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Abstract
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1 Introduction

Throughout we assume that (Xt)t∈I is a strictly stationary stochastic process and its

extremes satisfy some analytic regularity condition. The index set I can be discrete or

continuous and w.l.o.g. we assume that 0 ∈ I. We shall present analytic results on the

dependence structure of high level extremes in various time series models. Our motivation

is two-fold. Firstly, we review certain known spatial dependence measures in the framework

of time series models in discrete and continuous time. We also adapt the notion of extremal

index for discrete time models to some useful version for continuous time models. Secondly,

we present explicit results for the most prominent time series models, which also prepares

the ground for statistical estimation.

Starting point of our investigation is the extremal coefficient, which simply measures

for two random variables the probability for joint extremes. We extend this function in the

same way as autocovariance and autocorrelation functions extend the covariance and the

correlation between two random variables. Concentrating on dependence in the extremes

it can be viewed as an analog of a covariance function, but on extreme observations.

Various time series models feature strong clustering in the extremes, a phenomenon,

which is captured by the extremal index for time series models in discrete time. This also

applies to continuous-time models by introducing discrete time grids on the positive time

axes. Since the inverse of the extremal index serves as a measure for the mean cluster size,

it is only a crude measure of dependence in extremes. In various models it is possible to

calculate also the cluster size distribution. However, the analytic expressions of the cluster

size distributions are complicated, have basically no interpretation, and their statistical

estimation is mostly not possible. Consequently, we concentrate on the extremal coefficient

function (including some multivariate versions) and the extremal index function.

Previous results to describe the extremal behaviour of time series by extreme depen-

dence measures like in Definition 1.1 below have been obtained by Ledford and Tawn [34]

and Gomes, de Haan and Pestana [25], and we extend parts of their results. There also

exists a large statistics literature to assess the extremal behavior of multivariate vectors

or time series; see e.g. Ledford and Tawn [34] and Ramos and Ledford [40] and references

therein.

There also exists a vast literature on the extremal index of Definition 1.4 and its

estimation. A pathbreaking paper for random recurrence models has been de Haan et

al. [15]. We refer in particular to Laurini and Tawn [32] for recent results on the extremal

index and further references, in particular, with respect to statistical estimation.

Independently of our work Davis and Mikosch [12] introduced what they call the

extremogram of multivariate time series in discrete time, which in special cases coincides

with our extremal coefficient function defined in (1.4) below. Their emphasis is, however,

on nonparametric estimation of the extremogram. Segers [45], in his recent paper, on the
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other hand studies similar measures for extremes of regularly varying Markov chains and

some of our models fall into this framework.

As appropriate regularity condition we require that all finite dimensional distributions

of (Xt)t∈I belong to the maximum domain of attraction of some extreme value distribution.

In particular, the one-dimensional stationary distribution (represented by X0) has right

endpoint xR ≤ ∞ and belongs to the maximum domain of attraction of some extreme

value distribution G (X0 ∈ MDA(G)); i. e. there exist norming sequences an > 0, bn ∈ R

such that

lim
n→∞

nP(X0 > anx + bn) = − log G(x), x ∈ R, (1.1)

for some non-degenerate distribution function G, where we define − log 0 := ∞. By the

Fisher-Tippett Theorem G has to be an extreme value distribution; i. e. G is either a

Frechét, a Weibull or a Gumbel distribution. If we do not specify G, we shall simply write

MDA. If all finite dimensional distributions of the strictly stationary stochastic process

(Xt)t∈I belong to some maximum domain of attraction, we write (Xt)t∈I ∈ MDA. Our

conditions may not be the most general ones, but under a domain of attraction condition

all limits below exist.

We shall formulate extreme dependence measures and related notions for lagged vec-

tors of (Xt)t∈I of arbitrary dimension. For ease of notation, we denote for arbitrary d ∈ N

by

Xd := (Xt1 , . . . , Xtd), t1 < · · · < td in I,

a generic lagged vector of (Xt)t∈I . Analogous notation will be used for Xd := (|Xt1 |, . . . , |Xtd |)
and X2

d := (X2
t1
, . . . , X2

td
).

Definition 1.1 (Extreme dependence measures)

Let (Xt)t∈I ∈ MDA and an > 0, bn ∈ R satisfy (1.1).

(a) We define the extreme dependence functions of (Xt)t∈I by defining for any lagged

vector Xd of (Xt)t∈I and for all (x1, . . . , xd) ∈ R
d by

χ
(t1,...,td)

(x1, . . . , xd) := lim
n→∞

nP(Xt1 > anx1 + bn, . . . , Xtd > anxd + bn), (1.2)

χ(t1,...,td)(x1, . . . , xd) := lim
n→∞

nP(Xt1 > anx1 + bn or . . . or Xtd > anxd + bn) . (1.3)

(b) We also define the extremal coefficient function of (Xt)t∈I by

χ(t) := lim
x↑xR

P(Xt > x | X0 > x) for t ∈ I. (1.4)

Remark 1.2 (i) The extremal coefficient function satisfies for every t ∈ I

χ(t) = lim
n→∞

P(X0 > any + bn , Xt > any + bn)

P(X0 > any + bn)
(1.5)

=
χ

(0,t)
(y, y)

χ
(0)

(y)
= 2 −

χ(0,t)(y, y)

χ(0)(y)
for any y ∈ R
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The right-hand side quotients are indeed independent of y. In the Fréchet case this is a

consequence of Lemma 2.4 below.

(ii) Note that the limit relation (1.5) implies also

χ(t) = lim
x→∞

Cov(I{X0>x}, I{Xt>x})

P(X0 > x)
,

which presents χ(·) as covariance function for extremes; see Davis and Mikosch [12] for

more general results in the context of multivariate time series.

(iii) The extremal coefficient function θ(·) of Schlather and Tawn [44] is slightly different.

They define θ(t) = 2 − χ(t) for t ∈ I, and their multivariate extremal coefficient, defined

for some index set A ⊂ I is in our notation

θA =
χA(y, . . . , y)

χ(0)(y)
for any y ∈ R,

where again the right hand side is independent of y.

The following lemma shows that the definition of the extreme dependence functions

are invariant under affine transformations.

Lemma 1.3 Let (Xt)t∈I ∈ MDA and an > 0, bn ∈ R satisfy (1.1). Let ãn > 0, b̃n ∈ R be

constants such that for some a > 0 and b ∈ R,

lim
n→∞

ãn

an

= a and lim
n→∞

b̃n − bn

an

= b.

Consider a lagged vector Xd of (Xt)t∈I . Denote the extreme dependence measures χ and

χ as in (1.2) and (1.3), and define χ̃, χ̃ in the same way for the constants ãn > 0, b̃n ∈ R,

respectively. Then for all (x1, . . . , xd) ∈ Rd we have

χ̃
(t1,...,td)

(x1, . . . , xd) = χ
(t1,...,td)

(ax1 + b, . . . , axd + b),

χ̃(t1,...,td)(x1, . . . , xd) = χ(t1,...,td)(ax1 + b, . . . , axd + b).

Proof. Let F ∈ MDA(G) be the distribution function of Xd. Furthermore, let x =

(x1, . . . , xd), b = (b, . . . , b), b̃n = (̃bn, . . . , b̃n) ∈ Rd. Then Slutzky’s theorem applies and

we obtain

χ̃(t1,...,td)(x1, . . . , xd) = lim
n→∞

n(1 − F(ãnx + b̃n))

= lim
n→∞

− log Fn(ãnx + b̃n)

= − log G(ax + b)

= χ(t1,...,td)(ax1 + b, . . . , axd + b), (1.6)
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which proves the second equality. Similarly, using induction and (1.6) we obtain the first

equality by

χ̃
(t1,t2)

(x1, x2) = lim
n→∞

nP(Xt1 > ãnx1 + b̃n, Xt2 > ãnx2 + b̃n)

= lim
n→∞

nP(Xt1 > ãnx1 + b̃n) + lim
n→∞

nP(Xt2 > ãnx2 + b̃n)

− lim
n→∞

nP(Xt1 > ãnx1 + b̃n or Xt2 > ãnx2 + b̃n)

= − log G(ax1 + b) − log G(ax2 + b) − χ(t1,t2)(ax1 + b, ax2 + b)

= χ
(t1,t2)

(ax1 + b, ax2 + b). �

For discrete-time processes the cluster behavior in extremes is often measured by the

extremal index; cf. Embrechts et al. [16], Section 8.1, or Leadbetter et al. [33], p. 67ff. By

dividing the positive real line into blocks of length h this definition can be extended to a

function of h, which then applies to discrete and continuous-time processes. For fixed h it

serves as a measure for the expected cluster sizes among these blocks. This function has

been introduced in Fasen [17, 18].

Definition 1.4 (Extremal index, extremal index function)

Let (Xt)t∈I be strictly stationary satisfying (1.1) for an > 0, bn ∈ R.

(a) Let I = N0. If there exists some θ ∈ (0, 1] such that

lim
n→∞

P

(
max

i=1,...,n
Xi ≤ anx + bn

)
= Gθ(x) for x ∈ R,

then θ is the extremal index of (Xt)t∈I .

(b) Let I = N0 or I = [0,∞). For h > 0 in I define the sequence

Mk(h) := sup
(k−1)h≤t≤kh

Xt for k ∈ N.

Let θ(h) be the extremal index of the sequence (Mk(h))k∈N. Then we call the function

θ : (0,∞) → (0, 1] extremal index function.

Extreme value analysis is most interesting, when extremes happen in a pronounced

way. This is the case in many areas of applications as in insurance and finance, telecom-

munication and other areas of technical risk. Consequently, models with heavy-tailed

marginal distributions are of high interest. Distributions with regularly varying or subex-

ponential tails are most natural in these areas. Heavy tails in linear models originate

simply because of a heavy-tailed noise. In nonlinear models, however, regularly varying

tails occur, even though the noise sequence may be light-tailed. This applies in particular

to solutions of random recurrence equations.

Our paper is organized as follows. In Section 2 we present the extreme dependence

measures for discrete time series models with regularly varying marginal distributions

5



and, in particular, for solutions to random recurrence equations. The basic results from

Section 2 are used in Section 3 to derive the extreme dependence measures, first, for

discrete-time linear models followed by non-linear models as ARCH and GARCH models.

We present results for regularly varying linear models, but also for subexponential ones

outside of regular variation, which are definitely different in their extreme behaviour. For

an illustration of our results we choose an ARCH(1) model, and show the performance

of some estimates of the extremal coefficient function in a small simulation study. In

Section 4 the results for continuous-time analogues of linear models (with the Lévy-driven

Ornstein-Uhlenbeck process as prominent example) as well as for non-linear models like

the continuous-time GARCH (COGARCH) process are presented.

Throughout we shall use the following notation. For a ∈ R we define a+ = max(0, a)

and a− = max(0,−a). The relation a(x) ∼ b(x) as x → xR means that the quotient of

the left hand side and the right hand side tends to 1 as x → xR. By
w

=⇒ we denote weak

convergence and by
υ

=⇒ vague convergence of measures. We also denote R+ := (0,∞)

and R = R ∪ {±∞}. We set 0 = (0, . . . , 0) ∈ Rd, −∞ = (−∞, . . . ,−∞) ∈ R
d
, and∏0

j=1 xj := 1. We use the maximum norm on Rd defined as |x| = maxi=1,...,d |xi| for

x ∈ Rd. We furthermore denote by Sd−1 = {x ∈ Rd : |x| = 1} the unit sphere in Rd and

by [−∞,x]c = R
d\ [−∞,x] for x ∈ Rd . Finally, the Borel σ-algebra is denoted by B.

2 Basic results for heavy-tailed time series models

2.1 Regularly varying models

Many models considered below have marginal distributions in the maximum domain of at-

traction of the Fréchet distribution, equivalently, their finite dimensional distributions are

regularly varying. We present two equivalent definitions of multivariate regular variation,

which we shall both use throughout; see e.g. Resnick [41], Section 5.4 and Resnick [42],

Chapter 6. For supporting explanations we refer to Mikosch [35], Section 5.4.2. Further

properties and results of multivariate regular variation can be found in Basrak, Davis and

Mikosch [1, 2], Basrak and Segers [3] and some classical references in Bingham, Goldie

and Teugels [4].

Definition 2.1 (Multivariate regular variation)

A vector Y in Rd is regularly varying with index κ (we write Y ∈ R(κ)) for κ > 0, if one

of the following equivalent conditions hold:

(a) There exists a random vector Θ with values on the unit sphere Sd−1 such that for

every x > 0

P(|Y| > ux,Y/|Y| ∈ ·)
P(|Y| > u)

w
=⇒ x−κ

P(Θ ∈ ·) on B(Sd−1) as u → ∞. (2.7)
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The distribution of Θ is referred to as the spectral measure of Y.

(b) There exists a Radon measure ρ(·) on R
d\{0} with ρ(E) > 0 for at least one relatively

compact set E ⊆ R
d\{0} and a sequence an ↑ ∞ of positive constants such that

nP(a−1
n Y ∈ ·) υ

=⇒ ρ(·) on B(R
d\{0}) as n → ∞. (2.8)

The measure ρ satisfies the homogeneity property ρ(tA) = t−κρ(A) for all A ∈
B(R

d\{0}) and t > 0.

For ease of notation we introduce the following notation, which is equivalent to saying

that (Xt)t∈I ∈ MDA with Fréchet limit distributions.

Definition 2.2 (Regularly varying stochastic process)

Let (Xt)t∈I be a strictly stationary process. If all finite-dimensional distributions of (Xt)t∈I

belong to R(κ), we say that (Xt)t∈I is regularly varying with index κ and write (Xt)t∈I ∈
R(κ).

Remark 2.3 (i) Regular variation of stochastic processes has been defined in Hult and

Lindskog [26]. Our definition concerns only the finite-dimensional distributions. Conse-

quently, it is for continuous-time processes weaker than the definition presented in [26],

which requires some regular variation property on the whole sample space.

(ii) The equivalence of Definitions (a) and (b) above is based on the following trans-

formation to polar coordinates. The map T : Rd\{0} → (0,∞) × Sd−1 defined by

T (x) = (|x|,x/|x|) is a continuous bijection. Furthermore, let ϑκ(dy) = κy−κ−1 dy be

a measure on (0,∞). Then with PΘ denoting the distribution of Θ,

ρ ◦ T−1 = cϑκ × PΘ on (0,∞) × S
d−1,

where c = limn→∞ nP(|Y| > an), see e.g. Resnick [42], Theorem 6.1. In particular, for all

A ∈ B(Rd\{0}),

ρ(A) = (cϑκ × PΘ)(T (A)) = c

∫

Sd−1

∫ ∞

0

1{rω∈A} κr−κ−1 dr P(Θ ∈ dω). (2.9)

(iii) On B(Rd\Sd−1) the right hand side of (2.9) can be interpreted as the distribution of

Y (Θ1, . . . , Θd) times c, where Y and the sequence (Θt) are independent, P(Y > y) = y−1

for y > 1 and (Θ1, . . . , Θd) has distribution P(Θ ∈ ·); see Basrak and Segers [3] and

Segers [45] for more general results. �

Next, we obtain that for regularly varying models the extremal dependence measures

are homogeneous.

Lemma 2.4 Let (Xt)t∈I ∈ R(κ) for some κ > 0. Assume the tail balance condition

P(X0 > x) ∼ pP(|X0| > x) as x → ∞ holds for some p ∈ (0, 1], and let an > 0 satisfy

lim
n→∞

nP(X0 > anx) = x−κ for x > 0.
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Let Xd be a lagged vector of (Xt)t∈I . Then for all (x1, . . . , xd) ∈ R
d
+ and a > 0 the

following homogeneity properties hold:

χ
(t1,...,td)

(ax1, . . . , axd) = a−κχ
(t1,...,td)

(x1, . . . , xd),

χ(t1,...,td)(ax1, . . . , axd) = a−κχ(t1,...,td)(x1, . . . , xd).

Proof. Let ρ be given as in Definition 2.1 (b). Then

χ(t1,...,td)(ax1, . . . , axd) = lim
n→∞

nP(a−1
n Xd ∈ [−∞, ax]c) = ρ([−∞, ax]c),

χ
(t1,...,td)

(ax1, . . . , axd) = lim
n→∞

nP(a−1
n Xd ∈ (ax, ∞]) = ρ((ax, ∞]).

The result follows then from the homogeneity of ρ. �

The following result presents the extreme dependence measures for a strictly stationary

stochastic process with regularly varying finite dimensional distributions. The condition

on the spectral measure is very natural; it holds, for instance, for every example of this

paper. It has also been shown to hold for some discrete time Markov chains in Segers [45],

who also calculated χ in his Corollary 6.3.

Theorem 2.5 Let (Xt)t∈I ∈ R(κ) for some κ > 0 and assume that the tail balance

condition P(X0 > x) ∼ pP(|X0| > x) as x → ∞ holds for some p ∈ (0, 1]. Suppose there

exists a stochastic process (Wt)t∈I such that the spectral measure of a lagged vector Xd

of (Xt)t∈I has the representation

P(Θd ∈ ·) =
E
(
|Wd|κ 1{Wd/|Wd|∈·}

)

E|Wd|κ
on B(Sd−1), (2.10)

where Wd = (Wt1 , . . . , Wtd). Furthermore, assume that an > 0 are such that

lim
n→∞

nP(X0 > anx) = x−κ for x > 0.

Then for all (x1, . . . , xd) ∈ Rd
+,

χ
(t1,...,td)

(x1, . . . , xd) =
E
(
mini=1,...,d{x−1

i W+
ti }κ

)

E(W+
0 )κ

,

χ(t1,...,td)(x1, . . . , xd) =
E
(
maxi=1,...,d{x−1

i W+
ti }κ

)

E(W+
0 )κ

,

where W+
t = max(Wt, 0). Furthermore,

χ(t) =
E(min{W+

0 , W+
t }κ)

E(W+
0 )κ

for t ∈ I.
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Proof. Note that by strict stationarity of (Xt)t∈I we have E(W+
t )κ = E(W+

0 )κ for all

t ∈ I. Furthermore,

P(X0 > x) ∼ E(W+
0 )κ

E|W0|κ
P(|X0| > x) as x → ∞

such that E(W+
0 )κ > 0 by the tail balance condition. First, we calculate c of Remark 2.3(ii):

c = lim
n→∞

nP(|Xd| > an) = lim
u→∞

P(|Xd| > u)

P(X0 > u)
=

E|Wd|κ
E(W+

0 )κ
.

Then Remark 2.3(ii) results in

ρ(A) =
E|Wd|κ
E(W+

0 )κ

∫

Sd−1

∫ ∞

0

1{rω∈A} κr−κ−1 dr P(Θd ∈ dω)

=
1

E(W+
0 )κ

∫ ∞

0

E(|Wd|κ 1{rWd/|Wd|∈A})κr−κ−1 dr , A ∈ B(Rd\{0}) ,

by Fubini’s theorem together with assumption (2.10). By Definition 2.1 (b), using Fubini’s

theorem again we obtain

χ(t1,...,td)(x1, . . . , xd) = ρ(Rd\ (−∞,x])

=
1

E(W+
0 )κ

E

(
|Wd|κ

∫ ∞

0

1{rWd/|Wd|∈Rd\(−∞,x]} κr−κ−1 dr

)

=
1

E(W+
0 )κ

E

(
|Wd|κ

∫

{r>mini=1,...,d(|Wd|/(x−1

i W+
ti

))}

κr−κ−1 dr

)

=
1

E(W+
0 )κ

E

(
max

i=1,...,d
{x−1

i W+
ti
}κ

)
.

In the same way we obtain χ
(t1,...,td)

, and Remark 1.2(i) yields the expression for χ. �

For several examples below we shall show that extreme dependence decreases, when κ

increases and even that for κ ↑ ∞ extremal dependence disappears completely. Since one

of our goals is the comparison of extremal dependence for linear and non-linear models,

this makes it clear that we should compare the extremal dependence in models with the

same heavy-tailedness.

2.2 Random recurrence equations

Important examples of time series with multivariate regularly varying marginal distribu-

tions are solutions to multivariate random recurrence equations of the form

Yn = AnYn−1 + Bn for n ∈ N, (2.11)

with an i. i. d. sequence ((An,Bn))n∈N of d × d matrices An and d-dimensional random

vectors Bn 6= 0 a. s.
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For ((An,Bn))n∈N all with non-negative entries Kesten [28] presents in his Theorems 3

and 4 natural, non-trivial conditions for the existence of a unique strictly stationary

solution (Xn)n∈N to the stochastic recurrence equation (2.11). In the one-dimensional

case results can be reformulated as shown in Goldie [23]. Then the spectral measure can

be written down explicitly as well as the extreme dependence measures and the extremal

index. The multivariate version (2.11) is more involved and we refer to Theorem 3.1 of [1]

for a precise formulation. Parts (a) and (b) of the following result are classic, part (c)

gives a representation of the spectral measure in terms of Theorem 2.5.

Proposition 2.6 Let (Xt)t∈N0
be a stochastic process defined by Xt = AtXt−1 + Bt,

where ((At, Bt))t∈N, (A, B) are i. i. d. and independent of X0. Assume that κ > 0 and the

following conditions are satisfied:

(i) E|A|κ = 1.

(ii) The law of log |A|, given |A| 6= 0, is not concentrated on a lattice −∞∪ rZ for any

r > 0 and −∞ ≤ E(log |A|) < 0.

(iii) E(|A|κ log+ |A|) < ∞.

(iv) E|B|κ < ∞.

Then the following results hold:

(a) The equation X∞
d
= AX∞+B, where X∞ is independent of (A, B), has the solution

unique in distribution

X∞
d
=

∞∑

m=1

Bm

m−1∏

k=1

Ak.

If we take X0
d
= X∞ then (Xt)t∈N0

is strictly stationary.

(b) The tail of X∞ in (a) satisfies

P(X∞ > x) ∼ C+x−κ and P(X∞ < −x) ∼ C−x−κ as x → ∞,

where C+ + C− > 0 if and only if P(B = (1 − A)c) < 1 for every c ∈ R. If A ≥ 0

a.s. then

C+ =
E [((AX∞ + B)+)κ − ((AX∞)+)κ]

κE(|A|κ log |A|) , C− =
E [((AX∞ + B)−)κ − ((AX∞)−)κ]

κE(|A|κ log |A|) .

(c) Assume that P(B = (1 − A)c) < 1 for every c ∈ R. Define a Bernoulli variable R

independent of (At)t∈N by

P(R = 1) = lim
x→∞

P(X∞ > x)

P(|X∞| > x)
and P(R = −1) = lim

x→∞

P(X∞ < −x)

P(|X∞| > x)
. (2.12)
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Consider a strictly stationary version of (Xt)t∈N0
. Then (Xt)t∈N0

∈ R(κ). The spec-

tral measure of a lagged vector Xd of (Xt)t∈N0
is given by

P(Θd ∈ ·) =
E

(
maxi=1,...,d

{∏ti
j=1 |Aj|κ

}
1{R(

∏t1
j=1

Aj ,...,
∏td

j=1
Aj)/(maxi=1,...,d

∏ti
j=1

|Aj|)∈·}
)

E

(
maxi=1,...,d

∏ti
j=1 |Aj|κ

) .

Proof. Part (a) and (b) are consequences of Goldie [23], Theorem 4.1. For a proof of part

(c) define the random vectors

a =
( t1∏

j=1

Aj , . . . ,

td∏

j=1

Aj

)
and b =

( t1∑

i=1

Bi

t1∏

j=i+1

Aj , . . . ,

td∑

i=1

Bi

td∏

j=i+1

Aj

)
.

Then Xd = aX0 + b, so that the multivariate regular variation is inherited from the

one-dimensional regular variation property of X0. We prove first (2.7) for the random

vector aX0 with Θd as in (c). If we take E|a|κ < ∞ and P(|X0| > x) ∼ (C+ + C−)x−κ

as x → ∞ , into account, the multivariate version of Breiman’s [10] classical result in

Basrak et al. [2], Proposition A.1, guarantees the multivariate regular variation of aX0.

The spectral measure was explicitly calculated in Fasen [18], Lemma 2.1 as

lim
u→∞

P(|a||X0| > ux, aX0/(|a||X0|) ∈ S)

P(|aX0| > u)
= x−κ E(|a|κ 1{Ra/|a|∈S})

E|a|κ (2.13)

for x > 0 and S ∈ B(Sd−1). Finally, since E|b|κ < ∞, in particular limx→∞ xκP(|b| >

x) = 0. By Jessen and Mikosch [36], Lemma 3.12, we conclude

P(|Xd| > ux,Xd/|Xd| ∈ S)

P(|Xd| > u)
∼ P(|a||X0| > ux, aX0/(|a||X0|) ∈ S)

P(|aX0| > u)
as u → ∞. (2.14)

Hence, the result follows from (2.13)-(2.14). �

Remark 2.7 Note that Basrak et al. [2], Proposition A.1, and Fasen [18], Lemma 2.1,

require the stronger condition E|a|β < ∞ for some β > κ. Since |X0| is not only regularly

varying, but has a Pareto-like tail, Breiman’s result P(|a||X0| > x) ∼ E|a|κP(|X0| > x)

as x → ∞ holds under the weaker condition E|a|κ < ∞; see Jessen and Mikosch [36],

Lemma 4.2(3). This interesting detail has been communicated to us by the referee. �

Parts of the following Proposition can be found under more restrictive assumptions in

Gomes, de Haan and Pestana [25]. They applied their results to the ARCH(1) model; cf.

Section 3.2.1.

Proposition 2.8 Let the assumptions of Proposition 2.6 (c) hold and X0 be as in (a).

Furthermore, let an > 0 be such that

lim
n→∞

nP(X0 > anx) = x−κ for x > 0.
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Then the extreme dependence functions of the strictly stationary process (Xt)t∈N0
are

given for a lagged vector Xd of (Xt)t∈N0
and for all (x1, . . . , xd) ∈ Rd

+ by

χ
(t1,...,td)

(x1, . . . , xd) =
E

(
mini=1,...,d

{
x−κ

i

((
R
∏ti

j=1 Aj

)+)κ})

P(R = 1)
, (2.15)

χ(t1,...,td)(x1, . . . , xd) =
E

(
maxi=1,...,d

{
x−κ

i

((
R
∏ti

j=1 Aj

)+)κ})

P(R = 1)
. (2.16)

In particular,

χ(t) = E

(
min

{
1,
(( t∏

j=1

Aj

)+)κ})
≥ 0 for t ∈ N0. (2.17)

In particular, if P(A > 0) > 0, then χ(t) > 0 for t ∈ N0. Furthermore, the extremal index

of (Xt)t∈N0
is

θ = E

(
1 −

∞∨

k=1

(( k∏

i=1

Ai

)+)κ)+

≤ 1 (2.18)

with θ < 1 if P(A > 0) > 0.

Proof. The results (2.15)-(2.17) follow by Theorem 2.5 and Proposition 2.6. The value of

the extremal index (2.18) was calculated in de Haan et al. [15] for A, B positive, but it is

possible to extend their result to general A, B by an application of Theorem 2.7 in Davis

and Hsing [11]. �

3 Time series models in discrete time

For the following examples we calculate the extremal measures for (|Xt|)t∈I such that we

have a measure for dependence in extremes on positive and negative levels. A separation

into positive and negative extremes is notationally involved.

3.1 Linear models

In this section we investigate the extremal behavior of a strictly stationary infinite moving

average (MA) process

Xt =

∞∑

n=−∞

ct−nZn for t ∈ N0 , (3.1)

where (Zt)t∈Z is an i. i. d. sequence. We further assume the tail balance condition

lim
x→∞

P(Z0 > x)

P(|Z0| > x)
= p and lim

x→∞

P(−Z0 > x)

P(|Z0| > x)
= 1 − p (3.2)

for some p ∈ [0, 1]. Let cmax = maxi∈Z |ci|. More details on linear models in the context of

extreme value theory can be found in the monographs of Embrechts et al. [16], Section 5.5,

Leadbetter et al. [33], Section 3.8, and Resnick [41], Section 4.5.
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3.1.1 Linear models with regularly varying tail

The next Lemma is due to Davis and Resnick [13] and Hult and Samorodnitsky [27].

Lemma 3.1 Let (Xt)t∈N0
be the MA process given in (3.1) which satisfies the tail balance

condition (3.2). Further, we assume that for κ > 0 and some slowly varying function ℓ

P(|Z0| > x) ∼ ℓ(x)x−κ as x → ∞ ,

and that one of the following conditions is satisfied:

(i)
∑∞

n=−∞ |cn|δ < ∞ for some δ < min{1, κ}.

(ii)
∑∞

n=−∞ |cn|δ < ∞ for some δ < κ, δ ≤ 2, κ > 1 and E(Z1) = 0.

Then the following results hold:

(a) There exists a strictly stationary version of the MA process.

(b) The stationary distribution given by X∞ is regularly varying with index κ such that

P(X∞ > x) ∼
[
p

∞∑

n=−∞

(c+
n )κ + (1 − p)

∞∑

n=−∞

(c−n )κ

]
P(|Z0| > x) as x → ∞.

(c) Let (Xt)t∈N0
be a strictly stationary version of the MA process. Then (|Xt|)t∈N0

∈
R(κ) with discrete spectral measure given for a lagged vector Xd of (|Xt|)t∈N0

by

P(Θd ∈ ·) =
E
(
|Wd|κ 1{Wd/|Wd|∈·}

)

E|Wd|κ
, (3.3)

where for n ∈ Z, maxi=1,...,d |cti−n| 6= 0, and

m+(n) = #{j ∈ Z : (|ct1−j|, . . . , |ctd−j|) = (|ct1−n|, . . . , |ctd−n|)},

setting c̃ =
∑∞

k=−∞ maxi=1,...,d |cti−k|κ, we have

P(Wd = (|ct1−n|, . . . , |ctd−n|)) =
m+(n)

c̃
max

i=1,...,d
|cti−n|κ.

Remark 3.2 The spectral measure given in (3.3) has the alternative representation

P(Θd ∈ ·) =
1

c̃

∞∑

n=−∞

max
i=1,...,d

|cti−n|κ 1{(|ct1−n|,...,|ctd−n|)/ maxi=1,...,d |cti−n|∈·} . �

13



Theorem 3.3 Let the strictly stationary MA process (Xt)t∈N0
satisfy the assumptions of

Lemma 3.1. Furthermore, let an > 0 be such that

lim
n→∞

nP(|X∞| > anx) = x−κ for x > 0.

Then the extreme dependence functions of (|Xt|)t∈N0
are given for a lagged vector Xd of

(|Xt|)t∈N0
and for all (x1, . . . , xd) ∈ Rd

+ by

χ
(t1,...,td)

(x1, . . . , xd) =

∞∑
n=−∞

min
i=1,...,d

{x−1
i |cti−n|}κ

∞∑
n=−∞

|cn|κ
,

χ(t1,...,td)(x1, . . . , xd) =

∞∑
n=−∞

max
i=1,...,d

{x−1
i |cti−n|}κ

∞∑
n=−∞

|cn|κ
.

In particular,

χ(t) =

∞∑
n=−∞

min{|cn|, |ct−n|}κ

∞∑
n=−∞

|cn|κ
for t ∈ N0.

Furthermore, the extremal index of (|Xt|)t∈N0
is θ = (c

max
)κ
/ ∞∑

n=−∞

|cn|κ.

Proof. Theorem 2.5 and Lemma 3.1 (c) lead to the extreme dependence functions. If

condition (i) of Lemma 3.1 holds, the extremal index follows from Theorem 3.2 in Davis

and Resnick [13]. Under condition (ii) (also condition (i)), the extremal index of (|Xt|)t∈N0

can be calculated as in Fasen [18] for continuous-time moving average processes. �

Example 3.4 (AR(1) process) Let (Xt)t∈N0
be a strictly stationary AR(1) process

with moving average representation

Xt =
∞∑

k=0

αkZt−k =
t∑

k=−∞

αt−kZk , t ∈ N0, (3.4)

for some 0 < α < 1 and (Zk)k∈Z be an i. i. d. sequence satisfying the assumptions of

Lemma 3.1 with tail index κ > 0. Then

χ(t) = ακt for t ∈ N0 and θ = 1 − ακ.

Thus, χ(·) decreases exponentially fast. Furthermore, if the tail index κ of the noise

variable |Z0| increases (recall this is also the tail index of the stationary distribution), the

dependence in the extremes becomes weaker. Moreover, for κ → ∞ we obviously have

χ(t) → 0 for all t ∈ N and θ → 1. �
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3.1.2 Linear models with tails in S ∩ MDA(Λ)

Let (Xt)t∈N0
be the MA process given in (3.1) with tail balance condition (3.2) and

|Z0| ∈ S, i. e. if F denotes the distribution function of |Z0| then F (x) < 1 for every x ∈ R

and the following conditions hold:

(i) For all y ∈ R locally uniformly limx→∞ F (x + y)/F (x) = 1.

(ii) limx→∞ F 2∗(x)/F (x) exists and is finite.

Typical examples for subexponential distribution functions are those with regularly vary-

ing tails, heavy-tailed Weibull and lognormal distributions. In this section we restrict our

attention to |Z0| ∈ S ∩ MDA(Λ) which excludes regularly varying distribution functions.

Tails in this class are lighter tailed than polynomial. Surveys of the class of subexponen-

tial distributions with support on R+ provide Goldie and Klüppelberg [24] or Fasen and

Klüppelberg [22], see also Embrechts et al. [16], Appendix A3. We assume c+ ≥ c− and

define

m+ := #{i : ci = c+} and m− := #{i : ci = −c+}.

The following Lemma presented here is due to Davis and Resnick [14].

Lemma 3.5 Let (Xt)t∈N0
be a MA process given in (3.1) which satisfies the tail balance

condition (3.2). Furthermore, we assume that |Z0| ∈ S ∩MDA(Λ) and
∑∞

n=−∞ |cn|δ < ∞
for some 0 < δ < 1. Then the following results hold:

(a) There exists a strictly stationary version of the MA process.

(b) The stationary distribution given by X∞ belongs to S ∩ MDA(Λ) and

P(X∞ > x) ∼ (pm+ + (1 − p)m−)P(c+|Z0| > x) as x → ∞.

Theorem 3.6 Let the strictly stationary MA process (Xt)t∈N0
satisfy the assumptions of

Lemma 3.5. Furthermore, let an > 0, bn ∈ R be such that

lim
n→∞

nP(|X∞| > anx + bn) = e−x for x ∈ R.

Suppose m+ = 1 and m− = 0. Then the extreme dependence functions are given for a

lagged vector Xd of (|Xt|)t∈N0
and for all (x1, . . . , xd) ∈ Rd by

χ
(t1,...,td)

(x1, . . . , xd) = 0 and χ(t1,...,td)(x1, . . . , xd) =

d∑

i=1

e−xi .

In particular,

χ(t) = 0 for t ∈ N and θ = 1.
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Proof. The proof of the representation of the dependence measures is an application of

Fasen [19], Lemma 11, and

P(|X∞| > x) ∼ P(X∞ > x) as x → ∞.

The extremal index of (Xt)t∈N0
(and hence also (|Xt|)t∈N0

) was calculated in Davis and

Resnick [14]. �

Example 3.7 (AR(1) process, continuation of Example 3.4) For the model (3.4)

with α = 0.7 we consider two different regimes. Once we take (Zk)k∈Z as an i.i.d. Pareto

distributed sequence (F (x) = 1 − x−1/2 for x ≥ 1), which falls in the framework of

Example 3.4. Then we take (Zk)k∈Z as an i.i.d. Weibull distributed sequence with shape

parameter less than 1 (F (x) = 1− exp(−x0.9) for x ≥ 0), which belongs to S ∩MDA(Λ).

This model has extreme dependence functions as in Theorem 3.6. Figure 1 compares the

extremal coefficient functions of both models. The functions are estimated from a sample

path of length 10 000. The estimation is based on data above a threshold, which is chosen

as the empirical 0.5% quantile of the data. The estimated extremal coefficient function of

the AR(1) process with Pareto noise follows nicely the theoretical one, which decreases

exponentially fast with rate 0.5 log(0.7). For the Weibull noise the estimate at lag 1 is still

positive, but for higher order lags the empirical estimate is near 0. �

It can be debated, and indeed has, whether the influence of the marginal distributions

(regular variation versus lighter-tailed) blurs the interpretation of estimated extremal

dependence. Ramos and Ledford [40] argue that it is more reasonable to separate the

influence of the marginals and the extreme dependence by standardizing the marginals

first to unit Fréchet distributions. Only afterwards they investigate bivariate joint tail

distributions. The spectral measure in case of unit Fréchet marginals is then given in

(3.3) with κ = 1. There are two points to be aware of, when standardizing marginals.

Firstly, some statistical uncertainty will be introduced into the model by estimating the

parameters of transformation. Secondly, transformation of the data involves the whole

model. For instance, a linear exponential model will transform into a product model,

resulting in a change of the dependence structure as well.

3.2 Non-linear models

3.2.1 The ARCH(1) and GARCH(1,1) processes

The ARCH(1) process (Xt)t∈N0
is defined as

Xt = (α0 + α1X
2
t−1)

1/2Zt for t ∈ N , (3.5)
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Figure 1: Empirical estimates of the extremal coefficient function for an AR(1) process with Pareto and

Weibull noise.

where X0 is independent of the i. i. d. sequence (Zt)t∈N0
and α0, α1 > 0. As a generalization,

the GARCH(1,1) process (Xt)t∈N0
is defined by

Xt = σtZt for t ∈ N0, (3.6)

where (Zt)t∈N0
is an i. i. d. sequence independent of σ0 and the volatility process (σ2

t )t∈N0

is the solution of the stochastic recurrence equation

σ2
t = α0 + α1X

2
t−1 + βσ2

t−1 = α0 + (α1Z
2
t−1 + β)σ2

t−1 for t ∈ N,

where α0, α1 > 0 and 0 < β < 1. Thus, setting Bt = α0 and At = α1Z
2
t−1 + β, we see that

σ2
t = Atσ

2
t−1 + Bt. Indeed, if we define

Yt =

(
X2

t

σ2
t

)
, At =

(
α1Z

2
t βZ2

t

α1 β

)
and Bt =

(
α0Z

2
t

α0

)
,

then Yt = AtYt−1 + Bt for t ∈ N. Setting β = 0 we obtain again the ARCH(1) process

and its volatility process.

This model can be considered as the solution to a multivariate stochastic recurrence

equation and hence, general results by Kesten [28] and Bougerol and Picard [9] can be

applied. These general results can, however, for this model be considerably reduced; cf.

Nelson [39] and Bougerol and Picard [8]. The multivariate regular variation of this model

was derived by Basrak et al. [2], and Mikosch and Stărică [37]. For a survey on GARCH

processes and their properties see Mikosch [35].
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Lemma 3.8 Let (Xt)t∈N0
be the ARCH(1) process given in (3.5) or the GARCH(1,1)

process given in (3.6), respectively. Suppose Z0 has a positive density on R, and either

E|Z0|h < ∞ for all 0 < h < h0 and E|Z0|h0 = ∞ for some finite h0 > 0, or E|Z0|h < ∞
for all h > 0. Furthermore, we assume that

E(log(α1Z
2
0 + β)) < 0.

Then the following results hold:

(a) There exists a κ > 0 such that

E(α1Z
2
0 + β)κ/2 = 1. (3.7)

(b) There exists a strictly stationary version of the bivariate process (Xt, σt)t∈N0
.

(c) The stationary distributions given by |X∞| and σ∞ of (|Xt|)t∈N0
and (σt)t∈N0

, re-

spectively, are regularly varying with index κ such that

P(σ∞ > x) ∼ Cx−κ and P(|X∞| > x) ∼ C E|Z0|κx−κ as x → ∞,

where

C =
E[(α0 + (α1Z

2
0 + β)σ2

∞)κ/2 − ((α1Z
2
0 + β)σ2

∞)κ/2]

[(κ/2)E((α1Z2
0 + β)κ/2 log(α1Z2

0 + β))]
.

(d) Let (X2
t , σ2

t )t∈N0
be a strictly stationary version of the ARCH(1) or the GARCH(1,1)

process, respectively, and its volatility process. Then (X2
t , σ2

t )t∈N0
∈ R(κ/2) with

spectral measure given for a lagged vector (X2
t1
, σ2

t1
, . . . , X2

td
, σ2

td
) by

P(Θd ∈ ·) =
E
(
|Wd|κ/2 1{Wd/|Wd|∈·}

)

E|Wd|κ/2
,

where Wd =
(∏t1

i=1(α1Z
2
i−1 + β)(Z2

t1
, 1), . . . ,

∏td
i=1(α1Z

2
i−1 + β)(Z2

td
, 1)
)
.

Theorem 3.9 Let (Xt)t∈N0
be a strictly stationary ARCH(1) or GARCH(1,1) process,

respectively, satisfying the assumptions of Lemma 3.8. Furthermore, let an > 0 be such

that

lim
n→∞

nP(|X∞| > anx) = x−κ for x > 0.

Then the extreme dependence functions of (|Xt|)t∈N0
are given for a lagged vector Xd of

(|Xt|)t∈N0
and for all (x1, . . . , xd) ∈ Rd

+ by

χ
(t1,...,td)

(x1, . . . , xd) =
E

(
mini=1,...,d

{
x−κ

i |Zti|κ
∏ti

j=1(α1Z
2
j−1 + β)κ/2

})

E|Z0|κ
,

χ(t1,...,td)(x1, . . . , xd) =
E

(
maxi=1,...,d

{
x−κ

i |Zti|κ
∏ti

j=1(α1Z
2
j−1 + β)κ/2

})

E|Z0|κ
.
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In particular,

χ(t) =
E
(
min

{
|Z0|κ, |Zt|κ

∏t
i=1(α1Z

2
i−1 + β)κ/2

})

E|Z0|κ
for t ∈ N0. (3.8)

Furthermore, the extremal index of (|Xt|)t∈N0
is

θ =
E
(
|Z0|κ −

∨∞
m=1 |Zm|κ

∏m
i=1(α1Z

2
i−1 + β)κ/2

)+

E|Z0|κ
.

Proof. By Lemma 3.8 the lagged vector X2
d has spectral measure

P(Θd ∈ ·) =
E
(
|Wd|κ/2 1{Wd/|Wd|∈·}

)

E|Wd|κ/2
,

where Wd =
(∏t1

i=1(α1Z
2
i−1 + β)Z2

t1 , . . . ,
∏td

i=1(α1Z
2
i−1 + β)Z2

td

)
. The result follows then

from Theorem 2.5. The extremal index of (|Xt|)t∈N0
is given in Mikosch and Stărică [37].
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Figure 2: Extremal coefficient function χ(·) of different ARCH(1) processes: Monte Carlo simulation of

(3.8) with parameters α0 and α1 as above and κ calculated from (3.7).

Example 3.10 (ARCH(1) process: the extremal coefficient function) We see in

Figure 2 the extremal coefficient function χ(·) for ARCH(1) processes with standard

normal noise and parameters α0 = 1 and α1 = 0.3, 0.5, 0.7, 0.9, 1.0, which correspond

to tail indices κ = κ(α1) = 8.36, 4.74, 3.18, 3.3, 2.0, respectively. The values of κ were

computed from equation (3.7), which has for a normal noise an analytic representation;

cf. Embrechts et al. [16], Table 8.4.8. The values for χ(·) are the results of a Monte Carlo
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k 1 2 3 4 5 6 7 8 9 10

χ(k) 0.251 0.099 0.042 0.018 0.008 0.003 0.002 0.001 0.001 0.000

χ(k)emp 0.314 0.152 0.098 0.070 0.052 0.050 0.044 0.054 0.062 0.042

χ(k)POT 0.183 0.110 0.051 0.021 0.002 0.001 0.000 0.002 0.000 0.000

χ(k)Block 0.249 0.044 0.011 0.004 0.000 0.001 0.000 0.001 0.001 0.001

Table 3.1: Estimation of the extremal coefficient function for an ARCH(1) process with parameters α0 = 1,

α1 = 0.5 and standard normal noise. The first line shows the values from the Monte Carlo estimation.

simulation based on (3.8) with 100 000 standard normal random numbers. For every choice

of α1 the function χ(·) decreases exponentially in t. Obviously, the dependence in the

extremes decreases with time. We also see that for fixed t the function χ(t) = χ(t; α1) is

an increasing function in α1, hence, χ(t; κ) decreases, if κ increases. This suggests, not

surprisingly, that for heavier tailed ARCH(1) processes the dependence in the extremes

is higher than for lighter tailed ARCH(1) processes. �

Example 3.11 (ARCH(1): estimating the extremal coefficient function)

In Table 3.1 and Figures 3-6 we present the estimation of the extremal coefficient function

χ(·) of a simulated ARCH(1) process with parameters α0 = 1, α1 = 0.5 and standard

normal noise. All estimates are based on a sample path of length 10 000. For comparison,

Figure 3 depicts again χ(·) calculated as explained in Example 3.10. In Figures 4-6 we

estimate χ(·) by three different methods. In Figure 4 the estimator is computed via the

empirical conditional tail distribution function of min(X0, Xt) given X0. By definition

of χ(·), estimates have to be based on large values of the process only, and we take

the largest 500 values. Better results are to be expected invoking methods from extreme

value theory. The last two estimators, χ(k)POT and χ(k)Block, respectively, apply the POT-

method and the block-method; see [16], Chapter 6. For the POT method we approximated

the distribution of 500 exceedances by a generalized Pareto distribution. The block method

is based on a block size of 30 and approximates the distribution of the block maxima by

a generalized extreme value distribution. Table 3.1 shows the corresponding values of the

plots. Improved estimators for the extremal coefficient function for either multivariate

models or time series models are presented in Ledford and Tawn [34], Schlather and

Tawn [44], and Naveau et al. [38]. �

Example 3.12 (GARCH(1,1)) Figure 7 shows the extremal coefficient function χ(·) of

different GARCH(1,1) processes with standard normal noise and parameters β = 0.7, α0 =

0.01 and α1 = 0.09, 0.14, 0.19, 0.24, 0.29. From equation (3.7) we computed the values for

κ by Monte-Carlo simulations based on 100 000 standard normal random numbers, which

gave κ = 18.4, 10.5, 6.5, 4, 2.5, respectively. The values of κ show that the tails of the
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Figure 3: Monte Carlo simulation of χ(·) as ex-

plained in Example 3.10.
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Figure 4: Empirical estimator χ(·)emp of (1.4).
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Figure 5: POT estimator χ(·)POT of (1.4) based on

high-level exceedances.
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Figure 6: Block-maxima estimator χ(k)Block of (1.4)

based on block maxima of block size 30.

GARCH(1,1) process become heavier with increasing α1. Similar interpretations as for

the extremal coefficient function of the ARCH(1) process in Example 3.10 are possible. �

3.2.2 The AR(1) process with ARCH(1) errors

In this section we study the AR(1) process with ARCH(1) errors defined by

Xt = λXt−1 +
√

α0 + α1X2
t−1Zt for t ∈ N, (3.9)

where λ ∈ R, α0, α1 > 0 and (Zt)t∈N0
is an i. i. d. sequence independent of X0. This model

was investigated in Borkovec [6] and Borkovec and Klüppelberg [7] by analytic methods;

see also the review paper Klüppelberg [30]. Note that the model is Markovian, but it

is not easy to prove regular variation of its stationary distribution. Parts (a)-(c) of the

following lemma state sufficient conditons to ensure this.

Lemma 3.13 Let (Xt)t∈N0
be the AR(1) process with ARCH(1) errors given in (3.9).

We assume that Z1 is symmetric with continuous density f , which has full support on

R, and that E(Z2
1) < ∞. Furthermore, we assume that f satisfies the following technical

conditions:
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Figure 7: Extremal coefficient function χ(·) of different GARCH(1, 1) processes: Monte Carlo simulation

of (3.8) with parameters as above and κ found from a Monte Carlo simulation of (3.7).

(i) f(x) ≥ f(x′) for every 0 ≤ x < x′.

(ii) The lower and upper Matuszewska indices of F are equal, i. e.

−∞ ≤ γ := lim
ν→∞

log lim supx→∞ F (νx)/F (x)

log ν

= lim
ν→∞

log lim infx→∞ F (νx)/F (x)

log ν
≤ 0.

(iii) If γ = −∞ then, for all δ > 0, there exist constants q ∈ (0, 1) and x0 > 0 such that

for all x > x0 and t > xq,

f

(
x ± λt√

α1t2

)
≥ (1 − δ) f

(
x ± λt√
α0 + α1t2

)
. (3.10)

If γ > −∞ then for all δ > 0 there exist constants x0 > 0 and T > 0 such that for

all x > x0 and t > T the inequality (3.10) holds.

(iv) E(log |λ +
√

α1Z0|) < 0.

Then the following results hold:

(a) There exists a κ > 0 such that

E(|λ +
√

α1Z0|κ) = 1.

(b) There exists a strictly stationary version of the AR(1) process with ARCH(1) errors.
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(c) The stationary distribution X∞ is regularly varying with index κ such that

P(X∞ > x) ∼ Cx−κ as x → ∞,

where

C =
1

2κ

E

([
|λ|X∞| +

√
α0 + α1X2

∞Z0|
]κ

−
[
|λ +

√
α1|X∞||

]κ)

E(|λ +
√

α1Z0|κ log |λ +
√

α1Z0|)
.

(d) Let (Xt)t∈N0
be a strictly stationary version of the AR(1) process with ARCH(1)

errors. Then (X2
t )t∈N0

∈ R(κ/2) with spectral measure given for a lagged vector X2
d

of (X2
t )t∈N0

by

P(Θd ∈ ·) =
E
(
|Wd|κ/2 1{Wd/|Wd|∈·}

)

E|Wd|κ/2
,

where Wd =
(∏t1

i=1(λ +
√

α1Zi)
2, . . . ,

∏td
i=1(λ +

√
α1Zi)

2
)
.

Proof. Parts (a)–(c) were proven in Borkovec and Klüppelberg [7], Theorem 3 and Theo-

rem 8. It remains to show (d). First, note that (X2
t )t∈N0

satisfies the stochastic recurrence

equation

X2
t =

(
λXt−1 +

√
α0 + α1X2

t−1Zt

)2

= (λ +
√

α1Zt)
2X2

t−1 + 2λXt−1Zt

(√
α0 + α1X2

t−1 −
√

α1Xt−1

)
+ α0Z

2
t

=: AtX
2
t−1 + Bt,

where

At = (λ +
√

α1Zt)
2 and Bt = 2λXt−1Zt

(√
α0 + α1X2

t−1 −
√

α1Xt−1

)
+ α0Z

2
t .

Further, we obtain recursively

Xt =
t∏

j=1

AjX0 +
t∑

m=1

Bm

t∏

j=m+1

Aj.

Since

|Bt| ≤ 2λ
√

α0|Xt−1||Zt| + α0Z
2
t ,

we have also E|Bt|κ/2 < ∞. We are now in the same situation as in Proposition 2.6, whose

proof does neither require the independence of (At)t∈N and (Bt)t∈N nor the independence

of Xt−1 and Bt. Following the proof of Proposition 2.6 step by step we conclude that every

lagged vector X2
d is multivariate regularly varying with index κ/2 and spectral measure

as given above. �

Note, that the normal, Student’s and Laplace distribution satisfy the technical conditions

of the above Lemma.
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Theorem 3.14 Let the strictly stationary AR(1) process with ARCH(1) errors (Xt)t∈N0

satisfy the assumptions of Lemma 3.13. Furthermore, let an > 0 be a sequence of constants

such that

lim
n→∞

nP(|X∞| > anx) = x−κ for x > 0.

Then the extreme dependence functions of (|Xt|)t∈N0
are for every lagged vector Xd of

(|Xt|)t∈N0
and for all (x1, . . . , xd) ∈ Rd

+ given by

χ
(t1,...,td)

(x1, . . . , xd) = E

(
min

i=1,...,d
{x−κ

i

ti∏

j=1

|λ +
√

α1Zj|κ}
)
,

χ(t1,...,td)(x1, . . . , xd) = E

(
max

i=1,...,d
{x−κ

i

ti∏

j=1

|λ +
√

α1Zj|κ}
)
.

In particular,

χ(t) = E

(
min

{
1,

t∏

j=1

|λ +
√

α1Zj |κ
})

for t ∈ N0.

Furthermore, the extremal index of (|Xt|)t∈N0
is

θ = E

(
1 −

∞∨

m=1

m∏

i=1

|λ +
√

α1Zi|κ
)+

.

Proof. We obtain the extreme dependence functions of an AR(1) process with ARCH(1)

errors by Lemma 3.13 (d) and Theorem 2.5. The extremal index of (X2
t )t∈N0

is presented

in Borkovec [5], Theorem 3.1. Hence, we obtain the index of (|Xt|)t∈N0
. �

4 Time series models in continuous-time

Introducing discrete time grids in the time axes we calculate the extreme dependence

functions and also the extremal index function for continuous time models. We shall

see that the dependence structure of extremal events in continuous-time models lead

to analogous results as for their discrete-time counterparts. In this section we assume

throughout that the underlying probability space is complete and that there exists a

separable version of (Xt)t≥0. We further assume that P(sup0≤t≤1 |Xt| < ∞) = 1. Recall

again that regular variation of a stochastic process is defined as regular variation of all

finite-dimensional distributions.

4.1 Linear models in continuous-time

A continuous-time moving average (MA) process has the representation

Xt =

∫ ∞

−∞

f(t − s) dLs for t ≥ 0 , (4.1)
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where f : R → R is a deterministic measurable function and (Lt)t∈R is a Lévy process. For

background on Lévy processes we refer to the excellent monograph by Sato [43]. We also

assume that f is bounded with fmax = supt∈R |f(t)| < ∞ and the following tail balance

condition

lim
x→∞

P(L1 > x)

P(|L1| > x)
= p and lim

x→∞

P(−L1 > x)

P(|L1| > x)
= 1 − p (4.2)

hold for some p ∈ [0, 1]. More details on continuous-time linear models can be found in

Fasen [18, 19, 21].

4.1.1 Linear models with regularly varying tails

Lemma 4.1 Let (Xt)t≥0 be the continuous-time MA process given in (4.1) which satisfies

the tail balance condition (4.2). Furthermore, we assume that for κ > 0 and some slowly

varying function ℓ

P(|L1| > x) ∼ ℓ(x)x−κ as x → ∞ ,

and one of the following conditions is satisfied:

(i)
∫∞

−∞
|f(t)|δ dt < ∞ for some δ < min{1, κ}.

(ii)
∫∞

−∞
|f(t)|δ dt < ∞ for some δ < κ, δ ≤ 2, κ > 1, and E(L1) = 0.

Then the following results hold:

(a) There exists a strictly stationary version of the MA process.

(b) The stationary distribution given by X∞ is regularly varying with index κ such that

P(X∞ > x) ∼
(
p

∫ ∞

−∞

(f(s)+)κ ds + (1 − p)

∫ ∞

−∞

(f(s)−)κ ds
)
P(|L1| > x) as x → ∞.

(c) Let (Xt)t≥0 be a strictly stationary version of the MA process. Then (|Xt|)t≥0 ∈ R(κ)

with spectral measure given for a lagged vector Xd of (|Xt|)t≥0 by

P(Θd ∈ ·) =
1

c̃

∫ ∞

−∞

max
i=1,...,d

|f(ti − s)|κ 1{(|f(t1−s)|,...,|f(td−s)|)/ maxi=1,...,d |f(ti−s)|∈·} ds

with c̃ =
∫∞

−∞
maxi=1,...,d |f(ti − s)|κ ds.

Remark 4.2 Let f ≥ 0 be strictly decreasing. Then the spectral measure has the alter-

native representation

P(Θd ∈ ·) =
E
(
|Wd|κ 1{Wd/|Wd|∈·}

)

E|Wd|κ
,

where for s ∈ R and maxi=1,...,d |f(ti − s)| 6= 0, Wd has Lebesgue density

P(Wd ∈ d(|f(t1 − s)|, . . . , |f(td − s)|)) =
1

c̃
max

i=1,...,d
|f(ti − s)|κ ds. �
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A similar argument as in Theorem 2.5 and Lemma 4.1 (c) leads to the following result.

Theorem 4.3 Let the strictly stationary MA process (Xt)t≥0 satisfy the assumptions of

Lemma 4.1. Furthermore, let an > 0 satisfy

lim
n→∞

nP(|X∞| > anx) = x−κ for x > 0.

Then the extreme dependence functions of (|Xt|)t≥0 are for a lagged vector Xd of (|Xt|)t≥0

and for all (x1, . . . , xd) ∈ Rd
+ given by

χ
(t1,...,td)

(x1, . . . , xd) =

∫∞

−∞
min

i=1,...,d
{x−1

i |f(ti − s)|}κ ds
∫∞

−∞
|f(s)|κ ds

,

χ(t1,...,td)(x1, . . . , xd) =

∫∞

−∞
max

i=1,...,d
{x−1

i |f(ti − s)|}κ ds
∫∞

−∞
|f(s)|κ ds

.

In particular, for t > 0,

χ(t) =

∫∞

−∞
min{|f(−s)|, |f(t− s)|}κ ds∫∞

−∞
|f(s)|κ ds

.

Furthermore, the extremal index function of (|Xt|)t≥0 is

θ(h) = h
fκ

max∫∞

−∞
sup0≤t≤h |f(t − s)|κ ds

for h > 0.

Example 4.4 (Ornstein-Uhlenbeck process) The strictly stationary OU process is

for λ > 0 defined as

Xt =

∫ t

−∞

e−λ(t−s) dLs for t ≥ 0 .

Assume that L1 ∈ R(κ) for κ > 0 and satisfies (4.2). Then

χ(t) = e−κλt for t ≥ 0,

and (Xt)t≥0 has extreme dependence functions given for a lagged vector Xd and for all

x ∈ R+ by

χ
(t1,...,td)

(x, . . . , x) = x−κe−κλ(td−t1) ,

χ(t1,...,td)(x, . . . , x) = x−κ
(
dκλ −

d∑

i=2

e−κλ(ti−ti−1)
)
.

As in the AR(1) model χ(·) decreases exponentially with rate κλ. Consequently, the

extremal dependence function increases when the tail of L1 becomes heavier, also when

the parameter λ becomes smaller. Furthermore, the extremal index function is given by

θ(h) =
hκλ

hκλ + 1
for h > 0,

which reflects that the cluster probability increases, when κ or λ decreases. As for the

discrete time AR(1) process, for κ → ∞ it is obvious that χ(t) → 0 and θ(h) → 1. �
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4.1.2 Linear models with tails in S ∩ MDA(Λ)

The conclusions of this section can be found in a more general context in Fasen [17, 19].

Lemma 4.5 Let (Xt)t≥0 be a continuous-time MA process given in (4.1). Furthermore,

we assume that |L1| ∈ S ∩ MDA(Λ) and one of the following conditions is satisfied:

(i)
∫∞

−∞
|f(t)| dt < ∞.

(ii)
∫∞

−∞
|f(t)|2 dt < ∞ and E(L1) = 0.

Then there exists a strictly stationary version of the MA process, which is infinitely

divisible.

The proof of the following Theorem is similar to the proof of Theorem 3.6 for the

discrete-time case.

Theorem 4.6 Let the strictly stationary MA process (Xt)t≥0 satisfy the assumptions of

Lemma 4.5. Furthermore, let an > 0, bn ∈ R satisfy

lim
n→∞

nP(|X∞| > anx + bn) = e−x for x ∈ R.

Suppose that f(t) = 0 for t ≤ 0, f(t) < f(0) for t > 0, and that f is non-increasing on

[0,∞). Then the extreme dependence functions of (|Xt|)t≥0 are given for a lagged vector

Xd of (|Xt|)t≥0 and for all (x1, . . . , xd) ∈ Rd by

χ
(t1,...,td)

(x1, . . . , xd) = 0 and χ(t1,...,td)(x1, . . . , xd) =

d∑

i=1

e−xi .

In particular, χ(t) = 0 for t > 0. Furthermore, the extremal index function of (|Xt|)t≥0 is

given by θ(h) = 1 for h > 0.

In the framework of the above Theorem 4.6 we have

P(|X∞| > x) ∼ o(P(|L1| > x)) as x → ∞.

A typical example for a process satisfying the assumptions of Theorem 4.6 is the OU-

process of Example 4.4 with |L1| in S ∩ MDA(Λ).

4.2 Continuous-time GARCH models

Let (Lt)t≥0 be a Lévy process and define the auxiliary càdlàg process (Rt)t≥0 by

Rt = ηt −
∑

0<s≤t

log(1 + ϕ(∆Ls)
2) , t ≥ 0 ,
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for η, ϕ > 0. The auxiliary process (Rt)t≥0 itself is a spectrally negative Lévy process of

bounded variation. Then with β > 0 and σ2
0 independent of (Lt)t≥0, the volatility process

(σ2
t )t≥0 is defined as

σ2
t =

(
β

∫ t

0

eRs−ds + σ2
0

)
e−Rt for t ≥ 0 . (4.1)

The integrated continuous-time GARCH(1, 1) (COGARCH(1, 1)) process (Xt)t≥0 is a

càdlàg process satisfying

Xt =

∫ t

0

σs− dLs for t > 0 and X0 = 0, (4.2)

where σt :=
√

σ2
t . In a financial context the logarithmic returns over time periods of

length r > 0 are then modeled by

X
(r)
t = Xt+r − Xt for t ≥ 0. (4.3)

The next Lemma is based on Klüppelberg, Lindner and Maller [29, 31] and Fasen [20].

Lemma 4.7 Let (σ2
t )t≥0 be the volatility process of the COGARCH(1,1) process given

in (4.1). Furthermore, assume that there exists some κ > 0 such that

E|L1|κ log+ |L1| < ∞ and E(e−R1κ/2) = 1.

Then the following results hold:

(a) There exists a strictly stationary version of (σ2
t )t≥0.

(b) The stationary distribution of the volatility process given by σ2
∞ is regularly varying

with index κ/2 such that for some C > 0,

P(σ2
∞ > x) ∼ Cx−κ/2 as x → ∞.

(c) Let (σ2
t )t≥0 be a strictly stationary version of the volatility process. Then (σ2

t )t≥0 ∈
R(κ/2) with spectral measure given for a lagged vector (σ2

t1 , . . . , σ
2
td

) by

P(Θd ∈ ·) =
E
(
|Wd|κ/2 1{Wd/|Wd|∈·}

)

E|Wd|κ/2
,

where Wd =
(
e−Rt1 , . . . , e−Rtd

)
.

Remark 4.8 The condition E(e−R1κ/2) = 1 can be expressed in terms of the Lévy mea-

sure ν of L. Let Ψ(s) = log E(e−sR1), then

Ψ(s) = −sη +

∫

R

((1 + ϕy2)s − 1) ν(dy) (4.4)

and κ is the solution to Ψ(2s) = 0. �
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By Theorem 2.5, Lemma 4.7 (c) and Fasen [20], Theorem 4.3, the following result

holds.

Theorem 4.9 Let the strictly stationary volatility process (σ2
t )t≥0 satisfy the assump-

tions of Lemma 4.7. Furthermore, let an > 0 satisfy

lim
n→∞

nP(σ∞ > anx) = x−κ for x > 0.

Then the extreme dependence functions of (σt)t≥0 are given for a lagged vector (σt1 , . . . , σtd)

of (σt)t≥0 and for all (x1, . . . , xd) ∈ Rd
+ by

χ
(t1,...,td)

(x1, . . . , xd) = E

(
min

i=1,...,d
{x−κ

i e−Rti
κ/2}

)
,

χ(t1,...,td)(x1, . . . , xd) = E

(
max

i=1,...,d
{x−κ

i e−Rti
κ/2}

)
.

In particular,

χ(t) = E
(
min{1, e−Rtκ/2}

)
for t ≥ 0.

Furthermore, the extremal index function of (σt)t≥0 is

θ(h) =
E
(
sup0≤t≤h e−Rtκ/2 − supt≥h e−Rtκ/2

)+

E
(
sup0≤t≤h e−Rtκ/2

) for h > 0.

Lemma 4.10 Let (Xt)t≥0 be the COGARCH(1,1) process given in (4.2). Suppose (Lt)t≥0

is of finite variation and (−Lt)t≥0 is not a subordinator. Furthermore, we assume there

exist κ > 0 and δ > 0 such that

E|L1|2κ+δ < ∞ and E(e−R1κ/2) = 1.

Then the following results hold for r > 0:

(a) There exists a strictly stationary version of (X
(r)
tr )t∈N0

.

(b) The stationary distribution given by X
(r)
∞ satisfies for some C > 0,

P(X(r)
∞ > x) ∼ Cx−κ as x → ∞.

(c) Let (X
(r)
tr )t∈N0

be a strictly stationary version of the increments of the COGARCH(1,1)

process. Then ((X
(r)
tr )2)t∈N0

∈ R(κ) with spectral measure given for a lagged vector

((X
(r)
t1r)

2, . . . , (X
(r)
tdr)

2) by

P(Θd ∈ ·) =
E
(
|Wd|κ/2 1{Wd/|Wd|∈·}

)

E|Wd|κ/2
,

where

Wd =

((∫ (t1+1)r

t1r

e−Rs/2 dLs

)2

, . . . ,
(∫ (td+1)r

tdr

e−Rs/2 dLs

)2
)

.
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By Theorem 2.5, Lemma 4.10 (c) and Fasen [20], Theorem 4.3, the following result

holds.

Theorem 4.11 Let the strictly stationary COGARCH(1,1) process (Xt)t≥0 satisfy the

assumptions of Lemma 4.10. Furthermore, let an > 0 satisfy

lim
n→∞

nP(|X(r)
∞ | > anx) = x−κ for x > 0.

Then the extreme dependence functions of (|X(r)
tr |)t∈N0

are given for a lagged vector

(|X(r)
t1r|, . . . , |X(r)

tdr|) of (|X(r)
tr |)t∈N0

and for all (x1, . . . , xd) ∈ R
d
+ by

χ
(t1,...,td)

(x1, . . . , xd) =
E

(
mini=1,...,d

{
x−κ

i

∣∣∣
∫ (ti+1)r

tir
e−Rs/2 dLs

∣∣∣
κ})

E
∣∣∫ r

0
e−Rs/2 dLs

∣∣κ ,

χ(t1,...,td)(x1, . . . , xd) =
E

(
maxi=1,...,d

{
x−κ

i

∣∣∣
∫ (ti+1)r

tir
e−Rs/2 dLs

∣∣∣
κ})

E
∣∣∫ r

0
e−Rs/2 dLs

∣∣κ .

In particular,

χ(t) =
E min

{∣∣∫ r

0
e−Rs/2 dLs

∣∣κ ,
∣∣∣
∫ (t+1)r

tr
e−Rs/2 dLs

∣∣∣
κ}

E
∣∣∫ r

0
e−Rs/2 dLs

∣∣κ for t ∈ N0.

Furthermore, the extremal index of (|X(r)
tr |)t∈N0

is

θ =
E

(∣∣∫ r

0
e−Rs/2 dLs

∣∣κ −∨∞
k=1

∣∣∣
∫ (k+1)r

kr
e−Rs/2 dLs

∣∣∣
κ)

E
∣∣∫ r

0
e−Rs/2 dLs

∣∣κ .
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