumps.
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2.7 Valuation

The net present value of FCFE is simply derived by discounting CFs contributable to investors

by the risk-adjusted rate rt, hence the cash flow value (CFV) of the investment is modeled at

time 0 by

CFV :=

∫ T∧τ

0
e−rssFCFEsds,

putting on record that CFs are only accumulated as long as the investment is not bankrupt.

The equity stake is measured by the EV minus the book value of liabilities 19. As explained

in the introduction we assume that investments are only realised at maturity T . Hence, we are

not interested in discounting changes in the exit value at every time t ≤ T . For the appropriate

discount rate we employ a geometric approach 20. The net present value of the equity exit value

is denoted as terminal value (TV) and given by:

TV := (1− lT∧τ )e−
∫ T
0 rsdsEVT .

Hence, the net cash equity basis C, the value of the investment, is identified by introducing the

initial equity investment value (IV), which constitutes the transaction price net of debt:

C := −IV + CFV + TV.

2.8 Internal Rate of Return

The Internal Rate of Return (IRR) is the yield on the invested capital, meaning that the net

present value (NPV) of the investment’s income stream equals zero. Recall the random variable

C = C((rt)t≥0) = C((Et,mt, Jt, Debtt, lt, rt)t≥0) for every realisation (Et,mt, Jt, Debtt, lt)t≥0,

which comprises all CFs to equity. We define the IRR as the constant interest rate r = rt for all

t ∈ [0, T ] such that r is the root of C = C(r), i.e. the solution to

C(r)=0.

As E0 > 0 holds a.s., we know that there are positive CFs, Et > 0 a.s., hence investors should

only be interested in investments for which at least C(r = 0) > −IV holds. Further, as in general

IV is positive, it holds that lim
r→∞

C(r) < 0. Hence, we can guarantee that such a root r, i.e. IRR

exists a.s..

We denote the associated distribution function of IRR by F and note that F (r) gives the

probability of getting an IRR of less than or equal to r 21. Investors can now analyse the

19As the company is not bankrupt, market value of debt is equal to book value of debt.
20One may argue, that discounting with the risk adjusted rate r0 or the risk adjusted rate rT is more suitable,

as the investment is highly illiquid until maturity. But the reason that supports a geometric mean calculation is

the fact that capital structure may change dramatically along the investment horizon. The associated risk changes

are adequately taken into account by employing the average (geometric mean) risk adjusted rate as discount rate.
21I.e. when it comes to Monte Carlo simulation, we can identify, if a certain path implied an IRR of r by

discounting CFs with r. If C(r) < 0 then the associated path implied an IRR of less than r.
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distribution of the IRR. The distribution F expands the idea of point predictions (best/worst-

case scenarios) to a probability distribution including a proper risk assessment of cash flow risk,

industry (multiple) risk as well as of extra-ordinary events: cash injections, recaps, default, etc..

3 Risk Measures

As the success of private equity firms is measured by the announced IRR that is required to

attract limited partners 22, the investors should and would be interested in the risk of falling

below a certain IRR level. Thus in accordance with FISHBURN 23 risk is associated with returns

falling below some specified target level, a hurdle h:

Risk(IRR) =

∫ h

−∞
ϕ(h− r)dF (r),

where F is the distribution function of IRR and ϕ(·) is a nonnegative and non-decreasing func-

tion. For instance, for a risk parameter γ > 0, we can choose ϕ(·) so that

Risk(IRR) =

∫ h

−∞
(h− r)γdF (r).

FISHBURN has shown congruence between this model and the expected utility model with

utility function

U(r) =

{
r r > h,

r − k(h− r)γ r ≤ h,

and where k is a positive constant. The decision maker, here a general partner, may display

various degrees of risk aversion or preference for outcomes below h, depending on the value of γ,

but he/she remains risk neutral for outcomes above h 24. After surveying a number of empirical

studies of utility functions, FISHBURN concludes “that most individuals in the investment

context do indeed exhibit a target return - which can be above, at, or below the point of no gain

and no loss - at which there is a pronounced change in the shape of their utility functions, and

that the given utility function can provide a reasonably good fit to most of these curves in the

below-target region”.

Since investors are in general interested in a successful track record to attract further limited

partners, another adequate risk measure for private equity investors is the probability to default.

Under the requirements for the Capital Adequacy Assessment Process of Basel II, one can

also assign Value at Risk or other risk measures derived from the density of the net cash equity

basis C to measure required capital reserves. As C is a random variable with distribution function

G, say, the probability distribution of the net present value of future CFs, in order to assess

22Cf. BERG (2005) What is strategy for buyout associations, p. 42.
23FISHBURN (1977) Mean Risk Analysis with Risk Associated Below-Target Returns, pp. 116-120.
24HOLTHAUSEN (1981): A Risk-Return Model with Risk and Return Measured as Deviations from a Target

Return, pp. 182-185.
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capital reserves one may define cash flows at risk (CFaR) 25, the maximum loss of CFs not

exceeded with a given probability β ∈ (0, 1), i.e.

CFaRβ := EC −G←(1− β),

where G←(β) = inf {x ∈ R : P(C > x) ≥ β} is the generalized inverse or (1− β)-quantile of G.

4 Discrete Version of the Model

The model developed in the previous sections is path dependent: The EV as well as Debt at

any time, which determine when bankruptcy is triggered, depend on the whole history of past

CFs and multiples. Similarly, stochastic adjustments from recaps or cash injections are also

path dependent. These path dependencies can easily be taken into account by using Monte

Carlo simulation to calculate risk and return of a private equity investment. Hence, for the

implementation of the simulation, we apply a classical EULER scheme for the CF process and

the multiple process with time-dependent drift and diffusion 26: for given E0 > 0 and m0 > 0,

we take

Et+∆t ≈ Et + Etλt∆t+ Etσ
E
t ∆Wt,

mt+∆t ≈ mt + κ(mt −mt)∆t+ σm
√
mt∆W̃t.

For n ∈ N the grid 0 = t0 < t1 < · · · < tn = T is defined at a constant step size ti+1 − ti = ∆t,

and ∆Wt,∆W̃t ∼ N(0,
√

∆t) and all these increments are independent 27.

In order to assign extra-ordinary CFs Jt to the grid, we recall some properties of a Poisson

process. Firstly, the number of jumps N(T ) on the deterministic interval [0, T ] is distributed

with N(T ) ∼ Poi(gT ). Secondly, given N(T ) we know that the order statistic G(1), ..., G(N(T ))

is uniformly distributed on the interval [0, T ] 28. Hence, we assign the N(T ) events uniformly

to the grid. Thirdly, we want to point out that this property is especially appropriate to model

events, which are possible with a certain frequency, but for which we cannot say more about

realisation dates. For instance, an investor knows that recaps are from time to time possible, but

in advance he/she has no idea when such a recap fits in the investment plan. Hence, the best

what we can do is to assign the recaps completely random, i.e. uniformly, over the investment

period. On the basis of better statistical information one can lift this property; an example can

be found in the case study.

Taking the realisations (Et,mt, Jt)t≥0 we can, finallly, evaluate leverage lt and risk adjusted

rate of return rt on the grid.

25Cf. EMMER/ KLÜPPELBERG/ KORN (2000) Optimal portfolios with bounded downside risk, pp. 4-10.
26Cf. GLASSERMANN (2004) Monte Carlo Methods in Financial Engineering, p. 81 and pp. 340-34.
27A company’s earnings growth and share price appreciation show only little correlation, hence we assume the

investor’s ordinary CF process and the associated multiple process are independent.
28Cf. EMBRECHTS/KLÜPPELBERG/MIKOSCH (1997) Modelling extremal events for insurance and finance,

p. 186.
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Figure 1: Schematic leverage buyout (LBO) model.

Our model requires 22 parameters for its implementation. Some of the parameters are easily

observable from quarterly data, others require thorough knowledge of the specific situation.

Table 4.1 describes the parameters of the model and gives some suggestions about how to find

appropriate realisations:

5 Case Study

This case study is based on a real world investment. Within this case study we want to analyse

various investment strategies and test whether our model matches typical observations made

in private equity context. Further, it is also the goal to illustrate the methodology for valuing

private equity investments in terms of risk and return by applying it to one small cap investment,

which is hold through three stages: investing, restructuring and exit.

5.1 Methodology

We will base our simulation upon forecasts and appraisements captured by investors in a leverage

buyout (LBO) model, cf. figure 1.

The LBO model contains for all points on the grid 0 = t0 < · · · < tn = T the expressed

attitude of expectations of the investor, which CF he/she believes to realise. We distinguish

the beliefs in an ordinary component denoted by Ei := Eti for i = 1, . . . , n, with analogous

notation for all other dynamic quantities, and an extra-ordinary component derived from Jt at

time points ti with size Si and appropriate sign.

In order to simulate the process (Et,mt)t=t0,...,tn on the grid we derive the initial values

of σE0 , l0, E0,m0 as well as the constants σm, κ, σI , Corre,I , β
unlev by the suggested procedures,

stated in table 4.1. For a realistic modelling, we rely on the growth rates of Ei in the LBO
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Parameter Notation Proposed Estimation Procedure

Maturity T Observable from LBO model

Initial ordinary CF E0 Observable from current CF statement

Initial multiple m0 Estimated from the stock data of a publicly listed

peer group

Initial debt D0 Observable from current balance sheet

Leverage at time 0 l0 Calculated by Debt and Equity at time 0

Exit multiple at time t mt Investor’s future projections on peer group data

Standard deviation of multiple σm Estimated from data samples of peer group

universe

Mean reversion rate of multiple κ Based on assumptions about the half life of pro-

cess mt, i.e. the half life of a deviation mt from

the long term mean mt

Intensity of jump g Investor’s future projections

Associated jump height µJ Investor’s future projections

Standard deviation of jump height σJ Investor’s future projections

Probability of a positive jump p Investor’s future projections

Degree of debt repayment η Investor’s strategy

Growth rate of FCFE at time t λt From current CF statement and investor’s future

projections at time t, cf. case study

Risk free rate of return rf Government bond of same maturity

Market rate of return rm Estimated by applying CAPM to the publicly

listed peer group

Standard deviation of market σI Inferred from volatility of assigned market index

Correlation Corre,I Inferred from stock prices of peer group against

the market index

Unlevered beta factor βunlev Estimated by applying CAPM to the publicly

listed peer group

Hurdle rate of return h Investor’s committed IRR to its fund

Investor’s risk appetite γ Investor’s self-assessment

Unsystematic risk a Based on assumptions about the inefficency of the

company in comparison to market portfolio in the

CAPM

Table 4.1: The input variables for the case study.
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model, and identify the drift λi on the grid by linear interpolation

λ̂i =
Ei+1 − Ei

Ei
.

We can now derive the first event (Et1 ,mt1) by using the EULER scheme provided in sec-

tion 4, and can thereof update the variables l1, σ
E
1 . Repeating this procedure yields one path of

(Et,mt)t=t0,...,tn .

Further, similarly to ordinary cash flows, we assign the investors expectations to the multiple

m0 and mT to the grid by linear interpolation

mi := m0 +
i

n
(mT −m0).

Deterministic extra-ordinary CFs are simply added in any period to FCFEi. An extra-

ordinary random event Si is simulated by taking a lognormal distribution with parameters

(µJ , σJ) such that

E(Si) = eµ
J+(σJ )2/2 and Var(Si) = e2µJ+(σJ )2

(
e(σJ )2 − 1

)
.

Being especially interested in analysing the cash-out behaviour of equity investors, we want

to compare the effects of an early recap to the effects of a later one. We do this by taking one

single jump N(T ) = 1. For a Poisson process, given N(T ) = 1, regardless of the intensity, this

single jump occurs uniformly in [0, T ], which is against our intuition of the investment situation.

Consequently, we invoke a different simulation scheme. Let us assume that the investor has the

choice between a recap S ∼ LN(µJ , (σJ)2) that takes place in mean at t = t1 and the same

recap in mean at t = t2. In order to analyse, which recap the investor should prefer, we do the

following: We set the single inter-jump time G1 ∼ exp(g) such that g = 1/t1 and g = 1/t2,

respectively. Therewith, we are consistent with the expectations of the investor in both cases by

taking

Jt = S1{G1≤t},

as E(G1) = t1 and t2, respectively.

Taking a path (Et,mt, Jt)t=t0,...,tn we can calculate for all t = t0, ...tn the events Debtt, EVt

and determine whether bankruptcy was triggered. Further, using this path, we can calculate the

values CFV and TV, as the risk adjusted rate of return rt can simply be evaluated on the grid.

We are now ready to start a Monte Carlo simulation.

5.2 Simulation Results

Before working through the selected case study we point out that some dimensions of our

study, e.g. the revenue model’s characteristic, had to be handled confidentially. For the accessed

investment data a non-disclosure agreement was signed, so we needed to anonymize confidential

information and, thus, we can only present selected or adjusted data29. On the other hand, since

29In particular, we can not show explicit calculations, currency, or fundamental data of the investment.
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our study is based on real data, it has a solid real life foundation, which also reflects in the

output variables, which can be interpreted like real life data. We put on record that for the

present investment the investors expectations show strong growth rates of CFs (the simulation

realisation will be λt ≥ 70%), thus we should only see small default rates. Hence, we will be

more interested in analysing if the investment plan fits the bill, in terms of announced IRR to

investors.

Instead of analysing a pool of possible investments, we focus our work on analysing a range

of possible investment strategies for the selected small size company. Within this work we will

deal with three main strategic configurations in order to show that our model is appropriate

for small cap investments: The initial leverage level l0, the equity contribution 1 − η, and the

possibility for the investor to recapitalise. We will determine the optimal configuration of the

financing strategy in three steps 30:

• Firstly, we determine the appropriate leverage level to match the demanded IRR of the

investor

• Secondly, given the selected optimal leverage level, we identify the optimal level of equity

contribution.

• And, thirdly, we will examine, whether the chosen strategy can be improved by a debt-

financed recap.

Each configuration is analysed within a sample of 10.000 paths, generated by a Monte Carlo

simulation using the same starting data (initial cash flow statement and balance sheet).

Further, we assume that we are dealing with an investor with γ =∞, i.e. whose risk aversion

is infinite for outcomes of IRRs below 30% (h = 30%) and who is risk neutral for outcomes

above 30%. Hence, we can simply measure the risk by the probability of IRR to fall below the

targeted hurlde rate of 30% (%-IRR <30%). Further, we will also show default rates as a second

risk measure (%-default). Returns are measured in terms of mean value of the cash equity basis

C, as well as in terms of demanded IRR. The different values for IRR estimate the expected

IRR for different conditions. IRR1 shows the average of all positive IRRs, given by

IRR1 =
1

# {IRRi | IRRi > 0}

#{IRRi|IRRi>0}∑
i=1

IRRi1{IRRi>0},

wereas IRR2 includes also all neagative values and no defaults and thus estimates the expected

IRR under the condition of a succeeding investment, in mathematical terms i.e. E(IRR|τ > T ).

IRR3 also includes defaults, i.e. IRR = −1. Furthermore, we calculate an adjusted version of C

which estimates the unconditional expected value of the cash equity basis C. This is given by

Cadjusted =

(
1− default rate

number of simulations

)
C | τ > T .

30Note that this approach examines each strategic event on its own, without taking interdependencies into

account.
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Table 5.2 shows the simulated risk-return profile in dependency on employed leverage 31.

Drawing a leverage level of 35% on the investment, we arrive at a targeted IRR of about 49%.

On average, negative IRRs or defaults are not very significant. A de-leveraging of the transaction

Leverage 95.0% 85.0% 75.0% 65.0% 55.0% 45% 35%

IRR1 205.07% 113.02% 82.80% 68.60% 61.38% 56.87% 49.91%

IRR2 135.72% 84.79% 71.00% 62.21% 58.01% 54.89% 48.67%

IRR3 90.06% 59.60% 58.65% 56.57% 56.48% 54.51% 48.62%

C | τ > T in mn 412.78 205.58 79.46 50.27 49.02 44.68 43.78

%-default 29.89% 24.58% 12.00% 5.50% 1.52% 0.38% 0.05%

%-IRR < 30% 71.40% 51.51% 31.64% 22.63% 15.97% 13.20% 15.90%

Cadjusted 289.40 155.05 69.93 47.50 48.99 48.83 43.76

Table 5.2: Risks and returns in dependency on employed leverage, in terms of mean values for the internal rate

of return, mean value of the cash equity basis C, the probability to default,the probability of IRR to fall below

the targeted hurdle rate of 30% and an adjusted version for the mean value of the cast equity basis.

leads to a higher equity investment and translates into an even lower expected return from a

successful investment. We establish that the investor, for this particular investment, should

prefer a leverage level of 45%, as it dominates 32 the strategy in terms of risk and return. Taking

an optimal configuration of 45% leverage, Table 5.3 shows the outcomes in terms of different

equity contributions.

1− η 100.0% 90.0% 80.0% 70.0% 60.0% 50.0% 40.0% 30.0% 20.0% 10.0% 0.0%

IRR1 56.87% 55.84% 55.01% 54.11% 53.45% 52.4% 51.61% 50.95% 49.8% 49.13% 48.31%

IRR2 54.89% 53.57% 52.95% 51.89% 51.00% 49.9% 48.92% 48.17% 46.7% 46.22% 45.36%

IRR3 54.51% 53.02% 52.59% 51.46% 50.61% 49.5% 48.44% 47.68% 46.0% 45.67% 44.75%

C | τ > T in mn 49.02 47.61 46.80 45.62 44.32 43.8 42.58 42.02 40.2 39.72 38.82

%-default 0.38% 0.54% 0.36% 0.43% 0.38% 0.4% 0.39% 0.44% 0.4% 0.48% 0.34%

%-IRR < 30% 13.20% 14.60% 14.72% 15.20% 16.00% 17.4% 18.01% 19.35% 20.4% 21.64% 21.82%

Cadjusted 48.83 47.36 46.63 45.42 44.16 43.6 42.42 41.84 40.1 39.53 38.69

Table 5.3: Risks and returns in dependency on employed equity contribution, in terms of mean values for the

internal rate of return, mean value of the cash equity basis C, the probability to default,the probability of IRR

to fall below the targeted hurdle rate of 30% and an adjusted version for the mean value of the cast equity basis.

We see that a different equity contribution neither significantly changes the implicit return

nor the associated risk. Nevertheless, the strategy with a 100% distribution to equity (1−η = 1)

dominates all other strategies in terms of risk and return. Hence, instead of repaying debt

to decrease risks investors should maximise their dividends. Finally, the full dividend strategy

suggests that the configuration of 1−η = 1 and l0 = 0.55 could be improved by an extra dividend

in terms of a debt financed recap.

31Leverage indicates initial leverage measured by debt at time 0 divided by total capital at time 0; Table 5.2

shows results for a constant η = 1.
32We say a strategy i dominates a strategy j in terms of risk and return if Riski < Riskj or Riski = Riskj

and Returni ≥ Returnj .
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Table 5.4 shows the results for different recap scenarios 33. The numbers support a maximum

extra dividend (recap) of 5.0mn in t = 1 as it dominates all the scenarios, as well as the strategy

without a recap. As one can see from Table 5.4 a recap decreases the probability to fail to reach

the announced IRR-target.

Value in mn in t 0.0 1.0 2.0 3.0 4.0 5.0

1 56.59% 57.52% 59.26% 61.01% 62.87 %
IRR

2
56.87%

55.93% 56.13% 57.44% 58.20% 59.41%

1 54.91% 56.05% 57.92% 60.00% 62.17%
IRR2

2
54.89%

54.01% 54.50% 56.16% 56.96% 58.51%

1 54.62% 55.65% 57.60% 59.70% 61.90%
IRR3

2
54.51%

53.70% 54.07% 55.85% 56.58% 58.18%

1 48.02 47.90 49.08 50.41 52.04
C | τ > T in mn

2
49.02

48.07 47.88 49.54 50.28 52.21

1 0.26% 0.28% 0.28% 0.31% 0.39%
%-default

2
0.38%

0.31% 0.34% 0.39% 0.45% 0.49%

1 13.19% 11.87% 10.26% 8.53% 6.88%
%-IRR < 30%

2
13.20%

14.35% 13.81% 11.47% 11.12% 9.68%

1 47.90 47.77 48.94 50.26 51.84
Cadjusted

2
48.83

47.92 47.71 49.34 50.06 51.96

Table 5.4: Risk and returns for various recap scenarios, in terms of demanded IRR, mean value of the cash equity

basis C, the probability to default and the probability of IRR to fall below the targeted hurdle rate of 30%.

An investor, taking the expectations from t = 0, valuing a strategy according to risk and

return, in terms of IRR and the probability to fall below the exogenously given target level

of 30%, should cash out this investment. With reference to MODIGLIANI/ MILLER, debt-

financed extra-dividends should not increase the EV 34. As investors value their investments on

equity basis and also face the risk to default, the overall effect on the investor’s dividend policy

is ambiguous. Coming back to our example in the introduction, our model supports, respectively

to the assumed constellation, the decisions of investors to cash out investments.

Figure 2 and 3 show histograms and kernel density estimates for simulated IRRs in different

scenarios. The graphics are based on all simulated values for the IRR, including negative values

and defaults. The plots are restricted to a range between -100% indicating defaults and 200%.

In particular, we see a significant effect for different leverage values in the histograms. The large

peak at -100% corresponds to the number of defaults, which in the case of a high leverage level

is very high as well. The high leverage level also leeds to a much brider distribution of the

33We restrict the recap configuration to a maximum of 5mn which is due to creditor issues arising from recaps

exceeding 5mn. We analyse a 100% debt-financed recap at a growth stage, t = 1, and at a mature stage, t = 2.

Further, we restrict our case study to the first recap, in order to study the effects of a single action. Hence

∀t ∈ [0, T ] Jt becomes Jt = S11{G1≤t} with g ∈
{

1
t1
, 1
t2

}
and the lognormal S1 such that E(S1) = 1, ..., 5 millions

with V ar(S1) = (10%E(S1))2.
34MILLER et al. (1961) Dividend Policy, Growth, and the Valuation of Shares, p. 412.
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simulated IRRs, where really high rates can be reached.

All other plots look more or less stable in the context of default numbers. This is due to the

fact that all other simulations are done with the optimal leverage configuration of 45%. This

stabilizes the number of defaults to a relatively low level and the histograms look similar.

6 Conclusion

With this work we developed a new stochastic model of CFs for private equity investors based on

an ordinary discounted cash flow (DCF) approach. Thereby we have been able to analyse risks of

a small cap investment in terms of different investment strategies. Our model compromises the

four fundamental value drivers identified by BCG: the active value drivers top line growth and

operational efficiency are accounted by the CF drift. The passive value driver multiple expansion

is integrated by assuming a stochastic process to the multiple evolution, which accounts for

market expectations. The leverage effect is mapped by the underlying capital structure, affecting

CF risk, the risk adjusted discount rate, and risk premiums that are captured in the expected

exit value. Finally, empirical characteristics like high default rates counterbalanced by superior

upsides 35, could be matched.

In closing this paper, we also want at least mention some shortcomings of our model. We

worked on the premises that multiple and CF processes are independent. An extended version

of the model provided here could be set up without this assumption. Further, multivariate

modelling for several business units or a fund of investments was not provided; this is one

topic for further research in this field 36. Also, a flexible investment horizon similar to the

exercise time of American options, adapting to the dynamics of the CFs and multiple, should be

investigated in the future. Nevertheless, it was the goal of this work to develop an easy-to-use

tool to measure the risk of private equity investments. The paper has shown a first approach to

solve such a problem by taking up several ideas and assumptions from real-options theory and

capital-budgeting techniques, but also incorporating valuable suggestions made by practitioners.

We have seen in the case study that it can be optimal for investors to reduce CFs at risk

by cashing out the investment via recaps. Thus at least for the studied investment, our model

supports on the one hand the image of ’locusts’, as discussed in the media. But on the other

hand it has been shown that investment risk can be reduced by cashing out the investment.

Hence, we raise the question whether the analysed risks are also crucial for social welfare or just

crucial for the private equity investor to fulfil a target return level.

35Cf. COCHRANE, J.H. (2001) The risk and return of venture capital investments, NBER Working Paper

Series No. 8066, p. 38, Tab. 1.
36Cf. BÖCKER (2008) Modelling and Measuring Business Risk, p.4.
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Figure 2: Histogram and kernel density plots for simulated IRRs including defaults and negative values comparing

leverage and equity contribution effects.
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Figure 3: Histogram and kernel density plots for simulated IRRs including defaults and negative values for different

recap scenarios. Recall that the recap S is lognormally distributed with (µJ , (σJ)2).
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