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Abstract

We consider the problem of locating multiple interacting quantitative trait
loci (QTL) influencing traits measured in counts. In many applications the
distribution of the count variable has a spike at zero. Zero-inflated gkener
ized Poisson regression (ZIGPR) allows for an additional probability mitass
zero and hence an improvement in the detection of significant loci. Classical
model selection criteria often overestimate the QTL number. Therefore, mod-
ified versions of the Bayesian Information Criterion (mBIC and EBIC) were
successfully used for QTL mapping. We apply these criteria based oRRZIG
as well as simpler models. An extensive simulation study shows their good
power detecting QTL while controlling the false discovery rate. We illustrate
how the inability of the Poisson distribution to account for over-dispersion
leads to an overestimation of the QTL number and hence strongly discgurage
its application for identifying factors influencing count data. The progose
method is used to analyze the mice gallstone data of Lyons, Wittenburg, Li,
Walsh, Leonard, Churchill, Carey, and Paigen (2003). Our resuligest the
existence of a novel QTL on chromosome 4 interacting with another QTL pre-
viously identified on chromosome 5. We provide the corresponiiogde.

1 Introduction

Despite a long history of QTL mapping (see e.g. Sax (19233)résearch field is
still a very active area in which perpetually new statidtim@thodologies are de-
veloped. The majority of methods proposed in the literatlike classical interval
mapping (Lander and Botstein (1989) and Haley and Knott ()982mposite in-
terval mapping (Zeng (1993), Zeng (1994)), multiple QTL miayg (Jansen (1993)



and Jansen and Stam (1994)) or multiple interval mapping(Eang, and Teas-
dale (1999)) are designed for the situation when the traitshaormal distribution.
Since in many practical cases this assumption is violatedolgerve lately a con-
siderable effort to develop new methods, which could haathter trait distribution
types. In this context we mention recent articles on theyamabf ordinal traits
(see e.g., Yi, Xu, George, and Allison (2004), Yi, Banerjeemp, and Yandell
(2007), Coffman, Doerge, Simonsen, Nichols, and Duarte§p60Li, Wang, and
Zeng (2006)), nonparametric methods based on ranks (se&ruglyak and Lan-
der (1995), Zou, Yandell, and Fine (2003) L&k, Baierl, Bogdan, and Futschik
(2007)), extension of multiple interval mapping to genizead linear models (Chen
and Liu (2009)) or specific methods which can handle a "spikéfie trait distribu-
tion (see e.g., Broman (2003) and Li and Chen (2009)). In cas#dit is a count
variable it often occurs that it has a "spike” at zero. A clesample of such a phe-
nomenon is provided by the gallstone data of Lyons et al.32,0@here the number
of gallstones is considered and a large proportion of midendt develop any dis-
ease symptoms. As illustrated by Cui and Yang (2009), suchaiat be efficiently
modeled using the zero-inflated generalized Poisson re@gre¢ZIGPR, Famoye
and Singh (2003)). In contrast to the generalized Poissgnession ZIGPR allows
for excess zeros, which may be due to other than geneticmea$be simulations
and the real data analysis reported in Cui and Yang (2009) #hatinterval map-
ping based on ZIGPR can efficiently locate QTL influencing¢bant traits. Cui
and Yang (2009) also suggest to apply ZIGPR in order to loeateral interacting
QTL, based on the multiple interval mapping approach.

From the statistical point of view the most difficult part ittifig the multi-
ple regression model lies in the estimation of the numbeigsfitcant predictors.
As discussed in Broman and Speed (2002) and Bogdan, Ghosh penge2004),
the classical model selection criteria have a strong terydém overestimate the
number of QTL when the number of markers is comparable to dhgpke sizen.
These experimental observations were confirmed by theafegsults in Bogdan,
Ghosh, andZak-Szatkowska (2008c) and Chen and Chen (2008), which shadw th
the classical Bayesian Information Criterion (BIC, Schwarz8)93 not consistent
when the number of potential regressors increases to infipicker then,/n. To
correct for this behavior of BIC, several modifications of tbigerion were pro-
posed in the literature (e.g. see Ball (2001), Bogdan et aD4pManichaikul,
Moon, Sen, Yandell, and Broman (2009)). Specifically, Bogdaal.g2004) pro-
pose to modify BIC by supplementing it with the Binomial priastdibution on the
QTL number. If the expected value of this prior distributames not depend on the
number of markers, this leads to an additional “penalty”tfe model dimension,
which prevents overestimation. As illustrated by theagdtresults in Bogdan et al.
(2008c), mBIC controls the number of falsely detected QTL laasl some asymp-



totic optimality properties in the context of selecting thesst multiple regression
model under sparsity. Recently, another interesting exiernd BIC, EBIC, was
proposed by Chen and Chen (2008). In its standard form (eg.l.isend Chen
(2009)) EBIC uses a non informative uniform prior on the numifeQTL. Chen
and Chen (2008) support EBIC by showing its consistency.

In a sequence of papers Baierl, Bogdan, Frommlet, and Fut$2806),
Baierl, Futschik, Bogdan, and Biecek (200Z3k et al. (2007) and Bogdan, Fromm-
let, Biecek, Cheng, Ghosh, and Doerge (2008b) mBIC was suctigsséed to
locate multiple interacting QTL. Specifical¥ak et al. (2007) proposed a nonpara-
metric version of mBIC based on ranks, which can be used tyaa#iaits which
do not have a normal distribution. However, the rank metraydsonly well justi-
fied if the trait has a continuous distribution. Thereforeytinave to be used with
care when the trait has a "spiked” distribution, i.e. whemegroportion of the
trait data are concentrated at one point. Recently, a veeyasting application of
EBIC to the traits with "spiked” distributions was proposed.i and Chen (2009).
Li and Chen (2009) use the approach of Broman (2003) and modeltsaits with
a mixture of a distribution concentrated at one point andaitution from the gen-
eral exponential family. They show that an appropriatelyified BIC can be used
successfully to locate QTL influencing such traits. Here wterd this approach
and apply mBIC and EBIC for locating multiple interacting QTaded on the zero-
inflated generalized Poisson regression. Note that thikcagipn goes beyond the
framework of Li and Chen (2009), since the generalized Paissstribution does
not belong to the exponential family.

We illustrate the performance of mBIC and EBIC to a ZIGPR withean
tensive simulation study. The results of this study show ttie proposed methods
allow for a good power of QTL detection, while keeping theséatliscovery rate at
a reasonable level. They also clearly illustrate the sopgerformance of ZIGPR
over other simplified methods analyzing count traits. Harepng other findings,
we present the interesting phenomenon of overestimatiegtimber of QTL by
the standard Poisson regression. This behavior can bleudtti to the inability of
the Poisson regression to account for data over-dispessidrtherefore it should
not be applied for identifying QTL's based on count data. \W® aeport results
of the analysis of the mice gallstone data of Lyons et al. 80@hich confirms
the good performance of mBIC applied to ZIGPR. Specifically, method con-
firms the existence of a QTL on a chromosome 5, influencing timeher of gall-
stones, and additionally suggests a novel QTL on chromosbmeghe program
in R, which can be used for future real data analyses, is &aikt http://www-
m4.ma.tum.de/Papers/Erhardt/qgtl-zigp-code.rar

The outline of the paper is as follows. In Section 2 we inticeland discuss
our ZIGPR model for QTL mapping. In Section 3 we introduce tbherespond-



ing versions of mMBIC and EBIC. In Section 4 we present resulthefextensive
simulation study comparing ZIGPR to simpler versions ofsBon regression as
well as with a standard least squares regression with reégate performance of
mBIC and EBIC. Section 5 contains the results of the analysisioé mallstone
data of Lyons et al. (2003) and Section 6 contains a summanelas directions
for further research.

2 Zero-inflated generalized Poisson regression

One of the simplest distributions which can be used to modehttraits is the
Poisson distribution. However, the range of applicatidntis distribution is very
limited due to the lack of its flexibility. Specifically, theamdard Poisson model
assumes that the trait variance is equal to its mean. Asslisddater in this paper,
this weakness becomes particularly disturbing when thes@aidistribution is used
together with model selection tools for locating multiphkearacting QTL.

There are two natural extensions of the Poisson distribututich allow for
modeling a difference between the mean and the varianceNlegative Binomial
(or Poisson-Gamma) distribution and the generalized Boidsstribution. In this
paper we will use the generalized Poisson distribu@®{(u, ¢), which was first
introduced by Consul and Jain (1970) and subsequently stirdgietail by Consul
(1989). In the context of QTL mapping GP was applied e.g. byrfison (2003). In
this article we refer to the mean parametrization of GP(sgeConsul and Famoye
(1992)):
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for ye{0,1,...} P(Y=y|11,¢)= “(“+(¢yl DY) -y 91

Y

(2.1)
where u and ¢ are larger than 0. For ~ GP(u,¢) we haveE(Y) = u and
Var(Y) = ¢2u. This allows for modeling over- or underdispersion. Howgue
the case of underdispersiop € (0,1)), the support of the distribution depends on
¢ and@, which is difficult to enforce whem and¢ need to be estimated. There-
fore, in this article we restrict to equi- and overdispensip > 1.

When comparing to the Negative Binomial (NB) distribution, e distri-
bution has several advantages. While the NB distributioh yihf

- (%) )

andE(Y) = p, Var(Y) = pu(1+ &) contains the basic Poisson distribution only as
a limiting case fol — o, the GP distribution contains the Poisson classpfer 1.



Second, unlike the NB distribution the dispersion factdsi? is independent of the
mean. Hence, in the NB distribution the statistical modglf overdispersion is
less transparent than in case of the GP. For a detailed csopdretween GP and
NB we refer the readers to Joe and Zhu (2005).

A zero-inflated generalized Poisson (ZIGP) distributiom i&irther exten-
sion of the GP distribution, which allows to model a “spikézaro. Such a “spike”
occurs quite often when the response variable counts @éssesptoms (like e.g.
the gallstones). In the context of QTL mapping, the ZIGPrifigtion was first
applied by Cui, Kim, and Zhu (2006). As explained by Cui and Y&2(@09), the
over-excess of zeros may result from the fact that a centagtibn of a population
was not exposed to the disease virus.

The ZIGP distribution is defined as a mixture of a distribntemncentrated
at 0, denoted adj, and the generalized Poisson distribution:

ZIGP(1, 9, ) = W+ (1— W)GP(K, $) , (2.2)

wherew € [0, 1] is the zero-inflation parameter. Mean and varianc¥ ef ZIGP
are given by

E(Y)=(1-w)p and o?:=Var(Y)=E(Y) (¢*+ pw). (2.3)

To model the dependence of the count response variable danatpry
variables Famoye and Singh (2006) introduced a zero-idfigémeralized Poisson
regression model for independéht- ZIGP(L;, ¢, w ), wherep; andew are defined
through the log-linear and logit link functions, respeelyv In this article we will
restrict to the case when the zero-inflation parametdoes not depend on genetic
factors, while the dependency gf on explanatory variables is given through the
log-linear link function

k
logi = Bo+ > BiXji -
=

The constantv can be interpreted as the fraction of the population whick mat
exposed to the disease virus.

The class of ZIGPR models, considered in this paper contlagnsubclasses
of zero-inflated Poisson regression (ZIRR= 1), generalized Poisson regression
(GPR,w = 0) and standard Poisson regression (P¢iR; 1, w = 0).

Remark 1. In our preliminary research we also considered the sitnatioen both

w andu were influenced by genetic covariates. However, we obsehadiue to
the fact that bothu and w directly influence the expected trait value and the prob-
ability that the trait is equal to zero, a precise separaioregressors influencing



these two parameters was hardly possible with the samp#e gypically used for
QTL mapping. Therefore, the extension of our model to ineltite dependency
of w on the genetic factors did not bring the expected benefits threerestricted
version. We believe that our choice of a constans justified in many situations,
like e.g. in the case where it is interpreted as the proliglmfi not having a con-
tact with the disease virus. An alternative ZIGPR model f@iLQnapping was
proposed in Cui and Yang (2009). This model, based on the pdraation of
Lambert (1992), assumes that both logit@nd logu are proportionally influenced
by the same genetic covariates and explicitly “confoundsind w. The model
selection methods proposed in this article can be used aisthhé Cui and Yang
(2009) parameterization.

3 mBIC and EBIC for ZIGPR

Consider the problem of locating multiple interacting QTLexperimental popu-
lations. In this case precise estimators of QTL positiors their effects can be
obtained with the multiple interval mapping, MIM (see e.gadet al. (1999)),
which for a variety of different trait distributions has Ineenplemented in the pop-
ularly used package®TL Cartographerand R/qtlbim The application of MIM
for ZIGPR is quite straightforward and has been recentlgudised in Li and Chen
(2009). However, according to our knowledge, the implemeonn of MIM for
ZIGPR is not available yet.

The general idea of MIM is to fit the corresponding regressimuel at a
large number of possible QTL positions and estimate QTLtlona by maximizing
the corresponding likelihood function. If the QTL is locdteetween the markers,
the trait distribution is modeled as a mixture of distribag corresponding to the
possible QTL genotypes. The mixture coefficients are defimethe conditional
probabilities of QTL genotypes, given the genotypes of flagknarkers. The pa-
rameters of the linear model are usually estimated by the E@righm or by re-
placing the unknown QTL genotypes with the expected valfidseccorresponding
dummy variables, conditional on the genotypes of flankingkexa (for a compar-
ison of these two approaches in the context of the leastreguagression see e.g.
Kao (2000)). While MIM should be recommended for the precidé @nalysis,
it creates a huge computational burden when it needs to leategh many times in
large scale simulation studies. On the other hand, sinoma&sults of Dupuis and
Siegmund (1999) and Bogdan et al. (2008b) show that multigkrval mapping
does not substantially increase the power of QTL detectiocomparison to the
search over marker positions. Therefore, to reduce the gtatipnal complexity,
interesting genome regions can be initially chosen by sakpthe best regression



model (possibly with interactions), relating the traitwes to the marker genotypes.
Since the main purpose of the present article is the congraos different Pois-
son regression models with respect to the power of QTL detgaive restrict the
attention to such a search over markers.

In case of a backcross design or recombinant inbred lingg e only
two genotypes possible at every locus and each of the markey$e represented
by just one dummy variableXj = 3 or Xj = —3, depending on the number of
alleles from the reference parental line present at mayKer the it individual.
In case of an intercross design there are three possibleéygesoand, according
to the Cockerham’s model (see Kao and Zeng (2002)), each ohénkers can be
represented by two dummy variables:

1 ifthe j'" marker has a genotygg = AA
Additive  Effect Xaij = 0 if the j!" marker has a genotymg = aA
for individual i: —1 ifthe j!" marker has a genotymg = aa

Dominance Effect Xyj; =

{ 1/2 if j*" marker has a genotygg = Aa,
for individuali:

—1/2 otherwise.

LetY = (Y1,Y2,...,Yy)T denote the vector of values of some quantitative
trait for n individuals and leX,.n,, denote the corresponding design matrix, whose
columns contain dummy variables corresponding to all alséel markers. Note that
for the backcross and recombinant inbred liNgs= m, wherem is the number of
available markers, while for the intercrosg = 2m.

We assume that the relationship between QTL genotypes dcaglabove)
and the count trait can be described by a zero-inflated gkeretdoisson regres-
sion model. As already discussed, we will focus on identificeof markers which
are closest to the QTL. In our search, apart from main effeatditive and dom-
inance), we may include two-way interactions (epistatfea$). Thus our task
consists in choosing the best model of the fofm ZIGP(L;, ¢, w), with

log(ui) = Bo+ ZBJXH' + Z YouXiuXiv, (3.1)
Je (u,v)eu

wherel is a subset of the set of indicés= {1,...,Nyn} of all dummy variables

coding QTL genotypes ard is a subset oN x N. Note that the total number of

potential two-way interactions is equallfa = Nyy(Nm— 1) /2.

Remark 2. Our model allows to include interaction effects without tioerespond-
ing main effects. This modeling strategy is motivated bywedl documented find-



ings of genes which do not have main effects and influencediteonly by interac-
tions with other genes (see e.g., Fijneman, De Vries, Jaars@Demant (1996) and
the real data analysis in the present paper). In principkentodel (3.1) could be
extended to include also interactions of higher order. Henelue to the increased
multiple testing problem, the power for identification ofchunteractions is very
limited for sample sizes typically used in QTL mapping. Téfere, genome-wide
searches for high-order interactions are rarely carrigd ou

Remark 3. In case of an intercross design there are four terms in teadimodel
(3.1) which describe the interaction between fhn andk-th marker: additive-
additive termXajj Xaik, additive-dominance termid,jj Xqix, dominance-additive term
XdijXaik and dominance-dominance tedg;jXqik. In our approach we separately
add these terms to the model. Compared to the approach whehesé terms
are included together, our method allows to reduce the pe(@l the number of
degrees of freedom) for the interaction and allows for adappwer of detecting
epistasis, when only one or two of the interaction companhané substantially
different from zero.

Since we do not know the QTL number nor their locations, weaus®del
selection procedure for choosing the best regressors iren{8dl). One popu-
lar method for this purpose is the Schwarz Bayesian Infoona@riterion (BIC).
However, when locating QTL with the standard least-squeegeession, BIC was
found to have a strong tendency to overestimate the QTL nuisee e.g. Bro-
man and Speed (2002)). As discussed in Bogdan et al. (2008cpHenomenon is
closely related to the well known multiple testing probledpecifically, in Bogdan
et al. (2008c) it is proved that under the orthogonal dedigreixpected number of
“false discoveries” produced by BIC converges to infinit)% — o, In Bogdan
et al. (2004) an alternative Bayesian explanation is pralidde Bayesian model
selection suggests choosing the mddglthat has the highest posterior probability

P(M;[Y) OL(Y[Mj)m(Mj) ,

whereL(Y|Mj) is the likelihood of the data given the modd|, and ri(Mj) is a
prior probability of Mj. The standard BIC neglects(M;) and uses the Laplace
approximation for lod.(Y|Mj) (e.g. see Ghosh, Delampady and Samanta (2006)),
which results in

BIC = log(L(Y|M;, &;)) — %k,— log(n) ,

Where3j is the maximum likelihood estimate of the parameter vectanodelM;
andk; denotes the dimension of.



In Bogdan et al. (2004) it is observed that neglectiriéyl;) corresponds
to assigning the same prior probability to each model. lasygo check that this
leads to the implicit BinomiaB(Nm, %) prior on the number of main effects. This

prior is concentrated mainly on the inter»(ef!"m‘gv N Bt 3y Nm) and assigns an

unsuitably large prior probability to the event that theetrumber of QTL is close
to % This in turn causes the BIC to choose relatively large modedssolve this
problem, in Bogdan et al. (2004) a modified version of the BICedanBIC, has
been proposed. The mBIC criterion allows to take prior infation on the number
of QTL into account. LeE(k) andE(r) denote the expected values of the prior
distributions for the number of main and epistatic effexspectively. In mBIC the
parametep = % in the Binomial prior distribution for the number of true regsors

is replaced withp; = %‘3 for the main effects an@e = %) for the interactions.

After some simple algebra (for details see e.g., Bogdan 2@04) orZak-
Szatkowska and Bogdan (2010)), we obtain that mBIC selectsnthagel which
maximizes the expression

mBIC:= 2Iog(L(Y|Mj,3j))) — (kj+rj)log(n) — 2kjlog(l —1) — 2rjlog(u—1) ,
(3.2)
wherek; andr; are the numbers of main and interaction effects in the mbyel
| = - andu= . Inthe case of no prior information, Bogdan et al. (2008c) &sgg

P
using

Nm
| = — 3.3
4 Y ( )
when the scan is restricted to main effects only and
N N
l=—" and u=_—, (3.4)

~22 2.2

when epistatic effects are considered as well.
In comparison to BIC, the standard version of mBIC for detectimgn
effects and two-ways interactions contains the additipeaklty term

2k log (72—1> +2rjlog (2‘2—1) ,
which depends on the number of markers used in the genome Asashown in
Bogdan et al. (2008c), in case of the standard least squaresston this additional
term allows to deal with the multiple testing problem andrgnéees that the overall
type | error does not exceed 0.08 for a sample size of 200 ane timan 30 markers.

Due to the consistency of mBIC, the probability of the type bedecreases when
the sample size increases.



Choosing the same penalty constant (namely 2.2) for mainrgedaction
effects results in dividing the probability of the overalpe | error in two approx-
imately equal parts: the probability of detecting a “falselditive effect and the
probability of detecting a “false” interaction. Thus, theected number of falsely
detected interactions is approximately equal to the nurabfaisely detected main
effects. Note that sincBle >> Ny, this choice implies a larger penalty for inter-
action terms than for main effects. As a result the power oéatang interaction
effects by the standard version of mBIC is substantially an#han the power of
detecting main effects of the same “size”. This choice isléderate decision. Since
Ne >> N, equating the penalty coefficients for main and interaadibects in such
a way that the probability of the overall type | error is stifintrolled would lead to a
decrease of the power for main effects, without having mdigceon the power for
interactions. Our proposed approach can easily be extandegher order interac-
tions, even without a significant sacrifice of power of detectower order terms.
However, other choices are also possible and the penalfficerts can easily be
adjusted according to prior knowledge and preferenceseofabearcher.

Remark 4. As discussed in Bogdan et al. (2008b), the specific choiceegiéimalty
coefficients for mBIC is related to the Bonferroni correcti@an multiple testing.
This correction works well when the corresponding tesistas are independent
and is usually quite conservative when they are stronglyetated. Therefore, the
calibration of mBIC is particularly suitable for sparse narknaps. Despite these
concerns, the simulation study reported in Bogdan et al.4p8Bows that in the
case of a backcross design, where the correlation betwekkenggenotypes is par-
ticularly strong, mBIC works well if the average distancevwstn markers is larger
or equal than &M. The performance of mBIC for dense marker maps and multi-
ple interval mapping is investigated in Bogdan et al. (2008ljere a method for
scaling the corresponding penalty coefficients is propo3ée results of Bogdan
et al. (2008b) suggest that if the average distahlsetween markers is smaller than
5cM, the penalty “weight” of each additive and interaction teshould roughly

be proportional tal. Thus, if markers are very densely spaced, the correspgndin
penalty for the additive effects depends on the length ofkinemosome rather than
the number of markers. In case of interactions, the penakgficient still depends
on the number of markers, but this dependence is substgitiebker than for a
sparse map.

The calculations presented in Bogdan et al. (2004), Bogdah €0908b)
and Bogdan et al. (2008c), which lead to the specific choickamdu, are based on
the assumption that the likelihood ratio statistics fotitesthe significance of spe-
cific explanatory variables have asymptotically the chiegg distribution. Since,



under some mild regularity conditions, this assumptionaissfied for the Gen-
eralized Linear Models (see e.g. Shao (1999)), the propokeites forl andu
are appropriate also in this case. An extensive simulatiotys confirming good
properties of the mBIC in the context of logistic and Poissegression, can be
found inZak-Szatkowska and Bogdan (2010). Note however that ZIGRR dot
fit the general framework of GLM, since the ZIGP distributidoes not belong to
the exponential family. In this case a standard choick aid u can be justified
by theoretical results on the asymptotic normality of theximaim likelihood es-
timate of & = ((Bj)jel, (Vuv) (uv)eu, $, W), presented in Czado, Erhardt, Min, and
Wagner (2007) based on Min and Czado (2010). This impliesuhder the null
hypothesis the corresponding likelihood ratio test diatifave also asymptotically
a chi-square distribution. The appropriateness of thedstahchoice of andu for
ZIGPR is confirmed by the simulation study, presented in t section.

A similar modification of BIC was recently proposed by Chen an@iCh
(2008), who introduce an extended BIC (EBIC), based on therdiftgorior choices
for the model dimension. In comparison to mBIC, the priors usge&BIC sub-
stantially prefer models of larger dimensions. Specificdlie standard, most re-
strictive version of the EBIC, assumes that the prior distrdsuon the number of
main effects is uniform on the s¢0,1,..., Ny} (see Li and Chen (2009)). After
assigning the same prior probability to all models of the salimension this re-
sults in1(M;) = ﬁ(“km)fl. Interestingly, the same prior is proposed in Scott
and Berger (2008), where it results from the application ofeaanchical model
with a non informative, uniform prior on the proportion ofi¢r regressorp. The
choice between mBIC and EBIC should depend on the prior exjp@tseconcern-
ing the QTL number. As illustrated by theoretical resulscdssed in Bogdan et al.
(2008b) and proved in Bogdan, Chakrabarti, and J.K.Ghosh8&0MnBIC has
some asymptotic optimality properties in the context oésthg the best multiple
regression model under sparsity. Therefore mBIC seems tepecmlly appropri-
ate in case when one expects that the number of true preslistmuch smaller than
the number of columns in the “total” design matrix. To congtirese two criteria,
in the next section we present results of an extensive stronlatudy, in which we
identify important main effects with the standard versiom®IC

mBIC:= 2log(L(Y|M;, &;))) — klog(n) — 2klog (% - 1) . (35)

and the standard version of EBIC

EBIC:= 2log(L(Y|M;,d;))) —klog(n) — 2log (Nkm) . (3.6)



4  Simulation study

Simulations are carried out to investigate the performanficer proposed methods
of QTL detection for a backcross design. We simulate gerestygf N, = 100
markers located on 20 mice chromosomes. These markergresédre identical to
the ones in the data set investigated by Lyons et al. (2008 mfarker positions are
supplemented bl = 10 fictional QTL's (not matching any of the markers) located
on chromosomes 1 to 6. Figure 1 plots the marker and QTL paositon these 6
chromosomes.

Trait values are generated from the ZIGPR motek ZIGP(Li(B), ¢, w)),
with

pi(B) :=exp{2.05+Xq;B}, i=1,...,n, (4.1)

whereXq; = (Xou,i,---,Xo10;)’ denotes the vector of 10 QTL genotypes coded
as—1/2 and Y2 for homozygotes and heterozygotes, respectively, arahpeter
values are chosen as

B = (—0.20,1.00,0.25, —0.60,0.80, 1.20,0.70, —0.15, —0.40,1.50)’ .

Additionally, we choose = 2 and investigate small as well as medium sized zero-
inflation of w € {20% 40%}.

Our simulation results are basedMr= 1000 replicates for the sample sizes
n = 200 andn = 500. In each run new random markers and QTL genotypes are
generated from the map, the coefficieBtshowever, are kept identical. In order to
handle the computational complexity of a large scale sitranastudy, in each of
these replicates model selection is carried out using agahselection procedure.
We start with the Null model, i.e. we fEIGPR (o), ¢,w)), wherefy is the
coefficient of an intercept. We add sequentially the markbickvincreases the
standard version of the mBIC (3.5) the most, as long as the mBd&sy Since
our simulated QTL are widely spaced, we expect the modetwsleby forward
selection to be identical or close to the optimal model witspect to mBIC in most
of the replicates (see e.g., Broman (1997)). Additionallg earry out forward
selection based on mBIC with a Gaussian linear model (LM),iad@0 regression
(PoiR), generalized Poisson regression (GPR) and zeroadflabisson regression
(ZIPR). We include the standard least squares regression LM,
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Figure 1: Marker positions and positions of the true QTL, mhpositive effects are denoted by point-up triangles,
negative ones by point-down triangles. The sizes of thagtes are proportional to the magnitude of the coefficient.



since it is capable of identifying correlations betweenlarptory and response
variables, and may perform reasonably choosing importatigtors for the ZIGP
data. Also, due to the central limit theorem, we expect thBt@nwith LM will
control the number of false positives, even when the true dia generated accord-
ing to ZIGPR. Additionally, for each model class we performdalselection based
on the standard version of EBIC given in (3.6).

Results of the simulation study are compared for the five modskes. We
consider the following statistics:

e true positives (TP): number of selected effects whose nligtdo the simu-
lated QTL's was less or equal 20M; if more than one effect was caught in
the interval around a certain QTL only one of them was counted

o false positives (FP): number of selected effects whosanlist to the simu-
lated QTL's was higher than 2M

e misclassification error, ME = false positives (FR)false negatives (FN),
whereFN =10-TP

e power:TP/10

e observed false discovery raté DR=FP/(FP+ TP)

In Table 1 we will tabulate the averageskd®, ME, power and=DR. Figure 2 plots
the estimated power against the magnitude of the true regresoefficientss.

From Table 1 and Figure 2 we see that a higher number of olismrsa
substantially eases the detection of significant effects.tf@ other hand, higher
zero-inflation makes the detection of correct effects mdifeedlt even in the cor-
rectly specified ZIGPR model. Also, according to Figure 2, power of detection
clearly increases with the magnitude of the true regresseefficients.

Our simulations show that mBIC and EBIC based on the ZIGP maael p
vide a low false discovery rate while maintaining relatykigh power rates. These
criteria are also definitely the best with respect to the tagsification erroME.
Note that if the cost of the false positive is the same as teeafdhe false negative,
ME is proportional to the cost of the statistical inferentgerestingly, the second
best group of procedures with respect to ME is formed by thera@ based on the
standard least squares regression model, LM. While LM clgaelforms worse
than the correct ZIGPR model, it outperforms other misdpetmodels based on
Poisson regression. Specifically, the LM class offers a ntaigjer power than the
corresponding Generalized Poisson Regression (GPR) cldssulvzero-inflation
parameter. In case of the models without the overdispefsamameter, PoiR and
ZIPR, we observe the opposite, i.e., the correspondingieritdfer a much higher



n =200
mBIC
w=20% w = 40%
LM PoiR ZIPR GPR ZIGPR| LM PoiR ZIPR GPR ZIGPR
FP 0.125 21075 11309 (0658 Q357 | 0.106 27033 9614 0296 Q373
ME 6.944 22903 13486 7952 5371 | 8260 29025 12460 9631 6623
Power | 0.318 0817 Q782 Q271 Q499 | 0.185 Q801 Q715 Q066 Q375
FDR 0.036 Q711 0575 Q188 Q062 | 0.050 Q764 Q558 Q282 Q088
EBIC
w=20% w = 40%
FP 0.149 40869 19746 (0880 Q604 | 0.090 53568 15354 (0281 0614
ME 6.879 41808 21377 7943 5196 | 8368 54276 17671 9633 6397
Power | 0.327 Q906 0837 Q0294 Q541 | 0.172 Q929 Q768 Q065 Q422
FDR 0.040 Q809 0682 Q213 Q090 | 0.044 (0846 Q645 Q270 Q116
n =500
mBIC
w=20% w = 40%
LM PoiR ZIPR GPR ZIGPR| LM PoiR ZIPR GPR ZIGPR
FP 0.112 24662 14818 (0642 Q215 | 0.117 30817 13813 Q405 0234
ME 4830 25519 15723 6102 3541 | 5949 31847 15088 8381 4047
Power | 0.528 0914 Q909 Q454 Q667 | 0.417 (0897 Q873 Q202 0619
FDR 0.019 Q723 Q607 Q112 Q028 | 0.025 Q770 Q599 Q142 Q033
EBIC
w=20% w = 40%
FP 0.144 40428 26274 Q984 Q466 | 0.120 48520 23765 (0465 0435
ME 4662 40936 26878 6145 3397 | 5.815 49110 24665 8490 3940
Power | 0.548 0949 Q940 0484 Q707 | 0430 0941 Q910 Q198 0649
FDR 0.023 Q805 Q725 Q149 Q055 | 0.024 0835 Q708 Q154 Q057

Table 1. Average number of false positives (FP), misclasdibn error (ME),
power and false discovery rate (FDR) based on mBIC and EBIC fi@rdint model
classes and = 200,500 andw = 20%, 40%

power than the criteria based on LM, or even ZIGPR, but inskead to the detec-
tion of a large number of false positives. The FDR of PoiR atRRZsystematically
exceeds 50%, which implies that the number of false positiially exceeds the
number of true discoveries. We found this phenomenon veeyesting, since ac-
cording to our theoretical results and simulation studég®rted inZak-Szatkowska
and Bogdan (2010), the mBIC with PoiR performs very well witbprect to FDR
and ME if the data are generated exactly according to thesBoisegression. Also,
under the total null hypothesis, mBIC with PoiR controls tiverall type | error
at the assumed level. We believe that when the data are geddna ZIGPR the
criteria based on PoiR and ZIPR pick too many regressorsdardo account for
the data heterogeneity caused by overdispersion.
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Figure 2: Power for different sizes of true regression coieffits based on sev-
eral model classes. Note that the lines are linearly intatpd to increase visual
comparability.



n =200 mBIC
LM PoiR ZIPR GPR ZIGPR
FP 0.095 8200 8150 Q405 Q410
ME 5285 9830 9810 3920 3930
Power | 0.481 0837 (0834 (0648 0648
FDR 0.018 Q476 0475 Q053 Q053

Table 2: Average number of false positives (FP), misclasgibn error (ME),
power and false discovery rate (FDR) based on mBIC for diffeneodel classes
when the traits come from a Poisson distribution

In Table 2 we report the results of a further simulation stundyvhich the
data were generated according to the standard Poissossegrenodel PoiR, with
Ui defined by (4.1). Since this is only meant to be an illusteagxample, we re-
strict to the case of a scan based on mBICrfer 200 mice. In this case PoiR and
ZIPR perform similarly bad, while GPR and ZIGPR are simijlagbod. The rea-
son is simply that in the model classes allowing for excessszéhe zero-inflation
parameter for Poisson traits is estimated to be close tq herwe the performance
only depends on the underlying distribution, which is nékaited (i.e. Poisson and
GP, respectively). Interestingly, also in this case mBIChviDIR and ZIPR sub-
stantially overestimates the number of QTL. The numberleéfpositives produced
by these criteria is approximately equal to the number @& tliscoveries, with FDR
close to 50%. At the same time mBIC based on GPR and ZIGPR waoykwell,
maintaining a reasonable power and FDR at the level closéstolGturns out that
the poor behavior of mBIC based on PoiR or ZIPR results fronmtbdel misspec-
ification, caused by the discrepancy between the marker andl6zation. Here
we give a simple illustrative example: we generate Poissaitstwith 10 true ef-
fectsXi := (Xi1,...,X10)" andp; := exp(2.05+ X{B), wheref is chosen as before.
Then we fit two GPR models, one usiXg as regressors and one using misspeci-
fied XIMIS:= (XS ... XMiS)’ which are random and reflect genotypes referring to
a recombination fraction with distance ofd@ to X; in each component. In the
left panel of Table 3 we see that in the first cgsés estimated to be.Q1. This
illustrates that the GPR class contains the PoiR class atdhé dispersion can be
estimated with a very good precision. In the second caseeVewthe regressors
are misspecified by not knowing the exact trait loci and thekeragenotypeX™is
are used instead. Now is estimated to be.35 (see right panel of Table 3), i.e.
the estimated variance exceeds the estimated mean by adaatore than 10. As
one can see in Table 2 this leads to a dramatic overfit wheig usBIC with PoiR
since this model cannot reflect the additional overdisparand picks too many re-
gressors in order to account for the data heterogeneity-ibdation also leads to



overdispersion, however one can see in Table 1 for the ZIBR tteat zero-inflation
alone is insufficient to compensate the lack of the overdspe parameter.

Estimate Std. Error Pr(>|2|) Estimate Std. Error  Pr(>|Z|)
Interc. 2064 Q031 <2-10'® Interc. 2197 Q081 <2-1018
X, —0211 Q031 10 xs  —0.097 Q097 Q316
Xo 0.920 Q038 <2-10716  xmis 0.836 Q104 710716
X3 0.266 Q037 5101 xis 0211 Q103 0041
X4  —0.566 Q029 <2-10716  XxMs 0673 Q097 51012
Xs 0.812 Q035 <2-10716  xms 0.626 Q105 310°
Xe 1.228 Q049 <2.10716 XD 1.137 Q118 <2.10°16
X7 0.696 Q038 <2-10716  xms 0.379 Q102 2104
Xg —0.174 0033 107 X" —0.191 Q097 0049
Xo  —0.417 Q033 <2:1071¢  Xxis 0310 Q099 Q002
X10 1.518 Q046 <2.10716  xmis 1.199 Q114 <2-10°16

Table 3: GP fit of Poisson data £ 200) based on the 10 true effe¢¥, ..., X10)’

(left panel) with¢ = 1.01(0.051). GP fit of the same data based on 10 misspecified
effects correlated withiXy, ..., X10)’ which are 18M away from the true effects
(right panel),p = 3.25(0.477).

Comparing the performance of mBIC and EBIC under the most approp
ate ZIGPR model we observe that both these criteria perfam well and their
results do not differ much. As expected, EBIC offers sligltsger power at the
price of a larger, but still reasonable, FDR. Our simulatisimsw that the power of
these criteria increases and the expected number of fatsvps decreases as the
samples size goes up, which strongly suggest that theseiardre consistent also
under the ZIGPR model.

5 Real data analysis

The data by Lyons et al. (2003) considers different pherestyplated to gallstones.
While Lyons et al. (2003) focus on the gallstone weight, asd¢or solid gallstones

and the gallbladder volume, we will focus on the number ofsgiahes the 277 male
mice developed. The data is publicly available at

http://phenome.jax.org/phenome/protodocs/QTL/QTarisB.xIs

and refers to an intercross of CAST/Ei and 129S1/SvimJ inbmee. Since the
phenotypes considered in Lyons et al. (2003, Figure 5) dateckto the number



of gallstones the mice developed, we perform a preselectionteresting chro-
mosomes based on this figure. Hence we restrict our seareghtiochromosomes
accounting for 41 markers, i.e. we consider the chromos@n8ds4, 5, 7, 17, 18
and 19. We replace missing genotypes by their expected sjafjieen the flank-
ing markers (see for instance Haley and Knott (1992)). Adgliand dominance
effects are added separately, according to the specificptiovided in Section 3,
with a corresponding to the CAST/Ei allele. As a search method we fswvard
selection with mBIC based on ZIGPR. The reason for which weehaIC rather
than EBIC, is that mBIC has been adapted for the search of ini@naeffects. In
this case mBIC adjusts to the increased “multiple testingbfgm by changing the
penalty constant from 4 to 2.2 (see (3.2)). The adaptatidBBIC for the search
of interactions is not obvious and we are not aware of exjssiolutions to this
problem.

We performed two different analyses. At first we searched ém main
effects with the standard version of mBIC (3.2) and a penaltystant provided in
(3.3). Inthis case mBIC identifies one additive effect at DEMEB (“D5Mit183(a)”).
This is in line with the result of Lyons et al. (2003), whichufad this marker to be
significant for all three Gallstone related traits consédein their study. A model
summary is given in the upper panel of Table 4. Note that tlgenpsotic normal-
ity of the maximum likelihood estimates of the dispersiomgoaeter¢ and zero-
inflation parametet has been shown in Czado et al. (2007, Theorem 1). Therefore
we report the p-values of the Wald test also for these estsnaddditionally, we
performed the search for both additive and interactiorcesfesing mBIC (3.2) with
constants provided in (3.4). In this search we detected ditiaatadditive interac-
tion term between two markers: D5Mit183 and a novel suggeQiTL, D4Mit42.
A model summary is given in the middle panel of Table 4. Aduh#lly, in the
lower panel of Table 4 we provide the results of the analyased on the model
including additive effects of both D5Mit183 and D4Mit42 atieeir interaction.
Interestingly, the p-value corresponding to the intemacterm between D5Mit183
and D4Mit42 is substantially smaller than the p-valuesesponding to the additive
effects, which suggests that the interaction between DB33itand D4Mit42 plays
a very important role in determining the expected numberti§tpnes. This obser-
vation is confirmed by the graphical representation in Féddirin accordance with
the results of the search for main effects this figure sugdbat the expected num-
ber of gallstones decreases when the number of 129S1/Slietebaat D5Mit183
increases. However, according to the bottom graph, theteff@®©5Mit183 strongly
depends on the genotype at D4Mit42, and is most pronouncexiée who are ho-
mozygous for 129S1/SvimJ allele at D4Mit42. Specificalhe taverage number
of gallstones is decisively the largest in the group of midh whe combination of
dummy variables equal to (-1,1), which corresponds to theerhbmozygous for



Estimate Std. Error  z value Pr(>|2|)

Intercept 0067 0983 0068 0946
D5Mit183(a) —1.292 0432 —-2.991 Q003
¢ 6.799 3.560 1.909 0.056
w 0.631 0.362 1.743 0.081
Intercept —0.156 0572 -0.272 Q786
D5Mit183(a):D4Mit42(a) —2.298 Q495 -4.647 34-10°
[0} 5.776 2.520 2.293 0.022
w 0.575 0.167 3.437 0.001
Intercept —0.864 0573 —-1.510 0131
D5Mit183(a) —1.244 Q442 -2.817 Q005
D4Mit42(a) —0.215 0476 -0.451 0652
D5Mit183(a):D4Mit42(a) —2.177 0548 -3973 71-10°
¢ 5.387 2.185 2.466 0.014
w 0.458 0.163 2.809 0.005

Table 4: ZIGP model summaries of forward selection based BCnfior different
regression designs.

CAST/Ei allele at D5Mit183 and for 129S1/SvimJ allele at D#42i. Finally we

add that we also carried out a scan based on the LM. Neithdreirs¢arch over
main effects nor in the search including epistatic effecsggaificant effect could
be caught.

6 Discussion

We investigated the applicability of different versiondRafisson regression and the
modified Bayesian Information Criterion for locating mulgphteracting quantita-
tive trait loci influencing count traits. Our research destogies very good prop-
erties of the zero-inflated generalized Poisson regressitims context. ZIGPR
takes into account both the overdispersion and an oversexadfeeros and performs
much better than simplified versions of Poisson regressi@ase when both these
parameters play an important role. Moreover, we found aattttie overdispersion
parameter allows to compensate for a model misspecificdtierto the discrepancy
between marker and QTL locations. Therefore, the searcméwkers associated
with the count trait based on ZIGPR gives much better residte the one based
on the standard Poisson regression, even when the dataremeggsl according the
latter. Also, our simulations illustrate very good propestof the modified ver-
sions of the Bayesian Information Criterion, mBIC and EBIC, adieggo select
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important predictors for ZIGPR. Both these criteria perfomaisimilar way and
guarantee a good power of QTL detection, while keeping tlse @iscovery rate at
a low level. The reported real data analysis shows the pesgitins, which can be
obtained when ZIGPR with mBIC is used for detection of interacQTL.

Good properties of mBIC in the context of sparse orthogondtiphe re-
gression were confirmed by the results on its asymptoticraiiy, proved in Bog-
dan et al. (2008a). Our preliminary results suggest thataimsymptotic optimal-
ity results can be proved for EBIC. However, the extension es¢hresults to the
nonorthogonal designs and ZIGPR models presents a majlbertgpa and remains
a topic for future research.

Due to the complexity of a large scale simulation study, vehmsin pur-
pose was the comparison of different Poisson regressiorelsiode reduced the
attention to the search over markers. Note that the compngteffort for the sim-
ulation study carried out in Table 1 was very high. We made¢egsbme effort to
optimize theR code, nevertheless the repeated search for significactetieer the
100 main effects was running for more than 20 days on a plrzakk32-core clus-
ter with 2.6 GHz processors. However, an extension of thpgeed methodology
to the multiple interval mapping is in general quite straiigiward and, concerning
the estimates of QTL effects and positions, goes along tieedf an interval map-
ping for ZIGPR, as proposed in Cui and Yang (2009). Concerniag#timate of
a QTL number, a successful application of EBIC for the mudtipterval mapping
with mixture General Linear Models was presented in Li andrC{2©09). Also,
the results reported in Bogdan et al. (2008b) show that if Brarléare on the average
distant by more than 5 cM then mBIC may be successfully used tivé multiple
interval mapping. However, the results reported in Bogdaal.e€2008b) show
also that if markers are densely spaced (less than 5 cM apart)the neighbor-
ing marker genotypes are strongly correlated and the pemaihBIC and EBIC
could be substantially relaxed. We believe that the comedimg scaling coeffi-
cients provided in Bogdan et al. (2008b) would work well alsoZIGPR but an
exact verification requires a very intensive simulatiordgtand is out of the scope
of the present paper.

To reduce the complexity of our simulation study we idendiftae best
regression model with a forward selection. Our simulati@sswell as results re-
ported in Broman (1997), Broman and Speed (2002), and Bogdan @084),
show that the forward selection usually performs well in¢batext of QTL map-
ping. However, the real data analysis reported in Bogdan ¢2@08b) illustrates
that in the case when there are many linked QTL this procechae fail to iden-
tify the optimal model. The uncertainty related to the moclebice can be well
expressed within the Bayesian framework by the posteriomiqmbabilities. The
Bayesian approach for the analysis and comparison of ZIGP@Rmaevas investi-



gated e.g. in Gschl3l and Czado (2006). However, the computational complexity
of the full Bayes analysis by Markov Chain Monte Carlo (MCMC) sabsally
limits its range of applications in the context of localigimultiple interacting QTL.
Note however that both mBIC and EBIC allow an approximationht posterior
probabilities of different models according to

. exp(xBIC(i)/2)
PIMi[Y) ~ y ;exp(xBIC(j)/2) ’
wherexBIC denotes mBIC (3.2) or EBIC (3.6) and the sum in the denominator i
over all possible ZIGPR models. Thus, to estimate the postprobability of a
given model by the modified BIC it is enough to visit each of theupible models
just once. This allows to substantially reduce the compartat burden in compar-
ison to the MCMC methods, which typically require multiplsits of each model,
and then estimate the posterior probability by the frequericsuch visits. How-
ever, the estimate &f(M;|Y) provided in (6.1) may be accurate only if the majority
of plausible models is represented in the denominator. €fbes, to use mBIC or
EBIC in a Bayesian context, a suitable, computationally &ffitisearch strategy
still needs to be developed.

(6.1)
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