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Abstract We investigate optimal consumption and investment probliema Black-
Scholes market under uniform restrictions on Value-akRisd Expected Shortfall.
We formulate various utility maximization problems, whizdmn be solved explicitly.
We compare the optimal solutions in form of optimal valuetimal control and
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prove a corresponding verification theorem.
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1 Introduction

We consider an investment problem aiming at optimal congiompluring a fixed
investment intervalO, T] in addition to an optimal terminal wealth at maturify
Such problems are of prime interest for the institutionaéstor, selling asset funds
to their customers, who are entitled to certain paymentndutine duration of an
investment contract and expect a high return at maturitg. dlassical approach to
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this problem goes back to Merton [10] and involves utilitpétions, more precisely,
the expected utility serves as the functional which has togignized.

We adapt this classical utility maximization approach tdags industry prac-
tice: investment firms customarily impose limits on the rifkrading portfolios.
These limits are specified in terms of downside risk measasédise popular Value-
at-Risk (VaR) or Expected Shortfall (ES). We briefly commentthese two risk
measures.

As Jorion [5], p. 379 points out, VaR creates a common denatoirfor the
comparison of different risk activities. Traditionallypgition limits of traders are
set in terms of notional exposure, which may not be directisnparable across
treasuries with different maturities. In contrast, VaRypdes a common denomina-
tor to compare various asset classes and business unitpopldarity of VaR as
a risk measure has been endorsed by regulators, in partithéaBasel Commit-
tee on Banking Supervision, which resulted in mandatoryletgns worldwide.
One of the well-known drawbacks of VaR is due to its definiti@ra quantile. This
means that only the probability to exceed a VaR bound is densd, the values of
the losses are not taken into account. Artzner et al. [1] ggep as an alternative
risk measure the Expected Shortfall, defined as the conditexpectation of losses
above VaR.

Our approach combines the classical utility maximizatiathwisk limits in
terms of VaR and ES. This leads to control problems undericgshs on uni-
form versions of VaR or ES, where the risk bound is supposeetin vigour
throughout the duration of the investment. To our knowlesigeh problems have
only been considered in dynamic settings which reducensitrally to static prob-
lems. Emmer, Klippelberg and Korn [4] consider a dynamicketa but maximize
only the expected wealth at maturity under a downside riskd@t maturity. Basak
and Shapiro [2] solve the utility optimization problem fasroplete markets with
bounded VaR at maturity. Gabih, Gretsch and Wunderlich¢Blesthe utility opti-
mization problem for constant coefficients markets withrmed ES at maturity.

In the present paper we aim now at a truly dynamic portfolioich of a trader
subject to a risk limit specified in terms of VaR or ES. We skdlt with Merton’s
consumption and investment problem for a pricing modeladrigy Brownian mo-
tion with cadlag drift and volatility coefficients. Suclymhmic optimization prob-
lems for standard financial markets have been solved in Kasadnd Shreve [7]
by martingale methods. In order to obtain the optimal stpata “feedback form”
basic assumption in [7] on the coefficients is Holder canitinof a certain order
(see e.g. Assumption 8.1, p. 119). In the present paper welassical optimization
methods from stochastic control. This makes it possibl®tmfilate optimal solu-
tions to Merton’s consumption and investment problem irpleit feedback form”
for different power consumption and wealth utility funct® We also weaken the
Holder continuity assumption to cadlag coefficientdsfging weak integrability
conditions.

In a second step we introduce uniform risk limits in terms aRvand ES into
this optimal consumption and investment problem. Our riglagures are specified
to represent the required Capital-at-Risk of the institai investor. The amount
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of required capital increases with the corresponding lesmtjle representing the
security of the investment. This quantile is for any spedifidder an exogeneous
variable, which he/she cannot influence. Additionallyfetrader can set a specific
portfolio’s risk limit, which may affect the already exogmusly given risk limit of
the portfolio. A trader, who has been given a fixed CapitaRisk, can now use risk
limits for different portfolios categorizing the riskiresf his/her portfolios in this
way.

It has been observed by Basak and Shapiro [2] that VaR linmikg @pplied at
maturity can actually increase the risk. In contrast to ¢fiservation, when work-
ing with a power utility function and a uniform risk limit tbughout the investment
horizon, this effect disappears; indeed the optimal gfsater the constrained prob-
lem of Theorem 5 given in (3.21) is riskless for sufficientiyial risk bound: For
a HARA utility function, in order to keep within a sufficiegtbmall risk bound, it
is not allowed to invest anything into risky assets at alk ¢dmnsume everything.
This is in contrast to the optimal strategy, when we optirttigdinear utility, which
recommends to invest everything into risky assets and coesiothing; see (3.12)
of Theorem Th.3.1

Within the class of admissible control processes we idgstibclasses of con-
trols, which allow for an explicit expression of the optinsélategy. We derive re-
sults based on certain utility maximization strategiesasing a power utility func-
tion for both, the consumption process and the terminaltive@he literature to util-
ity maximization is vast; we only mention the books by Kaaatand Shreve [6, 7],
Korn [8] and Merton [10]. Usually, utility maximization isdsed on concave util-
ity functions. The assumption of concavity models the idest the infinitesimal
utility decreases with increasing wealth. Within the clapower utility functions
this corresponds to parametgrsc 1. The case/ = 1 corresponds to linear utility
functions, meaning that expected utility reduces to exgubatealth.

Our paper is organised as follows. In Section 2 we formulageproblem. In
Section 2.1 the Black-Scholes model for the price processdshe parameter re-
strictions are presented. We also define the necessaryitipeglike consumption
and portfolio processes, also recall the notion of a se#frfiing portfolio and a
trading strategy. Section 2.2 is devoted to the control ggses; here also the dif-
ferent classes of controls to be considered later are intedl The cost functions
are defined in Section 2.3 and the risk measures in Sectiofrn2Section 3 all op-
timization problems and their solutions are given. Here #® consequences for
the trader are discussed. All proofs are summarized in @edtivith a verification
theorem postponed to the Appendix.
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2 Formulating the Problem

2.1 The Model

We consider a Black-Scholes type financial market congigifroneriskless bond
and severatisky stocks Their respective price§(t))o<i<1 and(§(t))o<i<7 for
i =1,...,d evolve according to the equations:

dS(t) = e S(t)dt, $(0) =1,
(2.1)
dS(t) = SO K dt + St) 39, 0 (t) dWi(t), §(0) = s > 0.

HereW, = (W, (t),...,Wy(t)) is a standard-dimensional Brownian motiom; € R

is theriskless interest ratey, = (U (t), ..., uy(t)) € RY is the vector ofstock-
appreciation ratesand 0; = (0j; (t))1<i j<q IS the matrix ofstock-volatilities We
assume that the coefficients 1, and g, are deterministic functions, which are
right continuous with left limits (cadlag). We also assuthat the matrig; is non-
singular for Lebesgue-almost alk> 0.

We denote by# = o{W,,s<t},t > 0, the filtration generated by the Brownian
motion (augmented by the null sets). Furthermorédenotes the Euclidean norm
for vectors and the corresponding matrix norm for matri€es.(y) gt Square
integrable over the fixed intervéd, T] we define|ly|[t = (/g |yt[2dt)¥2.

Fort > O let@ € R denote the amount of investment into bond and

¢t = (¢1(t)7 ) ¢d(t))l € Rd

the amount of investment into risky assets. We recall thaading strategyis an
R L-valued(.#;, )y <7-progressively measurable procegs ¢, )yt and that

d

X=aSM+ ) ¢;1)S(), t=0,

=1

is called thewealth processMoreover, an(.%)q-progressively measurable
nonnegative process; o7 satisfying for the investment horizan> 0

-
/ Gdt <o as.
0

is calledconsumption process
The trading strategy(@, ¢;))o<t< and the consumption procegs)oi-1 are
calledself-financingif the wealth process satisfies the following equation

t d .t t
xt:x+/0 qq,dS)(u)Jerl/o ¢j(u)dsj(u)_/o cdu, t>0, (2.2)
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wherex > 0 is the initial endowment.
In this paper we work with relative quantities, i.e. with fngctions of the wealth
process, which are invested into bond and stocks; i.e., fueedor j =1,...,d

_ 9;(t) S (1) t>0
ash)+3, 4SO
Thenrg = (mg(t),...,my(t))’, t > 0, is called theportfolio processand we assume

throughout that it i.%; ) o7 -progressively measurable. We assume that for the
fixed investment horizoi > 0

m(t)

i
|\n||%:=/0 T2t <o as.

We also define with = (1,...,1)’ € RY the quantities
=0 and =0, ‘(4 —r1), t=>0, (2.3)

where it suffices that these quantities are defined for Lales¢most allt > 0.
Taking these definitions into account we rewrite equatioR)(®r X, as

dX, = X (r,+ Y. 6)dt —qdt + X y,dW, t>0, X;=x>0. (2.4)

This implies in particular that any optimal investment &gy is equal to
v = o/ ly{, wherey; is the optimal control process for equation (2.4). We also
require for the investment horizdh> 0

)
wm:4|m%<w. (2.5)

Besides the already defined Euclidean norm we shall alscouselitraryq > 1 the
notation|| f||, 1 for theg-norm of (f;), i.e.

T 1/q
uﬂqT=(A mwm) | (2.6)

2.2 The Control Processes

Now we introduce the set of control proces$gsc;)ot<7- First we choose the
consumption process; )o-¢7 as a proportion of the wealth process; i.e.

Ct :Vtx’(a

where(w)o<i<7 is a deterministic non-negative function satisfying
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T
/ v dt < oo,
0

For this consumption we define toentrol process; = (G )o<t<1 aSG = (Y, %X,
where(y;)o<t<7 is @ deterministic function taking valuesitf such that

_
Iyil2 = /0 e[t < oo 2.7)

The procesg X)o7 is defined by equation (2.4), which in this case has the
following form (to emphasize that the wealth process c@wesls to some control
process; we write X¢)

dXS = XS (r — v+ Y, 8)dt+ X yjdW, t>0, Xg=x. (2.8)

We denote byz the set of all such control processgs
Note that for every € %, by Itd’s formula, equation (2.8) has solution

xtc — xR V(.0 &(y), (2.9)

where
t t 1
a:/ rdu, vt:/ vdu and (y,G)t:/ Y, 8,du. (2.10)
0 0 JO

Moreover & (y) denotes the stochastic exponential defined as

t 1t )
50)=exp( [ viw,—5 [ vl t>o.

Therefore, for every € % the proces$><f)0<t<T is positive and continuous.

We considerZ as a first class of control processes for equation (2.4), fochv
we can solve the control problem explicitly and interprstgblution. This is due
to the fact, as we shall see in Section 2.4, that because ds#ussianity of the
log-process we have explicit representations of the risksuees.

Itis clear that the behaviour of investors in the model (8gpends on the coeffi-
cients(ry)g<t<7+ (M )o<t<T @Nd(0;)g<i«7 Which in our case are nonrandom known
functions and as we will see below (Corollary 3) for the "ddte utility func-
tions” case optimal strategies are deterministic, i.eomglo this class.

A natural generalisation o is the following set of controls.

Definition 1. Let T > 0 be a fixed investment horizon. A stochastic control process
¢ =(G)o<t<t = (V,&))o<t<T IS calledadmissiblef itis (% )o<i<7-progressively
measurable with values iRY x [0,), and equation (2.4) has a unique strong a.s.
positive continuous solutiofX ).t on [0, T]. We denote by the class of all
admissible control processes
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2.3 The Cost Functions

We investigate different cost functions, each leading tdfferént optimal control
problem. We assume that the investor wants to optimize ¢zgadility of con-
sumption over the time intervéd, T] and WealthXTc at the end of the investment
horizon. For initial endowmerk > 0 and a control process; )o;<1 in ¥, we in-
troduce thecost function o

3(%,€) = Ex </OT U (c)dt + h(x§)> ,

whereU andh areutility functions This is a classical approach to the problem; see
Karatzas and Shreve [7], Chapter 6.

HereE, is the expectation operator conditionam(fl = Xx. For both utility func-
tions we choosb (z) = 21 andh(z) = 22 for z> 0 with 0< y;, y» < 1, correspond-
ing to the cost function

I(%, ) == Ex (/OT it + (x#)Vz) . (2.11)

Fory < 1 the utility functionU (z) = 2 is concave and is called a power (or HARA)
utility function. We include the case of= 1, which corresponds to simply opti-
mizing expected consumption and terminal wealth. In coltiidm with a downside
risk bound this allows us in principle to dispense with thiitytfunction, where in
practise one has to choose the paramethr the context of this paper it also allows
us to separate the effect of the utility function and the liisiit.

2.4 The Downside Risk Measures

As risk measures we use modifications of the Value-at-Riskla@ Expected Short-
fall as introduced in Emmer, Kluppelberg and Korn [4]. Threan be summarized
under the notion of Capital-at-Risk and limit the possthitif excess losses over the
riskless investment. In this sense they reflect a capitaekves If the resulting risk
measure is negative (which can happen in certain situdtisasnterpret this as an
additional possibility for investment. For further integpations we refer to [4].

To avoid non-relevant cases we consider only 8 < 1/2.

Definition 2. [Value-at-Risk (VaR)]
Define for initial endowmenk > 0, a control process € %7 and 0< a < 1/2 the
Value-at-Risk (VaR)y

VaR(x,¢,a) :=xdt— A, t>0

)

where), = A(x, ¢, a) is thea-quantile ofX’, i.e.
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A=inf{A >0:P(X* <A)>a}.
Corollary 1. In the situation of Definition 2, for every € % the a-quantile A; is

given by

1
= xexp(R-Ve (1)~ 3 IE - zallvl ) 0.

where z is thea-quantile of the standard normal distribution, and the athaan-
tities are defined iff2.3)and (2.10)

We define thdevel risk functiorfor some coefficient& { < 1 as
G(x) = IxdY, teo,T]. (2.12)

We consider only controlg € % for which the Value-at-Risk is bounded by the
level function (2.12) over the intervéd, T|; i.e. we require

sup VaR (%6, a)

1. 2.13
0<t<T G (x) = ( )

We have formulated the time-dependent risk bound in the sgini¢éas we have
defined the risk measures, which are based on a comparise ofitiimal possi-
ble wealth in terms of a low quantile to the pure bond investim&he risk bound
now limits the admissible risky strategies to those, whisleaompared to the pure
bond portfolio, represented hf, remains uniformly bounded over the investment
interval.

Our next risk measure is an analogous modification ofERpected Shortfall
(ES).

Definition 3. [Expected Shortfall (ES)]
Define for initial endowment > 0, a control process € %7 and 0< a < 1/2

I’T}(X,C,G):EX(X[qX[CSAt), tZOv

wherek(x, ¢, a) is thea-quantile ofX°. TheExpected Shortfall (ES3 then defined
as
ES(x,¢ a) = xdt —m(x,¢,a), t>0.

The following result is an analogon of Corollary 1.

Corollary 2. In the situation of Definition 3, for any € % the quantity m=
m (X, ¢, a) is given by

M (%G, a) = XFy (25| + ||yl €%, t >0,

where where g is the a-quantile of the standard normal distribution and
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[P e 2t
— m, z>0.

Zq

Fa(2)

We shall consider all controlg € %, for which the Expected Shortfall is
bounded by the level function (2.12) over the interf{@all |, i.e. we require

ES(x,¢,0)
o<t<T  G(X) =t (214)

Remark 1(i) The coefficient{ introduces some risk aversion behaviour into the
model. In that sense it acts similarly as a utility functiaed. The difference, how-
ever, is that{ has a clear interpretation, and every investor can choote ater-
stand the influence af with respect to the corresponding risk measures.

(i)) If |ly|lt =0forallt € [0,T], then VaR(x,¢,a) = ES(x,¢,a) = x&¥(1—e™™),
0<t < T.On the other hand, ify||; > 0 fort € [0, T], then

(LlTOVaR( (%,6,a) = Alino ES(x,¢ a) =xel.

This means that the choice afinfluences the risk bounds (2.13) and (2.14). Note,
however, thatr is chosen by the regulatory authorities, not by the investhe
investor only chooses the valdelf { is near O the risk level is rather low, whereas
for { close to 1 the risk level is rather high, indeed in such caseisk bounds may
not be restrictive at all.

3 Problems and Solutions

In the situation of Section 2 we are interested in the sahstio different optimiza-
tion problems. Throughout we assume a fixed investmentwofiz> 0.

In the following we first present the solution to the uncoaisted problem and
then study the constrained problems. The constraints aterims of risk bounds
with respect to downfall risks like VaR and ES defined by medressquantile.

3.1 The Unconstrained Problem

We consider two regimes with cost functions (2.11) fer ¢, , < 1 and fory; =

¥» = 1. We include the case ¢f = y, = 1 for further referencing, although it makes
economically not much sense without a risk constraint. Ththematical treatment
of the two cases is completely different by nature.
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Problem 1.
maxJ(x,¢).
cev
Theorem 1. Consider Problem 1 witly; =y, = 1. Assume a riskless interest rate
r, >0forallt € [0,T].
If |6]+ > 0, then
maxJ(x,¢) = .
CEU

If ||8]|T = 0, then a solution exists and the optimal value ©f,&) is given by

maxJ(x,¢) = J(x,¢*) = x€r,
CeEU

corresponding to the optimal contrgl® = (y;,0) for all 0 <t < T with arbitrary
deterministic square integrable functigy)o;t. In this case the optimal wealth
process X" )o<t<T Satisfies the following equation

dX = Xrdt + X () W, X5 = x (3.1)

Consider now Problem 1 for4Q y1, » < 1. To formulate the solution we define
functions

T s
Al(t)zyfl/ e Bidugs and Ay(t) = yRek BUN  o<t<T, (3.2)
t

whereq; = (1—y) "t andBi(t) = (g — 1)(r,+ %6, |?). Moreover, forall 0<t < T
andx > 0 we define the functiog(t,x) > 0 as solution to

A1) g (t,X) +Ay(t) g (LX) =x (3.3)

and
p(t7 X) = qlAl(t) giql (ta X) + qZAZ(t) gqu (ta X) .
Theorem 2.Consider Problem 1 fob < y;, ¥, < 1. The optimal value of X, ¢) is
given by
maxJ(x,¢) = J(x,¢*) = Al—(O)gl’ql(o,x) + AZ—(O)gl’%(O,x),
cev Vi 2]

where the optimal contrat* = (y*,c*) isforall 0 <t < T of the form

“ = <g<t7y§<[*>>m '

The optimal wealth procesX;*)o<t<T is the solution to

(3.4)
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dX =a’(t,X")dt+ (b*(t, X)) 'dW,, X; =X, (3.5)

where

i} ) Vi q1
a*(t,x) = ryx—+ p(t,x) |6,|“ — (g(t x)) and B (t,x) = p(t,x) 6.

The following result can be found Example 6.7 on p. 106 in kzas.and Shreve
[7]; its proof here is based on the martingale method.

Corollary 3. Consider Problem 1 foy; = y» = y € (0,1) and define

1

SN q-1 ,.2 _
0 —exp( R+ T3 1612) and =t (3.6)

Then the optimal value of4, ¢) is given by

79 = maxd(x.¢) = 366" =x' (g1%r +8YM) "
= ey ) - 9 - gy q,T gy )

where the optimal contraf* = (y*,c*) is forall 0 <t < T of the form

i (0 M — 1) |
- (-,

¢ =VvX" and V= Q;';(t)
L ML gigas

The optimal wealth proce$X*)o<t<T is given by

¥

(3.7)

2

X’ = X’ <|rt —V + '19‘—_|y>dt+>¢

24
1-y

W, X =x (3.8)

Remark 2Note that Problem 1 for different & y; < 1 and 0< y, < 1 was also
investigated by Karatzas and Shreve [7]. For Holder caintirs market coefficients
they find by the martingale method an implicit “feedback fdohthe optimal solu-
tion in their Theorem 8.8. In contrast, Theorem 2 above give®ptimal solution in
“explicit feedback form” for quite general market coefficie. Our proof is based on
a special version of a verification theorem for stochasttinogd control problems,
which allows for cadlag coefficients.

3.2 Value-at-Risk as Risk Measure

For the Value-at-Risk we consider again the cost functiobl(Pand, as before, we
consider different regimes forQ y;,y, < 1 andy;, y, = 1.
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Problem 2.

maxJ(x,¢) subjectto supva
cew 0<t<T G(x)

To formulate the solution let; be the normabr-quantile for 0< a < 1/2 and
the constanf € (0,1) as in (2.12). Obviously, foo — 0 we have|z,| — o and,
hence, the quotient in (2.13) tends tp{1> 1. This means that the bound can be
restrictive. We define fo6 as in (2.3) the following quantity

Oar =\ (Za] = 1611) = 2In(1— 2) — (jza| — | 6]}7). (3.9)

Theorem 3.Consider Problem 2 foy; = y, = 1. Assume a riskless interest rate
r. > 0forallt € [0,T]. Then for

max0,1— &&/2 %llflr) « 7 <1 (3.10)
the optimal value of k, ¢) is given by

ma}/xJ(x, ¢) =J(x,¢*) = xeerllOllr+Rr (3.11)
ce

If ||8]|+ > O, then the optimal contra* = (y*,v*X*) isforall0 <t <T of the form

. (ga)™?

&
=Pl (= Aan g (4 D) and
The optimal wealth procesX")o<t<T is given by

ax" =X (1 +py ﬁ)dt+><;* X = x
T Par g Prar g M '

If ||6]l+ = 0, then the optimal value of(%, ¢) is given by

maxJ(x,¢) = J(x,¢*) = x€r, (3.13)
CeU

corresponding to the optimal contrgf = (y;",0) for 0 <t < T with arbitrary de-
terministic function(y; )o<i<7 such that

IY*llr < PYar = /78 —2IN(1 =) — |zl

In this case the optimal wealth proce$§" ), satisfies equatio(8.1)

Remark 3(i) For|z,| > 2|6|t condition (3.10) gives a lower bound 0; i.e.
0< { < 1.1f |z,] < 2||8]|+, then condition (3.10) translates to

1-/2lwllelr <7 <1
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i.e. we obtain a positive lower bound.

(i) The optimal strategy implies that there will be no comtion throughout the
investment horizon. This is due to the fact that the wealtrexmect by investment
is so attractive that we continue to invest everything. Nb# the solution is the
same as the solution to the problem without possible consamp

Now we present a sufficient condition for which the optimatonstrained strat-
egy (3.7)—(3.8) is solution for Problem 2 in the cage= y, = y € (0,1). For this
we introduce the following functions:

19I5+

* T
= = 1_e*VT = 1_e*fo "?dt7
1Gyllqr +Gy(T)

K(y)

where (V[ )o<<7 is the optimal consumption rate introduced in (3.7). Byisgtt
1(y) =In(1—K(y)) we define

=l 61 |za| +1(y) for 0<y<1/2;
L(y) = N
~q)|6]7 |za| +1(y) — 452|012 for 1/2<y<1.

Theorem 4.Consider Problem 2 witly = y, = y € (0,1). Assume ariskless interest
rater, > Oforallt € [0,T] and

1-eW <7 <1, (3.14)

Then the optimal solution is given §8.7)+3.8), i.e. it is equal to the solution of
the unconstrained problem.

Remark 4Theorem 4 does not hold fag # y», since the solution (3.4) does not
belong to7 .

To formulate the result for different (i = 1,2) we introduce the following func-
tionforO<k <1

G(x,K) == x"1Kk" |Gy [lq7 +X2(1— K)¥2G,(T), x>0, (3.15)
whereq= (1—-y,)" %, G = gy and
g, =ef = e¥lorudu.
Moreover, forx > 0 we set

K,(X) = arg maxG(x,K). (3.16)

0<k<1
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Note that for O< y; < 1 and 0< y, < 1 this function is strictly positive for ai > 0;
i.e. 0< Kk, (X) < 1.ltis easy to see that in the cage=y, =: y the functionk..(x) is
independent ok and equals to

g
18,13+ +83T)

Theorem 5.Consider Problem 2 witB < y; < 1and0 < y, < 1. Assume a riskless
interest rate y > Ofor allt € [0, T] and

K(y) (3.17)

0< Z <min{K.(X),K(y1)}- (3.18)
Moreover, assume that
max{y;, y,} 1
> 11+ 0+. 3.19
Iza|_< 1-¢ (;}lne(x,z)>” T (3.19)

Then the optimal value of(3, ¢) is given by

maxJ(x.c) = I06.¢) = XA Gyllgr + ¥2(L-%G(T).  (3.20)

where the optimal contrat* = (y*,v*X*) isforall0 <t < T of the form

61
IG1llgT — < 118 lqx

Y =0 (7 =0) and y =

(3.21)

The optimal wealth proces¥X;")o<t<T is given by the deterministic function

g <lg
é?t H 1”q,T/\ q” 1Hq,t =X Z eRt,
1G1llg7 Y

0<t<T. (3.22)

X =x

Remark 5We compare now conditions (3.18)—(3.19) fer= y, = y € (0,1) with
condition (3.14). Making use of the notation in (3.6) we a@fbta

. o Alige
g,(t) =g ez 190 >g,t).

Taking this inequality into account we find that in the case p< 1/2
(i.e. 1< q < 2), the functiore*(Y) is bounded above by

gi(T)e a6l g(T)e allelr il 16I%)

1Gyllq.r +9y(T) 1Gllgr +Gy(T)

Moreover, condition (3.19) implidgy| > ||8]|+. Therefore, taking into account that
1< q<2we obtain
e d(l18li1 |zal-952(6]12) <1.
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Hence, -
R AU )
[Gllgr -+ 9y(T)
Similarly, for 1/2< y< 1 (i.e.q > 2),
G4(T)e 2161%
d=(y) gV( ) <1-K(y).

< NManad |, 20/7+\
= llgllgr +9y(T)

So we have shown that-1€+(Y) > K(y), i.e. condition (3.14) is complementary to
conditions (3.18)-(3.19).

We present an example for further illustration.

Example 1To clarify conditions (3.18)—(3.19) consider aggin=y, = y € (0,1)
andr, =r > 0. We shall investigate what happens Tor- c. First we calculate

Jo €t 1—eMmT 1
) etdt+emT  l4qyr—e W 1iqyr

K«(X) = K(y)

asT — o, whereq = (1— y)~L. Thus, condition (3.18) yields f6F — o approxi-
mately

0<l<

14+qyr
The function (3.15) has the following form

T 1/q
G(x,k) = X" (KYA(T) +(1-«)") with A(T)= < / qu”dt> .
Jo

For the partial derivative with respect {owe calculate

2 M- -t
a7 "=V AT Aoy
Since
max(n, v} 1 FIAT) + (1= Q)Y

1-¢ ;%meug):ZW1—0AUy_a1_Qv:O“7 as (-0,

condition (3.19) impliesz, | > ||8]|+ approximately fol — 0. Moreover, the opti-
mal consumption (3.21) is given by

_ yar
\ftk - Z evar(T-t) _ {— (1_ Z)e—yqrt

and the optimal wealth process (3.22) is
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t

>¢=x§—@wﬁm—z—u—zmﬂm),oStgr
yar

Conclusion 6 The preceding results allow us to compare the optimal sfiegeof

the unconstrained problems and the constrained problethd/i bound. We con-

sider a riskless interest rate> 0 for allt € [0, T].

When simply optimizing expectation, i.¢4 = y» = 1, the VaR constrain puts
a limit to the investment strategy and also influences themyph wealth. On the
other hand, there is no change in the consumption, whichris threoughout the
investment horizon in both cases.

For 0< y1,» < 1 the optimal strategy for the utility maximization problém
volves investment and consumption during the investmerizbio; cf. Theorem 3.
The influence of a VaR bound is dramatic, when it is valid, asédbmmends the
optimal strategy of no investment, but consumption onlyTtfeorem 5.

3.3 Expected Shortfall as Risk Measure

The next problems concern bounds on the Expected Shortfall.

Problem 3.
ES(x¢,a)

maxJ(X,¢) subjectto sup———= <1
ceu (6) o<t &)

To formulate the solution for Problem 3 we define for 0 and 0<u <1

W(p,u) = [|6]l7 U2 + I Fy (24| + pu). (3.23)

Moreover, we set

pts = sup(p >0 : (p,1) >In(1- )}, (3.24)

where we define sy} = . We formulate some properties ¢f which will help
us to calculatgge.

Lemma l.LetO< a < 1/2such thatz,| > 2||6]||;. Theny satisfies the following
properties.

(1) For everyp > 0 the functiony(p, u) is strictly decreasing fob < u < 1.

(2) The functionp(-,1) is strictly decreasing.

(3) For every a< 0 the equationy(p, 1) = a has a unique positive solution.
The equationy(p,1) = In(1— ) has solutiorpig as defined ir(3.24)
For |z, | > 1 we have
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—In(1-2z,?) —In(1-2)
|z =16l

Now we present the solution of Problem 3, where we start agiiirthe situation
of a smalla, where the risk bound is restrictive.

pis< (3.25)

Theorem 7.Consider Problem 3 foy; = y», = 1. Assume also that the riskless in-
terest rate f > Ofor all t € [0, T]. Then forevenp < { <landforO< a < 1/2
such that|z,| > 2||6|; the solutionpgg of Y(p,1) =In(1— ) is finite, and the
optimal solution is given b{8.12)after replacingpy, s by pis

Now we consider Problem 3 with) = y, = y € (0,1). Our next theorem concerns
the case of a loose risk bound, where the solution is the sarnel@e unconstrained
case.

Theorem 8.Consider Problem 3 foy; = y, = y € (0,1). Assume that the riskless
interest rate y > Ofor allt € [0, T]. Assume also that,| > 2||6]|; and

1- (1= R(y) €117 Fy (|24 +lB]l7) < 7 <1. (3.26)
Then the optimal solutiog* is given by(3.7)3.8), i.e. it is equal to the solution of
the unconstrained problem.
Now we turn to the general case okQy;, y», < 1, the analogon of Theorem 5.

Theorem 9.Consider Problem 3 fob < y; < 1and0 < y, < 1. Assume a riskless
interest rate y > Ofor allt € [0,T]. Takek, (x) as in(3.16) Assumé3.18)and

max{yla VZ} 1
|zl = <2+ -2 Zn G(x,Z)) 181l (3.27)

Then the optimal solutiog* is given by(3.21}H3.22)

Remark 6 For|z,| > 2||0]|+ we calculate

® (t-+9]6llr)?

o &R 7 ) 6]

Fo(J2a + a1l Bll7) = =2 —— < exp(~2qj02 - TUIT).
S &7

Recalling from Remark 5 thaj, (t) = @y(t)e&i‘l”"”t2 we obtain

4
@(T)ef%;—)ueu%

L R(y) OB E, (2. 8]y < XS 7 T

gy(T)
= lIgllqr +9y(T)

i.e. condition (3.26) is complementary to condition (3.18) O

e FI0F <1-(y).
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Remark 7(i) It should be noted that the optimal solution (3.21)-@3.fbr Prob-
lems 2 and 3 does not depend on the coefficiéptf;.t and (6t)g;7 Of the
stock price. These parameters only enter into (3.18), [3ah@ (3.27). Conse-
quently, in practice it is not necessary to know these patarmerecisely, an upper
bound for|| 8|1 suffices.

(ii) If 8 =0, then conditions (3.19) and (3.27) are trivial, i.e. thémopl solutions
for Problems 2 and 3 for @ y; < 1 and O< y, <1 are given by (3.21)—(3.22) for
every O< a < 1/2 and( satisfying (3.18) O

Conclusion 10 The preceding results again allow us to compare the optitraks

gies of the utility maximization problems and the constegirproblems with ES
bound. The structures of the solutions are the same as foRacWastrain, only
certain values have changed.

4 Proofs

4.1 Proof of Theorem 1

First we considel|8|; > 0. Define forn € N the sequence of strategigs) =
(y™ VWX (M) for which (" = 0 andy(™ = n@. For this strategy (2.9) implies

\](X7 C(n)) :XeRT‘f’nHeHT —~00 as N— .

Let now|| ||+ = 0. Then the cost function can be estimated above by
T
J(x,¢) =X (/ eRtVtthtJreRTVT)
0

.

< xd¥r (/ eVlvth—eVT)
0

=xd¥r.

Thus, every controt with v =0 matches this upper bound. O

4.2 Proof of Theorem 2

We apply the Verification Theorem A.1 to Problem 1 for the kastic control dif-
ferential equation (2.4). For fixel = (y,c), wherey € RY andc € [0, ), the coef-
ficients in model (A.2) are defined as
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at,x,9) =x(r, +y86) —c,
b(t,x,3) = x]y|, f(t,x,9)=c", hx)=x2, 0<y,y<L1.

This implies immediatelyH,. Moreover, by Definition 1 the coefficients are contin-
uous, hence (A.3) holds for evegye 7.

To checkH; — H; we calculate the Hamilton function (A.5) for Problem 1. Weda

H(t,x,z;,2) = sup Hy(t,x,z;,2,3),
9eRIx[0,00)

where
1
Ho(t,%,21,25,8) = (r, +Y 6)xz + §x2|y|222 +ch—cz.

Forz, < 0 we find (recall thatj = (1 — y)™?)
H(t,X,Zl,ZZ) - Ho(t,x,zl,ZZ,'So)

1 2, 1 <V1)ql1

=Xz + =— + =2 ,

o 2|22|Z%|6t| 01 \4

WhereSO = So(t,X, Zla ZZ) = (yo(t,X, 21722)3 Co(t,X, Zla ZZ)) with

Rl
Yo(t,x,23,2,) = iet and co(t,x,,2) = e (4.1)
x|z 4]

Now we solve the HIB equation (A.6), which has for our probtae following
form:

Z(6.%) + rxz(tX) +

z§<t,x>|et|2+i< h >‘*11_07

2z (t,¥)]  a \ (%) (4.2)
Z(T,x) = x"%.
We make the following ansatz:
2(t) = 2 oo s 4 2ol g 43)
)z} Yo

where the functio is defined in (3.3). One can now prove directly that this fiorct
satisfies equation (4.2) using the following propertieg of
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—O1 —02 9
(— Au(t)ong ™ —Ao(t)aeg ) 79X = 9(t.x),

Ad(t)g (%) + Ag(t)g 2(t,%) — Ay(t)ang ® 12 g(t,x

at
9
—Az(t)ng’qflﬁg(t,x) =0
. . 1 0
A(1)g % (t,x) +Ay(t)g %(t,x) + g(t,x) = 0.

Zg(t,x) ot
This implies that

A(t) 1q _Az(t) 1-q
——Q1g (t,%) —1_ng (t,%). (4.4)

Zt(t,X) =

Moreover,z (t,x) = g(t,x) andz,(t,x) = —g(t,x)/p(t,x). Equation (4.2) implies
the following differential equations for the coefficierts

{ A(t) = =B A — V", Au(T) =0,
Az(t) = —Bz(t)Az(t)v Az(T) = ng-

The solution of this system is given by the functions (3.23lirpoints of continuity
of (Bi(t))g<t<7- We denote this sef. By our conditions (all coefficients in the
model (2.1) are cadlag functions) the Lebesgue measufeisfequal toT. Note
that conditions (2.5) and (4.5) imply that

(4.5)

T .
| @ <o
0

fori =1,2. Moreover, the definition aj(t, x) in (3.3) implies thag(-, ) is continu-
ous on[0,T] x (0, ). Invoking (4.4) we obtain property (A.8). Hence conditidp
holds.

Now by (4.1) we find that
H (t,%,2(t, %), (8, X)) = Ho(t, %, Z(t, %), (1, %), 97 (t, X)),
whered*(t,x) = (y*(t,x),c*(t,x)) with

a1
y*(t,x):@et and C*(t’x)_<g(¥lx)> .

HenceH, holds.

Now we check conditiofd ;. First note that equation (A.9) is identical to equation
(3.5). By Itd’s formula one can show that this equation hasigue strong positive
solution given by
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X = Agt) g H(0,x) e+ Ay(t) g~ %(0,x) & R (4.6)

t 1. t
.st:—/o (ra+ 516 )du—/o 8/aw,.
This impliesH .

To check the final conditiohl , note that by definitions (3.3) and (4.6)

with

g(t, %) = g(0,x)ef.
Therefore, taking into account that
XS =A(8)g H(s,X]) +Ax() g B(s,X])
we obtain fors > t
X: = Ay(S) g*QI(LX[*)e*(M(gs*Et) +Ay(9) g’qZ(t,X[*)e*qZ(‘(Sf‘(t).

Hence, fors >t we can find an upper bound of the proce@sX;) given by

g(taxt*) E—& (1— - _ _
) < s * * a)(és—&) 4 o(1-02)(&—&)
)< T X S M) ($ 0 ),
where
SURy< 7 (A (1) +Ax(t)) (gliql (t,x) + g %(t, X))
M, (X) = ——=—= .

min(y, ¥)
Moreover, note that the random variabégs- & andX" are independent. Therefore,
for everym> 1 we calculateg; , is the expectation operator conditionalXh= x)

Eix Sup Z"(s.X?) < 2™ M™M(x) <E sup €m&%) + E sup emZ(ESEt)> ,

T t<s<T t<s<T t<s<T

wherem; = m(1—q;) andm, = m(1— dy). Therefore, to check conditioH,, it
suffices to show that for evety € R

E sup &%) < w, 4.7)

t<s<T

2
aw,— 2 /516, [2du

S/
Indeed, for every <s<T we set§ =& /i &% , then

2
&8 < ARFEI0R 6

We recall from (2.3) that6;)o- 7 is a deterministic function. This implies that
the process$é; o) <5<t IS @ martingale. Hence applying the maximal inequality for
positives submartingales (see e.g. Theorem 3.2 in [9]) vaimkhat
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2 2 2T92d 262
E SUDcf’t’s§4E£’t’T:4e’\ I 16uFdu  gA®lBlIT

t<s<T

From this inequality (4.7) follows, which impligd,. Therefore, by Theorem A.1
we get Theorem 2. O

4.3 Proof of Theorem 3

First note that restriction (2.13) is equivalent to

. S B .
oé?; L(¢) > In(1-2), (4.8)

where 1
Li(6) = (1 0) — Ve — 5 IVII? — lzal Iyl (4.9)

with notations as in (2.3) and (2.10). Inequality (4.8) amel Cauchy-Schwartz in-
equality imply that

1
Iyl 18]l — 5HY|I$ —|zalllyllr = In(1-Q)

and, consequently,
IYllt < PYar: (4.10)

wherepy,  has been defined in (3.4) and satisfies the equation
R YPERY .
18ll+Pvar — 5 (PUar)” — 12al Par = IN(1 = 7). (4.11)
Moreover, for every; € % equation (2.9) yields
E, XS = xex Vit (%0t
For everyy € RY the upper bound (4.10) and the Cauchy-Schwartz inequadityl y

sup e(yxe)l < ep\jaRHeHT .
0<t<T

Therefore, the cost function (2.11) has an upper bound diyen
T
J(X,¢) =X </ eRt*VtJF(Y-,Q)tVt dt 4 efrVr+o)T )
0

T
< xePerllOlT Ry </ e\/tvtdt+eVT)
JO

e Xelj\jaR“e“TJrRT .
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It is easy to see that the contrg! defined in (3.12) matches this upper bound, i.e.
J(x,¢*) = xearl8lIT+Rr  To finish the proof we have to check condition (4.8) for
this control. If|| 6| = 0 then by (4.9)

(6" =~ 3 IV 12~ 2 Iy >~ 5 1112 ~ 2 1"

Y

1 * *
_é(pVaR)z —|za| Pyar = In(1-7).

Let now/||6]|+ > 0. Note that condition (3.10) impligg, | > 2|6+ — pJ,z- More-
over, we can represeht(¢*) as

Li(") = Plar T (18]1/16]]7)
with )
£(1) = (2118llr — Plup) 5 — lzaln. 0<N<1L.
Then
SN (€)= Plag 0 1),

<n<1

Taking into account that fde, | > 2||6||1 — py, this infimum equalg (1) we obtain
together with (4.11)

SN L(6") = Plag (1) = In(1=0).

This proves Theorem 3. O

4.4 Proof of Theorem 4
We have to prove condition (4.8) for the strategy (3.7)-%3.8
L(¢") = (q— @ 0> -V — 0
(€)= 1a- = ) I8llf =\ — alzal |8l
> (g-— @ )21 — V- Ol =1
Z (4= 10117 L(g>2y — V5 — alzal [|6][ = 1(¥)-

Now condition (4.8) follows immediately from the restrimtis on{ and the defini-
tion of L.(y). O
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4.5 Proof of Theorem 5

We prove this theorem as theorem 3. Firstly, we find an uppanédor the cost
functionJ(x, ¢) and, secondly, we show that the optimal control (3.20) mext¢his
bound and satisfies condition (4.8). To this end note tha f{2.9) we find that for
Cew

Ex(X)Y = ngy(t)efv\/ﬁv(y,e)r@HYth. (4.12)
This implies for¢ € % that the cost function (2.11) has the form

T ~ ~
Ix6) = x4 [ (@ )i Gy () it y)at + X2 G,(T) e T y(Ty),
0
where -
B (ty) = en 00112
Holder’s inequality withp = 1/y; andg = (1— y;) ! yields

~ T
) = sup Fity) (x5 [ (e iyt + X2, 2
0<t<T J0

< sup h(t,y) (¥4(1—e V1) |Gy lqr +X2G,(T) e ¥%¥T) |
o<t<T

whereh(t,y) = max{h, (t,y), h,(t,y)}. We abbreviate as befolt; [|q T := (Jg eMRdt)/a.
By settingk = 1— e V7 we obtain that

J < h(t,y)G 4.13

whereG(+,-) is given in (3.15). Moreover, condition (4.8) implies

Iylhr < \/ (2] = 8+ 21075 — (7| - [Ollr) = p()  (4.04)

and 0< k < { < 1. Itis easy to see that(k) < p(0) = p{,, for every 0< k < (.

From this inequality follows that for= 1,2 the functionsﬁi (t,yywitho<y<1
can be bounded above by

- (1—y)¥®
hi(t,y) < - Olly ———5—
oztung (LY) < exp{ylogg)((‘() (X| I 2

(1 —
—explyp ()10l ~ 10 0200} = M), (@15)
wherep; (k) = min(p(k),%) with % = ¢;||6]|y for 0 < y < 1 andp;(k) = p(k)
for y = 1. Therefore, from (4.13) we obtain the following upper boddor the cost
function
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J(%,¢) < max M;(p;(K))G(x, k) < max sup M;(p;(K))G(X,K).

1<i<2 1=is29<k<¢
If p(0) <x, then

sup My(pi(K))G(x k) = sup M;(p(k)) G(x,K).

0<k<{ 0<k<{

We calculate this supremum by means of Lemma 2 withO andb = . Note that
condition (3.18) guarantees thiak K, (x), which is defined in (3.16). Therefore, the
functionG(x, -) has positive first derivative and negative secon{@odi]. Moreover,
from (4.14) we find the derivative @f(-) as

1

P ViRl el 2o 20

and, therefore,

sup [p(K)| < !
ool PO = A= [z = 61

By (3.19) we obtain that

sup [p(K)] < o SO
0<k<{ ~ max{y, v} 0|t 714

Now Lemma 2 yields

max My(p(K)) G(x k) = Mi(p({))G(x ) =G(x{).  (4.16)

0<k<{

Consider now; < p(0). We recall thap(-) is decreasing of0, {| with p({) = 0.
Therefore, there existsQ k; < { such thaip(k;) = x. As G(X, -) is increasing on
[0, ] we obtain

max M;(p;(k)) G(x k) = M;(p(k;)) G(X,K;).

0<k<k;
This in combination with (4.16) yields

sup Mi(pi(K))G(x k) = sup M;(p(k))G(x.k) = G(x,{).

0<k<{ Ki<K<{
This implies the following upper bound for the cost function
JI(%,6) < G(x,Q). (4.17)

Now we find a control to obtain the equality in (4.17). It isai¢hat we have to take
a consumption such that
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T
[ Gte ek = (L—e )% Gy,

andV; = —In(1— ). To find this consumption we solve the differential equation
on|[0,T]
w <

t€ = g
6%

The solution of this equation is given by

~ ql
Vt* i (1—Z Hngql,t )

=14
161

g\?_l(t)v \/0:0

and the optimal consumption rate is

. oMt
vt*:Vt*: =~ qlzgl()/\ a, -
||91||q1,T = {[|Gulgy

We recall that; > 0, therefore, forevery &t <T

gL
o= ol
A= )lG%y

The condition O0< { < K(y;) implies directly that the last upper bound less than
1, i.e. the strategy™* defined in (3.21) belongs t@& . Moreover, from (4.14) we
see that for the valug; = —In(1— {) (i.e. k = ) the only control process, which
satisfies this condition is identical zero; iyg.= 0 for all 0 <t < T. In this case

h(t,y*) = 1 for everyt € [0, T] and, therefore)(x, ¢*) = G(x, ). O

4.6 Proof of Lemma 1

(1) Recall the following well known inequality for the Gaiess integral
(1—x2)e /2 < x/ e 2t <e/2, x>0. (4.18)
X

We use this to check directly thgt(p,-) is for every fixedp > O decreasing for
|| > 2||0]|+- ThisimpliesforO<u<1

ay(p,u) e (Iza|+pu)?/2
—Qu 2|6llrpu— Pm <p20t —Izl) <O.
|z4|+pu
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(2) Similarly, we can show thap(-,1) is strictly decreasing fojzy| > ||0||+-
(3) From (4.18) we obtain

o 1
wp.D < 6lrp—In [ el (7] +p)P-I(z|+p)  (419)

|24

This implies that lim ., ¢/(p, 1) = —o. As (§(0,1) = 0 we conclude that the equa-
tion Y(p,1) = ahas a unique root for every< 0. Thuspgg is equal to the root of
this equation folm = In(1— ). Now for |z,| > 1 inequalities (4.18)—(4.19) imply
directly the upper bound fgugg as given in (3.25). O

4.7 Proof of Theorem 7

Note that Lemma 1 implies immediately thags < o and(pgs 1) =In(1- ).
Furthermore, inequality (2.14) is equivalent to

Jnf L1(0) = n1-0), (4.20)

where
Ly (Q) = (¥, 6); =V, +In(Fu(|zg [+ [IYIlt)) -
First note that

L7 (¢) = (¥, 0)r = Vr +In(Fy(|z4] + [l¥ll1))
<Yl 18]t +In(Fa(lzal + lIYllr)) = @liyllr, 1)

Therefore, for every strategye % satisfying inequality (4.20) far=T we obtain

IN(1—4) = ¥(pes 1) < L7 (¢) < Y(lyllr,1).

By Lemma 1(2)y(-,1) is decreasing, hend@||r < pis Therefore, to conclude the
proof we have to show (4.20) for the strateghyas defined in (3.12) witpy, - = pgs.

If |8]]+ =0, then¢* = (y*,0) with every functiory* for which ||y*||+ < pts. There-
fore, if |8]|; =0, then

L&) =wlyll 1) = (lyllr,1) = In(1-7).
If 8]+ > 0, then

. ) ¢]
nt 1(6") = infw (s gl ) = wiptsd) = m(1-2).

o<t<T T o<t<T

This proves Theorem 7. O
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4.8 Proof of Theorem 8
It suffices to prove condition (4.20) for the strategy (3(3)8). We have
t
(€)= [ 00 Bt =V -+ In(Falizal I )

=qllBllf = Vi* + In(Fa(|za| + allB1)
> o([181l0) =V » (4.21)

where .
Wo(u) =qU8 +InF, (|24 + qu) with gq= =

It is clear thatyy, is continuously differentiable. Moreover, by inequality18) we
obtain for 0< u < |||t

— (|24 +qu)2/2
dl,l(l;)u(u) =2qu— qg—%
Jizgl vau®

< 2qu—qlz,| — ?u < q(20]r —|zl).-
Sincelz, | > 2||0]|+, Yo(u) decreases ifD, || 6||1]. Hence, inequality (4.21) implies
L{(6") = wo(16ll) = V5 =all6]F + Ine™7 Fy (24| +ql|Bllr).-

Applying condition (3.26) yields (4.20). This proves Thewor 8. O

4.9 Proof of Theorem 9

We recall thatp(p,1) < 0 for p > 0. Therefore condition (4.20) implies
In(1-7) < -Vr+y(llyllt,1) < —Vr. (4.22)

As in the proof of Theorem 5 we sgt=1— e V7 and conclude from this inequality
that 0< k < {. Moreover, from (4.22) we obtain also that

IN(1—2)~In(1—K) < @(lyll.1).

Since, by Lemma 1(2p(-, 1) is decreasing, we géy/||+ < p(k), wherep(k) is the
solution of the equation

Y(p,1)=In(1-)—In(1—«k). (4.23)
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By Lemma 1(3) the root of (4.23) exists for every<Ok < ¢ and is decreasing
in k giving p(k) < p(0) = pts. Consequently, we estimate the cost function as in
Section 4.5 and obtain

< (P .
J(x,¢) < nax KQ’E% M;(pi(K)) G(X,K), (4.24)

whereG(x, k) is as in (3.15)M;(+) is defined in (4.15) ang, (k) = min(x;, p(K))
forx =0|t/(1—y) for 0 < y < 1 with p;(k) = p(k) for y = 1.
To finish the proof we have to show condition (A.1) of Lemma &ork (4.23) we
find that L

oo 1 dy(p, 1)\

plK) =T < do :
Now from the definition ofp in (3.23) and inequality (4.18) follows

dy(p,1) e (Iza|+p)?/2
=0t — 5= < 10llt — |z4]-
dp -]“Za‘qu € t /Zdt
. G x,{
Therefore (3.27) yields (we s@4(x {) = o)
; 1 Gl(XaZ)
sup |p(k)| < < .
P IPUO S T2 =TTy = max(ye, 1118176 2)

We apply Lemma 2, and the same reasoning as in the proof ofréimed implies
that
max M, (p;()) G(x,k) < G(x,)

0<k<(

fori =1,2. Therefore from the upper bound (4.24) follows

J(x,¢) < G(x,Q).

The remainder of the proof is the same as for Theorem 5. O

Appendix
A.1 A Technical Lemma

Lemma 2. Let G be some positive two times continuously differergiébiction on
[a,b] such thats(x) > 0andG(x) < 0foralla <x<b.Moreover,lep : [a,b] = R
be continuously differentiable with negative derivativeatisfying
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sup |p(K)| < — (MCOJ

< (A1)
a<k<b max{yy, y>}0]t

Recall the definitions of N}) in (4.15) Then the functions Mp(-))G(-) and
M,(p()) G(-) are increasing ina, by.

Proof. For || 8| = 0 the result is obvious. Consider nd\@||+ > 0. We prove that
for i = 1,2 the functiond;(x) = InM;(p(X)) + InG(x) are increasing ifja,b]. As
derivative we obtain

: : G(x

L) = 4P 00181}~ (1= Y)p(K) + G
Since the derivative of the functio(-)/G(-) is negative ona,b], G(-)/G(:) is
decreasing ofa, b], hence

G(x) _ G(b)
6 = Gb) ~°

for x € [a,b]. Therefore, ap > 0 andp < 0 we find

(%) > (ING(b))' — y||6ll+p(K)| >0, a<k<b. O

A.2 The Verification Theorem

We prove a special form of the verification theorem (see eogzil[11], p. 16).
Consider on the intevdDd, T] the stochastic control process given by the Itd process

dXS = a(t, X%, q)dt + b(t, XS, q)dW, t>0, X;=x>0. (A.2)
We assume that the control procestakes values in some sef” C RY x [0, ).
Moreover, assume that the coefficieatandb satisfy the following conditions
(1) for allt € [0, T] the functionsa(t, -,-) andb(t, -,-) are continuous ofD, ®) x .7’;
(2) for every deterministic vectar € % the stochastic differential equation
dX! = a(t,X’,v)dt +b(t,X’,v)dW, Xj =x>0,
has an unique strong solution.

Now we introduce admissibles control processes for thetaqugh.2). We set#, =
o{W,,0<u<t}forany O<t<T.

Definition 4. A stochastic control process= (G )o<t<t = ((V,G))o<i<T IS called
admissibleon [0, T] with respect to equation (A.2) if it i6%; )g-1 - progressively
measurable with values iRY x [0,%), and equation (A.2) has a unique strong a.s.
positive continuous solutiofX’) ;-1 on [0, T] such that



Consumption and investment with bounded downside risk 31

T
/0 (Ja(t, X<, ¢)| + b?(t,XS,g))dt < o as.. (A.3)

In this contexty” is the set of all admissible control processes with respettid
equation (A.2); cf. Definition 1.

Moreover, assume thét: [0, T] x (0,») x . — [0,0) andh : (0,00) — [0, )
are continuous utility functions. We define the cost functiy

T
J(t,%,6) = Eqy [/ f(s,XSC,CS)dS—i—h(XTC), 0<t<T,
Jt

whereE; , is the expectation operator conditional ¥h = x. Our goal is to solve
the optimization problem

J*(t,x) := supJ(t,x,q). (A.4)
cev

To this end we introduce the Hamilton function

H(t,X,Zl,ZZ) = Ssup Ho(t,X,Zl,Zz,'B), (A5)
dex

where
Ho(t,X,21,2,,9) = a(t,x,d3)z + :—Zlbz(t,x,ﬁ)zz + f(t,x,3).

In order to find the solution to (A.4) we investigate the HaarilJacobi-Bellman
equation
Z[(t,X)—I—H(LX,ZX(t,X),ZXX(t,X)) =0, te [O,T],
(A.6)
Z(T,x) = h(x), x> 0.

Herez denotes the partial derivative mfwith respect td, analogous notation ap-
plies to all partial derivatives.
We assume that the following conditions hold:

H;) There exists some function 70, T] x (0,0) — [0,), which satisfies the fol-
lowing conditions.

e Forall0<ts,t; <T there exists &[0, T| ® .%2(0,») measurable functiong, -)
such that .
"2
Z(ty,X) — z(t1,X) = z(u,x)du, x>0. (A7)
Jtp
e Moreover, we assume that for evengUo, T] the function Zu,-) is continuous
on (0,) such that for every N> 1

)
im sup [z (u.x)—z(uy)|du=0, (A8)

€070 xyeKy,|x—yl<e
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where K; = [N~1,N].

e The function z has second partial derivatiyg avhich is continuous of0, T] x
(0,00).

e There exists a set C [0,T] of Lebesgue measure(l") = T such that &,x)
satisfies equatiofA.6) for allt € ' C [0,T] and for all x> 0.

H,) There exists a measurable functiii : [0,T] x (0,00) — % such that

H (t,%, (1, X), Z(t, X)) = Ho(t, X (t,X), Z(t, X), 8 7(t, X))
forallt € I and for all xe (0, ).

H3) There exists a unique a.s. strictly positive strong solutimthe 16 equation

dX* = a'(t,X7)dt + b7 (t,X) AW, t>0, X =x, (A.9)

where d(t,x) = a(t,x,9*(t,x)) and b*(t,x) = b(t,x,3*(t,x)). Moreover, the opti-
mal control procesg” = 9*(t,X*) for 0 <t <T belongs to/".

H,) There exists som&> 1 such thatforall0 <t <T and x>0

Eix SUP (2(s,X0))° < w.

Cot<s<T

Theorem A.1. Assume tha¥” # 0 andH; — H, hold. Then for all te [0, T] and for
all x > Othe solution to the Hamilton-Jacobi-Bellman equation j&@ncides with
the optimal value of the cost function, i.€t,x) = J*(t,x) = J*(t,x, ¢*), where the
optimal strategy;* is defined irH, andH.

Proof. For ¢ € ¥ let X¢ be the associated wealth process with initial valge= .
Define stopping times

T, = inf{sz t: /sz(u,xj,qu)i(u,xg)du > n}/\T.
t

Note that condition (A.3) implies that, — T asn —  a.s.. By continuity of(-,-)
and of(X)o<t<T We obtain

lim (1, X¢ ) = ZT,X7) =h(Xs) as. (A.10)

n—oo

Theorem A.2 guarantees that we can invoke Itd’s formuld, e conclude from
(A.2)

2.0 = [ 1o XS @ds+ 21X )~ [ (6 XS)

t

+Hy (e XS ) o | (U XS, G 24 (U, XS) WY, (A11)
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where
Hl(S,X,S) = HO(tvvax(tvx)vzxx(tvx)vS)'
ConditionH, implies

.Tn
2(t,%) > Et,x/ f(S.XS,G) S + BTy, XS ).
t

Moreover, by monotone convergence for the first term andiatemma for the
second, and by observing (A.10) we obtain

T, )
fim Etx/t (XS, ) ds+ im Ey,2(1, XC)

n—oo

:
ZELX/t (X5, ds+ B ch(X$) :=J(t,x,¢), 0<t<T. (A12)

Thereforez(t,x) > J*(t,x) forall 0 <t < T.
Similarly, replacingg in (A.11) by ¢* as defined by, — H; we obtain

rn
2(t,%) — Etvx/t F(8 X, ) ds + Eqy2(T X7 ).

Condition H, implies that the sequend@(t,,X; ))new is uniformly integrable.
Therefore, by (A.10),

rl]mo Eix (Tn,XT ) = Eix A@m Z(Tnaxr = Eixh(X7),
and we obtain

Z(t,x)

.Tn .
lim ELX/ f(5.X¢,€)ds + lim Eq,2(t, X))
t —00 ’

n—oo

T
~ e ([ X s hix) )
=J(t.x.¢").

Together with (A.12) we arrive &t,x) = J*(t,x). This proves Theorem A.1. [

Remark 8 Note thatin contrast to the usual verification theorem (sg€leuzi [11],
Theorem 1.4) we do not assume that equation (A.6) has acoliar allt € [0, T],
but only for almost alt € [0, T]. This provides the possibility to consider market
models as in (2.1) with discontinuous functional coeffitieMoreover, in the usual
verification theorem the functiof(t,x, ) is bounded with respect tB € .#" or
integrable with all moments finite. This is an essentialatéhce of our situation as
for the optimal consumption probleifnis not bounded ove# € .#” and we do not
assume that is integrable. O
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A.3 A Special Version of b’s Formula

We prove Itd's formula for functions satisfyirtd,;, an extension, which to the best
of our knowledge can not be found in the literature. Considertd equation

dé; = acdt + by dW¢,

where the stochastic processes- (& )ot-t andb = (bt)o are measurable,
adapted and satisfy for the investment horidox 0

T
/ (la| +bP)dt < w0 as.. (A.13)
0

Theorem A.2.Let f : [0,T] x (0,00) — [0, ) satisfyH,. Assume that the process
¢ is a.s. positive 00 <t < T. Then(f(t, &))o<t<T is the solution to

df(t,&) = (i (t, &) + f(t.&)a +%fxx(t7£t))bt2dt+ fi(t, §)brdW.  (A.14)

Remark 9Note that in contrast to the usual Itd6 formula we do not asstiratf has
a continuous derivative with respecttand continuous derivatives with respeckto
on the whole oRR. For example, the function (4.3) for = y, = y € (0, 1) factorises
into z(t,x) = Z(t)x", i.e. is not continuosly differentiable with respectt®n R.
O

Proof. First we prove (A.14) for bounded processeandb, i.e. we assume that for
some constarit > 0
sup (ja|+[lx) <L as. (A.15)
0<t<T
Let (t)1<k<n be a partition of 0, T], more precisely, tak& = kT/n, and consider
the telescopic sums

n

f(T.&) - 1(0.8) = 3 (&) — f(t 1,8,)

k=1

M s

(Fte-1: &) — Flt-1,&, ,))
1

2

In 2n

k

+

+

Taking condition (A.7) into account we can represent the $usn as

n tk T
=3 [ i w= [ uE)dun,

k=1 "tk-1

where
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n ot
=Y [ (U8~ f(u.&)du.
k=1"tk-1
Now we prove that, , P, 0.asn — . To this end we introduce the stopping time,
y=inf{t>0:&+& 1 >N}AT, N>O. (A.16)

As the proces§ is continuous and a.s. positive,

lim P(ty <T) =0, (A.17)

and, hencety P TasN— o, Moreover, the modulus of continuity of the process
& satisfies

A(E0T):=  sup |&—& 30, £—0. (A.18)
[t—s|<e,ste[0,T]

Note now that condition (A.8) implies that for evexy> 1

.
F*(n,N) ::/ sup  [f(ux)—f(uy)du—0 as n—o0,
0 xy.eKy,[x=yl<n

whereKy = [N~1,N]. This implies that for everg > O there existg); > 0 such that
F*(ns,N) < &. Moreover, taking into account that fer= T /n the random variable
r'1n is bounded on they-set

{8(&,0.T]) <ns}N{ty =T}
by [ry | <F*(ns,N) < 8, we obtain that

P(Irynl > 8) < P(4:(&,[0,T]) > ng) + Pty <T).

Relations (A.17) and (A.18) imply, P, 0asn — . Now define
T 1 /T 2
foni= a1 _/o f(t, &)d& — é/0 foe(t, &) bRt

We show that, , P oasn— o A Taylor expansion gives

M=

1 t
Zon= 3 Gl rd JA& 53 folb 1 &, ) [ b

k

1
L1
2

1 n
Fot: & )0t 5 > f(d&)% (A.19)

NM >

k=1
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; N ~

whereay, = (A&, )% — Ji* bidu, fi= et 1.&,) — futc 1.4, ) and

‘?tk =&, +64¢, with 6 € [0,1]. Now taking into account that as— oo

n

;
S it 1.& )AE > /0 f(t, &) d&

k=1

A % 5 o as T 2
> folte 16, ) [ B [ (0.8 bt
k=1 'S 0

k

it suffices to show that the last two terms in (A.19) tend tazerprobability. To
this end we represent the first sum as

n

z fxx(tkflv Etkfl)ak = Mn + Rna
k=1

where

3§
I
M=

) ke i
folts & ) with m=( [ bug)? — [ bdu
k—1

k-1

il
o

. * .tk
folt 1.8, o with o = (A8)2— ([ budw,,)2.

1

L
I
M=

il
o

First we estimate the martingale part in this represenmtatinte that on the set
{1y = T} the martingale part coincides with the bounded martingale

n
Mn = Z fxx(tk—la'{tkfl/\r,\,)nk'
k=1
Taking into account that

| fx(ti1: &4y nn)l < sup  |fu(ty)| =M,
te[0,T],ye[N~1N]

we obtain

4
n n oty
EMZ=E Y 2t 1:& an)Ne < MZS E ( bud\Nu>
k=1

n
1
<3LMZ S (A7 = 3|_4|v|3T2H -0, N—ow,
k=1

In the last inequality we used the bound (A.15)iokVe conclude

Mn 20, n—oo. (A.20)
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Using the convergence (A.18) also fdt) = _fé budW,, and the upper bound (A.15)
for awe obtain

. tk 2 1 y
log| < (/ audu) +2/ |au|du‘/ budW,
! te 1 1

k-1

< L2(At)% 4 2LA,(1,[0,T]) Aty

wheres = At, =T /n. This yields lim, ., 51, |a;| =0 a.s. We use analogous argu-

ments as for (A.20) to show th&, Po. Taking also into accountthgl{zzl(AEtk)z
is bounded in probability, i.e.

n

lim P § (A&, )% > m) =0,

m—eo (kzl “
it is easy to see that the last sum in (A.19) tends to zero ibadiity. This proves
Ito’s formula (A.14) for bounded coefficients;) and(b,).
To prove Ito’s formula under condition (A.13) we introduce E € N the sequence
of processe$&) o1 by

dé =apdt + brdw, &5 =&,

whereal- := 3 X{|a<L} andb} = bt X (|0 <L} - FOr each of these processes we already
proved (A.14). Therefore we can write

T T
f(T,ETL)=f(07<EO)+'/o A['-dt+'/o BLavy, (A.21)

whereA- = f,(t,&") + f,(t,&5)ak + f(t, &) (bH)?/2 andBl- = f,(t,&")b-. Note
that (A.13) implies immediately
T
lim (laf —a]+ (b —b)?)dt =0 as.
—0.J0
Taking this into account we show that

sup [§-—&| 50, L—o. (A.22)
o<t<T

Indeed, from the definitions & and&" we obtain that

L oL oL
sup [&¢ — &1 < [ Ja —adt + sup | [/t — b aw.

0<t<T 0<t<T

Thus for (A.22) it suffices to show that the last term in thisdnality tends to zero
asL — . By Lemma 4.6, p. 102 in Liptser and Shiryaev [9]) we obtaindeery
>0
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it T
Pl sup / (th—bOd\M’ >8| < %+P</ (b —by)2dt > £> .
o<t<T /0 o 0
This implies (A.22). Taking now the limit in (A.21) fok to infinity we obtain
(A.14). O
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