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1 Introduction

There has been significant innovation in the financial industry in the past ten
years. More and more basket options and complex exotic contracts depending
on multiple indices are issued. This paper proposes to evaluate derivatives
written possibly on more than two indices. Our approach assumes that each
underlying asset evolves as a GARCH(1,1) process but unlike most previous
studies on this topic as we will show, we do not necessarily assume that the
dependence observed between historical prices is similar to the dependence
under the risk-neutral probability. The method is implemented with market
data on basket options written on three international indices. Most of the
contracts written on several indices are over-the-counter options but we found
price data of exchange-listed options linked to several indices on the New York
Stock Exchange to illustrate the methodology.

We now review the existing approaches to price options written on sev-
eral possibly dependent indices. The first approach is to consider a Black
and Scholes model in a multivariate framework. The setting consists of n
assets respectively modeled by geometric Brownian motions with constant
volatility, constant interest rates and a Gaussian dependence measured by
the correlation between the respective Brownian motions. Galichon [2006]
extends the idea of the local volatility model developed by Dupire [1994] to
build a stochastic correlation model (see also Langnau [2009]). Rosenberg
[2003], Cherubini and Luciano [2002] propose a non-parametric estimation of
the marginal risk-neutral densities (using option prices written on each asset).
Van den Goorbergh, Genest and Werker [2005] adopt a parametric approach.
They estimate a GARCH(1,1) to model each asset, then they make use of
the transformation by Duan [1995] to obtain the risk-neutral distribution.
Cherubini and Luciano [2002] and van den Goorbergh et al. [2005] model
the dependency between the different underlying assets using historical data
on the joint distribution of the two underlying assets. The same dependency
is then assumed under the risk-neutral probability. Cherubini and Luciano
[2002] study digital binary options and van den Goorbergh et al. [2005] apply
their techniques on some hypothetical contracts written on the maximum or
the minimum of two assets. Both papers study financial derivatives written
on only two indices and have no empirical examples.

In this paper, we extend the paper of van den Goorbergh et al. [2005] in
several directions. First, we consider contracts with possibly more than two
underlying indices and show how it is possible to evaluate with a multivariate
distribution using pair copula construction (Aas et al. [2009]). Second, we in-
vestigate a dataset of basket options prices and check that this approach can
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be used to price these contracts accurately. Third, we study the sensitivity of
basket option prices to the choice of the parameters for the GARCH(1,1) pro-
cesses, the copula family and of its parameters to understand the impact of
dependence misspecification. Finally, we investigate whether the multivari-
ate copula of the underlying assets is the same under the objective measure
P and under the risk-neutral measure Q. As far as we know all the previ-
ous studies using copulae make this assumption, except Galichon [2006] and
Langnau [2009]. The latter authors indeed discuss and model the dynamics
of the assets directly under the risk-neutral probability, and their model fits
perfectly the market prices by construction.

There are arguments to believe that the copula under the objective mea-
sure P is similar to the copula under the risk-neutral measure Q. For exam-
ple, in the multivariate Black and Scholes, the change of measure between P
and Q does not influence the dependence between the two stocks. The covari-
ance matrix stays the same, only the drift term of the geometric Brownian
motions have changed. Rosenberg [2003] and also Cherubini and Luciano
[2002] argue that under some assumptions, it is reasonable to think that the
dependence of the underlying assets under P is similar to the one under Q.
Rosenberg [2003] shows that the dependence structure under Q will be the
same as under P when risk-neutral returns are increasing functions of the
objective returns. Galichon [2006] argues in a very different way. To him,
“it is an extreme assumption to make only in the extreme hypothesis where
the market does not provide any supplemental information on the depen-
dence structure, which is usually not the case (the price of basket options,
for instance, contains information on the market price of the dependence
structure)”. However in his study, he does not explore this direction. In our
context, there is another reason that could also justify that the dependence
may be different in the historical world and in the risk-neutral world, is that
the change of measure has a particular effect on the GARCH(1,1) process.
After this change, not only the drift is changed but also the volatilities. This
transformation is not monotonic which suggests that the dependence may
change as well.

In this paper, we explain how to price an option written on more than
two assets in a dynamic-copula setting. Dependence problems with more
than two assets are significantly more difficult. However using pair-copula
constructions, the problem comes back to study the dependence between two
variables at a time. We illustrate the study with a concrete example using
data from the North American financial market. We can check the accuracy
of the model prices compared to the market prices from the historical quotes
that we have. This set of data is also used to discuss how the dependence
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structure under the objective measure and the risk-neutral world may be
different. In the first section, we explain how to proceed in the bivariate
case. In the second section, we extend the study to an option written on
three indices and we implement this methodology on examples of basket
options in the third section.

2 Bivariate Option Pricing

In this section, we first recall how to price a European option that depends
on the final value at maturity of two assets using a similar approach as van
den Goorbergh, Genest and Werker [2005].

2.1 Distribution of the underlying assets under P

Denote by Si(t) the closing price of index i for the trading day t, and define
the log-return on asset i for the tth trading day as

ri,t+1 = log (Si(t + 1)/Si(t)) (1)

where i = 1 or i = 2. Let Ft = σ ((r1,s, r2,s, s 6 t) denote all returns in-
formation available at time t. Similar to van den Goorbergh, Genest and
Werker [2005], we assume that the distribution of (S1, S2) under the objec-
tive measure P can be described as follows. The marginal distributions of
S1(.) and S2(.) respectively follow GARCH(1,1) processes with Gaussian in-
novations. The dependence structure between the standardized innovations
up to time t is given by a copula CP

t (., .) that may depend on time t and is
defined under the probability measure P . This model is quite general and
allows for time-varying dependence as well as time-varying volatilities in a
non-deterministic way. Indeed the dependence can change with the volatility
in the financial market (see van den Goorbergh et al. [2005] for an example).
However, for the ease of exposition, we restrict ourselves to the case when
the dependence is not time-varying. Our model could easily be extended to
time-varying copulae by adding more parameters to the model.

Under the objective measure P , the log-returns of each asset Si for i = 1
and i = 2 evolve as follows:






ri,t+1 = µi + ηi,t+1,
σ2

i,t+1 = wi + βiσ
2
i,t + αi(ri,t+1 − µi)

2,
ηi,t+1|Ft ∼P N(0, σ2

i,t)
(2)
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where wi > 0, βi > 0 and αi > 0, and where ∼P refers to the distribution
under P . µi is the expected daily log-return for Si. The GARCH parameters
are estimated by maximum likelihood, using the unconditional variance level

wi

1−βi−αi
as starting value σ2

i,0. Denote the standardized innovations by

(Z1,s, Z2,s)s6t :=

(
η1,s

σ1,s

,
η2,s

σ2,s

)

The standardized innovations (Z1,s)s and (Z2,s)s are respectively i.i.d.
with a standard normal distribution N(0, 1), but in general Z1 is not inde-
pendent of Z2. Let F P

1 be the cdf of Z1 and F P
2 be the cdf of Z2 under the

objective measure P . Note that F P
1 and F P

2 are N(0, 1)-distributed in our
specific case. In general, using Sklar [1959]’s theorem, the joint distribution
F P of Z1 and Z2 can be written as a function of its marginals. Precisely
there exists a unique copula CP , such that

F P (z1, z2) = CP (F P
1 (z1), F

P
2 (z2)) (3)

for all zi ∈ R, i = 1, 2. We then assume that the copula CP (., .) is a para-
metric copula and θP corresponds to the parameter(s) of the copula used
to model the dependence. We propose to look at three types of parametric
copulae, the Gaussian copula, the Clayton copula and the Gumbel copula
but it is straightforward to extend our study to other families of copulas.
For example see Joe [1997] for many other bivariate copula families includ-
ing two parameter families such as the student copula or the BB1 and BB7.
The respective formulas and properties of the Gaussian, Clayton and Gum-
bel copulae are given in Appendix A. We have chosen the Gaussian as a
benchmark, which has no tail dependence, while the Clayton allows for lower
tail dependence and Gumbel upper tail dependence.

2.2 Pricing of a bivariate option

Consider first an option whose payoff depends only on the terminal values of
two indices S1 and S2. Let us denote by g(S1(T ), S2(T )) the payoff of this
bivariate financial derivative. In an arbitrage-free market, a price for this
derivative can be obtained as the discounted conditional expected value of
the option’s payoff under a risk-neutral distribution. Let Q be the chosen
risk-neutral probability. Then the price at time t of this derivative is given
by

gt = e−rf (T−t)EQ [g(S1(T ), S2(T ))|Ft] (4)
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where EQ denotes the expectation taken under the risk-neutral probability
Q and rf denotes the constant daily risk-free rate. Here T − t corresponds to
the time to maturity calculated in number of remaining trading days. The
price (4) can also be expressed as a double integral

gt = e−rf (T−t)

∫ +∞

0

∫ +∞

0

g(s1, s2)f
Q(s1, s2)ds1ds2

where fQ denotes the joint density of S1(T ) and S2(T ) under the risk-neutral
probability Q. Similar to (3), it is possible to express the joint density using
the marginal densities f1 and f2 of respectively S1(T ) and S2(T ) as follows:

fQ(x1, x2) = cQ
12(F

Q
1 (x1), F

Q
2 (x2))f

Q
1 (x1)f

Q
2 (x2)

where cQ
12 = ∂2CQ(y1,y2)

∂y1∂y2

and the superscript Q recalls that it corresponds to
the distribution under the risk-neutral probability Q. To value the option
and calculate its price (4), one needs to know the joint distribution of S1(T )
and S2(T ) under Q, that is their respective marginal risk-neutral distribu-
tion functions FQ

1 and FQ
2 , as well as the copula CQ(., .) that captures the

dependence between S1(T ) and S2(T ) under Q.

Following the idea of Duan [1995] and van den Goorbergh, Genest and
Werker [2005], and assuming that the conditions needed for the change of
measure of Duan [1995] are satisfied, the log-returns under the risk-neutral
probability measure Q are given as follows






ri,t+1 = rf − 1
2
σ2

i,t + η∗
i,t+1,

σ2
i,t+1 = wi + βiσ

2
i,t + αi(ri,t+1 − µi)

2,
η∗

i,t+1|Ft ∼Q N(0, σ2
i,t)

(5)

where rf is the daily risk-free rate on the market that we assume constant.
Note that the change of measure consists simply of a change in the drift of
the GARCH process (as Duan [1995]). For this change of measure to be
valid, the conditional distribution of each asset to the information Ft at time
t is similar to the conditional information to the information generated solely
by this asset up to time t (see Duan [1995] for more information). This must
hold at any time t.

Note that the daily risk free rate rf plays a critical role in the simulation
of the process in the risk-neutral world, and therefore in the pricing of the
security. We need to control for the influence of significant changes in the
level of the risk-free rate over the last years (see discussion in section 4).
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Dependence Modelling
To model the dependence under Q, there are also two possible approaches.

The first approach consists of assuming that it is similar to the dependence
under P . As far as we know, this assumption has been made by most authors
who propose methods to price options on multiple indices, including Cheru-
bini and Luciano [2002], Chiou and Tsay [2008], Rosenberg [2003], and van
den Goorbergh, Genest and Werker [2005]. The approach we adopt is quite
different. We would like to infer from market prices of bivariate options the
joint distribution of assets under Q, and therefore the copula under Q. We
assume that the copula under Q belongs to the same family as the copula
used under P but we do not impose that they have the same parameter. Our
approach is therefore parametric.

Assume for example that the copula under P is a Gaussian, Gumbel
or Clayton which are characterized by only one parameter θP . We are now
looking to see if the same copula with a possibly different parameter θQ could
better reflect market movements in the prices of the option. We observe at
time t, gM

t the market price of the option, and we can calculate using formula
(4), a Monte Carlo estimate of this price, denoted by ĝmc

t (θQ). We then solve
for the best parameter θQ(t) of the copula under Q such that the estimated
price ĝmc

t (θQ(t)) is as close as possible to the market price gM
t . We are able

to calculate θQ at each time t when one observes a market price. We can
then compare θP with θQ to see whether they are significantly different.

Extension to time-varying dependence
In practice the dependence changes over time, in particular with the level

of volatility on the market. When the volatility is high, the dependence is
usually higher. But it is not difficult to extend our approach to the case when
the parameters of the copula are time-varying, precisely are function of the
volatility observed in the market. This could introduce additional parameters
to estimate under P and under Q by assuming a relationship between the
volatilities and the parameter of the copula (and we would need sufficient
data). For example van den Goorbergh, Genest and Werker assume that

θP (t) = f (γ0 + γ1 log (max(σ1,t, σ2,t)) (6)

where f is a given function. Then there are two additional parameters γ0

and γ1 to fit and a specific study is needed each time to determine the best
relationship (6) to assume between the volatilities in the market at time t
and the copula parameter. Other time-varying copula models might involve
GARCH components as in Ausin and Lopes [2009] or stochastic volatility
components as in Haffner and Manner [2008] or Almeida and Czado [2010].

7



While Ausin and Lopes [2009] and Almeida and Czado [2010] use a Bayesian
approach for estimation, the approach taken by Haffner and Manner [2008]
involves efficient importance sampling.

We now extend the idea developed in this section to trivariate options
in Section 3, and finally illustrate the study in Section 4 with examples of
basket options written on three indices.

3 Multivariate option pricing when there are

more than two indices

We first describe pair-copula construction in the case of three indices. It is
then illustrated with an example of a trivariate option.

3.1 Multivariate Dependence Modeling

To model multivariate dependency, there are many different approaches. In
this paper we continue to follow a copula approach. While there are many
bivariate copulae the choice for multivariate copulae tended to be limited,
especially with regard to asymmetric tail dependence among pairs of vari-
ables. Joe [1996] gave a construction method for multivariate copulae in
terms of distribution functions requiring only bivariate copulae as building
blocks. The bivariate building blocks represent bivariate margins as well as
bivariate conditional distributions. Graphical methods to identify the nec-
essary building blocks were subsequently developed by Bedford and Cooke
([2001] and [2002]). Their full potential to model different dependence struc-
tures for different pairs of variables were recognized by Aas, Czado, Frigessi
and Bakken [2009] and applied to financial return data using maximum likeli-
hood for estimation. They denote this construction approach the pair-copula
construction method for multivariate copulae. For three dimensions the con-
struction method is simple and proceeds as follows. Let f(x1, x2, x3) denote
the joint density, which is decomposed for example by conditioning as

f(x1, x2, x3) = f(x1|x2, x3) × f2|3(x2|x3) × f3(x3). (7)

Now by Sklar’s theorem we have f(x2, x3) = c23(F2(x2), F3(x3))f2(x2)f3(x3)
and therefore

f2|3(x2|x3) = c23(F2(x2), F3(x3))f2(x2).
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Similarly we have f1|2(x1|x2) = c12(F1(x1), F2(x2))f1(x1). Finally we use
Sklar’s theorem for the conditional bivariate density

f(x1, x3|x2) = c13|2(F1|2(x1|x2), F3|2(x3|x2))f1|2(x1|x2)f3|2(x3|x2)

and therefore

f(x1|x2, x3) = c13|2(F1|2(x1|x2), F3|2(x3|x2))f1|2(x1|x2).

Putting these expressions into (7) it follows that

f(x1, x2, x3) = c12(F1(x1), F2(x2))c23(F2(x2), F3(x3))

× c13|2(F1|2(x1|x2), F3|2(x3|x2))f1(x1)f2(x2)f3(x3).

The corresponding copula density is therefore given by

c123(u1, u2, u3) = c12(u1, u2)c23(u2, u3).c13|2(F1|2(u1|u2), F3|2(u3|u2)) (8)

The copula with density given by (8) is called a D-vine in three dimensions
and involves only bivariate copulae. More general pair copula constructions
are contained in Aas, Czado, Frigessi and Bakken [2009] and a recent survey
on such constructions is given by Czado [2010].

We now show how to apply this technique to the valuation of options
linked to three market indices.

3.2 Trivariate Option Pricing

In this section, we describe each step needed to obtain the price of an option
written on three market indices. This methodology will then be applied to
an example in Section 4.

Let us denote by Si(t) the closing value of the index i on day t. The
first step consists of fitting a GARCH(1,1) process on each marginal using
historical data on index prices. Then we study the dependence between the
indices and estimate the type of copula and its parameters under the ob-
jective probability P . The third step corresponds to the simulation of the
joint distribution of (S1, S2, S3) under the risk-neutral probability. The last
step explains how to obtain the price of the trivariate option, and therefore
estimate the risk-neutral parameter.

Step 1: Calibration of the GARCH(1,1) processes.
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At time t (valuation date of the option, say 3rd of November 2009), we
calibrate a GARCH process using ∆ past informations, corresponding to the
∆ trading days prior to t. We then use the observations of Si(.) from time
t−∆ to time t to fit a GARCH(1,1) for each underlying asset Si, i = 1, 2, 3,
we find µ̂i, ŵi, α̂i and β̂i as well as the daily volatilities σ̂i,s, for each asset
i and each time t − ∆ < s 6 t. Then we have ∆ estimated standardized
innovations

(Z1,s, Z2,s, Z3,s)s∈]t−∆,t] :=

(
η̂1,s

σ̂1,s

,
η̂2,s

σ̂2,s

,
η̂3,s

σ̂3,s

)
.

In the GARCH(1,1) model used to calibrate the marginals, the standardized
innovations are N (0, 1). We obtained the corresponding estimated standard-
ized innovations in the interval (0, 1) by applying Φ, the cdf of the standard
normal distribution N(0, 1). Let us denote by U the corresponding variables

(U1,s, U2,s, U3,s)s :=

(
Φ

(
η̂1,s

σ̂1,s

)
, Φ

(
η̂2,s

σ̂2,s

)
, Φ

(
η̂3,s

σ̂3,s

))

s

. (9)

The dependence structure between (Zi,.)i is the same as between (Ui,.)i be-
cause a copula is invariant by a change by an increasing function (this is a
standard result, see Joe [1997] for instance).

Step 2: Dependence under P .

At time t, we fit a copula on the joint distribution of (U1,s, U2,s, U3,s)t−∆<s6t

as follows. The copula density cP (u1, u2, u3) is equal to

c12(u1, u2, θ12)c23(u2, u3, θ23)c13|2

(
F1|2,θ12

(u1|u2, θ12), F3|2,θ23
(u3|u2, θ23), θ13|2

)

(10)
where c12, c23 and c13|2 are three parametric copula densities with respective
parameters θ12, θ23 and θ13|2, and where F1|2,θ12

denotes the conditional cdf of

U1 given U2 = u2. The estimates of the parameters θ̂12, θ̂23 and θ̂13|2 depend
on the time t at which the estimation is done and also on the size of the time
window. Note that θα where α = 12, 23 or 13|2 is a generic notation for the
parameter(s) of the copula and may represent a vector of parameters if the
parametric copula depends on more than one parameter.

To simplify, we also restrict ourselves to well-known classes of one pa-
rameter copulae. In the example, we investigate the Gaussian copula, the
Gumbel copula and the Clayton copula. Since they are parametric copulae,
it amounts to find the respective parameters that best fit the initial depen-
dence structure.

Notice also that the decomposition (10) depends on the order of the vari-
ables. We choose c12 and c23 to correspond to the two pairs of variables
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that exhibit the most dependence. We then estimate by Maximum Likeli-
hood estimation θ̂P

12 and θ̂P
23. We then examine c13|2 which is the dependence

between S1 and S3 conditional to S2. The conditional distribution cannot
be observed directly. To obtain random variables that are distributed along
the conditional distribution, we use (9) and calculate for each observation
s ∈ [t − ∆, t],

u1|2s = F1|2,θ12
(u1s|u2s, θ̂

P
12)

u3|2s = F3|2,θ23
(u3s|u2s, θ̂

P
23) (11)

where the conditional distribution F1|2,θP
12

is obtained by

F (u1|u2, θ̂
P
12) =

∂

∂u2

C12(u1|u2, θ̂
P
12) =: h(u1, u2, θ̂

P
12) (12)

and
F3|2,θP

23

similarly. Appendix A gives the expressions of the function h for each type
of copula.

Step 2 is completed when the dependence structure is chosen and that
the estimated parameters are calculated (θ̂P

12, θ̂P
23 and θ̂P

13|2). The superscript
P recalls that the estimation of the dependence structure is obtained from
historical data of the assets’ prices, therefore it corresponds to the depen-
dence structure under the objective measure P .

Step 3: Simulation of (S1, S2, S3) under Q.

We assume that the copula under Q belongs to the same family as the
one determined under P but may have different parameters. Given the risk-
neutral parameters θQ

12, θQ
23 and θQ

13|2 that we will explain later how to obtain

them, we simulate observations from the D-vine specification (8)

(
UQ

1,s, U
Q
2,s, U

Q
3,s

)

s<t6T
(13)

with the dependence structure identified in Step 2 but with a new parameter
set

ΘQ :=
(
θQ
12, θ

Q
23, θ

Q
13|2

)
.

To simulate from a D-vine, we refer to Algorithm 2 on page 187 of Aas,
Czado, Frigessi and Bakken [2009].
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From the D-vine data (13), we can obtain recursively the standardized
residuals such that

Φ−1
(
UQ

i,s

)
=

ri,s − rf +
σ2

i,s−1

2

σi,s−1

. (14)

This is a consequence of the dynamics of the assets under Q given by (5).
Indeed given initial volatilities σi,0 for i = 1, 2, 3 (equal for instance to the
square root of the unconditional variance level wi

1−βi−αi
), one can calculate the

first innovation ri,1 using (14). Then using the second equation of (5), one
computes σ2

i,1 for i = 1, 2, 3. Recursively, it is possible to construct the full
process.

Step 4: Pricing the option.

Using the step 3, we obtain simulations of (S1(T ), S2(T ), S3(T )) based on
a copula with parameter set ΘQ, and a price of the option is obtained as

Price at t = e−rf (T−t)EQ [g(S1(T ), S2(T ), S3(T ))|Ft] , (15)

where T denotes the number of days between the issuance date and the
maturity of the option, and t is the number of days since the inception of the
contract.

The remaining question is about the choice of the parameter set ΘQ.
Recall that it depends on time. One needs past observations of prices of the
trivariate option, say at dates ti, i = 1..n, the set of parameters ΘQ needed
to characterize the copula CQ is calculated at time t such that it minimizes
the sum of quadratic errors

min
ΘQ

n∑

i=1

(
ĝmc

ti
(ΘQ) − gM

ti

)2
(16)

where gM
ti

denotes the market price of the trivariate option observed in the
market at the date ti, and ĝmc

ti
is the Monte Carlo estimate of its price ob-

tained by the procedure described above.

Remark 3.1 In the case of two indices, this analysis is simpler, because
the number of parameters is significantly reduced. For example, there could
be only one parameter in formula (3) (i.e. when the copula is of Gumbel,
Clayton or Gaussian type).

Remark 3.2 In the case of a path-dependent contract, the technique is sim-
ilar, with

Price at t = e−rf (T−t)EQ

[
g
({

Si(s)s∈[0,T ]

}
i

)
|Ft

]

instead of (15). The inception date is t = 0.
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4 Empirical Analysis

We first describe the data, then present our numerical results.

4.1 Description of the Data

There are a few retail investment products linked to a basket of indices that
are traded in North America (see Bernard, Boyle and Gornall [2010] for more
information about these exchange-listed structured products). In May 2008,
there were 24 index-linked notes written on multiple market indices (for a
total volume of US$590 million). Precisely, the data that we use in this paper,
come from the secondary market for exchange-listed structured products on
the New York Stock Exchange. We selected two structured products to
illustrate our study: they were traded in the secondary market, linked to
three indices, and we could obtain daily quotes for these two products. They
are index linked notes listed on the New York stock exchange1.

We now describe these trivariate basket options for which we have daily
quotes of the prices from their respective issuance date to November 2, 2009.
We also have the daily log-returns of each index involved in these structured
products over the period under study. MIB and IIL are “Capital Protected
Notes Based on the Value of a Basket of Three Indices”. MIB and IIL are both
issued by Morgan Stanley and are very similar, therefore we only describe
one of them. The notes IIL are linked to the Dow Jones EURO STOXX
50SM Index, the S&P500 Index, and the Nikkei 225 Index (let us denote
them respectively by S1, S2 and S3). They were issued on July 31st, 2006
at an initial price of $10 and matured on July 20, 2010 (which correspond
roughly to 1,006 trading days). Their final payoff is given by

$10 + $10 max

(
m1S1(T ) + m2S2(T ) + m3S3(T ) − 10

10
, 0

)
(17)

where mi = 10
3Si(0)

such that m1S1(0) + m2S2(0) + m3S3(0) = 10 and the

percentage weighting in the basket is 33.33% for each index. On July, 2006,
m1 = 0.000917803, m2 = 0.002643329, and m3 = 0.000222122.

1All information about these products is contained in the official prospectus supple-
ments that were publicly available on www.amex.com and now listed on www.nyse.com.
They can also be obtained upon request from the authors.
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4.2 Estimation of rf

We now describe how we estimate the risk-free rate and how the GARCH(1,1)
model developed by Duan [1995] is appropriate to price a similar contract
written on one index. Actually Duan [1995] already showed that a GARCH(1,1)
model could reflect well the implied volatility surface (the smile with respect
to the strike and the decay with respect to the time to maturity). Unsur-
prisingly it gives reasonable estimates of the implied risk-free rate to price
structured products written on one index.

The contracts MIB and IIL were issued in North America by Morgan
Stanley, they are five year contracts. To check whether the GARCH(1,1)
model may give reasonable prices, we consider other contracts issued by Mor-
gan Stanley, with similar long-term maturity, but written on a single index
so that the estimate of the risk-free rate is not influenced by the modeling
of the dependence. We found two contracts of this type: the contract PDJ
written on the Dow Jones Industrial Average, DJIA (issued on Feb 25, 2004
with maturity date of Dec 30, 2011), and the contract PEL written on the
S&P500 (issued on March 25th, 2004 with maturity date of Dec 30, 2011).
Both of these contracts pay semi-annual coupons of respectively 0.4% and
0.5% (at the end of June and end of December) and their final payoff is
calculated as

$10 + $10 max

(
0,

1
8

∑8
i=1 Sti − S0

S0

)

where S0 is the initial value of the underlying at the issuing date, and where
ti = 30th December of each year (starting in 2004 and ending in 2011).

For each of these contracts, we fit a GARCH(1,1) process based on a 250
days window (one year of data because there are about 250 trading days
per year) on respectively historical data of S&P500 and DJIA. We then use
Duan’s [1995] change of measure given by (5) and simulate the price using
different values for a continuously compounded risk-free rate r ∈ (1%, 10%).
We then solve for the value of r such that the model price coincides with
the market price. We did this calculation for 5 dates for each contract, 31th

December 2004, 2005, 2006, 2007 and 2008. More precisely the calculation
was done on the following day after the payment of coupons, so it could also
be 2nd or 3rd of January depending on when the next trading day is.

For example, the contract PEL was quoted on the 31st of December 2004
at $9.60. At that time, the time to maturity is about 1754 days. In Figure 1,
we represent the price of the contract PEL with respect to the risk free rate.
It illustrates the importance of controlling the effect of the risk-free rate if we

14



want to discuss the change in the dependence structure under P and under
Q. Here the “implied risk free rate” r is about 4.25% on December 31, 2004.
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Figure 1: Price obtained by the model of Duan (1995) for the contract PEL
as a function of the risk-free rate rf (with 10,000 Monte Carlo simulations to
draw this graph). On 31st dec 2004, it is quoted at $9.60.

Date 12/31/04 12/31/05 12/31/06 12/31/07 12/31/08
r for PDJ 4.3% 5% 6.1% 4.1% 2%
r for PEL 4% 4.6% 5.3% 3.4% 2.6%
ZC yield 4.05% 4.82% 5.03% 3.85% 2.3%

Table 1: Implied risk-free rate used to price the contracts PDJ and PEL,
expressed as a continuously compounded annual rate. We also report the
continuously compounded rates of the US zero-coupon yield curve (the daily
rate is obtained by rf = r/250). Note that it is not exactly a “daily” rate but
the time step is a “trading day”.

In Table 1 we report the values for rf such that the respective market
values of the contracts are approximately equal to the values obtained by
Monte Carlo simulations. In Table 1, we compare the results for the “implied
risk free rates” corresponding to the two contracts with the US yield curve.
For example, at the end of December 2004, the time to maturity of the
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contract is about 1754 days (with an approximation of 250 trading days per
year for the period after November 2009). The US yield curve at the end
of December 2004 tells us that for a zero-coupon bond of such maturity, the
interest rate was 4.05% per annum expressed as a continuously compounded
rate. A higher interest rate makes the contract less valuable. Note that
the differences between the US yield curve and the implied risk-free rate are
small. In addition these contracts are subject to default risk, therefore there
could be a risk premium embedded in the interest rate used for discounting
the future cash-flows that we neglect.

We are now confident that the GARCH(1,1) model is able to reproduce
accurately the market prices. The risk-free rate used in the pricing could
either be obtained as an implied interest rate or directly from the US yield
curve. At any time t from 2004 to November 2007, given a maturity in days
and the pricing date, we are able to get r the continuously compounded
annual interest rate from the US zero-coupon yield curve, and therefore the
corresponding daily rate rf = r/250.

Note that prices at issue are hard to reproduce and to fit because they
include commissions. On purpose, we choose to evaluate the contracts at
several dates posterior to the issuance date by several months.

4.3 Contract IIL

We now apply the four steps that we described in Section 3 to study the
contract IIL in details.

Step 1: Calibration of the GARCH(1,1) processes.

We first fit a GARCH(1,1) over the entire period from July 2006 to
November 2009 on the daily log-returns of S1 (Dow Jones EURO STOXX
50SM), S2 (S&P500 index), and S3 (NIKKEI 225 index). We then split the
period into 3 subperiods of 290 trading days(from March 2006 to May 2007,
from May 2007 to July 2008, and from August 2008 to November 2009) and
fit a GARCH(1,1) for each subperiod.

In Table 2, the estimates of the GARCH(1,1) are reported. The first col-
umn corresponds to the full period of observations (March 2006 to November
2009). The three other columns correspond to the three subperiods previ-
ously described. We note that in all cases, αi + βi is close to 1 but strictly
less than 1, as it should be. Note also that in the second subperiod, the daily
log-returns are on average negative or very close to 0, because it includes the
recent financial crisis.
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Full sample period 1 period 2 period 3
µ̂1 0.000350 0.000907 -0.000494 0.000743
ω̂1 3.76e-06 9.88e-06 1.027e-05 7.57e-06
α̂1 0.1343 0.1598 0.1482 0.1062

β̂1 0.8575 0.7275 0.8063 0.8854
µ̂2 0.000414 0.000664 -0.000513 0.000593
ω̂2 1.85e-06 2.72e-06 8.95e-06 5.42e-06
α̂2 0.0932 0.0338 0.0513 0.119

β̂2 0.900 0.903 0.899 0.876
µ̂3 0.000107 0.000525 -0.000594 0.0000213
ω̂3 4.63e-06 4.75e-06 6.09e-06 1.83e-05
α̂3 0.127 0.0643 0.142 0.197

β̂3 0.863 0.896 0.851 0.782

σ̄1,t

√
250 24.8% 14.5% 21.2% 38.7%

σ̄2,t

√
250 23.2% 10.3% 20.6% 38.8%

σ̄3,t

√
250 27.4% 17.5% 25.8% 39.1%

Table 2: Estimated parameters of GARCH(1,1) for S1 (STOXX50 ), S2

(S&P500 ) and S3 (NIK225 ). σ̄i,t denotes the average of the daily volatil-
ities over the period under study (July 2006 to November 2009).

In addition to the parameters of the GARCH process, we also give the
average daily volatilities for the full sample and for each subperiods. It is
calculated as

σ̄i,t :=
1

K

t+K∑

s=t

σ̂i,s

multiplied by
√

250 to obtain an annual volatility (rather than a daily volatil-
ity), and where K denotes the number of days in the period of observation.
It is striking how the volatility changes throughout the three periods. The
dependence is also changing drastically such as it is described in the second
step.

Step 2: Dependence under P .

We first investigated the dependence between each pair out of {S1, S2, S3}.
The strongest dependence appears to be between S1 (European index) and
S2 (US Index), then between S1 (European index) and S3 (Asian index).
This can be seen from the values of Kendall’s tau reported in Table 3.

Table 3 also shows that Kendall’s tau depends on the period. We then
study the tail dependence by looking at the empirical contour plots for each
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period (Figure 2, Panel A, B and C). The empirical contours are compared
with theoretical contours. All parameter estimates to produce the graphs in
Panels A, B and C of Figure 2 are obtained by maximum likelihood estima-
tion.

S1 − S2 S1 − S3 S2 − S3

Full 0.404 0.202 0.079
Period 1 0.314 0.197 0.104
Period 2 0.384 0.239 0.075
Period 3 0.495 0.181 0.062

Table 3: Overall dependence measured by Kendall’s tau for the full sample
and then for each of the 3 periods.

Insert Figure 2 here.

From these contour plots, it seems that the dependence between S1 and
S2 could be best modeled by a Clayton copula for period 2 and period 3.
For the first period the Gauss copula seems more appropriate. The Clayton
copula captures the tail dependence for the losses that occurred in 2008 and
in 2009. During the first period (prior the crisis), one observes very few losses
and almost no tail dependence for the losses. It shows that the Gauss copula
is not appropriate to model periods of stress. The dependence between the
US index S2 and the Asian index S3 is weak and shows less tail dependence.
In the pair-copula construction, we do not need to model it directly: we need
to study the conditional dependence after conditioning with respect to S1.

We compute the copula C23|1 between the conditional distributions of S2

given S1 and S3 given S1 as follows. We first transform the observations into
conditional observations by using the transformation given by (11) and (12).
Assuming a Gauss copula (for the first period) and a Clayton copula (for the
second and third period) between S1 and S2, we calculate the conditional
observations by (12) where the functions h are given in Appendix A by (21)
(in the case of the Clayton distribution), by (23) (in the case of the Gumbel
distribution), and by (19) (in the case of the Gaussian distribution). Note
that the order of the variables is important and we are now conditioning with
respect to S1 instead of S2 as it was done in (11) and (12).

Insert Figure 3 here.
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Figure 3 shows that for each subperiod the dependence between the con-
ditional distributions is very weak, it could even be slightly negative. Note
that the Gumbel and Clayton copulas cannot be used to model negative de-
pendence. S2 and S3 were already weakly dependent (as could be seen from
Figure 2. Conditionally to S1, they are slightly negatively dependent and
almost independent before the crisis. This last dependence is modeled with
a Gauss copula.

The choice of copula is based on the comparison between empirical con-
tour plots and theoretical contour plots as well as using the p-values of
Cramér-von-Mises goodness of fit test (Appendix B). See the p-values re-
ported directly on Panels A, B and C of Figure 2 and on Figure 3.

Step 3 and 4: Pricing the basket option

For the purpose of illustration, the pricing of the contract IIL is done on
the 4th of May 2007 (about 200 days after issuance and when it is quoted at
10.60). Figure 4 displays the results.

To understand the impact of the choice of the copula and its parameters
on the price of a basket option similar to the contracts MIB and IIL described
previously, we run Monte Carlo simulations. Most of the dependence between
the three indices comes from the dependence between S1 and S2. Therefore
we study the impact of the choice of the family for CQ

12 and of its parameter.
We compare three cases, when the copula for the dependence between S1 and
S2 is Clayton, when it is Gumbel and when it is Gaussian. To compare the
three copulas, we adjust their respective parameters such that Kendall’s tau
between the standardized innovations of S1 and of S2 are equal. We use the
bijection between τ and the parameter of the Gaussian, Gumbel and Clayton
given respectively in Appendix A in (18), (22) and (20).

Parameters for the GARCH(1,1) are given by the ones reported in Table
1. Panel A corresponds to the second column, Panel B corresponds to the
third column and Panel C corresponds to the fourth column. The maturity
is 1,005 trading days and the interest rate rf = 6%.

For the dependence between S1 and S3 (respectively between S2|S1 and
S3|S1), we assume a Clayton copula (respectively a Gaussian copula). We
use the parameters for the copulas c13 and c23|1 that we fitted in Step 2.

Insert Figure 4 here.

For the ease of comparison, the scale is the same for the three panels of
Figure 4. It is then clear that the choice of the GARCH(1,1) parameters has
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a more significant impact on the pricing of this option than the choice of the
copula. Table 1 reports the parameters for the GARCH(1,1) process used in
the different panels. Panel A displays a “calm” period where the volatility
was quite small (10% to 17% for the three indices), Panel B displays the
pricing in a crisis time where the volatility is higher (20 to 26%) but the
expected daily log-return is negative. Finally Panel C reports the results
when the volatility is very high and expected returns are positive. Thus it
appears that the volatility plays an important role in the pricing of basket
options, more important than the choice of the copula.

Note that the Clayton and Gumbel dependences tend to give higher prices
for the basket option than the Gaussian dependence. We also observe that the
sensitivity of the price with respect to Kendall’s tau could be very different
with different assumptions on the dependence structure.

The paper presents a methodology and approach to price multivariate
derivatives with dependent GARCH(1,1) processes. To draw firm conclu-
sions more data are needed. In addition the contracts MIB and IIL are retail
investment products. The secondary market for these markets has been crit-
icized for being not liquid and for which issuers “choose” market prices. This
may explain why these contract may appear underpriced in Figure 4. Another
factor that we neglect is the presence of credit risk which would significantly
decrease teh value of the guarantee in the product and lower its price.

5 Conclusion

In a dynamic copula setting, it is not clear why the dependence under the ob-
jective measure (in the actual world) should be the same as the dependence
under the risk-neutral measure. We describe the steps to price a multivariate
derivative in this setting and illustrate the study with a dataset of multi-
variate derivatives prices sold in the US. It is hard to draw firm conclusions
from the only example of this paper. It provides an illustration of how the
pair copula construction methodology can be applied to model dependency
and price multivariate derivatives. It also shows that the main risk in basket
options may not be the dependence structure but the modelling of volatility
as well as shifts of regimes. Our empirical analysis indeed highlights differ-
ent periods: regime switching models may be more appropriate for pricing
long-term derivatives as the ones studied in the paper.
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A Appendix: Copulae

Let τ denote Kendall’s tau. We give the formulas for each parametric copula
studied in the paper as well as how to get the parameter from an estimation
of Kendall’s tau. Proofs and more details on each class of copulas can be
found in Aas et al. [2009].

A.1 Gaussian copula

Given a correlation parameter ρ ∈ (−1, 1), denote by Φ, the cdf of N(0, 1)
and Φ2

ρ the cdf of a bivariate normal distribution. With these definitions the
Gaussian copula cdf can be expressed as:

C(u, v, ρ) = Φ2,ρ(Φ
−1(u), Φ−1(u)),

where Φ2,ρ denotes the cdf of a standard bivariate distribution with correla-
tion coefficient ρ. For the Gaussian copula, θP := ρ, and it is equal to

ρ =
2

π
arcsin(τ). (18)

The h function needed to simulate conditional observations (see (12)) is given
by

h(u, v, ρ) =
∂

∂v
C(u, v, ρ) = Φ

(
Φ−1(u) − ρΦ−1(v)√

1 − ρ2

)
. (19)

A.2 Clayton copula

The Clayton copula cdf is given by

C(u, v, δ) = (u−δ + v−δ − 1)−
1

δ ,

where δ ∈ (−1, 0) ∪ (0, +∞). The parameter of the Clayton copula δ is
obtained from Kendall’s tau τ as

δ =
2τ

1 − τ
. (20)

h(u, v, δ) =
∂

∂v
C(u, v, δ) =

1

v1+δ

(
u−δ + v−δ − 1

)−1−1/δ
(21)
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A.3 Gumbel copula

For 1 6 λ < ∞,

C(u, v, λ) = exp
(
−((− ln(u))λ + (− ln(v))λ)1/λ

)

Then the parameter λ ≥ 1 verifies

λ = 1/(1 − τ). (22)

Furthermore h(u, v, λ) = ∂
∂v

C(u, v, λ) can be expressed as

h(u, v, λ) = C(u, v, λ)
(− ln(v))λ−1

v

[
(− ln(u))λ + (− ln(v))λ

] 1

λ
−1

(23)

B Cramér-von-Mises test

In copula goodness-of-fit testing we are interested in the copula alone and
therefore do not want to make any assumptions with respect to the marginal
distributions. Hence, a sensible approach is to base goodness-of-fit tests on
ranks and pseudo-observations (the unknown marginal distribution functions
Fj are replaced by their empirical versions F̂j(t)). The so-called pseudo-

observations are defined as Uij = n
n+1

F̂j(Xij), for all i = 1, ..., n and j =
1, ..., d (where n is the number of observations and d the dimension). The
scaling factor n

n+1
is used to avoid numerical problems in the boundaries of

[0, 1]d. The information contained in pseudo-observations U1, ...,Un is natu-
rally summarized in the corresponding empirical copula (empirical distribu-
tion of the observed sample introduced by Deheuvels [1979]) Cn(u1, ..., ud) =
1
n

∑n
i=1 1{Ui1≤u1,...,Uid≤ud}, where u1, ..., ud ∈ [0, 1]. Monte Carlo studies in

Berg [2009] and Genest, Remillard and Beaudoin [2009] show that the fol-
lowing test based on the Cramér-von Mises test statistic

Sn = n

∫

[0,1]d
[Cn(u) − Cθn

(u)]2 dCn(u) =
n∑

i=1

[Cn(U i) − Cθn
(U i)]

2 (24)

performs very well. The test can be performed in arbitrary dimensions al-
though the computational complexity increases quickly. However we only
need the test in two dimensions thanks to the pair-copula construction. The
limiting distribution of Sn as defined in (24) is unknown in practice and de-
pends on the hypothesized copula. P-values therefore have to be calculated
using a parametric bootstrap procedure as described in Genest et al. [2009].



F
igu

re
2:

S
catterp

lot
an

d
n
orm

alized
con

tou
r

p
lots

of
p
airs

of
stan

d
ard

ized
in

-
n
ovation

s
for

each
p
air

[F
irst

row
:

em
p
irical,

2n
d
-4th

colu
m

n
:

fi
tted

C
lay

ton
,

G
au

ssian
an

d
G

u
m

b
el

cop
u
la

con
tou

rs].
C

v
M

−
p

is
th

e
p
-valu

e
of

th
e

C
ram

ér
V

on
M

ises
G

o
o
d
n
ess

of
fi
t
test

(see
ap

p
en

d
ix

B
).

P
an

el
A

,B
,C

corresp
on

d
to

3
su

b
-

p
erio

d
s

resp
ectiv

ely
from

M
arch

2006
to

M
ay

2007,
from

M
ay

2007
to

J
u
ly

2008,
an

d
from

A
u
gu

st
2008

to
N

ov
em

b
er

2009.
F
in

ally
“d

elta”
is

C
lay

ton
’s

p
aram

eter
δ

in
A

.2
an

d
“lam

b
d
a”

is
G

u
m

b
el’s

p
aram

eter
λ

in
A

.3.

P
a
n
e
l
A

:
F
irst

P
e
rio

d

−2 −1 0 1 2

−
2

−
1

0
1

2

empirical S1−S2

DJ50

S
P

50
0

 0.03 

 0.06 

 0.09 

 0.12 

 0
.1

5 

−2 −1 0 1 2

−
2

−
1

0
1

2

Clayton

delta = 0.65  CvM−p=  0.00

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2

Gauss

rho = 0.55  CvM−p=  0.11

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2

Gumbel

lambda = 1.57  CvM−p=  0.55

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

 0.18 

−2 −1 0 1 2

−
2

−
1

0
1

2

−2 −1 0 1 2

−
2

−
1

0
1

2

empirical S1−S3

DJ50

N
ik

22
5

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2

Clayton

delta = 0.33  CvM−p=  0.51

 0.03 

 0.06 

 0.09 

 0.12 

−2 −1 0 1 2

−
2

−
1

0
1

2

Gauss

rho = 0.32  CvM−p=  0.05

 0.03 

 0.06 

 0.09 

 0.12 

−2 −1 0 1 2

−
2

−
1

0
1

2

Gumbel

lambda = 1.23  CvM−p=  0.00

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2

−2 −1 0 1 2

−
2

−
1

0
1

2

empirical S2−S3

SP500

N
ik

22
5

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2

Clayton

delta = 0.12  CvM−p=  0.51

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2

Gauss

rho = 0.17  CvM−p=  0.05

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2

Gumbel

lambda = 1.09  CvM−p=  0.00

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2



P
a
n
e
l
B

:
S
e
co

n
d

P
e
rio

d

−2 −1 0 1 2

−
2

−
1

0
1

2

empirical S1−S2

DJ50

S
P

50
0

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2

Clayton

delta = 0.79  CvM−p=  0.30

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2

Gauss

rho = 0.58  CvM−p=  0.55

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

 0.18 

−2 −1 0 1 2

−
2

−
1

0
1

2

Gumbel

lambda = 1.62  CvM−p=  0.01

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

 0.18 

−2 −1 0 1 2

−
2

−
1

0
1

2

−2 −1 0 1 2

−
2

−
1

0
1

2

empirical S1−S3

DJ50

N
ik

22
5

 0.03 

 0.06 

 0.09  0
.1

2 

−2 −1 0 1 2

−
2

−
1

0
1

2

Clayton

delta = 0.47  CvM−p=  0.20

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2

Gauss

rho = 0.39  CvM−p=  0.17

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2

Gumbel

lambda = 1.31  CvM−p=  0.00

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2

−2 −1 0 1 2

−
2

−
1

0
1

2

empirical S2−S3

SP500

N
ik

22
5

 0.03 

 0.06 

 0.09 

 0.12  0
.1

5 

−2 −1 0 1 2

−
2

−
1

0
1

2

Clayton

delta = 0.09  CvM−p=  0.02

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2

Gauss

rho = 0.10  CvM−p=  0.17

 0.03 

 0.06 

 0.09 

 0.12 

−2 −1 0 1 2

−
2

−
1

0
1

2

Gumbel

lambda = 1.04  CvM−p=  0.00

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2



P
a
n
e
l
C

:
T

h
ird

P
e
rio

d

−2 −1 0 1 2

−
2

−
1

0
1

2

empirical S1−S2

DJ50

S
P

50
0

 0.03 

 0.06 

 0.09 
 0.12 

 0
.1

5 

−2 −1 0 1 2

−
2

−
1

0
1

2

Clayton

delta = 1.21  CvM−p=  0.10

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

 0
.1

8 

−2 −1 0 1 2

−
2

−
1

0
1

2

Gauss

rho = 0.72  CvM−p=  0.08

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

 0.18 

−2 −1 0 1 2

−
2

−
1

0
1

2

Gumbel

lambda = 1.98  CvM−p=  0.00

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

 0.18 

−2 −1 0 1 2

−
2

−
1

0
1

2

−2 −1 0 1 2

−
2

−
1

0
1

2

empirical S1−S3

DJ50

N
ik

22
5

 0.03 

 0.06 

 0.09 

 0.12 

−2 −1 0 1 2

−
2

−
1

0
1

2

Clayton

delta = 0.37  CvM−p=  0.56

 0.03 

 0.06 

 0.09 

 0.12 

−2 −1 0 1 2

−
2

−
1

0
1

2

Gauss

rho = 0.32  CvM−p=  0.35

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2

Gumbel

lambda = 1.23  CvM−p=  0.05

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2

−2 −1 0 1 2

−
2

−
1

0
1

2

empirical S2−S3

SP500

N
ik

22
5

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2

Clayton

delta = 0.11  CvM−p=  0.56

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2

Gauss

rho = 0.14  CvM−p=  0.35

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2

Gumbel

lambda = 1.11  CvM−p=  0.05

 0.03 

 0.06 

 0.09 

 0.12 

 0.15 

−2 −1 0 1 2

−
2

−
1

0
1

2



Figure 3: Scatterplot of the standardized innovations for the conditional
standardized innovations of S2 and S3 conditional to S1. Each row corre-
sponds to one period. CvM − p denotes the p-value of the Cramér-Von-
Mises Goodness-of-fit test for the Guaussian copula (see appendix B). The
dependence is negative, Clayton and Gumbel are not appropriate. Rotated
Gumbel or Clayton could be used but the Gaussian copula is not rejected.
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Figure 4: Price for the contract IIL on May 4th, 2007 as a function of
Kendall’s Tau. Each point is obtained with 50,000 Monte Carlo simula-
tions. The market price quoted on that day was 10.9. Parameters of the
GARCH(1,1) processes are given in Table 1.
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