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Habib Esmaeili ∗ Claudia Klüppelberg †
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Abstract

Based on the concept of a Lévy copula to describe the dependence structure of a multi-

variate Lévy process we present a new estimation procedure. We consider a parametric model

for the marginal Lévy processes as well as for the Lévy copula and estimate the parameters

by a two-step procedure. We first estimate the parameters of the marginal processes, and

then estimate in a second step only the dependence structure parameter. For infinite Lévy

measures we truncate the small jumps and base our statistical analysis on the large jumps

of the model. Prominent example will be a bivariate stable Lévy process, which allows for

analytic calculations and, hence, for a comparison of different methods. We prove asymp-

totic normality of the parameter estimates from the two-step procedure and, in particular,

we derive the Godambe information matrix, whose inverse is the covariance matrix of the

normal limit law. A simulation study investigates the loss of efficiency because of the two-step

procedure and the truncation.
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1 Introduction

In Esmaeili and Klüppelberg [7] we presented the maximum likelihood estimation (MLE) for

a bivariate stable subordinator. We assumed for the marginal subordinators to be both stable

with the same parameters and modeled the dependence structure by a Clayton Lévy copula.

Estimation was based on observed jumps larger than some predefined ε > 0 in both components

within a fixed interval [0, t]. For this model we computed the MLEs numerically and proved

asymptotic normality for ε → 0 and/or for t → ∞, respectively. It is certainly useful to know

that such a procedure works; but for more general models as, for instance, for higher dimensional

models with different marginal Lévy processes, this estimation method becomes computationally

very expensive.

Consequently, we present in this paper an alternative, which is a Lévy equivalent of the

so-called IFM (inference functions for margins) method, a standard method in multivariate

statistics; cf. Godambe [8], Joe [10], Ch. 10, and Xu [15], Ch. 2. The observation scheme as chosen

in Esmaeili and Klüppelberg [7] was simple in the sense that we only considered observations

with jumps in both components larger than some ε > 0. For this observation scheme, however,

the marginally truncated processes are not independent of the Lévy copula parameter.

The appropriate observation scheme to separate marginal and dependence parameters of the

small jumps truncated processes requires to consider each component process separately and

observe jumps larger than ε in each single component. This results again in a compound Poisson

process (CPP), where jumps larger than ε in both components are seen as joint jumps, and those

jumps with sizes larger than ε only in one component (and smaller in the other) are treated as

positive jumps in one component and jump size 0 in the other.

Separation of the marginals and the Lévy copula is based on Sklar’s theorem for Lévy

measures. Due to the fact that all Lévy processes with the exception of a CPP have a singularity

in 0, the Lévy measure is considered on quadrants in Rd avoiding the origin. The simplest object

to consider is, hence, a d-dimensional subordinator, which allows for only positive jumps in all

components. We restrict ourselves in this paper to such processes, extensions to general Lévy

processes are not difficult, but notationally involved; see Kallsen and Tankov [11] or Eder and

Klüppelberg [4].

Our paper is organised as follows. In Section 2 we introduce the notion of a Lévy copula

needed later to model the dependence structure between the components of a multivariate

Lévy process. Here we also explain the truncation scheme of the observed jumps and present

our prominent example, the bivariate α-stable Clayton subordinator. Section 3 is dedicated

to the two-step estimation procedure. We prove consistency and asymptotic normality of the

IFM estimates in Section 4 including the calculation of the covariance matrix as the inverse

of the Godambe information matrix. For a comparison with the MLE based on the full model

we calculate its log-likelihood function in Section 5. Finally, in Section 6, we perform a small

simulation study, where we compare the quality of all three estimation methods: the full MLE,

the full MLE based on joint jumps only, and the estimates from the two-step procedure.
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2 Preliminaries

The Lévy copula

Throughout this paper we denote by S = (S(t))t≥0 an increasing Lévy process with values in Rd
+

defined on a filtered probability space (Ω,F , (Ft)t≥0,P). This means that S is a subordinator

without Gaussian component, drift γ and a Lévy measure Π on Rd
+ satisfying Π({0}) = 0 and∫

Rd
+
min{x, 1}Π(dx) < ∞; cf. Sato [13], Th. 21.5, or Cont and Tankov [3], Prop. 3.10.

The tail integral of the Lévy measure Π is the function Π : [0,∞]d → [0,∞] defined by

Π(x1, . . . , xd) =


Π([x1,∞)× · · · × [xd,∞)) , (x1, . . . , xd) ∈ [0,∞)d \ {0}
0 , xi = ∞ for at least one i,

∞ , (x1, . . . , xd) = 0.

(2.1)

The marginal tail integrals are defined analogously for i = 1, . . . , d as Πi(x) = Πi([x,∞)) for

x ≥ 0; cf. Cont and Tankov [3], Def. 5.7, and Kallsen and Tankov [11], Def. 3.3 and 3.4.

The jump dependence of the process S is part of the multivariate tail integral and can be

described by a so-called Lévy copula. We recall the notion of a Lévy copula from [3, 11] to

be a measure defining function C : [0,∞]d → [0,∞] with Lebesgue margins Ck(u) = u for all

u ∈ [0,∞] and k = 1, . . . , d.

The following result, called Sklar’s Theorem for Lévy copulas, is central for our set-up; it

has been proved in Cont and Tankov [3], Th. 5.4, for a bivariate Lévy process and in Kallsen

and Tankov [11], Th. 3.6, for a d-dimensional Lévy process.

Theorem 2.1. Let Π denote the tail integral of a spectrally positive d-dimensional Lévy process,

whose components have Lévy measures Π1, . . . ,Πd. Then there exists a Lévy copula C : [0,∞]d →
[0,∞] such that for all x1, x2, . . . , xd ∈ [0,∞]

Π(x1, . . . , xd) = C
(
Π1(x1), . . . ,Πd(xd)

)
. (2.2)

If the marginal tail integrals are continuous, then this Lévy copula is unique. Otherwise, it is

unique on Ran(Π1)× · · · ×Ran(Πd).

Conversely, if C is a Lévy copula and Π1, . . . ,Πd are one-dimensional tail integrals of spec-

trally positive Lévy processes, then the relation (2.2) defines the tail integral of a d-dimensional

spectrally positive Lévy process and Π1, . . . ,Πd are tail integrals of its components.

Truncation of the small jumps

For notational convenience we proceed with a bivariate subordinator. As truncation point we

choose ε > 0. Figure 1 shows how the Lévy measure Π on R2
+ \ (0, ε)2 is divided into two parts,

the part concentrated on [ε,∞)2, and the part concentrated on the axes, which is in fact the

projected measure of Π on [ε,∞)× (0, ε) and (0, ε)× [ε,∞) to the horizontal and vertical axes,

respectively.
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Figure 1: Illustration of the tail integral Π of a truncated bivariate Lévy process at (x, y) for a process with jump

sizes of max{x, y} ≥ ε (left) and a process with jump sizes of x ≥ ε and y ≥ ε (right). Note that in the right plot

the mass, where only one component is larger than ε > 0 and the other smaller, is projected to the axes.

The observation scheme

It is based on all jumps of the process larger than some ε componentwise within the observation

interval [0, t]. That is, we may observe a single jump x or y either in the first or in the second

component. The other observed jumps are (x, y), where x ≥ ε and y ≥ ε at the same time. Let

n = n1 + n2 denote the total number of jumps occurring in [0, t] in either component, where we

denote by n1 and n2 the number of jumps in each marginal process, respectively. This means

that we count every joint jump in both components as two jumps. Then n decomposes in the

number n⊥1 of jumps occurring only in the first component, the number n⊥2 of jumps occurring

only in the second component, and the number 2n∥ of jumps occurring in both components.

We denote by (x1, . . . , xn1 , y1, . . . , yn2) the observed jumps. By the independence property

of the jumps of a Lévy process the order does not matter as long as concurrent jumps remain

in the same coordinate. Consequently, throughout the paper we place w.l.o.g. all joint jumps at

the beginning of the x- and y-observations so that (x∥,y∥) = ((x1, y1), . . . , (xn∥ , yn∥)).

The resulting n∥ + n⊥1 + n⊥2 observations can be attributed to a bivariate CPP similar to

the model considered in Esmaeili and Klüppelberg [6]. We shall need the marginal truncated

Lévy measures Π
(ε)
k for k = 1, 2. They will be calculated by first determining the Lévy measures

of those processes representing joint jumps larger than ε, denoted by Π(ε)∥, single jumps larger

than ε in the first or second component, denoted by Π
(ε)⊥
1 and Π

(ε)⊥
2 , respectively.

The tail integrals of the observed CPP are given for x, y > ε by

Π
(ε)∥

(x, y) = Π(x, y) ,

Π1
(ε)⊥

(x) = Π(x, 0)−Π(x, ε) , (2.3)

Π2
(ε)⊥

(y) = Π(0, y)−Π(ε, y) .
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The jump intensities of these CPPs are

λ(ε)∥ = Π(ε, ε) ,

λ1
(ε)⊥ = Π(ε, 0)−Π(ε, ε) , (2.4)

λ2
(ε)⊥ = Π(0, ε)−Π(ε, ε).

The corresponding jump size distributions are given by the Lévy measures divided by the in-

tensities, respectively. The marginal tail integrals of the truncated processes are now calculated

as

Π
(ε)
1 (x) = Π

(ε)∥
(x, ε) + Π

(ε)⊥
1 (x) = Π(x, 0) , x ≥ ε

Π
(ε)
2 (y) = Π

(ε)∥
(ε, y) + Π

(ε)⊥
2 (y) = Π(0, y) , y ≥ ε ,

which implies intensities λ
(ε)
k = λ(ε)∥ + λ

(ε)⊥
k = Πk(ε).

Lemma 4.1 in Esmaeili and Klüppelberg [7] explains the consequence of the small jumps

truncation to the Lévy copula. We shall need the notion of a generalized inverse function: for

g : R → R increasing define the generalized inverse of g as g←(x) = inf{u ∈ R : g(u) ≥ x}. The
definition extends naturally to other supports. For more details and properties of the generalized

inverse we refer to Resnick [12], Section 0.2.

From Lemma 4.1 in Esmaeili and Klüppelberg [7] the Lévy copula of the CPP is given by

C(ε)(u, v) = C
(
C←1 (u, λ

(ε)
2 ),C←2 (λ

(ε)
1 , v)

)
, 0 < u, v < λ(ε)∥, (2.5)

where for k = 1, 2 the symbol C←k denotes the generalized inverse of C with respect to the k-th

argument.

The following will be our prominent example.

Example 2.2. [Bivariate α-stable Clayton subordinator]

Let c1, c2 > 0 and 0 < α1, α2 < 1. Assume that Π1(x) = c1x
−α1 for x > 0 and Π2(y) = c2y

−α2

for y > 0 and that dependence is modeled by a Clayton Lévy copula, which is given by

C(u, v) =
(
u−δ + v−δ

)−1/δ
, u, v > 0 ,

with dependence parameter δ > 0.

By (2.3) the tail integrals of the observed CPP are given by

Π
(ε)∥

(x, y) =
(
(c1x

−α1)−δ + (c2y
−α2)−δ

)− 1
δ
, x, y ≥ ε , (2.6)

Π
(ε)
1

⊥
(x) = c1x

−α1

[
1−

(
1 +

( c2ε−α2

c1x−α1

)−δ)−1/δ]
, x ≥ ε ,

Π
(ε)
2

⊥
(y) = c2y

−α2

[
1−

(
1 +

( c1ε−α1

c2y−α2

)−δ)−1/δ]
, y ≥ ε .
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From (2.4) we calculate the jump intensities

λ(ε)∥ =
(
(c1ε

−α1)−δ + (c2ε
−α2)−δ

)− 1
δ
, (2.7)

λ
(ε)
1

⊥
= c1ε

−α1

[
1−

(
1 +

(c2ε−α2

c1ε−α1

)−δ)−1/δ]
,

λ
(ε)
2

⊥
= c2ε

−α2

[
1−

(
1 +

(c1ε−α1

c2ε−α2

)−δ)−1/δ]
.

The marginal tail integrals and intensities of the truncated process are now calculated for k = 1, 2

as

Π
(ε)
k (x) = ckx

−αk , x ≥ ε , and λ
(ε)
k = ckε

−αk .

This implies for the marginal jump size distributions

P (X > x) = Π
(ε)
1 (x)/λ

(ε)
1 = εα1x−α1 , x ≥ ε ,

P (Y > y) = Π
(ε)
2 (y)/λ

(ε)
2 = εα2y−α2 , y ≥ ε .

By (2.5) the Lévy copula of the observed CPP is for 0 < u, v < λ(ε)∥ given by

C(ε)(u, v) = C

((
u−δ − (λ

(ε)
2 )−δ

)−1/δ
,
(
v−δ − (λ

(ε)
1 )−δ

)−1/δ)
=

(
u−δ + v−δ − (c−δ1 εα1δ + c−δ2 εα2δ)

)−1/δ
.

3 Two-step parameter estimation of a Lévy process

The idea of a two-step procedure for subordinators is similar to the IFM method for multivariate

distributions. The term IFM is the acronym for “inference functions for margins” and has been

applied in various areas of multivariate statistics; cf. Godambe [8] and Joe [10], Ch. 10. Obvi-

ously, the maximization of a likelihood with many parameters can be numerically sophisticated

and computationally time-consuming; in a two-step method the parameters of the marginal

components are estimated first and the Lévy copula parameters in a second step, thus reduc-

ing the dimensionality of the problem. For multivariate distribution functions, the algorithm is

explained, for instance, in Joe [10], Ch. 10.

For a multivariate Lévy process in Rd for arbitrary dimension d ∈ N, the two-step algorithm

can be formalized as follows.

Step 1 : We do not distinguish between single and common jumps, but make use of all data

available; i.e., we take all observations xik > ε for i = 1, . . . , nk and all k = 1, . . . , d. We denote

by γ = (θ1, . . . , θd) the vector of all marginal parameters (the θi are usually vectors) and let

l
(ε)
1 , . . . , l

(ε)
d be the marginal log-likelihood functions with respect to the parameters. Determine

γ̃ := argmaxγ

d∑
k=1

l
(ε)
k (θk | xk) , (3.1)
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where xk = (x1k, x2k, . . . , xnkk) are all observations in component k larger than ε.

Step 2 : Write the log-likelihood l(ε) of a CPP, whose jumps are only the common jumps of

xik > ε for i = 1, . . . , n∥ and k = 1, . . . , d, plug in the marginal parameter estimates from Step 1,

resulting in the log-likelihood of a CPP with only dependence structure parameter δ. Maximize

the log-likelihood function over δ; i.e., estimate the Lévy copula parameter vector δ ∈ Rm for

some m ∈ N, based on the common jumps:

δ̃ := argmaxδ l
(ε)(δ | γ̃,x∥1, . . . ,x

∥
d) , (3.2)

where γ̃ = (θ̃1, . . . , θ̃d) and x
∥
k = (x1k, . . . , xn∥k) for k = 1, . . . , d.

Remark 3.1. The MLE η̂ of the parameter vector η = (θ1, . . . , θd, δ) is derived by maximization

of the log-likelihood of the multivariate CPP l(ε) over the parameter vector η (as done in [7]).

The estimate η̂ is the solution of(
∂l(ε)

∂θ1
, . . . ,

∂l(ε)

∂θd
,
∂l(ε)

∂δ

)
= 0.

This is in contrast with the two-step method, where the estimate η̃ is the solution of(
∂l

(ε)
1

∂θ1
, . . . ,

∂l
(ε)
k

∂θk
,
∂l(ε)

∂δ

)
= 0.

Remark 3.2. The aim of the two-step method is in fact to reduce the dimension of the parameter

vector to have a simpler structure for the optimization of the likelihood function. Note that the

observation scheme in [7], which takes only the n∥ observations of the joint jumps in both steps

into account, fails this goal, since the observation scheme used there introduces the dependence

parameter into the marginal likelihoods.

3.1 Two-step estimation method of an α-stable Clayton subordinator with

different marginal parameters

The following algorithm works in principle in every dimension. For notational simplicity we

formulate it only for dimension d = 2. Let S = (S1, S2) be a bivariate α-stable Clayton subor-

dinator as introduced in Example 2.2 with different marginal parameters θ1 = (α1, c1) and

θ2 = (α2, c2) with αk ∈ (0, 1) and ck ∈ (0,∞) for k = 1, 2 and a Lévy copula parame-

ter δ ∈ (0,∞). We assume the observation scheme as described in Section 2. We denote by

(X1, . . . , Xn∥ , . . . , Xn1 , Y1, . . . , Yn∥ , . . . , Yn2) the vector of jumps larger than ε for the component

processes S
(ε)
1 and S

(ε)
2 , respectively. As before, all double jumps are numbered as (Xi, Yi) for

i = 1, . . . , n∥.

Step 1 : Since the marginal log-likelihoods have the same structure with no common param-

eters, (3.1) decomposes in its components for S1 and S2, and maximization is done separately.

We proceed as in Basawa and Brockwell [1, 2]; cf. Esmaeili and Klüppelberg [7], Example 3.1,
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and exemplify it for the first component:

l
(ε)
1 (log c1, α1;x) = −c1tε

−α1 + n1(log c1 + logα1)− (α1 + 1)

n1∑
i=1

log xi .

From Basawa and Brockwell [1, 2] we know that the marginal MLEs of c1 and α1 and the

intensity parameter λ
(ε)
1 are given by

λ̃
(ε)
1 =

n1

t
,

α̃1 =

(
1

n1

n1∑
i=1

(
logXi − log ε

)
+ log ε

(
1− λ

(ε)
1

λ̃
(ε)
1

))−1
, (3.3)

log c̃1 = log λ̃
(ε)
1 + α̃1 log ε .

Furthermore, asymptotic normality holds with degenerate limit for (c̃1, α̃1) and with asymptotic

independence for (λ̃1, α̃1) as n1 → ∞. Limit laws hold for both situations, t → ∞ or ε → 0. The

first limit was derived in Basawa and Brockwell [2]. Asymptotic independence for the second

vector was shown in Höpfner and Jacod [9]. Both results are reported with precise rates and the

asymptotic covariance matrix in Esmaeili and Klüppelberg [7], Example 3.1.

Step 2 : We first determine the log-likelihood function in (3.2) for the bivariate CPP of

common jumps larger than ε. By (2.7) the intensity is λ(ε)∥ = (c−δ1 εα1δ + c−δ2 εα2δ)−
1
δ . Together

with (2.6) this yields the survival function of bivariate joint jumps

F
(ε)

(x, y) =

(
c−δ1 xα1δ + c−δ2 yα2δ

c−δ1 εα1δ + c−δ2 εα2δ

)− 1
δ

, x, y ≥ ε,

with density given by

f (ε)(x, y) =
α1α2(1 + δ)(c−δ1 εα1δ + c−δ2 εα2δ)

1
δ

(c1c2)δ
xα1δ−1yα2δ−1

(c−δ1 xα1δ + c−δ2 yα2δ)
1
δ
+2

. (3.4)

This results in the log-likelihood function

l(ε)(c1, c2, α1, α2, δ;x
∥,y∥) = −λ(ε)∥t+ n∥ log(1 + δ)− n∥δ(log c1 + log c2)

+n∥(logα1 + logα2) + (α1δ − 1)

n∥∑
i=1

log xi + (α2δ − 1)

n∥∑
i=1

log yi

−(
1

δ
+ 2)

n∥∑
i=1

log
(
c−δ1 xα1δ

i + c−δ2 yα2δ
i

)
,

where (x∥,y∥) = ((x1, y1), . . . , (xn∥ , yn∥)).

Given the marginal parameter estimates from the first step, the score function with respect

8



to the dependence parameter δ is given by

∂l(ε)(δ | γ̃,x∥,y∥)
∂δ

= −∂λ(ε)∥

∂δ
t+

n∥

1 + δ
− n∥(log c̃1 + log c̃2)

+α̃1

n∥∑
i=1

log xi + α̃2

n∥∑
i=1

log yi +
1

δ2

n∥∑
i=1

log
(
c̃ −δ1 xα̃1δ

i + c̃ −δ2 yα̃2δ
i

)

−
(1
δ
+ 2
) n∥∑

i=1

∂

∂δ
log
(
c̃ −δ1 xα̃1δ

i + c̃ −δ2 yα̃2δ
i

)
.

The parameter estimate δ̃ can be found numerically by solving the following equation for δ:

∂l(ε)(δ | γ̃,x∥,y∥)
∂δ

= 0.

Remark 3.3. The vector of score functions in the two-step method is given by

J(ε)(X,Y; η) =(∂l(ε)1 (log c1, α1;X)

∂ log c1
,
∂l

(ε)
1 (log c1, α1;X)

∂α1
,
∂l

(ε)
2 (log c2, α2;Y)

∂ log c2
,
∂l

(ε)
2 (log c2, α2;Y)

∂α2
,
∂l(ε)(δ;X∥,Y∥)

∂δ

)T
,

where η = (log c1, log c2, α1, α2, δ)
T is the parameter vector,X = (X1, . . . , Xn1),Y = (Y1, . . . , Yn2)

and (X∥,Y∥) = ((X1, Y1), . . . , (Xn∥ , Yn∥)).

3.2 Two-step method for a bivariate α-stable Clayton subordinator with com-

mon marginal parameters

For an analysis of the two-step estimation procedure we simplify the model as follows. Let

S = (S1, S2) be a bivariate α-stable subordinator as in Example 2.2 with common marginal

parameters θ1 = θ2 = (α, c) and a Clayton Lévy copula parameter δ. Assume an observation

scheme as explained in Section 2. Maximum likelihood estimation for the parameters of this

model was discussed in Esmaeili and Klüppelberg [7] in detail. In this section we estimate the

parameters with the two-step method.

Step 1 : The log-likelihood function (3.1), which ignores the dependence structure, is given

by

l
(ε)
12 (log c, α) = l

(ε)
1 (log c, α) + l

(ε)
2 (log c, α)

= −2ctε−α + n(log c+ logα)− (α+ 1)

n∑
i=1

log zi, (3.5)

where n := n1 + n2 is Poisson distributed. Since n1 and n2 have both intensity λ(ε) := λ
(ε)
1 =

λ
(ε)
2 , n has intensity 2λ(ε) = 2cε−α and (z1, . . . , zn) = (x1, . . . , xn1 , y1, . . . , yn2). Note that the

corresponding random variables log(Zi
ε ), for i = 1, . . . , n are exponentially distributed with

density f(u) = αe−αu for u > 0. The log-likelihood has score functions with respect to the
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marginal parameters log c and α as follows:

∂l
(ε)
12 (log c, α)

∂ log c
= n− 2ctε−α = n− 2λ(ε)t (3.6)

∂l
(ε)
12 (log c, α)

∂α
=

n

α
+ 2ctε−α log ε−

n∑
i=1

log zi = −
n∑

i=1

(
log

zi
ε
− 1

α

)
− (n− 2λ(ε)t) log ε .

The common intensity parameter λ(ε) = cε−α and the marginal parameters log c and α can be

estimated by (3.3) as

λ̃(ε) =
n

2t

α̃ =

(
1

n

n∑
i=1

(logZi − log ε) +
(
1− λ(ε)

λ̃(ε)

)
log ε

)−1
log c̃ = log λ̃(ε) + α̃ log ε .

Step 2 : As explained in Esmaeili and Klüppelberg [7], for simplifying the calculations

of the second derivatives later we reparameterize the dependence to θ = αδ. The joint density

of bivariate jumps is a special case of (3.4) and has been calculated in (4.10) in Esmaeili and

Klüppelberg [7]. From (2.7) we know that λ(ε)∥ = cε−α2−
α
θ , which we use for abbreviation. Then

the log-likelihood in (3.2) is

l(ε)(log c, α, θ) = −λ(ε)∥t+ n∥ logα+ n∥ log(α+ θ) + n∥ log c (3.7)

+(θ − 1)

n∥∑
i=1

(log xi + log yi)− (2 +
α

θ
)

n∥∑
i=1

log(xθi + yθi ) .

The score function with respect to the parameter θ is then given by (the derivatives of λ(ε)∥ are

calculated in Lemma 4.1 below)

∂l(ε)

∂θ
= −∂λ(ε)∥

∂θ
t+

n∥

α+ θ
+

n∥∑
i=1

(log xi + log yi) (3.8)

+
α

θ2

n∥∑
i=1

log(xθi + yθi )− (2 +
α

θ
)

n∥∑
i=1

∂

∂θ
log(xθi + yθi ).

Given the estimates of the marginal parameters c̃ and α̃ from the first step, the estimate of θ

can be computed numerically as the argmax of the right hand side of (3.8).

Remark 3.4. The vector of score functions from Remark 3.3 reduces to

J(ε)(X,Y; η) =
(∂l(ε)12 (log c, α;Z)

∂ log c
,
∂l

(ε)
12 (log c, α;Z)

∂α
,
∂l(ε)(log c, α, θ;X∥,Y∥)

∂θ

)T
, (3.9)

where η = (log c, α, θ)T is the parameter vector, Z = (X1, . . . , Xn1 , Y1, . . . , Yn2) and (X∥,Y∥) =

(X1, Y1), . . . , (Xn∥ , Yn∥).
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4 Asymptotic properties of the two-step estimates

The two-step estimation procedure is a special case of the estimating functions approach, which

goes back to Godambe [8] (see also the Z estimates in van der Vaart [14]). In this framework, the

Godambe information matrix plays the role of the Fisher information matrix in classical MLE.

We explain this for Lévy copulas. Let S = (S1, S2) be a bivariate α-stable Clayton subor-

dinator with parameter vector η ∈ Rk including marginal and dependence parameters. Assume

further an observation scheme as explained in Section 2. In principle the two-step estimation

procedure can be applied to both situations of Section 3.1 with η ∈ R5 or of Section 3.2 with

η ∈ R3.

For the vector of score functions, denoted by J(ε)(X,Y; η) as in Remarks 3.3 and 3.4, the

so-called Godambe information matrix is calculated for fixed ε > 0 as

G := D⊤M−1D, (4.1)

where

D :=
1

2λ(ε)t
E
[
− ∂J(ε)(X,Y; η)

∂η

]
, (4.2)

M :=
1

2λ(ε)t
E
[
J(ε)(X,Y; η)J(ε)(X,Y; η)

T
]

(4.3)

are k × k-matrices. Under appropriate conditions, which will be shown below, the asymptotic

covariance matrix of n−
1
2 (η̃ − η) is equal to the inverse of G.

For the remainder of this section we restrict the process S again to the model in Section 3.2, a

bivariate α-stable subordinator with common marginal parameters log c and α, and dependence

parameter θ. We denote by l
(ε)
12 the log-likelihood of the common marginal parameters γ :=

(log c, α) as in (3.5), and by l(ε) the log-likelihood of the bivariate CPP in the second step

as in (3.7). Assume further that η0 = (log c0, α0, θ0) is the true parameter vector. We prove

consistency of the two-step estimators, and their joint asymptotic normality. We calculate the

Godambe information matrix G as well as the asymptotic covariance matrix of the estimators.

There is a fundamental difference between our approach and the classical used for distri-

butional copulas in Joe [10], Section 10.1.1. Whereas he can work with a fixed number of

multivariate data, our process structure with observations on an interval [0, t] implies a ran-

dom number of data points. Moreover, we have to deal with the problem of single and common

jumps. Furthermore, [10] assumes regularity conditions like interchangeability of derivatives and

integrals, which are not necessarily guaranteed in our context (cf. Esmaeili and Klüppelberg [7],

Section 4.2). As a consequence, we will provide a full proof of the asymptotic normality of the

IFM estimators in Theorem 4.8 below.

4.1 Auxiliary results

We shall need the following derivatives of λ(ε)∥.
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Lemma 4.1. For λ(ε)∥ = cε−α2−
α
θ the partial derivatives are given by

∂λ(ε)∥

∂ log c
= λ(ε)∥ ,

∂λ(ε)∥

∂α
= −λ(ε)∥( log ε+ 1

θ
log 2

)
,

∂λ(ε)∥

∂θ
= λ(ε)∥α log 2

θ2
.

The second derivatives can be calculated as

∂2λ(ε)∥

∂θ∂ log c
= λ(ε)∥α log 2

θ2
,

∂2λ(ε)∥

∂θ∂α
= −λ(ε)∥ log 2

θ2

(
α log ε+

α

θ
log 2− 1

)
,

∂2λ(ε)∥

∂θ2
= λ(ε)∥α log 2

θ2

(α log 2

θ2
− 2

θ

)
.

□

We calculate several matrices for later use, where the details are given in the Appendix.

Throughout we abbreviate d = λ(ε)∥

2λ(ε) = 2−
α
θ
−1.

Lemma 4.2. We denote by H(ε) = ∂J(ε)(X,Y;η)
∂η the matrix of the second-order derivatives of the

two-step log-likelihood functions (3.5) and (3.7), respectively. Then

H(ε) = 2λ(ε)t

 −1 log ε 0

log ε − n
α22λ(ε)t

− (log ε)2 0

−d α log 2
θ2

d
(α log 2

θ2
log ε−A

)
−dB

 (4.4)

where

A(η) := −α(log 2)2

θ3
+

log 2

θ2
+

n∥

λ(ε)∥t(α+ θ)2
− 1

λ(ε)∥tθ2

n∥∑
i=1

log(Xθ
i + Y θ

i )

+
1

λ(ε)∥tθ

n∥∑
i=1

∂

∂θ
log(Xθ

i + Y θ
i ),

B(η) :=
(α log 2

θ2

)2
− 2α log 2

θ3
+

n∥

λ(ε)∥t(α+ θ)2
+

2α

λ(ε)∥tθ3

n∥∑
i=1

log(Xθ
i + Y θ

i )

− 2α

λ(ε)∥tθ2

n∥∑
i=1

∂

∂θ
log(Xθ

i + Y θ
i ) +

2θ + α

λ(ε)∥tθ

n∥∑
i=1

∂2

∂θ2
log(Xθ

i + Y θ
i ).

□

We present the two matrices D and M from (4.2) and (4.3), respectively.

Lemma 4.3. Assume a bivariate α-stable Clayton subordinator with common marginal pa-

rameters (log c, α) and dependence parameter θ = αδ. Assume also the observation scheme

given in Section 2. Recall that λ(ε) = λ
(ε)
1 = λ

(ε)
2 = cε−α is the marginal intensity parameter,
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λ(ε)∥ = cε−α2−
α
θ is the joint jumps intensity parameter. Then the matrix D = − 1

2λ(ε)t
E[H(ε)] of

(4.2) is given by

D =

 1 − log ε 0

− log ε 1
α2 + (log ε)2 0

dα log 2
θ2

d
(
− α log 2

θ2
log ε+ a

)
d b

 , (4.5)

where

a(α, θ) = −α(log 2)2

θ3
+

log 2

θ2
+

1

(α+ θ)2
− 1

θ2
E
[
log(Xθ

1 + Y θ
1 )
]
+

1

θ
E
[ ∂

∂θ
log(Xθ

1 + Y θ
1 )
]

(4.6)

b(α, θ) =
(α log 2

θ2

)2
− 2α log 2

θ3
+

1

(α+ θ)2
+

2α

θ3
E
[
log(Xθ

1 + Y θ
1 )
]

−2α

θ2
E
[ ∂

∂θ
log(Xθ

1 + Y θ
1 )
]
+

2θ + α

θ
E
[ ∂2

∂θ2
log(Xθ

1 + Y θ
1 )
]
. (4.7)

□

Remark 4.4. (i) The functions a(α, θ) and b(α, θ) are deterministic functions of the parameters

and do not depend on t or ε. Moreover, all expectations in (4.6) and (4.7) are finite, since logXi

and log Yi are exponentially distributed (cf. Lemma 4.4 of Esmaeili and Klüppelberg [7].)

(ii) We shall need the following inverse, which exists for b ̸= 0:

D−1 =

 1 + α2(log ε)2 α2 log ε 0

α2 log ε α2 0

−1
b

(
aα2 log ε+ α log 2

θ2

)
−a

bα
2 1

d b

 . (4.8)

□

In order to calculate the matrix M from (4.3) we shall need the following result on the

dependence of n and n∥.

Lemma 4.5. Recall that n = n1 + n2 = 2n∥ + n⊥1 + n⊥2 . Then

E[nn∥] = 2λ(ε)∥t(1 + λ(ε)t) and Cov(n, n∥) = 2λ(ε)∥t .

Proof. We calculate the expectation, the result for the covariance is then obvious. By indepen-

dence of the Poisson processes of joint and single jumps,

E
[
nn∥

]
= E

[
(2n∥ + n⊥1 + n⊥2 )n

∥
]

= 2
(
Var(n∥) + (E[n∥])2

)
+ E[n⊥1 + n⊥2 ]E[n∥]

= 2(λ(ε)∥t+ (λ(ε)∥t)2) + (λ
(ε)⊥
1 + λ

(ε)⊥
2 )λ(ε)∥t2

= 2λ(ε)∥t(1 + λ(ε)t).

□
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Lemma 4.6. Assume a bivariate α-stable Clayton subordinator with common marginal param-

eters (log c, α) and dependence parameter θ = αδ. Assume also the observation scheme given in

Section 2. Define

T (x, y) := (log x+ log y) +
α

θ2
log(xθ + yθ)− (2 +

α

θ
)
∂

∂θ
log(xθ + yθ) . (4.9)

Then the matrix M introduced in (4.3) is given by

M =


1 − log ε 2dα log 2

θ2

− log ε 1
α2 + (log ε)2 −d

(
2α log 2

θ2
log ε+m

)
2dα log 2

θ2
−d
(
2α log 2

θ2
log ε+m

)
db

 , (4.10)

where b is given by (4.7) and

m = 2Cov
(
log

X1

ε
, T
(X1

ε
,
Y1
ε

))
. (4.11)

Moreover, this covariance is independent of ε. □

4.2 Consistency and asymptotic normality of the two-step estimators

Assume that the log-likelihood l
(ε)
12 (log c, α) in (3.5) is used for estimating the marginal param-

eters log c and α in the first step and the log-likelihood l(ε)(log c, α, θ) in (3.7) for estimating

the dependence parameter θ in the second step; i.e. we work with J(ε)(X,Y; η) as given in Re-

mark 3.4. As before we denote the resulting estimates by γ̃ = (log c̃, α̃) and η̃ = (log c̃, α̃, θ̃).

Assume further that γ0 = (log c0, α0) and η0 = (log c0, α0, θ0) are the true parameter vectors.

Taylor expansions of each of the score functions in (3.6) and (3.8) separately yield

∂l
(ε)
12 (log c,α)
∂ log c

∣∣∣
γ=γ̃

=
∂l

(ε)
12 (γ)

∂ log c

∣∣∣
γ=γ0

+ (log c̃− log c0)
∂2l

(ε)
12 (γ)

∂(log c)2

∣∣∣
γ=γ∗∗∗

+ (α̃− α0)
∂2l

(ε)
12 (γ)

∂α∂ log c

∣∣∣
γ=γ∗∗∗

∂l
(ε)
12 (log c,α)

∂α

∣∣∣
γ=γ̃

=
∂l

(ε)
12 (γ)
∂α

∣∣∣
γ=γ0

+ (log c̃− log c0)
∂2l

(ε)
12 (γ)

∂ log c∂α

∣∣∣
γ=γ∗∗

+ (α̃− α0)
∂2l

(ε)
12 (γ)

∂α2

∣∣∣
γ=γ∗∗

∂l(ε)(log c,α,θ)
∂θ

∣∣∣
η=η̃

= ∂l(ε)(η)
∂θ

∣∣∣
η=η0

+ (log c̃− log c0)
∂2l(ε)(η)
∂ log c ∂θ

∣∣∣
η=η∗

+ (α̃− α0)
∂2l(ε)(η)
∂α∂θ

∣∣∣
η=η∗

+(θ̃ − θ0)
∂2l(ε)(η)

∂θ2

∣∣∣
η=η∗

(4.12)

where γ∗∗∗ and γ∗∗ are between γ̃ = (log c̃, α̃) and γ0 = (log c0, α0), and η∗ is between η̃ and η0,

componentwise.

Since the left hand sides of the equations in (4.12) are zero, so are the equations on the right

hand side. Recall from Lemma 4.2 the matrix H(ε) = H(ε)(η) of the second-order derivatives of

the log-likelihoods and denote by H
(ε)
∗ the matrix H(ε) at γ∗∗∗, γ∗∗ and η∗ row-wise. Recalling

the vector of score functions J(ε)(η) from Remark 3.4, we rewrite (4.12) as

H
(ε)
∗ (η̃ − η0) = −J(ε)(η)

∣∣∣
η=η0

. (4.13)
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Rewrite the components of the vector J(ε)(η) of the score functions in (3.6) and (3.8) as

∂l
(ε)
12 (log c, α)

∂ log c
= 2λ(ε)t

( λ̂(ε)

λ(ε)
− 1
)

(4.14)

∂l
(ε)
12 (log c, α)

∂α
= 2λ(ε)t log ε

( λ̂(ε)

λ(ε)
− 1
)
−

n∑
i=1

(
log(

Zi

ε
)− 1

α

)
(4.15)

∂l(ε)(log c, α, θ)

∂θ
=

n∥∑
i=1

Ti +
n∥

α+ θ
− λ(ε)∥t

α log 2

θ2

=
n∥∑
i=1

(Ti − µT ) +
α log 2

θ2
λ(ε)∥t

( λ̂(ε)∥

λ(ε)∥ − 1
)
. (4.16)

The next result shows the consistency of the estimator η̃.

Proposition 4.7. Assume the bivariate α-stable Clayton subordinator with common marginal

parameters (log c, α) and dependence parameter θ = αδ. Assume also the observation scheme as

described in Section 2. Let b(α, θ) be defined as in (4.7) and assume that b(α, θ) ̸= 0. Then the

two-step estimator η̃ is consistent; i.e., as n∥ → ∞ (then also n → ∞) for fixed ε > 0,

η̃
P→ η.

Proof. We denote again by η0 the true parameter vector. Now divide (4.13) by n and obtain

1

n
H

(ε)
∗ (η̃ − η0) = − 1

n
J(ε)(η)

∣∣∣
η=η0

. (4.17)

From the equations in (4.14), (4.15) and (4.16) the vector on the right hand side of (4.17) is

given by

1

n
J(ε)(η)

∣∣∣
η=η0

=
2λ(ε)t

n


λ̂(ε)

λ(ε) − 1

log ε
(
λ̂(ε)

λ(ε) − 1
)
− 1

2λ(ε)t

∑n
i=1

(
log(Zi

ε )−
1
α

)
1

2λ(ε)t

∑n∥

i=1 (Ti − µT ) +
α log 2
θ2

λ(ε)∥

2λ(ε)

(
λ̂ε)∥

λ(ε)∥ − 1
)


η=η0

.

Now, by the Marcinkiewicz-Zygmund SLLN (cf. e.g. [5], Theorem 2.5.10) λ̂(ε) = n
2t

a.s.→ λ
(ε)
0 as

n → ∞. Invoking the same argument for λ̂(ε)∥ ensures that the second summand of the third

component tends to 0 a.s. as n∥ → ∞. For the terms involving Zi and Ti we apply the SLLN for

random sums (cf. e.g. [5], Lemma 2.5.3) and obtain that the right hand side of (4.17) tends to

the zero vector a.s. as n∥ → ∞ (and n → ∞).

Next we show that the limit of 1
nH

(ε)(η0) exists and is deterministic and independent of t

as n∥ → ∞. Note that by the SLLN for random sums A(α0, θ0) and B(α0, θ0) converge a.s.

to a(α0, θ0) and b(α0, θ0) as defined in (4.6) and (4.7), respectively. Using also the fact that

2λ
(ε)
0 t/n

a.s.→ 1, we obtain 1
nH

(ε)(η0)
a.s.→ −D, where D is given in (4.5) and is invertible by

Remark 4.4.

15



Now consider H
(ε)
∗ and write λ

(ε)
∗∗∗ = λ(ε)

∣∣
γ∗∗∗

, λ
(ε)
∗∗ = λ(ε)

∣∣
γ∗∗

, λ
(ε)
∗ = λ(ε)

∣∣
η∗
, α∗∗ = α

∣∣
γ∗∗

,

α∗ = α
∣∣
η∗

A∗ = A
∣∣
η∗
, B∗ = B

∣∣
η∗
, and d∗ = d

∣∣
η∗
. Then we calculate

detH
(ε)
∗ = −4

d∗B∗
α2
∗∗

λ
(ε)
∗∗∗λ

(ε)
∗ t2n ̸= 0

for η close to η0 by continuity. Hence, H
(ε)
∗ is invertible. From (4.17) we obtain(

log c̃− log c0
log ε

, α̃− α0, θ̃ − θ0

)⊤
= −(

1

n
H

(ε)
∗ )−1 × 1

n
J(ε)(η)

∣∣∣
η=η0

, (4.18)

where

1

n
H

(ε)
∗ =


λ
(ε)
∗∗∗
λ̂(ε)

0 0

0 λ
(ε)
∗∗

λ̂(ε)
0

0 0 λ
(ε)
∗

λ̂(ε)

×


− log ε log ε 0

(log ε)2 − λ̂(ε)

α2
∗∗λ

(ε)
∗∗

− (log ε)2 0

−d∗
α∗ log 2

θ2∗
log ε d∗

(α∗ log 2
θ2∗

log ε−A∗
)

−d∗B∗

 .

This implies that its inverse is given by

(
1

n
H

(ε)
∗ )−1 =


− 1

log ε −
λ
(ε)
∗∗

λ̂(ε)
α2
∗∗ log ε −λ

(ε)
∗∗

λ̂(ε)
α2
∗∗ 0

−λ
(ε)
∗∗

λ̂(ε)
α2
∗∗ log ε −λ

(ε)
∗∗

λ̂(ε)
α2
∗∗ 0

A∗α2
∗∗

B∗
λ
(ε)
∗∗

λ̂(ε)
log ε+ α∗ log 2

θ2∗B∗

A∗α2
∗∗

B∗
λ
(ε)
∗∗

λ̂(ε)
− 1

d∗B∗

×


λ̂(ε)

λ
(ε)
∗∗∗

0 0

0 λ̂(ε)

λ
(ε)
∗∗

0

0 0 λ̂(ε)

λ
(ε)
∗

 .

All matrix elements are finite random variables and they remain bounded in probability for

n∥ → ∞, since λ̂(ε) a.s.→ λ
(ε)
0 and all starred values are between the estimates and the true param-

eter values. Hence we conclude that η̃
P→ η0. □

We are now ready to formulate the main result of our paper.

Theorem 4.8. Assume a bivariate α-stable Clayton subordinator with common marginal pa-

rameters (log c, α) and dependence parameter θ = αδ. Assume also the observation scheme as

described in Section 2. Let a(α, θ) and b(α, θ) be defined as in (4.6) and (4.7), respectively, and

let m be as in (4.11). If b(α, θ) ̸= 0, then as ε → 0,

√
2cε−αt


log c̃−log c

log ε

α̃− α

θ̃ − θ

 d→ N3 (0, V ) , (4.19)

where

V =

 α2 α2 −α2(a+m)
b

α2 α2 −α2(a+m)
b

−α2(a+m)
b −α2(a+m)

b
1
bd − 3α2(log 2)2

b2θ4
+ aα2(a+2m)

b2

 . (4.20)
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Proof. We start with the left hand side of equation in (4.17). Multiplying both sides of (4.17)

by
√
n yields as in the proof of Proposition 4.7 for n∥ (hence n) sufficiently large by consistency

that H
(ε)
∗ is invertible and by (4.18)

√
n

(
log c̃− log c0

log ε
, α̃− α0, θ̃ − θ0

)⊤
= −(

1

n
H

(ε)
∗ )−1 × 1√

n
J(ε)(η)

∣∣∣
η=η0

(4.21)

The vector 1√
n
J(ε)(η) is asymptotically normal with mean zero and covariance matrix M =

1
2λ(ε)t

E
[∂l(ε)(η)

∂η
∂l(ε)(η)

∂η

T ]
calculated in Lemma 4.6. Since γ∗∗∗ and γ∗∗ are between γ̃ and γ0 and

η∗ between η̃ and η0, from the consistency of the estimators in Proposition 4.7, (H
(ε)
∗ )−1 converges

a.s. by the SLLN and the consistency of the parameters to D−1 as calculated in Remark 4.4.

Consequently,
√
n
(
log c̃−log c0

log ε , α̃− α0, θ̃ − θ0

)⊤
converges as n → ∞ in distribution to a normal

vector with asymptotic covariance matrix

G−1 = D−1M(D−1)⊤
∣∣∣
η=η0

=


1

(log ε)2
+ α2

0 α2
0 − (a0+m0)α2

0
b0

+ α0 log 2
b0θ20 log ε

α2
0 α2

0 − (a0+m0)α2
0

b0

− (a0+m0)α2
0

b0
+ α0 log 2

b0θ20 log ε
− (a0+m0)α2

0
b0

1
b0d0

− 3α2
0(log 2)

2

b20θ
4
0

+
a0α2

0(a0+2m0)

b20


with G as in (4.1).

Then by the SLLN we know that λ̂((ε)

λ(ε) = n
2λ(ε)t

= n
2cε−αt

a.s.→ 1 as n → ∞ (either ε ↓ 0 or

t → ∞), hence the rate
√
n can be replaced by

√
2ctε−α. Finally, G−1 → V as ε → 0 and this

completes the proof. □

Remark 4.9. (i) Note that for t → ∞ and fixed ε > 0 the asymptotic covariance matrix in

(4.19) is given by G−1.

(ii) The above theorem implies that the normal limit vector has representation

(N1, N1, N2)
⊤,

where N1 has variance α2, N2 has variance 1
bd +

α2

b2

(
− 3(log 2)2

θ4
+a(a+2m)

)
, and the correlation

between N1 and N2 is given by

Corr(N1, N2) = − a+m√
1

α2d
− 3(log 2)2

bθ4
+ a

b (a+ 2m)
.

Example 4.10. [Asymptotic covariance matrix for a bivariate α-stable Clayton subordinator]

Let S = (S(t))t≥0 be a bivariate α-stable subordinator with a Clayton Lévy copula as introduced

in Example 2.2. Assume further its parameters c1 = c2 = c, α1 = α2 = α and θ = αδ are

estimated by a two-step method as in Section 3.2. The asymptotic covariance matrix as ε → 0

for the model with parameter values c = 1, α = 0.5, θ = 1 can be computed numerically similar
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to the calculation at the end of Section 5 in [7]. Note that it involves the numerical integration

of certain integrals. We find the asymptotic covariance matrix of η̃ = (log c̃, α̃, θ̃) as

V =

 0.25 0.25 0.1042

0.25 0.25 0.1042

0.1042 0.1042 2.6273

 .

Alternatively, this matrix can also be estimated replacing the numerical integration by a Monte

Carlo simulation. For this the expectations in (4.6) and (4.7) and the covariance m from (4.11)

are empirically estimated by generating bivariate observations from (3.4) with parameter values

mentioned above. Based on 106 bivariate observations, this yields the same asymptotic covariance

matrix as above (4 leading decimals coindice).

From this, we calculate Corr(N1, N2) = 0.1286.

Remark 4.11. For the bivariate α-stable Clayton Lévy process with equal marginal processes

we have been able to calculate the Godambe information matrix analytically. However, for most

models this is too complicated. It requires derivatives of first and second order, the integration

of some compound functions and the inverses and multiplications of possibly high dimensional

matrices. As an alternative, a jackknife resampling method has been suggested and can also

be applied in this context for arbitrary Lévy processs; cf. Joe [10], Section 10.1, and references

given there.

5 Maximum likelihood estimation of the full model

We compare the two-step procedure presented in Section 2 with two alternatives. Firstly, we

consider the estimation method presented in [7] based on only common jumps. Secondly, we

also compare this method with the full likelihood, based on single and common jumps. For this

reason we present here the likelihood function of the full model. The observation scheme is as

explained in Section 2, where n∥ + n⊥1 + n⊥2 is the number of observations.

From (2.6) the Lévy densities of Π
(ε)⊥
1 , Π

(ε)⊥
2 and Π(ε)∥ are given by

ν⊥1 (x) = cαx−α−1
[
1−

(
1 + (x/ε)−αδ

)−1/δ−1]
, x > ε

ν⊥2 (y) = cαy−α−1
[
1−

(
1 + (y/ε)−αδ

)−1/δ−1]
, y > ε ,

ν∥(x, y) = cα2(1 + δ)(xy)αδ−1
(
xαδ + yαδ

)−1/δ−2
.

As intensities we obtain from (2.7) λ(ε)∥ = c2−1/δε−α. Moreover, the marginal intensities are

λ
(ε)
1 = λ

(ε)
2 = cε−α, so that λ

(ε)⊥
1 = λ

(ε)⊥
2 = cε−α(1 − 2−1/δ). This implies the intensity of the

bivariate CPP ρ(ε) := λ(ε)∥ + λ
(ε)⊥
1 + λ

(ε)⊥
2 = cε−α(2− 2−1/δ).

For simplicity we reparameterize the model again as in Section 3.2 by setting αδ = θ and

take log c instead of c as second marginal parameter. Now we recall Th. 4.1 of [6] for a bivariate

CPP and obtain the likelihood function; here (xi, yi)i=1,...,n∥ denote the common jumps in both
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components and x̃i for i = 1, . . . , n⊥1 and ỹi for i = 1, . . . , n⊥2 denote the single jumps. The

likelihood function of the bivariate CPP is then given by

L(ε)(log c, α, θ) =
(
e−ρ

(ε)t
n∥∏
i=1

ν∥(xi, yi)
)
×
(
e−λ

(ε)⊥
1 t

n⊥1∏
i=1

ν⊥1 (x̃i)
)
×
(
e−λ

(ε)⊥
2 t

n⊥2∏
i=1

ν(ỹi)
)

= e−ctε
−α(2−2−α/θ)(α+ θ)n

∥
(αc)n

∥+n⊥1 +n⊥2

n∥∏
i=1

[
(xiyi)

θ−1(xθi + yθi )
−α/θ−2

]

×
n⊥1∏
i=1

[
x̃−α−1i

(
1−

(
1 + (x̃i/ε)

−θ
)−α/θ−1)]

(5.1)

×
n⊥2∏
i=1

[
ỹ−α−1i

(
1−

(
1 + (ỹi/ε)

−θ
)−α/θ−1)]

.

The log-likelihood is given by

l(ε)(log c, α, θ) = −ctε−α(2− 2−α/θ) + n∥ log(α+ θ) + (n∥ + n⊥1 + n⊥2 )(logα+ log c)

+(θ − 1)

n∥∑
i=1

(log xi + log yi)− (2 +
α

θ
)

n∥∑
i=1

log(xθi + yθi )

−(α+ 1)

n⊥1∑
i=1

log x̃i +

n⊥1∑
i=1

log
[
1−

(
1 + (x̃i/ε)

−θ
)−α/θ−1 ]

−(α+ 1)

n⊥2∑
i=1

log ỹi +

n⊥2∑
i=1

log
[
1−

(
1 + (ỹi/ε)

−θ
)−α/θ−1 ]

.

For the score functions we obtain

∂l(ε)

∂ log c
= −ctε−α(2− 2−α/θ) +

n∥ + n⊥1 + n⊥2
c

∂l(ε)

∂α
= ctε−α

(
2 log ε− 2−α/θ log ε− 2−α/θ log 2

θ

)
+

n∥

α+ θ
+

n∥ + n⊥1 + n⊥2
α

−1

θ

n∥∑
i=1

log(xθi + yθi )−
n⊥1∑
i=1

log x̃i +

n⊥1∑
i=1

∂

∂α
log

[
1−

(
1 + (x̃i/ε)

−θ
)−α/θ−1]

−
n⊥2∑
i=1

log ỹi +

n⊥2∑
i=1

∂

∂α
log

[
1−

(
1 + (ỹi/ε)

−θ
)−α/θ−1]

∂l(ε)

∂θ
=

ctαε−α2−α/θ log 2

θ2
+

n∥

α+ θ
+

n∥∑
i=1

(log xi + log yi) +
α

θ2

n∥∑
i=1

log(xθi + yθi )

−(2 +
α

θ
)

n∥∑
i=1

∂

∂θ
log(xθi + yθi ) +

n⊥1∑
i=1

∂

∂θ
log

[
1−

(
1 + (x̃i/ε)

−θ
)−α/θ−1]

+

n⊥2∑
i=1

∂

∂θ
log

[
1−

(
1 + (ỹi/ε)

−θ
)−α/θ−1]

.
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Method of estimation Truncation point c = 1 α = 0.5 δ = 2

Mean 1.0678 0.5289 2.1489

ε = 0.001
√
MSE 0.6344 0.1206 0.9511

MLE MRB 0.0517 0.0525 0.0842

(only bivariate jumps) Mean 1.0460 0.5020 2.0301

as in [7] ε = 0.00001
√
MSE 0.3677 0.0349 0.2488

MRB 0.0413 0.0044 0.0144

Mean 1.0177 0.5216 2.0129

ε = 0.001
√
MSE 0.5248 0.0777 0.4337

MLE MRB 0.0072 0.0423 0.0119

(full model) Mean 1.0175 0.5021 2.0091

as in Section 3 ε = 0.00001
√
MSE 0.2808 0.0239 0.1253

MRB 0.0142 0.0045 0.0042

Mean 1.0453 0.5231 2.0762

IFM ε = 0.001
√
MSE 0.5535 0.0859 0.6764

(two-step method) MRB 0.0264 0.0471 0.0379

as in Section 3.2 Mean 1.0301 0.5021 2.0149

ε = 0.00001
√
MSE 0.3003 0.0257 0.1696

MRB 0.0249 0.0048 0.0065

Table 6.1: Comparison of estimates for a bivariate 1
2
-stable Clayton process with common marginal parameters.

We simulated 100 sample paths and estimated all parameters 100 times. Each of the 100 estimates was based on

one sample path, on which all three methods were performed. From each sample path we truncated the small

jumps based on the two truncation points (ε = 0.001 and ε = 0.00001), respectively. Each sample path of the

process was simulated as a continuous time realization of a CPP in one unit of time, 0 ≤ t < 1, for τ = 1000,

equivalent to truncation of the small jumps at the cut-off point ξ = Π
←
(τ) = 10−6.

The three parameters are obtained by numerical optimization.

It is possible to prove joint asymptotic normality of (log c, α, θ) similar to our calculations in

Esmaeili and Klüppelberg [7] and in Section 3 of the present paper. However, for the observation

scheme of the present paper this is even more complicated than in [7]. We refrain from this tedious

analytic exercise and, instead, present the results of a simulation study in the next section, where

we compare all three methods presented.

6 Comparison of estimation procedures

In this section we compare the quality of the MLEs η̂ = (log ĉ, α̂, θ̂) of the full model of Section 5

with the estimates η̃ = (log c̃, α̃, θ̃) obtained by the two-step method in Section 4. Moreover, we

also include in our comparison those estimates obtained from bivariate jumps larger than ε only

as derived in Th. 4.6 of [7]. Since this last method means to base the statistical analysis on less

data, we expect that this method is less efficient than the MLE based on all available data. More
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precisely, for the first two parameters log c and α, the rate has simply changed from
√
c2−α/θε−αt

to
√
c2ε−αt.

The simulation study

We simulate sample paths of the bivariate α-stable Clayton subordinator with equal marginals

and parameters given by c = 1 (log c = 0), α = 1/2 and δ = 2 (θ = 1). We generate sample

paths of this process over a time span [0, t], where we choose t = 1 for simplicity. Recall from

our observation scheme introduced in Section 2 that we observe all jumps larger than ε either

in one component or in both. Obviously, we cannot simulate a trajectory of a stable process,

since we are restricted to the simulation of a finite number of jumps. For simulation purposes we

choose a threshold ξ (which should be much smaller than ε) and simulate jumps larger than ξ in

one component, and arbitrary in the second component. To this end we invoke Algorithm 6.15

in Cont and Tankov [3].

The simulation of a bivariate α-stable Clayton subordinator is explained in detail in Exam-

ple 6.18 of [3]. The algorithm starts by fixing a number τ determined by the required precision.

This number coincides with the jump intensity λ
(ξ)
1 , which fixes the average number of terms in

the approximating CPP. More details can be found in [7].

For the estimation we first consider ε = 0.001, i.e. a relatively large truncation point. Not

surprisingly, the MLEs based on the full model discussed in Section 5 are definitely better than

the other estimates in Table 6.1. We find it, however, remarkable that the two-step method

outperforms the MLE based on joint jumps only. The reason for this is presumably that the

MLE’s based only on joint jumps use only such data with Lévy measure on [ε,∞)2. The two-step

method, however, uses also data, which are only in one component larger than ε in its first step.

The marginal parameters are based on substantially more data.

When we consider also smaller jumps; i.e., if we choose ε = 10−5, the estimates will be more

precise with less variation and smaller bias. In Table 6.1, the results in the lower part of each

estimation method show this fact. It can also be seen from this table that the MLEs from a

full model have the least mean relative bias (MRB) and mean square errors (MSE) as expected.

In Figure 2 we visualize the situation for the this jump truncation point of ε = 10−5 based on

1000 simulated sample paths. Again all three estimation methods are performed for each sample

path.
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Figure 2: Histogram with statistically fitted normal density (red) and theoretical limit distribution (green) for

1000 parameter estimates of a bivariate Clayton stable Lévy process. The parameter values are c = 1, α = 0.5

and δ = 2 and the jump-truncated point is ε = 0.00001. The estimation procedures are MLEs based on joint

jumps only (first row, limit distribution derived in Theorem 4.6 of [7]), the two-step method (second row, limit

distribution derived in Theorem 4.8 above) and MLEs based on all jumps (third row, without theoretical limit

law).
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7 Appendix

Proof of Lemma 4.2. The score functions in (3.6) have derivatives

∂2l
(ε)
12 (log c, α)

∂(log c)2
= −2ctε−α = −2λ(ε)t

∂2l
(ε)
12 (log c, α)

∂α∂ log c
=

∂2l
(ε)
12 (log c, α)

∂ log c ∂α
= 2ctε−α log ε = 2λ(ε)t log ε (7.1)

∂2l
(ε)
12 (log c, α)

∂α2
= − n

α2
− 2ctε−α(log ε)2 = − n

α2
− 2λ(ε)t(log ε)2.

This means that the upper left 2 × 2-matrix of H(ε) is the Fisher information matrix to the

MLE of (log c, α), calculated by Basawa and Brockwell [2], and also presented in Esmaeili and

Klüppelberg [7], Example 3.1 (up to a deterministic factor), since here all observations from both
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marginals are considered. Since the score functions in (3.6) are independent of the parameter θ,

the matrix H(ε) has the structure as given in (4.5). It remains to calculate the last row of H(ε).

We calculate the derivatives of the score function in (3.8) as follows: first, by Lemma 4.1,

∂2l(ε)(log c, α, θ)

∂ log c∂θ
= − ∂2λ(ε)∥

∂ log c∂θ
t = −λ(ε)∥t

α log 2

θ2
.

Furthermore,

∂2l(ε)(log c, α, θ)

∂α∂θ
= −∂2λ(ε)∥

∂α∂θ
t− n∥

(α+ θ)2
+

1

θ2

n∥∑
i=1

log (Xθ
i + Y θ

i )

−1

θ

n∥∑
i=1

∂

∂θ
log (Xθ

i + Y θ
i ) (7.2)

∂2l(ε)(log c, α, θ)

∂θ2
= −∂2λ(ε)∥

∂θ2
t− n∥

(α+ θ)2
− 2α

θ3

n∥∑
i=1

log (Xθ
i + Y θ

i )

+
2α

θ2

n∥∑
i=1

∂

∂θ
log (Xθ

i + Y θ
i )− (2 +

α

θ
)

n∥∑
i=1

∂2

θ2
log (Xθ

i + Y θ
i ).

□

Proof of Lemma 4.3. Since D = − 1
2λ(ε)t

E[H(ε)], it remains to calculate the expectations:

E[A(α, θ)] = −α(log 2)2

θ3
+

log 2

θ2
+

1

(α+ θ)2
− 1

θ2
E
[
log(Xθ

1 + Y θ
1 )
]

+
1

θ
E
[ ∂

∂θ
log (Xθ

1 + Y θ
1 )
]

= a(α, θ)

E[B(α, θ)] =
(α log 2

θ2

)2
− 2α log 2

θ3
+

1

(α+ θ)2
+

2α

θ3
E
[
log (Xθ

1 + Y θ
1 )
]

−2α

θ2
E
[ ∂

∂θ
log (Xθ

1 + Y θ
1 )
]
+ (2 +

α

θ
)E
[ ∂2

∂θ2
log (Xθ

1 + Y θ
1 )
]

= b(α, θ).

□

Proof of Lemma 4.6. Recall the definition of the Zi for i = 1, . . . , n as in Step 1 of Section 3.2 and

the fact that log Z1
ε , . . . , log Zn

ε are exponential random variables with expectation α−1, and that

in this first step they are treated as independent. The entries of the matrix M = (mij)1≤i,j≤3

are calculated from the score functions (3.9) in Remark 3.4 as follows:

m11 =
1

2λ(ε)t
E
[( ∂l

(ε)
12

∂ log c

)2]
=

1

2λ(ε)t
E
[
− ∂2l

(ε)
12

∂(log c)2

]
= d11

m12 =
1

2λ(ε)t
E
[(∂l(ε)12

∂α

)( ∂l
(ε)
12

∂ log c

)]
=

1

2λ(ε)t
E
[
− ∂2l

(ε)
12

∂α∂ log c

]
= d12 = d21 = m21

m22 =
1

2λ(ε)t
E
[(∂l(ε)12

∂α

)2]
=

1

2λ(ε)t
E
[
− ∂2l

(ε)
12

∂α2

]
= d22.
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We abbreviate Ti := T (Xi, Yi) and find from Lemma 4.4 in [7] that µT := E(Ti) =
α log 2
θ2

− 1
α+θ .

Then by (3.6) and (3.8) we find

m13 =
1

2λ(ε)t
E
[( ∂l

(ε)
12

∂ log c

)(∂l(ε)
∂θ

)]
=

1

2λ(ε)t
E
[
(n− 2λ(ε)t)

(
− λ(ε)∥t

α log 2

θ2
+

n∥

α+ θ
+

n∥∑
i=1

(Ti − µT ) + n∥(
α log 2

θ2
− 1

α+ θ
)
)]

=
1

2λ(ε)t
E
[
(n− 2λ(ε)t)

(α log 2

θ2
(n∥ − λ(ε)∥t) +

n∥∑
i=1

(Ti − µT )
)]

=
α log 2

2λ(ε)tθ2
E
[
n(n∥ − λ(ε)∥t)

]
+

1

2λ(ε)t
E
[
E
[
n

n∥∑
i=1

(Ti − µT )
∣∣∣n, n∥]]

=
α log 2

2λ(ε)tθ2

(
E[nn∥]− 2λ(ε)λ(ε)∥t2

)
=

α log 2

2λ(ε)tθ2
Cov(n, n∥) = 2d

α log 2

θ2
,

where we have used Lemma 4.5.

m23 =
1

2λ(ε)t
E
[(∂l(ε)12

∂α

)(∂l(ε)
∂θ

)]
= − 1

2λ(ε)t
E
[( n∑

i=1

(log
Zi

ε
− 1

α
) + log ε(n− 2λ(ε)t)

)(α log 2

θ2
(n∥ − λ(ε)∥t) +

n∥∑
i=1

(Ti − µT )
)]

= − 1

2λ(ε)t
E
[( n∑

i=1

(log
Zi

ε
− 1

α
)
)( n∥∑

i=1

(Ti − µT )
)]

− α log 2

2λ(ε)tθ2
log εE

[
(n− 2λ(ε)t)(n∥ − λ(ε)∥t)

]
Now note that the jumps (Xi, Yi)i=1,...,n∥ are independent and independent of all single jumps in

either component. Recall that Ti = T (Xi, Yi) = T (Xi/ε, Yi/ε), where the last equality is easily

checked. Hence, the right hand side above reduces to

= − 1

2λ(ε)t
E
[ n∥∑

i=1

(log
Xi

ε
+ log

Yi
ε

− 2

α
)(Ti − µT )

]
− α log 2

2λ(ε)tθ2
log εCov(n, n∥)

= −λ(ε)∥t

2λ(ε)t
E
[(

log
X1

ε
+ log

Y1
ε

− 2

α

)(
Ti − µT

)]
− 2λ(ε)∥t

2λ(ε)t

α log 2

θ2
log ε

= −d
(
m+

2α log 2

θ2
log ε

)
.

Finally, recalling D = (dij)1≤i,j≤3,

m33 =
1

2λ(ε)t
E
[(∂l(ε)

∂θ

)2]
= − 1

2λ(ε)t
E
[∂2l(ε)

∂θ2

]
= d33.

□
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