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Abstract

In this article, we review the concept of a Lévy copula to describe the dependence

structure of a bivariate compound Poisson process. In this first statistical approach

we consider a parametric model for the Lévy copula and estimate the parameters of

the full dependent model based on a maximum likelihood approach. This approach

ensures that the estimated model remains in the class of multivariate compound

Poisson processes. A simulation study investigates the small sample behaviour of

the MLEs, where we also suggest a new simulation algorithm. Finally, we apply our

method to the Danish fire insurance data.
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1 Introduction

Copulas open a convenient way to represent the dependence of a probability distribution.

In fact they provide a complete characterization of possible dependence structures of a

random vector with fixed margins. Moreover, using copulas, one can construct multivariate

distributions with a pre-specified dependence structure from a collection of univariate

laws. Modern results about copulas originate more than forty years back when Sklar [16]

defined and derived the fundamental properties of a copula. Further important references

are Nelson [14] and Joe [12]. Financial applications of copulas have been numerous in

recent years; cf. Cherubini, Luciano and Vecchiato [6] for examples and further references.

We are considering multivariate Lévy processes, whose dependence can be modelled

by a “copula” on the components of the Lévy measure. This has been suggested in

Tankov [17] for subordinators, the case of general Lévy processes was treated in Kallsen

and Tankov [13]; Lévy copulas can also be found in the monograph of Cont and Tankov [7].

Modelling dependence in multivariate Lévy processes by Lévy copulas offers the same

flexibility for modelling the marginal Lévy processes independently of their dependence

structure as we know from distributional copulas. Statistical methods, which have existed

for distributional copulas for a long time, still have to be developed for Lévy copulas. The

present paper is a first step.

The Lévy copula concept has been applied to insurance risk problems; more precisely,

Bregman and Klüppelberg [2] have used this approach for ruin estimation in multivariate

models. Eder and Klüppelberg [8] extended this work to derive the so-called quintuple law

for sums of dependent Lévy processes. This describes the ruin event by stating not only

the ruin probability, but also quantities like ruin time, overshoot, undershoot; i.e. they

present a ladder process analysis. The notion of multivariate regular variation can also be

linked to Lévy copulas, which is investigated and presented in Eder and Klüppelberg [9].

In a series of papers, Böcker and Klüppelberg [3, 4, 5] used a multivariate compound

Poisson process to model operational risk in different business lines and risk types. Again

dependence is modelled by a Lévy copula. Analytic approximations for the operational

Value-at-Risk explain the influence of dependence on the institution’s total operational

risk.

In view of these economic problems, which are well recognised in academia and among

practitioners, the present paper is concerned with statistical inference for bivariate com-

pound Poisson processes. Our method is based on Sklar’s theorem for Lévy copulas, which

guarantees that the estimated model is again multivariate compound Poisson.

This approach, whose importance is already manifested by the above mentioned eco-

nomic applications as well as in a data analysis at the end of our paper, will have far

reaching implications for the estimation of multivariate Lévy processes with infinite ac-
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tivity sample paths as is relevant in finance. This has been worked out in Esmaeili and

Klüppelberg [11].

Our paper is organized as follows. Section 2 presents the definition of a multivariate

compound Poisson process (CPP) and explains the dependence structure in three possible

ways. This prepares the ground for a new simulation algorithm for multivariate compound

Poisson processes and for the maximum likelihood estimation. Then we define the concept

of a tail integral and a Lévy copula for such processes in Section 3. In Section 4 we derive

the likelihood function for the process parameters, where we assume that we observe the

continuous-time sample path. In Section 5 we suggest a new simulation algorithm for

multivariate compound Poisson processes and show it at work by simulating a bivariate

CPP, whose dependence structure is modelled by a Clayton Lévy copula. Finally, in

Section 6 we fit a compound Poisson process to the bivariate Danish fire insurance data,

and present some conclusions in Section 7.

2 The multivariate compound Poisson process

A d-dimensional compound Poisson process (CPP) is a Lévy process S = (S(t))t≥0, i.e.

a process with independent and stationary increments, defined on a filtered probability

space (Ω,F , (Ft)t≥0,P), with values in Rd. It is stochastically continuous, i.e. for all a > 0,

lim
t→h

P (|S(t) − S(h)| > a) = 0 , h ≥ 0 ,

and as is well-known (see e.g. Sato [15], Def. 1.6), a càdlàg version exists, and we assume

this property throughout. For each t > 0 the characteristic function has the so-called

Lévy-Khintchine representation:

E[ei(z,S(t))] = exp

{
t

∫

Rd

(
ei(z,x) − 1

)
Π(dx)

}
, z ∈ Rd , (2.1)

where (·, ·) denotes the inner product in Rd. The so-called Lévy measure Π is a measure

on Rd satisfying Π({0}) = 0 and
∫

Rd Π(dx) < ∞. Moreover, CPPs are the only Lévy

processes with finite Lévy measure.

According to Sato [15], Theorem 4.3, a compound Poisson process is a stochastic

process

S(t) =

N(t)∑

i=1

Zi , t ≥ 0 , (2.2)

where (N(t))t≥0 is a homogeneous Poisson process with intensity λ > 0 and (Zi)i∈N is a

sequence of iid random variables with values in Rd. Moreover (N(t))t≥0 and (Zi)i∈N are

independent and the Zi’s have no atom in 0, i.e. P (Z1 = 0) = 0.
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To prepare the ground for our statistical analysis based on a Lévy copula to come,

we present a bivariate CPP in more detail. In particular, we give three approaches to

understand the dependence structure of such a process in more detail.

Assume that for i ∈ N the bivariate vector Zi has df G with components Z1i and Z2i

with dfs G1 and G2, respectively. It is, of course, possible that single jumps in one of the

marginal processes occur, in which case the probability measure of the marks Z1i and Z2i

have atoms in 0; i.e. they are not continuous.

In our first approach we write

S(t) =

N(t)∑

i=1

(Z1i, Z2i) =
(N(t)∑

i=1

Z1i,

N(t)∑

i=1

Z2i

)
, t ≥ 0, (2.3)

where we set p1 := P (Z1i = 0) and p2 := P (Z2i = 0) and recall that possibly p1, p2 > 0.

Then for almost all ω ∈ Ω,

S1(t) =

N1(t)∑

i=1

Xi, t ≥ 0 and S2(t) =

N2(t)∑

i=1

Yi, t ≥ 0, (2.4)

where Xi and Yi take only the non-zero values of Z1 and Z2, respectively, and inherit the

independence of N1(·) = (1− p1)N(·) and N2(·) = (1− p2)N(·). To make this precise, for

i = 1, 2 and a Borel set A ⊂ R \ {0} we can write

P
(N(t)∑

j=1

Zij ∈ A
)

= P
(N i1(t)∑

j=1

Zij 1{Zij>0} +

N i2(t)∑

j=1

Zij 1{Zij=0} ∈ A
)
, t ≥ 0 , (2.5)

where N1i(·) and N2i(·) count the non-zero and zero jumps, respectively. By the thinning

property of the Poisson process, they are again Poisson processes. Since the last summation

in (2.5) is zero, we conclude that for almost all ω ∈ Ω

N11(t)∑

j=1

Z1j =

N1(t)∑

j=1

Xj, t ≥ 0, and

N21(t)∑

j=1

Z2j =

N2(t)∑

j=1

Yj , t ≥ 0,

are compound Poisson processes. Here (N1(t))t≥0, (N2(t))t≥0 are Poisson processes with

intensities λ1 = (1 − p1)λ and λ2 = (1 − p2)λ, respectively, and (Xi)i∈N and (Yi)i∈N are

sequences of iid random variables with dfs given for all x ∈ R by

F1(x) = P (Z1 ≤ x | Z1 6= 0) and F2(y) = P (Z2 ≤ y | Z2 6= 0)

Unlike G1 and G2, the dfs F1 and F2 have no mass in 0.

Our second approach is based on the representation of a compound Poisson process

as an integral with respect to a Poisson random measure M ; cf. Sato [15], Theorems 19.2
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and 19.3. For almost all ω ∈ Ω we have the representation

S(t) =

N(t)∑

i=1

(Z1i, Z2i)

=

∫ t

0

∫

R2\{0}

zM(ds × dz) (2.6)

=

∫ t

0

∫

(R\{0})×{0}

zM(ds × dz) +

∫ t

0

∫

{0}×(R\{0})

zM(ds × dz) +

∫ t

0

∫

(R\{0})2
zM(ds × dz)

where M is a Poisson random measure on [0,∞) × (R2 \ {0}) with intensity measure

ds Π(dz).

Corresponding to the first two integrals we can introduce two compound Poisson pro-

cesses S⊥1 and S⊥2 , which are called the independent parts of (S1, S2). They are independent

of each other and never jump together. On the other hand, the third integral corresponds

to a compound Poisson process which is supported on sets in (R \ {0})2, and this part

of (S1, S2) measures the simultaneous jumps of S1 and S2. We denote it by (S
‖
1 , S

‖
2), and

it is the (jump) dependent part of (S1, S2). Since its components S
‖
1 and S

‖
2 always jump

together, they must have the same jump intensity parameter, which we denote by λ||.

Now we can decompose (S1(t), S2(t))t≥0 for almost all ω ∈ Ω into

S1(t) = S1(t)
⊥ + S1(t)

‖ , t ≥ 0 , (2.7)

S2(t) = S2(t)
⊥ + S2(t)

‖ , t ≥ 0 .

Here we see clearly the decomposition of the bivariate compound Poisson process in single

jumps in each marginal process and the process of common jumps in both components. It

is clear from the properties of the Poisson random measure that the three processes S⊥1 ,

S⊥2 and (S
‖
1 , S

‖
2) are compound Poisson and independent.

Our last approach is similar to the previous one, but based on a decomposition of the

Lévy measure. It also prepares the ground for the following Section 3. Recall that for any

Borel set A ⊆ R2 \ {0} its Lévy measure Π(A) denotes the expected number of jumps per

unit time with size in A. This can be formulated as

Π(A) = E
[
#{(t, (∆S1(t), ∆S2(t))) ∈ (0, 1] × A}

]
.

This set, and hence Π can be decomposed into the following components:

Π1(A) = E
[
#{(t, (∆S1(t), ∆S2(t))) ∈ (0, 1] × A | ∆S1(t) 6= 0 and ∆S2(t) = 0}

]
,

Π2(A) = E
[
#{(t, (∆S1(t), ∆S2(t))) ∈ (0, 1] × A | ∆S1(t) = 0 and ∆S2(t) 6= 0}

]
,

Π3(A) = E
[
#{(t, (∆S1(t), ∆S2(t))) ∈ (0, 1] × A | ∆S1(t) 6= 0 and ∆S2(t) 6= 0}

]
.

5



Since Π(A) = Π1(A) + Π2(A) + Π3(A), the integral of the characteristic function in (2.1)

can be decomposed into three integrals with different Lévy measures Π1(A), Π2(A) and

Π3(A), respectively. Clearly Π1 is supported by the set {(x, 0) ∈ R2 | x ∈ R}. We set

Π1(A) = Π⊥1 (A1), where A1 = {x ∈ R | (x, 0) ∈ A}. Then the first integral reduces to a

one-dimensional integral related only to the component S1. Similarly, for the second part

Π2(A) = Π⊥2 (A2), where A2 = {y ∈ R | (0, y) ∈ A}; hence the second integral also reduces

to a one-dimensional integral. By introducing the notation Π‖ for Π3, the characteristic

function in (2.1) can be decomposed into

E
[
eiz1S1(t)+iz2S2(t)

]

= exp

{
t

∫

R

(eiz1x − 1)Π⊥1 (dx) + t

∫

R

(eiz2y − 1)Π⊥2 (dy) + t

∫

R2

(eiz1x+iz2y − 1)Π‖(dx × dy)

}

= E
[
eiz1S1(t)⊥

]
E
[
eiz2S2(t)⊥

]
E
[
eiz1S1(t)‖+iz2S2(t)‖

]
. (2.8)

Note that the Lévy measure Π⊥1 gives the mean number of jumps of S1 such that S2 does

not have a jump at the same time. Similarly, the mean number of jumps for S2, when

S1 has no jump, is measured by Π⊥2 . Corresponding to Π⊥1 and Π⊥2 we find again the

two processes S⊥1 and S⊥2 which we called the independent parts of (S1, S2). On the other

hand, Π‖ is supported by sets in (R \ {0})2, and we denoted this part by (S
‖
1 , S

‖
2), which

is the (jump) dependent part of (S1, S2). This results in the same representation (2.7) as

above.

This decomposition has also been presented in Cont and Tankov [7], Section 5.5 and

Böcker and Klüppelberg [3], Section 3. Note that for completely dependent components

we have S⊥1 = S⊥2 = 0 a.s. On the other hand, for independent components, the third

part of the integral (2.6) or (2.8) is zero and this means that the components a.s. never

jump together.

3 The Lévy copula

We shall present an estimation procedure for a bivariate compound Poisson process based

on Lévy copulas. The reason for this is two-fold. Working with real data it may not

be so easy to estimate statistically the components on the right-hand side of (2.7) so

that the resulting statistical model is a bivariate compound Poisson process. Moreover,

the ingredients require quite a number of parameters, which makes it desirable to find a

parsimonious model. We are convinced that the notion of a Lévy copula plays here the

same important role as a copula does for multivariate dfs.

Mainly for ease of notation we shall present our Lévy copula concept for spectrally

non-negative CPPs only; i.e. for CPPs with non-negative jumps only. Since the Lévy
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copula for a general CPP is defined for each quadrant separately, this is no restriction of

the theory developed. Furthermore, the insurance claims data considered later also justify

this restriction.

Lévy copulas are defined via the tail integral of a Lévy process.

Definition 3.1. Let Π be a Lévy measure on Rd
+. The tail integral is a function Π :

[0,∞]d → [0,∞] defined by

Π(x1, . . . , xd) =

{
Π([x1,∞) × · · · × [xd,∞)) , (x1, . . . , xd) ∈ [0,∞)d

0 , if xi = ∞ for at least one i.
(3.1)

The marginal tail integrals are defined analogously for i = 1, . . . , d as Πi(x) = Πi([x,∞))

for x ≥ 0.

Next we define the Lévy copula for a spectrally positive Lévy process; for details see

Nelson [14], Tankov [17] or Cont and Tankov [7].

Definition 3.2. The Lévy copula of a spectrally positive Lévy process is a d-increasing

grounded function C : [0,∞]d → [0,∞] with margins Ck(u) = u for all u ∈ [0,∞] and

k = 1, . . . , d.

The notion of groundedness guarantees that C defines a measure on [0,∞]d; indeed a

Lévy copula is a d-dimensional measure with Lebesgue margins.

The following theorem is a version of Sklar’s theorem for spectrally positive Lévy

process; for a proof we refer to Tankov [17], Theorem 3.1.

Theorem 3.3 (Sklar’s Theorem for Lévy copulas).

Let Π denote the tail integral of a spectrally positive d-dimensional Lévy process, whose

components have Lévy measures Π1, . . . , Πd. Then there exists a Lévy copula C : [0,∞]d →

[0,∞] such that for all (x1, x2, . . . , xd) ∈ [0,∞]d

Π(x1, . . . , xd) = C(Π1(x1), . . . , Πd(xd)). (3.2)

If the marginal tail integrals are continuous, then this Lévy copula is unique. Otherwise,

it is unique on RanΠ1 × . . . × RanΠd.

Conversely, if C is a Lévy copula and Π1, . . . , Πd are marginal tail integrals of a spectrally

positive Lévy process, then the relation (3.2) defines the tail integral of a d-dimensional

spectrally positive Lévy process and Π1, . . . , Πd are tail integrals of its components.

This result opens up now a way of estimating multivariate compound Poisson processes

by separating the marginal compound Poisson processes and coupling them with the

dependence structure given by the Lévy copula. We shall show the procedure in details

in the next section.

7



4 Maximum likelihood estimation of the parameters

of a Lévy measure

Now the stage is set to tackle our main problem, namely the maximum likelihood estima-

tion of the parameters of a bivariate spectrally positive CPP based on the observation of

a sample path of the bivariate model in [0, T ] for fixed T > 0.

Obviously, representation (2.3) suggests estimating the rate of the compound Poisson

process based on the i.i.d. exponential arrival times and, independently, the bivariate dis-

tribution function of (Z1, Z2). Since both marginal random variables may have an atom in

0, and in the examples we are concerned about, they indeed have, we are faced with the

estimation of a mixture model. This is one reason, why we base our estimation on rep-

resentation (2.8). The other motivation comes from possible extensions of our estimation

method to general Lévy processes; cf. Esmaeili and Klüppelberg [11].

Consequently, we assume throughout that the decomposition (2.7) holds for the ob-

served path. We write for t ∈ [0, T ],

(
S1(t)

S2(t)

)
=

( ∑N1(t)
i=1 Xi∑N2(t)
j=1 Yj

)
=

(
S1(t)

⊥ + S1(t)
‖

S2(t)
⊥ + S2(t)

‖

)
=

( ∑N⊥
1

(t)
i=1 X⊥i +

∑N‖(t)
j=1 X

‖
j∑N⊥

2
(t)

i=1 Y ⊥i +
∑N‖(t)

j=1 Y
‖
j

)
(4.1)

with the familiar independence structure of the Poisson counting processes and the jump

variables. Although, as described above, every bivariate CPP has three independent parts,

the parts are linked by a common set of parameters in the frequency part as well as in

the jump size distributions.

Our approach is an extension of the maximum likelihood method for the one-dimensional

compound Poisson model; see e.g. Basawa and Prakasa Rao [1], Chapter 6.

Assume that we observe the bivariate CPP (S1, S2) continuously over a fixed time

interval [0, T ]. The process S1 has frequency parameter λ1 > 0 and jump size distribution

F1 and the process S2 has frequency parameter λ2 > 0 and jump size distribution F2.

Observing a CPP continuously over a time period is equivalent to observing all jump

times and jump sizes in this time interval.

Let N(T ) = n denote the total number of jumps occurring in [0, T ], which decompose

in the number N⊥1 (T ) = n⊥1 of jumps occurring only in the first component, the number

N⊥2 (T ) = n⊥2 of jumps occurring only in the second component, and the number N‖(T ) =

n‖ of jumps occurring in both components. We denote by x̃1, . . . , x̃n⊥
1

the observed jumps

occurring only in the first component, by ỹ1, . . . , ỹn⊥
2

the observed jumps occurring only

in the second component, and by (x1, y1), . . . , (xn‖ , yn‖) the observed jumps occurring in

both components.
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Theorem 4.1. Assume an observation scheme as above. Assume that θ1 is a parameter

of the marginal density f1 of the first jump component only, and θ2 a parameter of the

marginal density f2 of the second jump component only, and that δ is a parameter of the

Lévy copula. Assume further that ∂2

∂u∂v
C(u, v; δ) exists for all (u, v) ∈ (0, λ1) × (0, λ2),

which is the domain of C. Then the full likelihood of the bivariate CPP is given by

L(λ1, λ2,θ1, θ2, δ)

= (λ1)
n⊥

1 e−(λ⊥
1

)T

n⊥
1∏

i=1

[
f1(x̃i; θ1)

(
1 −

∂

∂u
C(u, λ2; δ)

∣∣∣∣
u=λ1F 1(exi;θ1)

)]

×(λ2)
n⊥

2 e−(λ⊥
2

)T

n⊥
2∏

i=1

[
f2(ỹi; θ2)

(
1 −

∂

∂v
C(λ1, v; δ)

∣∣∣∣
v=λ2F 2(eyi;θ2)

)]
(4.2)

×(λ1λ2)
n‖

e−λ‖T

n‖∏

i=1

[
f1(xi; θ1)f2(yi; θ2)

∂2

∂u∂v
C(u, v; δ)

∣∣∣∣
u=λ1F 1(xi;θ1),v=λ2F 2(yi;θ2)

]

with λ‖ = λ‖(δ) = C(λ1, λ2, δ) and λ⊥i (δ) = λi − λ‖(δ) for i = 1, 2.

Proof. To calculate the likelihood function, we use representation (2.7) in combination

with the independence as it is manifested in (2.8). This corresponds to the representation

of the tail integrals for i = 1, 2 as

Πi =: Π
⊥

i + Π
‖

i ,

where Πi denotes the marginal tail integral and Π
⊥

i and Π
‖

i are the tail integrals of the

independent and jump dependent parts, respectively. Then, setting

λ‖ = lim
x,y→0+

Π(x, y) = C(λ1, λ2; δ) and λ⊥i = λi − λ‖ for i = 1, 2 ,

we obtain the independent parts and the jump dependent part of (S1, S2) as

λ⊥1 F
⊥

1 (x) = λ1F 1(x) − λ‖F
‖

1(x) = λ1F 1(x) − C(λ1F 1(x), λ2; δ) ,

λ⊥2 F
⊥

2 (y) = λ2F 2(y) − λ‖F
‖

2(y) = λ2F 2(y) − C(λ1, λ2F 2(y); δ) , (4.3)

λ‖F
‖
(x, y) = C(λ1F 1(x), λ2F 2(y); δ) , x, y > 0

Let now L1(λ
⊥
1 ,θ2) be the marginal likelihood function based on the observations of the

jump times and jump sizes of the first component S⊥1 . To derive L1 let t̃1, . . . , t̃n⊥
1

denote

the jump times of S⊥1 , and define the sequence of inter-arrival times T̃k = t̃k − t̃k−1 for

k = 1, . . . , n⊥1 with t̃0 = 0. Then the T̃k are iid exponential random variables with mean

1/λ⊥1 and they are independent of the observed jump sizes x̃1, . . . , x̃n⊥
1
. The likelihood
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function of the observations concerning S⊥1 is given by

L1(λ
⊥
1 ,θ1) =

n⊥
1∏

i=1

(
λ⊥1 e−λ⊥

1
eTi

)
× e

−λ⊥
1

(T−et
n⊥
1

)
×

n⊥
1∏

i=1

f⊥1 (x̃i; θ1)

= (λ⊥1 )n⊥
1 e−λ⊥

1
T

n⊥
1∏

i=1

f⊥1 (x̃i; θ1) , (4.4)

where the density f⊥1 is found by taking the derivative in the first equation of (4.3). The

second part S⊥2 is treated analogously and we obtain L2(λ
⊥
2 ,θ2) as (4.4) with λ⊥1 replaced

by λ⊥2 and f⊥1 (x̃i,θ1) replaced by f⊥2 (ỹi,θ2). For the joint jump part of the process, that is

(S
‖
1 , S

‖
2), we observe the number n‖ = n1−n⊥1 = n2−n⊥2 of joint jumps with frequency λ‖

at times t1, . . . , tn‖ with the observed bivariate jump sizes (x1, y1), . . . , (xn‖ , yn‖). Denote

Tk = tk − tk−1 and F ‖(x, y) the joint distribution of the jump sizes with joint density

f ‖(x, y). These are observations of a jump dependent CPP with frequency parameter λ‖

and Lévy measure concentrated in (0,∞)2. Recall the formula for (x, y) ∈ (0,∞)2, which

is a consequence of the formula after Theorem 5.4 on p. 148 in Cont and Tankov [7],

Π(dx, dy) =
∂2

∂u∂v
C(u, v, δ)

∣∣∣∣
u=λ1F 1(x,θ1),v=λ2F 2(y,θ2)

Π1(dx)Π2(dy) .

In our case the joint density of the Lévy measure on the left hand side is given by

λ‖f ‖(x, y). The derivative ∂2

∂u∂v
C(u, v, δ) exists by assumption. Then the likelihood of the

joint jump process is given by the product in the third line of (4.2). This concludes the

proof. �

Remark 4.2. Note that this estimation procedure ensures that the estimated model is

again a bivariate CPP.

This applies for instance to the following parametric Lévy copula family.

Example 4.3. [Clayton Lévy copula]

The Clayton Lévy copula is defined as

C(u, v) = (u−δ + v−δ)−1/δ , u, v > 0 ,

where δ > 0 is the Lévy copula parameter. We calculate

∂

∂u
C(u, v) =

(
1 + (

u

v
)δ
)−1/δ−1

,

∂2

∂u∂v
C(u, v) = (δ + 1)(uv)−δ−1(u−δ + v−δ)−1/δ−2 ,

= (δ + 1)(uv)δ(uδ + vδ)−1/δ−2 , u, v > 0 .

10



We observe that the joint jump intensity is given by

λ‖ = (λ−δ
1 + λ−δ

2 )−
1

δ .

Two specific examples, which will be used later, are the following:

(i) For the exponential Clayton model the marginal jump distributions are for i = 1, 2

exponentially distributed with parameters θi > 0 and densities fi(z; θi) = θie
−θiz for z ≥ 0.

The likelihood function for the continuously observed bivariate process (S1(t), S2(t))0≤t≤T

with the notation as in Theorem 4.1 is given by

L(λ1, λ2, θ1, θ2, δ) = (θ1λ1)
n⊥

1 e−λ⊥
1

T−θ1

Pn⊥
1

i=1
exi

n⊥
1∏

i=1

[
1 −

(
1 + (

λ1

λ2

)δe−δθ1exi

)− 1

δ
−1
]

,

× (θ2λ2)
n⊥

2 e−λ⊥
2

T−θ2

Pn⊥
2

i=1
eyi

n⊥
2∏

i=1

[
1 −

(
1 + (

λ2

λ1

)δe−δθ2eyi

)− 1

δ
−1
]

,

×
(
(1 + δ)θ1θ2(λ1λ2)

δ+1
)n‖

e−λ‖T−(1+δ)(θ1

Pn‖

i=1
xi+θ2

Pn‖

i=1
yi)

×

n‖∏

i=1

(λδ
1e
−θ1δxi + λδ

2e
−θ2δyi)−

1

δ
−2 .

(ii) For the Weibull Clayton model the marginal jump distributions are for i = 1, 2 Weibull

distributed with parameters ai, bi > 0 and densities wi(z; ai, bi) = bi

a
bi
i

zbi−1e−(z/ai)
bi for z ≥

0. The likelihood function for the continuously observed bivariate process (S1(t), S2(t))0≤t≤T

is given by

L(λ1, λ2, a1, b1, a2, b2, δ) (4.5)

=
(
λ1b1a

−b1
1

)n⊥
1 e−λ⊥

1
T−

Pn⊥
1

i=1
(exi/a1)b1

n⊥
1∏

i=1

[
x̃b1−1

i

(
1 −

(
1 +

(λ1e
−(exi/a1)b1

λ2

)δ
)−1/δ−1

)]

×
(
λ2b2a

−b2
2

)n⊥
2 e−λ⊥

2
T−

Pn⊥
2

i=1
(eyi/a2)b2

n⊥
2∏

i=1

[
ỹb2−1

i

(
1 −

(
1 +

(λ2e
−(eyi/a2)b2

λ1

)δ
)−1/δ−1

)]

×
(
(1 + δ)(λ1λ2)

1+δb1b2a
−b1
1 a−b2

2

)n‖

e−λ‖T−(1+δ)
Pn‖

i=1((xi/a1)b1+(yi/a2)b2)

×
n‖∏

i=1

[
xi

b1−1yi
b2−1

((
λ1e
−(xi/a1)b1

)δ
+
(
λ2e
−(yi/a2)b2

)δ
)−1/δ−2

]

�

For a bivariate CPP, where dependence is modelled by a Lévy copula, the bivariate

distribution of the joint jumps of the process exhibits a specific dependence structure,

which can also be described by a distributional copula, or better by the corresponding

survival copula. We explain this for the Clayton Lévy copula.
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Example 4.4. [Continuation of Example 4.3]

Denote by C the survival copula of the joint jumps of (S1(t)
‖, S2(t)

‖)t≥0 given by

F
‖
(x, y) = C

(
F
‖

1(x), F
‖

2(y)
)

. (4.6)

Assume further that the jump distributions F1 and F2 have no atom at 0. From the last

equation of (4.3) we see that

F
‖

1(x) = lim
y→0

1

λ‖
C(λ1F 1(x), λ2F 2(y))

and analogously for F
‖

2. Here equation (4.6) can be rewritten as

1

λ‖
C(λ1F 1(x), λ2F 2(y)) = C

(
1

λ‖
C(λ1F 1(x), λ2),

1

λ‖
C(λ1, λ2F 2(y))

)
.

For the Clayton Lévy copula C the right hand side is equal to

C

((
(λ1F 1(x))−δ + λ−δ

2

λ−δ
1 + λ−δ

2

)− 1

δ

,

(
λ−δ

1 + (λ2F 2(y))−δ

λ−δ
1 + λ−δ

2

)− 1

δ

)
=

(
(λ1F 1(x))−δ + (λ2F 2(y))−δ

λ−δ
1 + λ−δ

2

)− 1

δ

Abbreviating the arguments of C by u and v (note that u, v ∈ (0, 1)) gives

(λ1F 1(x))−δ = u−δ(λ−δ
1 + λ−δ

2 ) − λ−δ
2 and (λ2F 2(y))−δ = v−δ(λ−δ

1 + λ−δ
2 ) − λ−δ

1 ,

such that

C(u, v) =

(
u−δ(λ−δ

1 + λ−δ
2 ) − λ−δ

2 + v−δ(λ−δ
1 + λ−δ

2 ) − λ−δ
1

λ−δ
1 + λ−δ

2

)− 1

δ

= (u−δ + v−δ − 1)−
1

δ ,

which is the well-known distributional Clayton copula; cf. Cont and Tankov [7], eq. (5.3)

or Joe [12], Family B4 on p. 141. �

5 A simulation study

In this section we study the quality of our estimates in a small simulation study. This

means that we first have to simulate sample paths of a bivariate CPP on [0, T ] for pre-

specified T > 0, equivalently, we simulate the jump times and jump sizes (independently)

in this time interval.

In Section 6 of Cont and Tankov [7] various simulation algorithms for Lévy processes

have been suggested. We extend here their Algorithm 6.2 to a bivariate setting by invoking

12
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Figure 1: Simulation of three bivariate CPPs with exponentially distributed jumps and a Clayton Lévy

copula with dependence parameter δ = 0.3 (top), δ = 2 (middle) and δ = 10 (below). The left hand

figures show the sample paths of the CPPs, whereas the right hand figures present the same paths as

marked Poisson process.
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decomposition (4.1) for given λ1, λ2, marginal jump distribution functions F1, F2 and a

Lévy copula C.

As we work with a fully parametric bivariate model, we assume that we are given

frequency parameters λ1, λ2 > 0, the parameters of the marginal jump size distributions

θ1 ∈ Rk1 , θ2 ∈ Rk2 for some k1, k2 ∈ N and, finally, the dependence parameter δ ∈ Rm of

the Lévy copula. Moreover, we choose a time interval [0, T ].

Then the number of points in the first component is Poisson distributed with frequency

λ1T , so generate a Poisson random number N1(T ) with mean λ1T . The number of points

in the second component is Poisson distributed with frequency λ2T , so generate a Poisson

random number N2(T ) with mean λ2T . Then λ‖T = C(λ1, λ2)T is the frequency parameter

of the joint jumps, so simulate another Poisson random number N‖(T ) with frequency

λ‖T . This implies then that N⊥1 (T ) = N1(T ) − N‖(T ) and N⊥2 (T ) = N2(T ) − N‖(T ).

Now conditional on these numbers, the Poisson points are uniformly distributed in

the interval [0, T ], so simulate the correct number of [0, T ]-uniformly distributed random

variables, independently for the three components: U⊥1,i for i = 1, . . . , N⊥1 (T ), U⊥2,i for

i = 1, . . . , N⊥2 (T ), and U
‖
i for i = 1, . . . , N‖(T).

Next we simulate the jump sizes. Denote by (U⊥1,i, X
⊥
i ) for i = 1, . . . , N⊥1 (T ), (U⊥2,i, Y

⊥
i )

for i = 1, . . . , N⊥2 (T ) and (U
‖
i , X

‖
i , Y

‖
i ) for i = 1, . . . , N‖(T ) the marked points of the single

jumps and the joint jumps, respectively, then the bivariate trajectory is given by

(
S1(t)

S2(t)

)
=



∑N⊥

1
(T )

i=1 1{U⊥
1,i<t}X

⊥
i +

∑N‖(T )
i=1 1

{U
‖
i <t}

X
‖
i

∑N⊥
2

(T )
i=1 1{U⊥

2,i<t}Y
⊥
i +

∑N‖(T )
i=1 1

{U
‖
i <t}

Y
‖
i


 , 0 < t < T .

For the marks on these points given by the corresponding jump sizes we need then

N⊥1 (T ) iid jump sizes with df F⊥1 , N⊥2 (T ) iid jump sizes with df F⊥2 , and N‖(T ) bi-

variate jump sizes with df F ‖, all of them independent. Single jump sizes are generated

by X⊥i
d
= F⊥←1 (Ui), i = 1, · · · , N⊥1 (T ) and Y ⊥i

d
= F⊥←2 (Ui), i = 1, · · · , N⊥2 (T ), where for

any increasing function h its generalized inverse is defined as

h←(u) := inf{s ∈ R : h(s) ≥ u} ,

(which coincides with the analytical inverse, provided h is strictly monotone).

It remains to simulate the joint jumps (X
‖
j , Y

‖
j ) for j = 1, . . . , N‖(T ). We use the

joint survival copula C as in (4.6). We simulate standard uniform independent random

variables U1, . . . , UN‖(T ), V1, . . . , VN‖(T ) and recall that X
‖
j

d
= F

‖←
1 (Uj). Then the following
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Value m̂ean M̂SE M̂AE M̂RB

δ= 0.5 0.4995 0.0036 0.0492 -0.0012

(0.0597) (0.0054) (0.0339)

δ= 1 0.9896 0.0094 0.0748 0.0147

(0.0964) (0.0150) (0.0617)

δ= 3 3.0583 0.0834 0.2314 -0.0321

(0.2828) (0.1121) (0.1727)

δ= 5 5.0279 0.2027 0.3511 0.0147

(0.4494) (0.2764) (0.2819)

Table 1: Mean, mean squared errors (MSE), mean absolute error (MAE) and mean relative bias (MRB)

are presented for 100 MLEs of the Lévy copula parameter of a bivariate exponential Clayton model

(Example 5.1). Each estimate is calculated from an observed sample path of a bivariate CPP with

parameters λ1 = 100, λ2 = 80, θ1 = 1, θ2 = 2 (which are assumed to be known) and unknown dependence

parameter δ. The values in brackets show the standard deviation of estimates.

standard calculation for a generic pair (X‖, Y ‖) is well-known:

lim
∆x→0

P (Y ‖ > y | x < X‖ ≤ x + ∆x) = lim
∆x→0

F
‖
(x, y) − F

‖
(x + ∆x, y)

P (x < ∆X‖ ≤ x + ∆x)

= −
∂F
‖
(x, y)

∂x

1

f
‖
1 (x)

= −
∂C(F

‖

1(x), F
‖

2(y))

∂x

1

f
‖
1 (x)

=
∂

∂u
C(u, F

‖

2(y))
∣∣∣
u=F

‖
1(x)

=: Hx(y) . (5.1)

Now we take the generalized inverse H←x and define Y
‖
j

d
= H←x (Vj). Then the following

calculation convinces us that this algorithm works:

P (F
‖←
1 (U) > x,H←X‖(V ) > y) = P (X‖ > x)P (H←X‖(V ) > y | X‖ > x)

= P (X‖ > x)

∫ ∞

x

P (Y ‖ > y | X‖ = t)dF
‖
1 (t)

= P (X‖ > x)P (Y ‖ > y | X‖ > x)

= P (X‖ > x, Y ‖ > y) .

Example 5.1. [Simulation of a bivariate exponential Clayton model, continuation of

Examples 4.3 and 4.4]

Let (S1, S2) be a bivariate CPP with exponentially distributed jump sizes, i.e. F i(z) =

e−θiz, z > 0, for i = 1, 2, and the dependence structure of a Clayton Lévy copula C with

parameter δ > 0. Assume further λ1, λ2 > 0 are the intensities of the marginal Poisson

processes. We simulate a bivariate exponential Clayton model over the time interval [0, 1].
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Figure 2: Box-plots of the relative bias for the estimates of the exponential Clayton model with parameter

values as in Table 2.

We apply the above simulation algorithm. The distribution functions of the single

jump sizes of the process are for i = 1, 2 given by

F
⊥

i (z) =
1

λ⊥i

{
λie
−θiz −

(
λ−δ

1 eθ1δz(2−i) + λ−δ
2 eθ2δz(i−1)

)− 1

δ

}
, z > 0 ,

and the bivariate distribution function for the joint jumps has the form

F
‖
(x, y) =

1

λ‖
(
λ−δ

1 eθ1δx + λ−δ
2 eθ2δy

)− 1

δ , x, y > 0

with margins F
‖

1(x) = 1
λ‖

(
λ−δ

1 eθ1δx + λ−δ
2

)− 1

δ , x > 0, and F
‖

2(y) = 1
λ‖

(
λ−δ

1 + λ−δ
2 eθ2δy

)− 1

δ ,

y > 0.

The simulation algorithm:

(a) Generate two random numbers N1 and N2 from Poisson distributions with parame-

ters λ1 and λ2, respectively. Generate N‖ from a Poisson distribution with parameter

λ‖ = C(λ1, λ2) = (λ−δ
1 + λ−δ

2 )−1/δ.

(b) Generate N‖, N⊥1 = N1 − N‖ and N⊥2 = N2 − N‖ independent [0, 1]-uniformly

distributed random variables. These are the Poisson points of joint and single jumps.

(c) Generate independent U1, . . . , UN⊥
1

and V1, . . . , VN⊥
2

standard uniform random vari-

ables. Then the single jump sizes of both components are found by taking the inverse

of F⊥1 and F⊥2 , that is, X⊥i
d
= F⊥←1 (Ui), i = 1, . . . , N⊥1 and Y ⊥j

d
= F⊥←2 (Vj), j =

1, . . . , N⊥2 .
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λ̂1 λ̂2 θ̂1 θ̂2 δ̂

Values 100 80 1.00 2.00 1.00

m̂ean
100.8377

(9.8302)

80.4022

(8.7985)

1.0105

(0.0979)

2.0326

(0.2158)

1.0097

(0.1197)

M̂SE
97.3344

(141.0848)

78.9570

(113.1887)

0.0097

(0.0168)

0.0476

(0.0714)

0.0144

(0.0202)

M̂RB 0.0116 0.0203 -0.0087 0.0022 0.0423

Table 2: Estimated mean, mean squared error (MSE) and mean relative bias (MRB) of 100 MLEs of an

exponential Clayton model with estimated standard deviations for mean and MSE in brackets.

(d) For the bivariate jump sizes, generate new independent [0, 1]-uniform U1, . . . , UN‖

and V1, . . . , VN‖ random variables. Then X
‖
i

d
= F

‖←
1 (Ui) and, given X

‖
i = x, Y

‖
i

d
=

H←x (Vi), i = 1, . . . , N‖, where for fixed x > 0, as shown in (5.1),

Hx(y) =
∂

∂u
C(u, F

‖

2(y))
∣∣∣
u=F

‖
1(x)

=
(
1 + (

u

v
)δ − uδ

)−1/δ−1 ∣∣∣
u=F

‖
1(x),v=F

‖
2(y)

=

(
1 +

λ−δ
1 + λ−δ

2 eθ2δy

λ−δ
1 eθ1δx + λ−δ

2

−
λ‖
−δ

λ−δ
1 eθ1δx + λ−δ

2

)−1/δ−1

=

(
λ−δ

1 eθ1δx + λ−δ
2 eθ2δy

λ−δ
1 eθ1δx + λ−δ

2

)− 1

δ
−1

, y > 0 .

Various scenarios are depicted in Figure 1. �

Next we show the performance of the MLE estimation from Section 4 based on simu-

lated sample paths.

Example 5.2. [Estimation of a bivariate exponential Clayton model, continuation of

Examples 4.3, 4.4, and 5.1]

Let (S1, S2) be a bivariate CPP with exponentially distributed jump sizes, i.e. F i(z) =

e−θiz, z > 0, for i = 1, 2, and the dependence structure of a Clayton Lévy copula C with

parameter δ > 0. Assume further λ1, λ2 > 0 are the intensities of the marginal Poisson

processes. We simulate 100 sample paths of a bivariate exponential Clayton model with

parameters λ1 = 100, λ2 = 80, θ1 = 1, θ2 = 2 and different δ over the time interval [0, 1]

and estimate for each sample path the parameters. The results are summarized in Tables 1

and 2 and Figure 2. Note that the critical parameter is the dependence parameter δ; cf.

Figure 2. From Table 1 we note from the estimated MSE and MAE that its estimation is

more precise for small δ than for large. The mean relative bias, on the other hand, remains

for all δ near 0. Similar interpretations can be read off from Table 2. �
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Figure 3: The Danish fire insurance data: The top figures show the total losses (left) and the individual

losses (right) over the period 1980-1990. The figures below depict the data only for the one-month period

of January 1980.

6 A real data analysis

In this section we fit a CPP to a bivariate data set. The data we fit is called the Danish

fire insurance data and appears in aggregated form in Embrechts et al. [10], Figure 6.2.11.

The data are available at www.ma.hw.ac.uk/∼mcneil/. As described there, the data were

collected at Copenhagen Reinsurance and comprise 2167 fire losses over the period 1980

to 1990. They have been adjusted for inflation to reflect 1985 values and are expressed in

millions of Danish Kroner. Every total claim has been divided into loss of building, loss

of content and loss of profit. Since the last variable rarely has non-zero value, we restrict

ourselves to the first two variables. Figure 3 shows the time series and the aggregated

process of the data in the whole and in a one-month period of time.

We shall estimate a full bivariate parametric model based on the likelihood function

of Theorem 4.1. This means that we have to specify the marginal distributions for the

losses of buildings and the losses of contents, and we do this for the logarithmic data.
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Figure 4: Histogram (and estimated Weibull density) of the logarithmic losses of buildings (left) and

logarithmic losses of content based on the Danish fire insurance data larger than 1 million Danish Kroner

in both variables.

As explained above the bivariate data come from originally aggregated data, where the

claims (sum of losses of buildings, contents and profits) are larger than one million Danish

Kroner. Due to the splitting of the data in losses of buildings and losses of contents, certain

losses have become smaller than the threshold for the aggregated data, such effects also

appear due to the inflation adjustment. To guarantee that the bivariate data we want

to fit come from the same distribution, we have based our analysis on those data, which

are larger than one million Danish Kroner after inflation adjustment in both coordinates.

This amounts to 940 data points.

An explorative data analysis shows that the family of two-parameter Weibull distribu-

tions are appropriate for the log-data. We present the histograms of the log-transformed

data in Figures 4 with fitted marginal Weibull densities as presented in Example 4.3(ii).

The marginal parameters have been fitted by maximum likelihood estimation giving

f1(x) = 1.5225(log x)0.1954 exp
(
−1.2737(log x)1.1954), x > 1

f2(y) = 1.0863(log y)0.1289 exp
(
−0.9622(log y)1.1289), y > 1.

The corresponding QQ-plots are depicted in Figure 5.

It is worth mentioning that modelling with Lévy copulas is useful, when the depen-

dence structure of the Poisson processes matches the dependence of the jump sizes. The

reason for this is that the parameter of the Lévy copula models the dependence structure

of the Lévy measure, which comprises the intensity of the jumps and the distribution of

the jump sizes. By Sklar’s theorem for Lévy copulas (cf. Theorem 3.3), if the data follow

a bivariate compound Poisson process, this kind of dependence structure is exactly, what

we expect.
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Figure 5: QQ-plot of the logarithmic Danish fire insurance data versus their estimated Weibull distribu-

tions, with parameters estimated from the data set. Left (loss of building), right (loss of content)

To check the suitability of the model for these data, we first estimate the parameter

of the Clayton Lévy copula based on the point processes only. This results in solving the

equation

(λ̂−δ
1 + λ̂−δ

2 )−
1

δ = λ̂‖ ,

where λ̂1, λ̂2 and λ̂‖ are the estimated intensities for each of the marginal univariate

Poisson processes and the jump dependent part of the process. We obtain δ̂ = 1.0546.

Second, we should compare this estimator with the corresponding estimator based on

the jump sizes. For this we invoke Example 4.4, which shows that the Clayton Lévy copula

for a bivariate CPP implies a distributional Clayton copula for the joint jump sizes of the

process. The maximum likelihood estimator of the parameter δ based on the joint jumps

is obtained as δ̂ = 0.8675. This is close enough to convince us that a bivariate compound

Poisson process is a good model for the Danish fire insurance data, and that the Clayton

Lévy copula is an appropriate model.

Now we consider the full likelihood as given in equation (4.2), with two-parametric

marginal Weibull distributions for the log-sizes of the claims and a Clayton Lévy copula

C. Furthermore, we denote by λ1 and λ2, the intensities of losses in each component. Then

the full likelihood including seven parameters is given by equation (4.5).

The resulting maximum likelihood estimates of the parameters are as follows.

Parameters λ1 λ2 a1 b1 a2 b2 δ

Estimates 76.5643 44.7933 0.8302 1.1308 1.0898 1.0805 0.9531

From this table it can be seen that the estimator of the Lévy copula parameter δ̂ =

0.9531 for a Weibull-Clayton model is between the estimator only based on point processes
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and the estimator only based on joint jumps of the process This is as expected.

7 Conclusion

We have suggested a maximum likelihood estimation procedure for a multivariate com-

pound Poisson process, which guarantees that the estimated model is again a compound

Poisson process. This is achieved on the basis of Sklar’s theorem for Lévy copulas by a

detailed analysis of the dependence structure. We have also suggested a new simulation

algorithm for a multivariate compound Poisson process. A small simulation study has

shown that the estimation procedure works well also for small sample sizes. For the Dan-

ish fire insurance data, after some explorative data analysis to find a convincing model, we

have fitted a seven parameter compound Poisson process model. The use of a Lévy copula

approach for the dependence modelling has proved extremely useful in this context.
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