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Abstract

We consider the problem of locating multiple interacting quantitative trait
loci (QTL) influencing traits measured in counts. In many applications the
distribution of the count variable has a spike at zero. Zero-inflated general-
ized Poisson regression (ZIGPR) allows for an additional probability massat
zero and hence an improvement in the detection of significant loci. Classical
model selection criteria often overestimate the QTL number. Therefore, mod-
ified versions of the Bayesian Information Criterion (mBIC and EBIC) were
successfully used for QTL mapping. We apply these criteria based on ZIGPR
as well as simpler models. An extensive simulation study shows their good
power detecting QTL while controlling the false discovery rate. We illustrate
how the inability of the Poisson distribution to account for over-dispersion
leads to an overestimation of the QTL number and hence strongly discourages
its application for identifying factors influencing count data. The proposed
method is used to analyze the mice gallstone data of Lyons, Wittenburg, Li,
Walsh, Leonard, Churchill, Carey, and Paigen (2003). Our results suggest the
existence of a novel QTL on chromosome 4 interacting with another QTL pre-
viously identified on chromosome 5. We provide the correspondingRcode.

1 Introduction

Despite a long history of QTL mapping (see e.g. Sax (1923)) this research field is
still a very active area in which perpetually new statistical methodologies are de-
veloped. The majority of methods proposed in the literature, like classical interval
mapping (Lander and Botstein (1989) and Haley and Knott (1992)), composite in-
terval mapping (Zeng (1993), Zeng (1994)), multiple QTL mapping (Jansen (1993)



and Jansen and Stam (1994)) or multiple interval mapping (Kao, Zeng, and Teas-
dale (1999)) are designed for the situation when the trait has a normal distribution.
Since in many practical cases this assumption is violated, we observe lately a con-
siderable effort to develop new methods, which could handleother trait distribution
types. In this context we mention recent articles on the analysis of ordinal traits
(see e.g., Yi, Xu, George, and Allison (2004), Yi, Banerjee, Pomp, and Yandell
(2007), Coffman, Doerge, Simonsen, Nichols, and Duarte (2005) or Li, Wang, and
Zeng (2006)), nonparametric methods based on ranks (see e.g., Kruglyak and Lan-
der (1995), Zou, Yandell, and Fine (2003) orŻak, Baierl, Bogdan, and Futschik
(2007)), extension of multiple interval mapping to generalized linear models (Chen
and Liu (2009)) or specific methods which can handle a ”spike”in the trait distribu-
tion (see e.g., Broman (2003) and Li and Chen (2009)). In case the trait is a count
variable it often occurs that it has a ”spike” at zero. A clearexample of such a phe-
nomenon is provided by the gallstone data of Lyons et al. (2003), where the number
of gallstones is considered and a large proportion of mice did not develop any dis-
ease symptoms. As illustrated by Cui and Yang (2009), such data can be efficiently
modeled using the zero-inflated generalized Poisson regression (ZIGPR, Famoye
and Singh (2003)). In contrast to the generalized Poisson regression ZIGPR allows
for excess zeros, which may be due to other than genetic reasons. The simulations
and the real data analysis reported in Cui and Yang (2009) showthat interval map-
ping based on ZIGPR can efficiently locate QTL influencing thecount traits. Cui
and Yang (2009) also suggest to apply ZIGPR in order to locateseveral interacting
QTL, based on the multiple interval mapping approach.

From the statistical point of view the most difficult part in fitting the multi-
ple regression model lies in the estimation of the number of significant predictors.
As discussed in Broman and Speed (2002) and Bogdan, Ghosh, and Doerge (2004),
the classical model selection criteria have a strong tendency to overestimate the
number of QTL when the number of markers is comparable to the sample sizen.
These experimental observations were confirmed by theoretical results in Bogdan,
Ghosh, anḋZak-Szatkowska (2008c) and Chen and Chen (2008), which show that
the classical Bayesian Information Criterion (BIC, Schwarz 1978) is not consistent
when the number of potential regressors increases to infinity quicker then

√
n. To

correct for this behavior of BIC, several modifications of thiscriterion were pro-
posed in the literature (e.g. see Ball (2001), Bogdan et al. (2004), Manichaikul,
Moon, Sen, Yandell, and Broman (2009)). Specifically, Bogdan et al. (2004) pro-
pose to modify BIC by supplementing it with the Binomial prior distribution on the
QTL number. If the expected value of this prior distributiondoes not depend on the
number of markers, this leads to an additional “penalty” forthe model dimension,
which prevents overestimation. As illustrated by theoretical results in Bogdan et al.
(2008c), mBIC controls the number of falsely detected QTL andhas some asymp-



totic optimality properties in the context of selecting thebest multiple regression
model under sparsity. Recently, another interesting extension of BIC, EBIC, was
proposed by Chen and Chen (2008). In its standard form (e.g., see Li and Chen
(2009)) EBIC uses a non informative uniform prior on the number of QTL. Chen
and Chen (2008) support EBIC by showing its consistency.

In a sequence of papers Baierl, Bogdan, Frommlet, and Futschik(2006),
Baierl, Futschik, Bogdan, and Biecek (2007),Żak et al. (2007) and Bogdan, Fromm-
let, Biecek, Cheng, Ghosh, and Doerge (2008b) mBIC was successfully used to
locate multiple interacting QTL. Specifically,Żak et al. (2007) proposed a nonpara-
metric version of mBIC based on ranks, which can be used to analyze traits which
do not have a normal distribution. However, the rank methodsare only well justi-
fied if the trait has a continuous distribution. Therefore they have to be used with
care when the trait has a ”spiked” distribution, i.e. when some proportion of the
trait data are concentrated at one point. Recently, a very interesting application of
EBIC to the traits with ”spiked” distributions was proposed in Li and Chen (2009).
Li and Chen (2009) use the approach of Broman (2003) and model such traits with
a mixture of a distribution concentrated at one point and a distribution from the gen-
eral exponential family. They show that an appropriately modified BIC can be used
successfully to locate QTL influencing such traits. Here we extend this approach
and apply mBIC and EBIC for locating multiple interacting QTL based on the zero-
inflated generalized Poisson regression. Note that this application goes beyond the
framework of Li and Chen (2009), since the generalized Poisson distribution does
not belong to the exponential family.

We illustrate the performance of mBIC and EBIC to a ZIGPR with anex-
tensive simulation study. The results of this study show that the proposed methods
allow for a good power of QTL detection, while keeping the false discovery rate at
a reasonable level. They also clearly illustrate the superior performance of ZIGPR
over other simplified methods analyzing count traits. Here,among other findings,
we present the interesting phenomenon of overestimating the number of QTL by
the standard Poisson regression. This behavior can be attributed to the inability of
the Poisson regression to account for data over-dispersionand therefore it should
not be applied for identifying QTL’s based on count data. We also report results
of the analysis of the mice gallstone data of Lyons et al. (2003), which confirms
the good performance of mBIC applied to ZIGPR. Specifically, our method con-
firms the existence of a QTL on a chromosome 5, influencing the number of gall-
stones, and additionally suggests a novel QTL on chromosome4. The program
in R, which can be used for future real data analyses, is available athttp://www-
m4.ma.tum.de/Papers/Erhardt/qtl-zigp-code.rar.

The outline of the paper is as follows. In Section 2 we introduce and discuss
our ZIGPR model for QTL mapping. In Section 3 we introduce thecorrespond-



ing versions of mBIC and EBIC. In Section 4 we present results of the extensive
simulation study comparing ZIGPR to simpler versions of Poisson regression as
well as with a standard least squares regression with regardto the performance of
mBIC and EBIC. Section 5 contains the results of the analysis of mice gallstone
data of Lyons et al. (2003) and Section 6 contains a summary aswell as directions
for further research.

2 Zero-inflated generalized Poisson regression

One of the simplest distributions which can be used to model count traits is the
Poisson distribution. However, the range of applications of this distribution is very
limited due to the lack of its flexibility. Specifically, the standard Poisson model
assumes that the trait variance is equal to its mean. As discussed later in this paper,
this weakness becomes particularly disturbing when the Poisson distribution is used
together with model selection tools for locating multiple interacting QTL.

There are two natural extensions of the Poisson distribution, which allow for
modeling a difference between the mean and the variance: theNegative Binomial
(or Poisson-Gamma) distribution and the generalized Poisson distribution. In this
paper we will use the generalized Poisson distributionGP(µ,ϕ), which was first
introduced by Consul and Jain (1970) and subsequently studied in detail by Consul
(1989). In the context of QTL mapping GP was applied e.g. by Thomson (2003). In
this article we refer to the mean parametrization of GP(see e.g. Consul and Famoye
(1992)):

for y∈ {0,1, . . .} P(Y = y| µ,ϕ) =
µ(µ +(ϕ −1)y)y−1

y!
ϕ−ye−

1
ϕ (µ+(ϕ−1)y) ,

(2.1)
where µ and ϕ are larger than 0. ForY ∼ GP(µ,ϕ) we haveE(Y) = µ and
Var(Y) = ϕ2µ. This allows for modeling over- or underdispersion. However, in
the case of underdispersion (ϕ ∈ (0,1)), the support of the distribution depends on
µ andϕ, which is difficult to enforce whenµ andϕ need to be estimated. There-
fore, in this article we restrict to equi- and overdispersion; ϕ ≥ 1.

When comparing to the Negative Binomial (NB) distribution, theGP distri-
bution has several advantages. While the NB distribution with pmf

P(Y = y|µ,Ψ) =
Γ(y+Ψ)

Γ(Ψ)y!

(

Ψ
µ +Ψ

)Ψ(

µ
µ +Ψ

)y

,

andE(Y) = µ, Var(Y) = µ(1+ µ
Ψ) contains the basic Poisson distribution only as

a limiting case forΨ → ∞, the GP distribution contains the Poisson class forϕ = 1.



Second, unlike the NB distribution the dispersion factor inGP is independent of the
mean. Hence, in the NB distribution the statistical modeling of overdispersion is
less transparent than in case of the GP. For a detailed comparison between GP and
NB we refer the readers to Joe and Zhu (2005).

A zero-inflated generalized Poisson (ZIGP) distribution isa further exten-
sion of the GP distribution, which allows to model a “spike” at zero. Such a “spike”
occurs quite often when the response variable counts disease symptoms (like e.g.
the gallstones). In the context of QTL mapping, the ZIGP distribution was first
applied by Cui, Kim, and Zhu (2006). As explained by Cui and Yang(2009), the
over-excess of zeros may result from the fact that a certain fraction of a population
was not exposed to the disease virus.

The ZIGP distribution is defined as a mixture of a distribution concentrated
at 0, denoted asδ0, and the generalized Poisson distribution:

ZIGP(µ,ϕ,ω) = ωδ0+(1−ω)GP(µ,ϕ) , (2.2)

whereω ∈ [0,1] is the zero-inflation parameter. Mean and variance ofY ∼ ZIGP
are given by

E(Y) = (1−ω)µ and σ2 :=Var(Y) = E(Y)
(

ϕ2+µω
)

. (2.3)

To model the dependence of the count response variable on explanatory
variables Famoye and Singh (2006) introduced a zero-inflated generalized Poisson
regression model for independentYi ∼ ZIGP(µi ,ϕ,ωi), whereµi andωi are defined
through the log-linear and logit link functions, respectively. In this article we will
restrict to the case when the zero-inflation parameterω does not depend on genetic
factors, while the dependency ofµi on explanatory variables is given through the
log-linear link function

logµi = β0+
k

∑
j=1

β jXji .

The constantω can be interpreted as the fraction of the population which was not
exposed to the disease virus.

The class of ZIGPR models, considered in this paper containsthe subclasses
of zero-inflated Poisson regression (ZIPR,ϕ = 1), generalized Poisson regression
(GPR,ω = 0) and standard Poisson regression (PoiR,ϕ = 1, ω = 0).

Remark 1. In our preliminary research we also considered the situation when both
ω andµ were influenced by genetic covariates. However, we observedthat due to
the fact that bothµ andω directly influence the expected trait value and the prob-
ability that the trait is equal to zero, a precise separationof regressors influencing



these two parameters was hardly possible with the sample sizes typically used for
QTL mapping. Therefore, the extension of our model to include the dependency
of ω on the genetic factors did not bring the expected benefits over the restricted
version. We believe that our choice of a constantω is justified in many situations,
like e.g. in the case where it is interpreted as the probability of not having a con-
tact with the disease virus. An alternative ZIGPR model for QTL mapping was
proposed in Cui and Yang (2009). This model, based on the parametrization of
Lambert (1992), assumes that both logit(ω) and logµ are proportionally influenced
by the same genetic covariates and explicitly “confounds”µ andω. The model
selection methods proposed in this article can be used also for the Cui and Yang
(2009) parameterization.

3 mBIC and EBIC for ZIGPR

Consider the problem of locating multiple interacting QTL inexperimental popu-
lations. In this case precise estimators of QTL positions and their effects can be
obtained with the multiple interval mapping, MIM (see e.g. Kao et al. (1999)),
which for a variety of different trait distributions has been implemented in the pop-
ularly used packagesQTL CartographerandR/qtlbim. The application of MIM
for ZIGPR is quite straightforward and has been recently discussed in Li and Chen
(2009). However, according to our knowledge, the implementation of MIM for
ZIGPR is not available yet.

The general idea of MIM is to fit the corresponding regressionmodel at a
large number of possible QTL positions and estimate QTL locations by maximizing
the corresponding likelihood function. If the QTL is located between the markers,
the trait distribution is modeled as a mixture of distributions corresponding to the
possible QTL genotypes. The mixture coefficients are definedby the conditional
probabilities of QTL genotypes, given the genotypes of flanking markers. The pa-
rameters of the linear model are usually estimated by the EM algorithm or by re-
placing the unknown QTL genotypes with the expected values of the corresponding
dummy variables, conditional on the genotypes of flanking markers (for a compar-
ison of these two approaches in the context of the least-squares regression see e.g.
Kao (2000)). While MIM should be recommended for the precise QTL analysis,
it creates a huge computational burden when it needs to be repeated many times in
large scale simulation studies. On the other hand, simulation results of Dupuis and
Siegmund (1999) and Bogdan et al. (2008b) show that multiple interval mapping
does not substantially increase the power of QTL detection in comparison to the
search over marker positions. Therefore, to reduce the computational complexity,
interesting genome regions can be initially chosen by selecting the best regression



model (possibly with interactions), relating the trait values to the marker genotypes.
Since the main purpose of the present article is the comparison of different Pois-
son regression models with respect to the power of QTL detection, we restrict the
attention to such a search over markers.

In case of a backcross design or recombinant inbred lines there are only
two genotypes possible at every locus and each of the markersmay be represented
by just one dummy variable:Xi j =

1
2 or Xi j = −1

2, depending on the number of
alleles from the reference parental line present at markerj for the ith individual.
In case of an intercross design there are three possible genotypes and, according
to the Cockerham’s model (see Kao and Zeng (2002)), each of themarkers can be
represented by two dummy variables:

Additive Effect
for individual i:

Xai j =







1 if the jth marker has a genotypegi j = AA,
0 if the jth marker has a genotypegi j = aA,

−1 if the jth marker has a genotypegi j = aa.

Dominance Effect
for individual i:

Xdi j =

{

1/2 if jth marker has a genotypegi j = Aa,
−1/2 otherwise.

Let Y = (Y1,Y2, . . . ,Yn)
T denote the vector of values of some quantitative

trait for n individuals and letXn×Nm denote the corresponding design matrix, whose
columns contain dummy variables corresponding to all available markers. Note that
for the backcross and recombinant inbred linesNm = m, wherem is the number of
available markers, while for the intercrossNm = 2m.

We assume that the relationship between QTL genotypes (coded as above)
and the count trait can be described by a zero-inflated generalized Poisson regres-
sion model. As already discussed, we will focus on identification of markers which
are closest to the QTL. In our search, apart from main effects(additive and dom-
inance), we may include two-way interactions (epistatic effects). Thus our task
consists in choosing the best model of the formYi ∼ ZIGP(µi ,ϕ,ω), with

log(µi) = β0+∑
j∈I

β jXi j + ∑
(u,v)∈U

γuvXiuXiv, (3.1)

whereI is a subset of the set of indicesN = {1, . . . ,Nm} of all dummy variables
coding QTL genotypes andU is a subset ofN×N. Note that the total number of
potential two-way interactions is equal toNe = Nm(Nm−1)/2.

Remark 2. Our model allows to include interaction effects without thecorrespond-
ing main effects. This modeling strategy is motivated by thewell documented find-



ings of genes which do not have main effects and influence the trait only by interac-
tions with other genes (see e.g., Fijneman, De Vries, Jansenand Demant (1996) and
the real data analysis in the present paper). In principle, the model (3.1) could be
extended to include also interactions of higher order. However, due to the increased
multiple testing problem, the power for identification of such interactions is very
limited for sample sizes typically used in QTL mapping. Therefore, genome-wide
searches for high-order interactions are rarely carried out.

Remark 3. In case of an intercross design there are four terms in the linear model
(3.1) which describe the interaction between thej-th andk-th marker: additive-
additive termXai jXaik, additive-dominance termXai jXdik, dominance-additive term
Xdi jXaik and dominance-dominance termXdi jXdik. In our approach we separately
add these terms to the model. Compared to the approach where all these terms
are included together, our method allows to reduce the penalty (or the number of
degrees of freedom) for the interaction and allows for a larger power of detecting
epistasis, when only one or two of the interaction components are substantially
different from zero.

Since we do not know the QTL number nor their locations, we usea model
selection procedure for choosing the best regressors in model (3.1). One popu-
lar method for this purpose is the Schwarz Bayesian Information Criterion (BIC).
However, when locating QTL with the standard least-squaresregression, BIC was
found to have a strong tendency to overestimate the QTL number (see e.g. Bro-
man and Speed (2002)). As discussed in Bogdan et al. (2008c), this phenomenon is
closely related to the well known multiple testing problem.Specifically, in Bogdan
et al. (2008c) it is proved that under the orthogonal design the expected number of
“false discoveries” produced by BIC converges to infinity ifNm√

n → ∞. In Bogdan
et al. (2004) an alternative Bayesian explanation is provided. The Bayesian model
selection suggests choosing the modelM j that has the highest posterior probability

P(M j |Y) ∝ L(Y|M j)π(M j) ,

whereL(Y|M j) is the likelihood of the data given the modelM j and π(M j) is a
prior probability of M j . The standard BIC neglectsπ(M j) and uses the Laplace
approximation for logL(Y|M j) (e.g. see Ghosh, Delampady and Samanta (2006)),
which results in

BIC= log(L(Y|M j , δ̂ j))−
1
2

k j log(n) ,

whereδ̂ j is the maximum likelihood estimate of the parameter vector in modelM j

andk j denotes the dimension ofδ j .



In Bogdan et al. (2004) it is observed that neglectingπ(M j) corresponds
to assigning the same prior probability to each model. It is easy to check that this
leads to the implicit BinomialB

(

Nm,
1
2

)

prior on the number of main effects. This

prior is concentrated mainly on the interval
(

Nm−3
√

Nm
2 , Nm+3

√
Nm

2

)

and assigns an

unsuitably large prior probability to the event that the true number of QTL is close
to Nm

2 . This in turn causes the BIC to choose relatively large models. To solve this
problem, in Bogdan et al. (2004) a modified version of the BIC, called mBIC, has
been proposed. The mBIC criterion allows to take prior information on the number
of QTL into account. LetE(k) andE(r) denote the expected values of the prior
distributions for the number of main and epistatic effects,respectively. In mBIC the
parameterp= 1

2 in the Binomial prior distribution for the number of true regressors

is replaced withpa =
E(k)
Nm

for the main effects andpe =
E(r)
Ne

for the interactions.
After some simple algebra (for details see e.g., Bogdan et al.(2004) orŻak-

Szatkowska and Bogdan (2010)), we obtain that mBIC selects themodel which
maximizes the expression

mBIC:= 2log(L(Y|M j , δ̂ j)))− (k j + r j) log(n)−2k j log(l −1)−2r j log(u−1) ,
(3.2)

wherek j andr j are the numbers of main and interaction effects in the modelM j ,
l = 1

pa
andu= 1

pe
. In the case of no prior information, Bogdan et al. (2008c) suggest

using

l =
Nm

4
, (3.3)

when the scan is restricted to main effects only and

l =
Nm

2.2
and u=

Ne

2.2
, (3.4)

when epistatic effects are considered as well.
In comparison to BIC, the standard version of mBIC for detectingmain

effects and two-ways interactions contains the additionalpenalty term

2k j log

(

Nm

2.2
−1

)

+2r j log

(

Ne

2.2
−1

)

,

which depends on the number of markers used in the genome scan. As shown in
Bogdan et al. (2008c), in case of the standard least squares regression this additional
term allows to deal with the multiple testing problem and guarantees that the overall
type I error does not exceed 0.08 for a sample size of 200 and more than 30 markers.
Due to the consistency of mBIC, the probability of the type I error decreases when
the sample size increases.



Choosing the same penalty constant (namely 2.2) for main and interaction
effects results in dividing the probability of the overall type I error in two approx-
imately equal parts: the probability of detecting a “false”additive effect and the
probability of detecting a “false” interaction. Thus, the expected number of falsely
detected interactions is approximately equal to the numberof falsely detected main
effects. Note that sinceNe >> Nm, this choice implies a larger penalty for inter-
action terms than for main effects. As a result the power of detecting interaction
effects by the standard version of mBIC is substantially smaller than the power of
detecting main effects of the same “size”. This choice is a deliberate decision. Since
Ne>>Nm, equating the penalty coefficients for main and interactioneffects in such
a way that the probability of the overall type I error is stillcontrolled would lead to a
decrease of the power for main effects, without having much effect on the power for
interactions. Our proposed approach can easily be extendedto higher order interac-
tions, even without a significant sacrifice of power of detecting lower order terms.
However, other choices are also possible and the penalty coefficients can easily be
adjusted according to prior knowledge and preferences of the researcher.

Remark 4. As discussed in Bogdan et al. (2008b), the specific choice of the penalty
coefficients for mBIC is related to the Bonferroni correction for multiple testing.
This correction works well when the corresponding test statistics are independent
and is usually quite conservative when they are strongly correlated. Therefore, the
calibration of mBIC is particularly suitable for sparse marker maps. Despite these
concerns, the simulation study reported in Bogdan et al. (2004) shows that in the
case of a backcross design, where the correlation between marker genotypes is par-
ticularly strong, mBIC works well if the average distance between markers is larger
or equal than 5cM. The performance of mBIC for dense marker maps and multi-
ple interval mapping is investigated in Bogdan et al. (2008b), where a method for
scaling the corresponding penalty coefficients is proposed. The results of Bogdan
et al. (2008b) suggest that if the average distanced between markers is smaller than
5cM, the penalty “weight” of each additive and interaction termshould roughly
be proportional tod. Thus, if markers are very densely spaced, the corresponding
penalty for the additive effects depends on the length of thechromosome rather than
the number of markers. In case of interactions, the penalty coefficient still depends
on the number of markers, but this dependence is substantially weaker than for a
sparse map.

The calculations presented in Bogdan et al. (2004), Bogdan et al. (2008b)
and Bogdan et al. (2008c), which lead to the specific choices ofl andu, are based on
the assumption that the likelihood ratio statistics for testing the significance of spe-
cific explanatory variables have asymptotically the chi-square distribution. Since,



under some mild regularity conditions, this assumption is satisfied for the Gen-
eralized Linear Models (see e.g. Shao (1999)), the proposedchoices forl andu
are appropriate also in this case. An extensive simulation study, confirming good
properties of the mBIC in the context of logistic and Poisson regression, can be
found inŻak-Szatkowska and Bogdan (2010). Note however that ZIGPR does not
fit the general framework of GLM, since the ZIGP distributiondoes not belong to
the exponential family. In this case a standard choice ofl andu can be justified
by theoretical results on the asymptotic normality of the maximum likelihood es-
timate ofδ = ((β j) j∈I ,(γuv)(u,v)∈U ,ϕ,ω), presented in Czado, Erhardt, Min, and
Wagner (2007) based on Min and Czado (2010). This implies thatunder the null
hypothesis the corresponding likelihood ratio test statistics have also asymptotically
a chi-square distribution. The appropriateness of the standard choice ofl andu for
ZIGPR is confirmed by the simulation study, presented in the next section.

A similar modification of BIC was recently proposed by Chen and Chen
(2008), who introduce an extended BIC (EBIC), based on the different prior choices
for the model dimension. In comparison to mBIC, the priors usedby EBIC sub-
stantially prefer models of larger dimensions. Specifically, the standard, most re-
strictive version of the EBIC, assumes that the prior distribution on the number of
main effects is uniform on the set{0,1, . . . ,Nm} (see Li and Chen (2009)). After
assigning the same prior probability to all models of the same dimension this re-

sults inπ(M j) =
1

Nm+1

(Nm
k

)−1
. Interestingly, the same prior is proposed in Scott

and Berger (2008), where it results from the application of a hierarchical model
with a non informative, uniform prior on the proportion of true regressorsp. The
choice between mBIC and EBIC should depend on the prior expectations concern-
ing the QTL number. As illustrated by theoretical results discussed in Bogdan et al.
(2008b) and proved in Bogdan, Chakrabarti, and J.K.Ghosh (2008a), mBIC has
some asymptotic optimality properties in the context of selecting the best multiple
regression model under sparsity. Therefore mBIC seems to be especially appropri-
ate in case when one expects that the number of true predictors is much smaller than
the number of columns in the “total” design matrix. To compare these two criteria,
in the next section we present results of an extensive simulation study, in which we
identify important main effects with the standard version of mBIC

mBIC:= 2log(L(Y|M j , δ̂ j)))−k log(n)−2k log

(

Nm

4
−1

)

, (3.5)

and the standard version of EBIC

EBIC := 2log(L(Y|M j , δ̂ j)))−k log(n)−2log

(

Nm

k

)

. (3.6)



4 Simulation study

Simulations are carried out to investigate the performanceof our proposed methods
of QTL detection for a backcross design. We simulate genotypes of Nm = 100
markers located on 20 mice chromosomes. These marker positions are identical to
the ones in the data set investigated by Lyons et al. (2003). The marker positions are
supplemented byk= 10 fictional QTL’s (not matching any of the markers) located
on chromosomes 1 to 6. Figure 1 plots the marker and QTL positions on these 6
chromosomes.

Trait values are generated from the ZIGPR model,Yi ∼ZIGP(µi(β ),ϕ,ω)),
with

µi(β ) := exp
{

2.05+X′
Q,iβ

}

, i = 1, . . . ,n , (4.1)

whereXQ,i = (XQ1,i , . . . ,XQ10,i)
′ denotes the vector of 10 QTL genotypes coded

as−1/2 and 1/2 for homozygotes and heterozygotes, respectively, and parameter
values are chosen as

β = (−0.20,1.00,0.25,−0.60,0.80,1.20,0.70,−0.15,−0.40,1.50)′ .

Additionally, we chooseϕ = 2 and investigate small as well as medium sized zero-
inflation of ω ∈ {20%,40%}.

Our simulation results are based onN= 1000 replicates for the sample sizes
n = 200 andn = 500. In each run new random markers and QTL genotypes are
generated from the map, the coefficientsβ , however, are kept identical. In order to
handle the computational complexity of a large scale simulation study, in each of
these replicates model selection is carried out using a forward selection procedure.
We start with the Null model, i.e. we fitZIGPR(µi(β0),ϕ,ω)), whereβ0 is the
coefficient of an intercept. We add sequentially the marker which increases the
standard version of the mBIC (3.5) the most, as long as the mBIC grows. Since
our simulated QTL are widely spaced, we expect the model selected by forward
selection to be identical or close to the optimal model with respect to mBIC in most
of the replicates (see e.g., Broman (1997)). Additionally, we carry out forward
selection based on mBIC with a Gaussian linear model (LM), a Poisson regression
(PoiR), generalized Poisson regression (GPR) and zero-inflated Poisson regression
(ZIPR). We include the standard least squares regression LM,
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Figure 1: Marker positions and positions of the true QTL, where positive effects are denoted by point-up triangles,
negative ones by point-down triangles. The sizes of the triangles are proportional to the magnitude of the coefficient.



since it is capable of identifying correlations between explanatory and response
variables, and may perform reasonably choosing important predictors for the ZIGP
data. Also, due to the central limit theorem, we expect that mBIC with LM will
control the number of false positives, even when the true data are generated accord-
ing to ZIGPR. Additionally, for each model class we perform model selection based
on the standard version of EBIC given in (3.6).

Results of the simulation study are compared for the five modelclasses. We
consider the following statistics:

• true positives (TP): number of selected effects whose distance to the simu-
lated QTL’s was less or equal 20cM; if more than one effect was caught in
the interval around a certain QTL only one of them was counted

• false positives (FP): number of selected effects whose distance to the simu-
lated QTL’s was higher than 20cM

• misclassification error, ME = false positives (FP)+ false negatives (FN),
whereFN = 10−TP

• power:TP/10
• observed false discovery rate :FDR= FP/(FP+TP)

In Table 1 we will tabulate the averages ofFP, ME, power andFDR. Figure 2 plots
the estimated power against the magnitude of the true regression coefficientsβ .

From Table 1 and Figure 2 we see that a higher number of observations
substantially eases the detection of significant effects. On the other hand, higher
zero-inflation makes the detection of correct effects more difficult even in the cor-
rectly specified ZIGPR model. Also, according to Figure 2, the power of detection
clearly increases with the magnitude of the true regressioncoefficients.

Our simulations show that mBIC and EBIC based on the ZIGP model pro-
vide a low false discovery rate while maintaining relatively high power rates. These
criteria are also definitely the best with respect to the misclassification errorME.
Note that if the cost of the false positive is the same as the cost of the false negative,
ME is proportional to the cost of the statistical inference.Interestingly, the second
best group of procedures with respect to ME is formed by the criteria based on the
standard least squares regression model, LM. While LM clearly performs worse
than the correct ZIGPR model, it outperforms other misspecified models based on
Poisson regression. Specifically, the LM class offers a muchlarger power than the
corresponding Generalized Poisson Regression (GPR) class without zero-inflation
parameter. In case of the models without the overdispersionparameter, PoiR and
ZIPR, we observe the opposite, i.e., the corresponding criteria offer a much higher



n = 200
mBIC

ω = 20% ω = 40%
LM PoiR ZIPR GPR ZIGPR LM PoiR ZIPR GPR ZIGPR

FP 0.125 21.075 11.309 0.658 0.357 0.106 27.033 9.614 0.296 0.373
ME 6.944 22.903 13.486 7.952 5.371 8.260 29.025 12.460 9.631 6.623
Power 0.318 0.817 0.782 0.271 0.499 0.185 0.801 0.715 0.066 0.375
FDR 0.036 0.711 0.575 0.188 0.062 0.050 0.764 0.558 0.282 0.088

EBIC
ω = 20% ω = 40%

FP 0.149 40.869 19.746 0.880 0.604 0.090 53.568 15.354 0.281 0.614
ME 6.879 41.808 21.377 7.943 5.196 8.368 54.276 17.671 9.633 6.397
Power 0.327 0.906 0.837 0.294 0.541 0.172 0.929 0.768 0.065 0.422
FDR 0.040 0.809 0.682 0.213 0.090 0.044 0.846 0.645 0.270 0.116

n = 500
mBIC

ω = 20% ω = 40%
LM PoiR ZIPR GPR ZIGPR LM PoiR ZIPR GPR ZIGPR

FP 0.112 24.662 14.818 0.642 0.215 0.117 30.817 13.813 0.405 0.234
ME 4.830 25.519 15.723 6.102 3.541 5.949 31.847 15.088 8.381 4.047
Power 0.528 0.914 0.909 0.454 0.667 0.417 0.897 0.873 0.202 0.619
FDR 0.019 0.723 0.607 0.112 0.028 0.025 0.770 0.599 0.142 0.033

EBIC
ω = 20% ω = 40%

FP 0.144 40.428 26.274 0.984 0.466 0.120 48.520 23.765 0.465 0.435
ME 4.662 40.936 26.878 6.145 3.397 5.815 49.110 24.665 8.490 3.940
Power 0.548 0.949 0.940 0.484 0.707 0.430 0.941 0.910 0.198 0.649
FDR 0.023 0.805 0.725 0.149 0.055 0.024 0.835 0.708 0.154 0.057

Table 1: Average number of false positives (FP), misclassification error (ME),
power and false discovery rate (FDR) based on mBIC and EBIC for different model
classes andn= 200,500 andω = 20%,40%

power than the criteria based on LM, or even ZIGPR, but insteadlead to the detec-
tion of a large number of false positives. The FDR of PoiR and ZIPR systematically
exceeds 50%, which implies that the number of false positives usually exceeds the
number of true discoveries. We found this phenomenon very interesting, since ac-
cording to our theoretical results and simulation studies reported inŻak-Szatkowska
and Bogdan (2010), the mBIC with PoiR performs very well with respect to FDR
and ME if the data are generated exactly according to the Poisson regression. Also,
under the total null hypothesis, mBIC with PoiR controls the overall type I error
at the assumed level. We believe that when the data are generated by ZIGPR the
criteria based on PoiR and ZIPR pick too many regressors in order to account for
the data heterogeneity caused by overdispersion.
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Figure 2: Power for different sizes of true regression coefficients based on sev-
eral model classes. Note that the lines are linearly interpolated to increase visual
comparability.



n = 200, mBIC
LM PoiR ZIPR GPR ZIGPR

FP 0.095 8.200 8.150 0.405 0.410
ME 5.285 9.830 9.810 3.920 3.930
Power 0.481 0.837 0.834 0.648 0.648
FDR 0.018 0.476 0.475 0.053 0.053

Table 2: Average number of false positives (FP), misclassification error (ME),
power and false discovery rate (FDR) based on mBIC for different model classes
when the traits come from a Poisson distribution

In Table 2 we report the results of a further simulation study, in which the
data were generated according to the standard Poisson regression model PoiR, with
µi defined by (4.1). Since this is only meant to be an illustrative example, we re-
strict to the case of a scan based on mBIC forn= 200 mice. In this case PoiR and
ZIPR perform similarly bad, while GPR and ZIGPR are similarly good. The rea-
son is simply that in the model classes allowing for excess zeros, the zero-inflation
parameter for Poisson traits is estimated to be close to zero, hence the performance
only depends on the underlying distribution, which is not inflated (i.e. Poisson and
GP, respectively). Interestingly, also in this case mBIC with PoiR and ZIPR sub-
stantially overestimates the number of QTL. The number of false positives produced
by these criteria is approximately equal to the number of true discoveries, with FDR
close to 50%. At the same time mBIC based on GPR and ZIGPR work very well,
maintaining a reasonable power and FDR at the level close to 5%. It turns out that
the poor behavior of mBIC based on PoiR or ZIPR results from themodel misspec-
ification, caused by the discrepancy between the marker and QTL location. Here
we give a simple illustrative example: we generate Poisson traits with 10 true ef-
fectsXi := (Xi1, . . . ,Xi10)

′ andµi := exp(2.05+X′
iβ ), whereβ is chosen as before.

Then we fit two GPR models, one usingXi as regressors and one using misspeci-
fied Xmis

i := (Xmis
i1 , . . . ,Xmis

i10 )
′, which are random and reflect genotypes referring to

a recombination fraction with distance of 10cM to Xi in each component. In the
left panel of Table 3 we see that in the first caseϕ is estimated to be 1.01. This
illustrates that the GPR class contains the PoiR class and that the dispersion can be
estimated with a very good precision. In the second case, however, the regressors
are misspecified by not knowing the exact trait loci and the marker genotypesXmis

are used instead. Nowϕ is estimated to be 3.25 (see right panel of Table 3), i.e.
the estimated variance exceeds the estimated mean by a factor of more than 10. As
one can see in Table 2 this leads to a dramatic overfit when using mBIC with PoiR
since this model cannot reflect the additional overdispersion and picks too many re-
gressors in order to account for the data heterogeneity. Zero-inflation also leads to



overdispersion, however one can see in Table 1 for the ZIPR case that zero-inflation
alone is insufficient to compensate the lack of the overdispersion parameter.

Estimate Std. Error Pr(> |z|) Estimate Std. Error Pr(> |z|)
Interc. 2.064 0.031 < 2·10−16 Interc. 2.197 0.081 < 2·10−16

X1 −0.211 0.031 10−11 Xmis
1 −0.097 0.097 0.316

X2 0.920 0.038 < 2·10−16 Xmis
2 0.836 0.104 7·10−16

X3 0.266 0.037 5·10−13 Xmis
3 0.211 0.103 0.041

X4 −0.566 0.029 < 2·10−16 Xmis
4 −0.673 0.097 5·10−12

X5 0.812 0.035 < 2·10−16 Xmis
5 0.626 0.105 3·10−9

X6 1.228 0.049 < 2·10−16 Xmis
6 1.137 0.118 < 2·10−16

X7 0.696 0.038 < 2·10−16 Xmis
7 0.379 0.102 2·10−4

X8 −0.174 0.033 10−7 Xmis
8 −0.191 0.097 0.049

X9 −0.417 0.033 < 2·10−16 Xmis
9 −0.310 0.099 0.002

X10 1.518 0.046 < 2·10−16 Xmis
10 1.199 0.114 < 2·10−16

Table 3: GP fit of Poisson data (n= 200) based on the 10 true effects(X1, . . . ,X10)
′

(left panel) withϕ̂ = 1.01(0.051). GP fit of the same data based on 10 misspecified
effects correlated with(X1, . . . ,X10)

′ which are 10cM away from the true effects
(right panel),ϕ̂ = 3.25 (0.477).

Comparing the performance of mBIC and EBIC under the most appropri-
ate ZIGPR model we observe that both these criteria perform very well and their
results do not differ much. As expected, EBIC offers slightlylarger power at the
price of a larger, but still reasonable, FDR. Our simulationsshow that the power of
these criteria increases and the expected number of false positives decreases as the
samples size goes up, which strongly suggest that these criteria are consistent also
under the ZIGPR model.

5 Real data analysis

The data by Lyons et al. (2003) considers different phenotypes related to gallstones.
While Lyons et al. (2003) focus on the gallstone weight, a score for solid gallstones
and the gallbladder volume, we will focus on the number of gallstones the 277 male
mice developed. The data is publicly available at

http://phenome.jax.org/phenome/protodocs/QTL/QTL-Lyons3.xls

and refers to an intercross of CAST/Ei and 129S1/SvImJ inbredmice. Since the
phenotypes considered in Lyons et al. (2003, Figure 5) are related to the number



of gallstones the mice developed, we perform a preselectionof interesting chro-
mosomes based on this figure. Hence we restrict our search to eight chromosomes
accounting for 41 markers, i.e. we consider the chromosomes2, 3, 4, 5, 7, 17, 18
and 19. We replace missing genotypes by their expected values, given the flank-
ing markers (see for instance Haley and Knott (1992)). Additive and dominance
effects are added separately, according to the specification provided in Section 3,
with a corresponding to the CAST/Ei allele. As a search method we used forward
selection with mBIC based on ZIGPR. The reason for which we chose mBIC rather
than EBIC, is that mBIC has been adapted for the search of interaction effects. In
this case mBIC adjusts to the increased “multiple testing” problem by changing the
penalty constant from 4 to 2.2 (see (3.2)). The adaptation ofEBIC for the search
of interactions is not obvious and we are not aware of existing solutions to this
problem.

We performed two different analyses. At first we searched only for main
effects with the standard version of mBIC (3.2) and a penalty constant provided in
(3.3). In this case mBIC identifies one additive effect at D5Mit183 (“D5Mit183(a)”).
This is in line with the result of Lyons et al. (2003), which found this marker to be
significant for all three Gallstone related traits considered in their study. A model
summary is given in the upper panel of Table 4. Note that the asymptotic normal-
ity of the maximum likelihood estimates of the dispersion parameterϕ and zero-
inflation parameterω has been shown in Czado et al. (2007, Theorem 1). Therefore
we report the p-values of the Wald test also for these estimates. Additionally, we
performed the search for both additive and interaction effects using mBIC (3.2) with
constants provided in (3.4). In this search we detected an additive-additive interac-
tion term between two markers: D5Mit183 and a novel suggestive QTL, D4Mit42.
A model summary is given in the middle panel of Table 4. Additionally, in the
lower panel of Table 4 we provide the results of the analysis based on the model
including additive effects of both D5Mit183 and D4Mit42 andtheir interaction.
Interestingly, the p-value corresponding to the interaction term between D5Mit183
and D4Mit42 is substantially smaller than the p-values corresponding to the additive
effects, which suggests that the interaction between D5Mit183 and D4Mit42 plays
a very important role in determining the expected number of gallstones. This obser-
vation is confirmed by the graphical representation in Figure 3. In accordance with
the results of the search for main effects this figure suggests that the expected num-
ber of gallstones decreases when the number of 129S1/SvImJ alleles at D5Mit183
increases. However, according to the bottom graph, the effect of D5Mit183 strongly
depends on the genotype at D4Mit42, and is most pronounced for mice who are ho-
mozygous for 129S1/SvImJ allele at D4Mit42. Specifically, the average number
of gallstones is decisively the largest in the group of mice with the combination of
dummy variables equal to (-1,1), which corresponds to the mice homozygous for



Estimate Std. Error z value Pr(> |z|)
Intercept 0.067 0.983 0.068 0.946

D5Mit183(a) −1.292 0.432 −2.991 0.003
ϕ 6.799 3.560 1.909 0.056
ω 0.631 0.362 1.743 0.081

Intercept −0.156 0.572 −0.272 0.786
D5Mit183(a):D4Mit42(a) −2.298 0.495 −4.647 3.4·10−6

ϕ 5.776 2.520 2.293 0.022
ω 0.575 0.167 3.437 0.001

Intercept −0.864 0.573 −1.510 0.131
D5Mit183(a) −1.244 0.442 −2.817 0.005
D4Mit42(a) −0.215 0.476 −0.451 0.652

D5Mit183(a):D4Mit42(a) −2.177 0.548 −3.973 7.1·10−5

ϕ 5.387 2.185 2.466 0.014
ω 0.458 0.163 2.809 0.005

Table 4: ZIGP model summaries of forward selection based on mBIC for different
regression designs.

CAST/Ei allele at D5Mit183 and for 129S1/SvImJ allele at D4Mit42. Finally we
add that we also carried out a scan based on the LM. Neither in the search over
main effects nor in the search including epistatic effects asignificant effect could
be caught.

6 Discussion

We investigated the applicability of different versions ofPoisson regression and the
modified Bayesian Information Criterion for locating multiple interacting quantita-
tive trait loci influencing count traits. Our research demonstrates very good prop-
erties of the zero-inflated generalized Poisson regressionin this context. ZIGPR
takes into account both the overdispersion and an over-excess of zeros and performs
much better than simplified versions of Poisson regression in case when both these
parameters play an important role. Moreover, we found out that the overdispersion
parameter allows to compensate for a model misspecificationdue to the discrepancy
between marker and QTL locations. Therefore, the search formarkers associated
with the count trait based on ZIGPR gives much better resultsthan the one based
on the standard Poisson regression, even when the data are generated according the
latter. Also, our simulations illustrate very good properties of the modified ver-
sions of the Bayesian Information Criterion, mBIC and EBIC, as applied to select
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important predictors for ZIGPR. Both these criteria perform in a similar way and
guarantee a good power of QTL detection, while keeping the false discovery rate at
a low level. The reported real data analysis shows the possible gains, which can be
obtained when ZIGPR with mBIC is used for detection of interacting QTL.

Good properties of mBIC in the context of sparse orthogonal multiple re-
gression were confirmed by the results on its asymptotic optimality, proved in Bog-
dan et al. (2008a). Our preliminary results suggest that similar asymptotic optimal-
ity results can be proved for EBIC. However, the extension of these results to the
nonorthogonal designs and ZIGPR models presents a major challenge and remains
a topic for future research.

Due to the complexity of a large scale simulation study, whose main pur-
pose was the comparison of different Poisson regression models, we reduced the
attention to the search over markers. Note that the computational effort for the sim-
ulation study carried out in Table 1 was very high. We made quite some effort to
optimize theRcode, nevertheless the repeated search for significant effects over the
100 main effects was running for more than 20 days on a parallelized 32-core clus-
ter with 2.6 GHz processors. However, an extension of the proposed methodology
to the multiple interval mapping is in general quite straightforward and, concerning
the estimates of QTL effects and positions, goes along the line of an interval map-
ping for ZIGPR, as proposed in Cui and Yang (2009). Concerning the estimate of
a QTL number, a successful application of EBIC for the multiple interval mapping
with mixture General Linear Models was presented in Li and Chen (2009). Also,
the results reported in Bogdan et al. (2008b) show that if markers are on the average
distant by more than 5 cM then mBIC may be successfully used with the multiple
interval mapping. However, the results reported in Bogdan etal. (2008b) show
also that if markers are densely spaced (less than 5 cM apart)then the neighbor-
ing marker genotypes are strongly correlated and the penalty in mBIC and EBIC
could be substantially relaxed. We believe that the corresponding scaling coeffi-
cients provided in Bogdan et al. (2008b) would work well also for ZIGPR but an
exact verification requires a very intensive simulation study and is out of the scope
of the present paper.

To reduce the complexity of our simulation study we identified the best
regression model with a forward selection. Our simulations, as well as results re-
ported in Broman (1997), Broman and Speed (2002), and Bogdan et al. (2004),
show that the forward selection usually performs well in thecontext of QTL map-
ping. However, the real data analysis reported in Bogdan et al. (2008b) illustrates
that in the case when there are many linked QTL this proceduremay fail to iden-
tify the optimal model. The uncertainty related to the modelchoice can be well
expressed within the Bayesian framework by the posterior model probabilities. The
Bayesian approach for the analysis and comparison of ZIGPR models was investi-



gated e.g. in Gschlößl and Czado (2006). However, the computational complexity
of the full Bayes analysis by Markov Chain Monte Carlo (MCMC) substantially
limits its range of applications in the context of localizing multiple interacting QTL.
Note however that both mBIC and EBIC allow an approximation to the posterior
probabilities of different models according to

P(Mi|Y)≈
exp(xBIC(i)/2)

∑ j exp(xBIC( j)/2)
, (6.1)

wherexBIC denotes mBIC (3.2) or EBIC (3.6) and the sum in the denominator is
over all possible ZIGPR models. Thus, to estimate the posterior probability of a
given model by the modified BIC it is enough to visit each of the plausible models
just once. This allows to substantially reduce the computational burden in compar-
ison to the MCMC methods, which typically require multiple visits of each model,
and then estimate the posterior probability by the frequency of such visits. How-
ever, the estimate ofP(Mi |Y) provided in (6.1) may be accurate only if the majority
of plausible models is represented in the denominator. Therefore, to use mBIC or
EBIC in a Bayesian context, a suitable, computationally efficient search strategy
still needs to be developed.
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