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ABSTRACT

Current GNSS receivers employ independent tracking

loop for each received signal, i.e. every satellite and every
frequency. With this receiver design a time consuming re-
acquisition is needed, whenever a signal is temporarily
lost. By formulating the tracking process jointly for all
signals, given the involved random processes, such as
receiver movements, receiver clock and atmospherical
effects, the spatial and spectral correlation of the signals
can be exploited. The joint tracking method was tested
in an airborne receiver during two stages of flight. In the
comparison to a commercial receiver the joint tracking
receiver shows its great potential by continuously tracking
all signals. This led us to the conclusion that a joint
satellite code and carrier tracking receiver makes a GNSS
receiver more robust, especially airborne receivers.

1. INTRODUCTION

Today a GNSS receiver receives signals from multiple
satellites and on multiple frequencies, where the satellites
belong to different navigation systems, e.g. GPS, Galileo
(starting with the GIOVE satellites), . . . The receiver typ-
ically sets up phase and delay locked loops (PLL, DLL)
for every signal [1]. To further increase the precision of
the code-tracking, the carrier-aided DLL is often imple-
mented. In a dual-frequency receiver the carrier on one
frequency is in addition also used to aid the tracking on
the second frequency (e.g. L2).

Whenever a satellite is masked or suffers from a strong
attenuation (e.g. excited by ionospheric scintillation) the
receiver loses lock of the carrier-phase synchronization,
e.g. [2]. After a loss of lock the receiver falls back
into frequency tracking mode or even discards the track-
ing of the satellite. A following re-acquisition and re-
synchronization is first of all time consuming and secondly
leads to a changed integer ambiguity of the carrier-phase.
But GNSS receivers using carrier-phase positioning only
get a high precision by relying on a constant ambiguity
[3].

To increase the robustness of the GNSS receiver, espe-
cially in the described environments, the spatial correlation
of the signals was exploited by Sennott and Senffner in
[4]. Spilker developed a similar idea for the code tracking
loop in the Vector DLL [5]. The idea of vector tracking
recently gained interest together with the first software
defined GNSS receivers, e.g. [6]. Henkel et al. proposed



to further exploit the spectral correlation of the signals [7].

Until now only the code and frequency was tracked in
the VDLL. Aiming at carrier-phase positioning in air-
crafts, the methods clearly have to be extended to the
phase tracking process and need to be combined with
the code tracking. Clearly with the upcoming navigation
systems like Galileo, the spectral correlation should also
be exploited in the code and carrier tracking. And finally
the algorithm should allow the joint tracking of multiple
constellations.

The objective of this paper is to introduce the joint
tracking loop as a tool to make the carrier- and code-phase
tracking in GNSS receivers more robust. In particular
we are interested in its use in airborne GNSS receivers.
This paper is divided into five sections. After this short
introduction follows a detailed formulation of the carrier
and code tracking problem in a GNSS receiver. The
controller emerging from this model is then employed
as the joint satellite code and carrier tracking method.
Its performance is evaluated in section 3, followed by a
discussion of the results in section 4. The paper is finally
concluded in section 5.

2. JOINT CODE AND CARRIER TRACKING

With the advent of software-defined GNSS receivers, the
usage of Kalman filters for the tracking in GNSS receivers
has recently gained high attention, cf. [8]. In this approach,
the received phase is modeled as consisting of a line-of-
sight and an oscillator part. Depending on this model, the
phase estimation filter can be set up.

Although in this way the optimal phase-estimator can be
found, there’s no direct hint on how to steer the local
oscillator – although this relationship could be derived
according to the well-known PLL by using Patapoutian’s
loop representation [9]. But to have better control of the
phase and frequency of the local oscillator, the tracking
loop needs to be represented as a control problem [10].
This procedure can be further extended to include the
signals from multiple satellites of different constellations,
received at multiple frequencies.

In this section the model used to derive the joint phase
tracking is detailed. It is followed by the extension to code
and carrier tracking, a discussion about observability and
controllability and the design of the linear controller.

PHASE MODEL

The true phase of the received signal is first broken
down into the parts originating from the receiver motion,

the receiver oscillator, the atmosphere and the satellite’s
oscillator [1]:

ϕk
m(t) = ωct+

2π

λm

( (
ek
)T [

r(t)− rk(t′)
]
+ cδ(t)

+ cδk(t′)− Ikm(t′′) + T k(t′′′)
)

.

The following denotations are used:

m the carrier frequency (1 . . .M ),
k the satellite (1 . . .K),
ek unit vector pointing from thek-th satellite to the

receiver,
r, rk the locations of the receiver and satellitek in the

same Cartesian coordinate system (e.g. ECEF),
δ, δk the receiver and satellite clock bias (in seconds),
Ikm the ionospheric delay (in meters),
T k the tropospheric delay (in meters),
t′ the time when the signal (received at timet) was

emitted,
t′′ the time when the signal hit the ionosphere

(simplifying the ionosphere as a thin shell) and
t′′′ the time when the signal hit the troposphere

(same simplification).

Each of the parts is modeled as a random walk, driven by
white Gaussian noise [11]. Denoting bynx the order of the
derivative represented by the noise sequence (x(nx)(t) =
wx(t)), Taylor’s theorem can be used to characterize the
evolution over time of the processx(t):

x(t+ T ) =

nx−1∑

l=0

x(l)(t)
T l

l!
+Rx(t, t+ T, nx), (1)

defining the general remainder term as

Rx(t1, t2, l) =

∫ t2

t1

wx(u)
(t2 − u)nx−l−1

(nx − l − 1)!
du.

The same expansion can clearly be carried out for higher
derivatives of x(t). All the derivatives stacked into a
vector, result in





x(0)(ti+1)
...

x(nx−1)(ti+1)






︸ ︷︷ ︸

xx(ti+1)

= Anx
xx(ti) +






Rx(ti, ti+1, nx)
...

Rx(ti, ti+1, 1)






︸ ︷︷ ︸

wx,i+1

,

with (Anx
)h,j =







T j−h

(j−h)! , if j − h ≥ 0

0 otherwise

andT = ti+1 − ti.

Plugging in the expansions for the above mentioned
processes influencing the signal phase, a state-space model



for the received signal phase emerges

ϕ
k
m,i+1 = xφ,i+1 +

(
ek
)T

⊗ Inr

(
xr,i+1 − xrk,i+1

)

+ xδ,i+1 + xδk,i+1 − xIk
m,i+1 + xTk,i+1

= An

(

xφ,i +
(
ek
)T

⊗ In
(
xr,i − xrk,i

)

+ xδ,i + xδk,i − xIk
m,i + xTk,i

)

+
2π

λm

( (
ek
)T

⊗ In
(
wr,i+1 −wrk,i+1

)

+wδ,i+1 +wδk,i+1 −wIk
m,i+1 +wTk,i+1

)

(2)

havingn = max (nφ, nr, nrk , nδ, nδk , nI , nT ) .

Not all of the processes have the ordern. The state-vector
of those with reduced order are augmented by a sufficient
number of zero-valued entries.

NCO MODEL

In analogy to the beforehand derived model for the
received signal phase (and its derivatives), a model for
the Numerically Controlled Oscillator has to be found. In
contrast to the phase-model, the states of the NCO are
driven by a user-defined input signal rather than (process)
noise.

Allowing the frequency and the phase to be changed
between successive integration intervals, the following
NCO model arises:







ϕk
NCO,m,i+1

ωk
NCO,m,i+1

0
...








︸ ︷︷ ︸

ϕ
k
NCO,m,i+1

= Anϕ
k
NCO,m,i +

[
I2
0

]

︸ ︷︷ ︸

−B0

uk
ϕ,m,i (3)

The state-vector of the NCO could as well be augmented
by higher order derivatives of the NCO-phase, leading to a
higher order NCO. However in this text only second-order
NCOs are considered.

PLANT MODEL

As proposed by [12], a plant model for the individual
phase control system can be found by taking the difference
of Equations 2 and 3:
(
ϕ

k
m,i+1 −ϕ

k
NCO,m,i+1

)

︸ ︷︷ ︸

xk
ϕ,m,i+1

= Anx
k
ϕ,m,i +

2π
λm

( (
ek
)T

⊗ Inr

·
(
wr,i+1 −wrk,i+1

)

+wδ,i+1 +wδk,i+1

−wIk
m,i+1 +wTk,i+1

)

+B0u
k
ϕ,m,i

(6)

Taking a closer look at the noise terms (or remainder
terms of the Taylor expansion) in the above model, we see
that the contributions from several satellites/frequencies
are correlated or simply scaled.

Receiver movements Assuming uncorrelated movements
in the three spatial dimensions, their projection onto the
line-of-sight vector is observed in the phase-domain:

ϕk
rm

(t) =
2π

λm

((
ek
)T

r(t)
)

The Taylor expansion like performed in Equation 1
is in theory not valid, since the unit vectorek might
be changing during the interval of consideration. The
expected rate of change is in the order of less than
10−3 per second and can therefore be neglected in this
analysis. Hence, the noise terms are just scaled by the
unit vectors at the beginning of the interval.

Satellite movements The movements of the satellites are
given with a high and sufficient precision (e.g. Broadcast
or IGS ephemerides). Due to their smooth dynamics the
satellites can be modeled as having a constant acceleration
over the interval of consideration. The remainder terms of
the Taylor series are then simplified as

Rrkx
(ti, ti+1, l) =

∫ ti+1

ti

r̈kx(u)
(ti+1 − u)l−1

(l − 1)!
du

≈ r̈kx(ti)
T l

(l − 1)! · l
, l ∈ {2, 1}

The impact of the satellite movements is therefore deter-
ministic and can be seen as a reference input to the phase-
system. As we want to follow the phase of the received
signal, the same input has to be used for the local system,
i.e. the NCO:

uk
ref.,m,i =

2π

λm

(
ek
)T

r̈ki

[
T 2/2
T

]

.

Ionospheric delay For any satellite, the ionospheric delay
is scaled with the carrier frequency – neglecting higher
order ionospheric effects. Therefore the remainder terms
in Equation 6 are scaled by their frequency-factorq:

with Ikm(t) = q2mIk0 (t), andqm =
f0
fm

:

(
wIk

m,i+1

)

l
=







q2mRIk
0
(ti, ti+1, nI − l + 1),

for l = 1, . . . , nI

0, otherwise



Gϕ = 2π ·







µ⊗
(
e1
)T

µ µ 0 . . . −q · µ 0 . . . m1
µ 0 . . .

µ⊗
(
e2
)T

µ 0 µ 0 −q · µ 0 m2
µ

...
...

...
. . .

...
. . .

...
. . .






⊗ In (4)

= 2π ·
[
H⊗ µ, IK ⊗ µ, − IK ⊗ (q · µ) , diag

(
m1, . . . ,mK

)
⊗ µ

]
⊗ In (5)

Tropospheric delay The tropospheric delay encountered
by the signals received from a satellite can be mapped to
the receiver’s tropospheric zenith delay [1]:

T k(t) = mk(t) · TZ(t)

Like in the preceding paragraphs the Taylor expansion
is also performed for the tropospheric zenith delay, with
the simplifying assumption that the mapping function is
constant during the considered interval.

The plant model can now be summarized to be

xϕ,i+1 = Axϕ,i +Buϕ,i +Gϕwi+1,

with

A = IK·M ⊗An,

B = IK·M ⊗B0,

wi =
[
wT

r,i, wT
δ,i, wT

δ1,i, wT
δ2,i, . . . ,

wI1
0
,i, wI2

0
,i, . . . , wTZ ,i

]T
,

µ =

[
1

λ1
, . . . ,

1

λM

]T

,

q = diag
[
q21 , . . . , q

2
M

]T
,

and the matrixGϕ as defined in Equation 4. Additionally
the covariance of the process noise vectorwi+1 has to be
defined. By following the approach described above, the
covariance matrix can be found in a way, similar to [13].

As the states are not directly observable, they need to
be estimated by an observer (typically implemented as a
Kalman filter). The outcome of the phase-discriminator
can be used as the measurement for the observer:

Dk
ϕ,m,i = atan

(

Qk
m,i

Ikm,i

)

≈ ∆ϕk
m,i + nk

ϕ,m,i, (7)

where∆ϕk
m,i denotes the average phase error during the

interval [ti−1, ti] and nk
ϕ,m,i is the measurement noise.

As derived in the appendix, the covariance of these
measurements is given as

E
{
nk
ϕ,m,in

k
ϕ,m,j

}
= δ(i− j) ·

1

2Ck
m/N0T

.

In the case of multisatellite and multifrequency tracking
a set of measurements is used to estimate the states:

[
Dk=1

ϕ,m=1,i, D1
ϕ,2,i, . . . , D2

ϕ,1,i, . . .
]T

= (IM·K ⊗Cn)
︸ ︷︷ ︸

C

xϕ,i + nϕ,i, (8)

with the well known observation matrixCn, with
(Cn)1,j = T j−1/j!, j = 1, . . . , n (e.g. [8]).

JOINT CODE- AND CARRIER-PHASE MODEL

In a similar way like the derivation of a carrier-phase
model in the previous section, a model for the code-phase
can be derived as well. This ensures continuous signal-
tracking in the receiver. As derived in [14], the basic
difference is the reversed sign of the ionospheric delay
and a different scaling of the remainder terms:

xk
τ,m,i+1 = Anx

k
τ,m,i +

fcode,m

c

( (
ek
)T

⊗ Inr

·
(
wr,i+1 −wrk,i+1

)
+wδ,i+1 +wδk,i+1

+wIk
m,i+1 +wTk,i+1

)

+B0u
k
τ,m,i.

In the code-phase tracking the state vector contains the
code-phase offset and its derivatives:∆τkm,i, ∆τ̇km,i, . . ..
The offset is again the difference between the received
signal and the locally generated copy (NCO-output). By
using opposite signs for the ionospheric process-noise part
in the carrier- and code-phase model, the loop accounts
for the code-carrier-divergence.

The state-vectors of both, code- and carrier-phase, can
now be stacked together. The outcomes of the discrim-
inators are then related to the state as derived above and
in the appendix. As a result the joint code and carrier
tracking loop emerges.

OBSERVABILITY/CONTROLLABILITY

To successfully implement a controller for the plant de-
scribe in section 2, controllability and observability have
to be fulfilled.

It can be shown that the observability matrixQo has rank
K ·M ·n. Therefore observability after Kalman is fulfilled.



If n is larger than 2, the condition for controllability
after Kalman can not be met. This can be seen from
Equation 3, where matrixB0 shows empty rows. To
solve this problem, either a higher order NCO could
be used (not discussed here) or the higher order state-
components are treated as a disturbance. In this case the
disturbance is estimated by the observer and fed forward
to the controller.

CONTROLLER DESIGN

Finally the feedback law of the controller takes the usual
form of a linear controller:

ui = −Kx̂i.

In contrast to a traditional PLL, both the phase and
the frequency of the NCO could be steered, leading to
more degrees of freedom in the choice of the controller.
The poles of the controller can be selected directly by
parametric state feedback design or by using results of
optimal control, like described in [10], [12]. But with both
design-approaches, the controller for every signal is only
depending on the according state-components. Otherwise
the control-system becomes unstable. Therefore, it can
also be seen as a sort of decentralized control.

MULTICONSTELLATION TRACKING

Until now we have never made any assumption about
the navigation system, except for the receiver’s oscillator.
Clearly this value has to be measured against a certain
reference timescale. Assuming that the intersystem clock
biases are many times more stable than the receiver’s
oscillator, the above model allows the joint tracking of
satellites of multiple navigation systems. For example in
the below described flight experiment, signals from GPS
and GIOVE satellites are jointly tracked in one loop.

If the intersystem clock bias is not as stable as desired, it
could optionally be included in the model in Equation 6.
This would result in an additional remainder term, but no
change in the state-vector.

3. RESULTS

This section shows performance results of the joint satel-
lite tracking loop, based on a linearized baseband model
(shown in Figure 1). We restrict ourselves to the case of
carrier-phase tracking as it is usually more critical in a
GNSS receiver than the code-phase tracking. Subsequently
follows the evaluation of the joint code and carrier track-
ing algorithm for an airborne GNSS receiver.

PERFORMANCE COMPUTATIONS

Fig. 1. Simplified baseband model of the joint satellite tracking
loop (the bold lines represent vector quantities and the bars multi- and
demultiplexing operations).

In [14] the transfer function between the input phase
and measurement noise and the phase-error is derived. It
consists of the transfer function of the NCO(s) (HNCO(z))
and that one of the estimator and controller (Ho(z)):

∆(z) = ∆ϕ(z) +∆n(z)

= (I+CpHNCO(z)Ho(z))
−1

︸ ︷︷ ︸

Hϕ(z)

ϕ(z)

+CpHNCO(z)Ho(z) (I+CpHNCO(z)Ho(z))
−1

︸ ︷︷ ︸

Hn(z)

N(z),

(9)

where∆ = ϕ − ϕ̂ denotes the phase-error andCp =
IK·M ⊗C2 the measurement matrix for the whole state-
vector.

Since the samples of the vector-valued noise process are
white, the power spectral density ofN(z) is a diagonal
matrix, having in the diagonal the variances of the phase-
discriminators:

SN(z) = E
{
nin

H
i

}
= R̃,

where (.)H denotes the Hermitian transpose. We used a
tilde for R here, to clarify the difference between the
covariance matrix used in the loop evaluation here and
the measurement covariance matrix used in the observer.
Ideally they are the same. But especially in the lowC/N0-
domain this must no longer be the case. Therefore theR̃

represents the actual covariance of the samples.

Now the covariance of the noise-part of the carrier-error
can be found by integrating its spectral density over one
period:

Cov (∆n) =
1

2π

∫ π

−π

Hn

(
ejΩ
)
R̃HH

n

(
ejΩ
)
dΩ (10)

In [15] it’s shown that the standard deviation of the carrier-
phase error – or also tracking jitter – marks a good
measure for the mean time to cycle slipping in a PLL.



Meaning that the lower standard deviation the higher the
robustness of the loop. Therefore the above value gives a
good approximation of performance of the loop, especially
in the higherC/N0-domain, where the approximation of
Equation 7 is valid.

Two analytical examples are presented here. In the first
scenario, a static receiver is probed. The carrier-phase
tracking performance of the joint tracking loop is com-
pared to the individual Kalman filter tracking of all
signals. The results are shown in Figure 2. Like mentioned
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Fig. 2. Comparison of the performance of a multisatellite tracking loop
(2 and 10 satellites) and traditional independent trackingloops.

above, the linearized baseband model is more precise in
higherC/N0-regions, where the additive noise assumption
holds. To visualize the effect of this nonlinearity, the loops
were also simulated in the intermediate-frequency (IF)
domain. The carrier-to-noise density ratio drawn on the
abscissa, in all cases stands for the strength of all signals.

The second scenario is a multifrequency Galileo receiver.
Again theC/N0 was used for all signals, i.e. all frequen-
cies. It’s performance evaluation is given in Figure 3.

The above two examples show the overall benefit of a
joint satellite and/or joint frequency receiver. But usually
not all satellites are affected by an attenuation concurrently
(for example during ionospheric scintillation or – as later
shown – aircraft maneuvers). Therefore the performance
of a joint satellite tracking receiver is also evaluated for
one failed satellite and 9 unaffected satellites. The analytic
evaluation is conducted by using the formula in Equation
10 and displayed in Figure 3.

AIRCRAFT MEASUREMENTS

To test the joint code and carrier tracking algorithm, a test-
flight with a Beechcraft King Air 350 airplane was con-
ducted. The Antcom 42GO1116A2-XT-1 multifrequency
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Fig. 3. Comparison of the performance of a multifrequency tracking
loop (E1, E5a and E5b frequency) and traditional independent tracking
loops.
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Fig. 4. Comparison of the carrier-phase tracking jitter fora scenario
where one satetellite is strongly attenuated (abscissa). All other nine
satellites remain unaffected at 45dB− Hz.

GNSS antenna was mounted on the roof, close to the
cockpit (see Figure 5).

Fig. 5. Beechcraft King Air 350 airplane. The location of theantenna is
shown by the arrow. The antenna follows the 743 ARINC configuration.

The first measurements were recorded during the enroute-
flight between Braunschweig (Germany) and Innsbruck
(Austria). The altitude of the aircraft was 28,000ft. Sig-



nals from 9 GPS satellites and the GIOVE-B satellite
were received concurrently. To be able to compare the
performance of the traditional and the joint-tracking loop
in terms of robustness against individual signal outages,
an artificial degradation of one satellite was implemented,
see Fig. 6.
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Fig. 6. C/N0 for the artificially degraded and the unchanged satellites.
Due to the increased variance in the lowC/N0-region, the estimated
values between 6s and 9s are considered to be unreliable, but well
below 15dB−Hz.

The comparison between an independent, traditional
Kalman filter-based tracking scheme and the joint satellite
tracking is given in Figure 7. In this case the reference
was a carrier-phase estimate obtained by tracking the
undegraded original data.
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Fig. 7. Carrier-phase tracking error comparison of a traditional and joint
satellite receiver with a strong attenuation of the considered satellite.

In addition to the enroute-flight a second measurement-
run was recorded during a horizontal loop maneuver. To
further exacerbate the conditions for the GNSS receiver,
the maneuver was performed in the valley of the river

Inn near Innsbruck (Austria), as can be seen from Figure
8. During this maneuver 11GPS and the two GIOVE
satellites were used in the receiver.

Fig. 8. Flight trajectory during the horizontal loop maneuver.

Clearly the geometry of the satellites changes during the
maneuver due to their motion. But of course the impact
is only very little at the receiver (less then one degree
in the skyplot). On the other hand, due to the banking
and turning of the aircraft, the geometry as actually seen
by the antenna changes very rapidly. As an example, the
skyplot corrected for the attitude of the receiver antenna
is shown for the PRN 18 and GIOVE-A satellites (Fig. 9).

As can be seen, both of the considered satellites have a
moderate initial elevation with respect to the antenna of
22◦ and 36◦ respectively. But during the maneuver the
elevation drops down to negative values due to the attitude
of the aircraft. The strong banking has two consequences.
First, if the elevation falls below about−5◦ the wings
of the airplane start to shadow the signal (depending on
the azimuth-angle) and a strong attenuation of the signal
results. Second, taking into account the hemispherical
radiation pattern of the installed airborne antenna, signals
of satellites having a negative elevation are attenuated.

How the attenuation, caused by the aircraft maneuvers,
affects the tracking capabilities of an independent tracking
receiver and a joint satellite tracking receiver, is shown
in Figures 10 and 11. As a resource for the independent
tracking receiver, a state-of-the-art commercial multifre-
quency, multiconstellation GNSS receiver was used. It was
connected to the same antenna as the joint satellite track-
ing receiver, implemented in software for postprocessing.

Of course the curve of the aircraft results in line-of-
sight accelerations and though in fast changing Doppler
frequencies. This fact can be seen in Figures 10(c) and
11(c).
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Fig. 9. Skyplot corrected for the attitude of the antenna. The black dot marks the beginning of the maneuver and the arrowsindicate the direction of the
trajectory.
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Fig. 10. Elevation and lock versus time for satellite PRN 18.The shaded
area represents the time of successful carrier tracking.

4. DISCUSSION

Three analytic evaluations have been presented in section
3. In Figures 2 and 3 the performance of a joint satellite
and joint frequency tracking loop have been presented.
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Fig. 11. Elevation and lock versus time for satellite GIOVE-A. The
shaded area represents the time of successful carrier tracking.

They show the performances when all signals are affected
the same way, i.e. all signals have the same carrier to noise
density ratio. The third plot (Fig. 4) analyzes the situation
where only one satellite is attenuated.



In the joint satellite case with 10 jointly tracked satel-
lites, the gain compared to the independent tracking
ranges from more than 8dB−Hz at highC/N0 to about
5dB−Hz for weaker signals. If only two satellites are
tracked jointly, the gain can be found to be approximately
3dB−Hz. Summarizing the joint satellite case, we can
find that the upper limit of the achievable gain is given
by the formulaGK sat. ≤ 10 log10(K), whereK denotes
the number of satellites tracked jointly.

The analysis of the joint frequency tracking case shows
a somewhat similar result. The biggest gain is achieved
for low noise, in the case of the three Galileo frequencies
(E1, E5a, E5b) about 4dB−Hz. The gain is a bit less for
weaker signals (≈ 3 dB−Hz). So again an upper bound
can be found to readGM freq. ≤ 10 log10(M), whereM
denotes the number of frequencies tracked jointly.

In the three figures discussed above, the intermediate-
frequency analysis shows a little deviation from the an-
alytic expression, when signals have a lowC/N0. The
reason is basically the nonlinearity of the discriminator
whose impact is increased with higher noise. But alto-
gether both IF-simulations and analytic evaluations show
the same behavior and trends. They allow us to define
a general upper limit for the performance gain of a joint
tracking loop over a traditional independent tracking loop:

GK sat., M freq. ≤ 10 · log10 (K ·M) .

The maybe more common situation where only one (or
at most few) satellites suffer from strong attenuation or
masking was shown in Figure 4. We know from several
publications the shape of the phase jitter curve plotted
against the carrier to noise density ratio. Therefore we’re
not surprised to see this shape again, when looking at the
curve for the affected satellite in the independent tracking
case. In the joint satellite case the carrier-phase jitter of
the attenuated satellite is slowly increased if itsC/N0

decreases. But it always stays well below the usually
considered tracking-threshold of 15◦. On the other hand,
clearly the performance of the unaffected satellites must be
lower if one satellite has a very weak signal. But due to the
low weighting of the according satellite, the performance
penalty is negligible, as also indicated in the plot.

The three discussed figures show the great potential of the
joint satellite and frequency tracking algorithm. In both
situations, if only a few satellites are masked or attenuated
as well if the signals from all satellites in view are weak,
the joint tracking receiver improves the performance of the
GNSS receiver. The first case is especially helpful in the
case of scintillation or banking in an aircraft, the second
case for example in indoor environments.

To test the found results, the flight-measurements were
shown in the second part of section 3. The enroute
example, where one satellite was artificially attenuated,
represents the situation discussed above. Taking Figure 4
into account, a joint tracking receiver should be able to
continuously track the carrier-phase also of the masked
satellite. Figure 7 shows that this is indeed the case. This
means that a joint satellite tracking receiver can cope with
signal-outages of a few seconds without leading to a loss-
of-lock or even cycle slip, also with real measurement
data.

The horizontal loop maneuver represents a more difficult
case since more than one satellite fails concurrently. As
can be seen, the commercial receiver needs some few
seconds to recover the signals of the lost satellites in the
case of GIOVE-A. Looking at the PRN 18 satellite, the
receiver completely fails to re-acquire the signal during
more than a minute. One of the reasons for this behavior
can be seen from the Doppler plots. During the outage
(or very low satellite elevation, as seen by the antenna)
the Doppler frequency substantially changes. Starting af-
terwards with the phase tracking loop again won’t work
as on one side the signal has left the pull-in region of
the PLL. And on the other side the code was lost and
therefore the DLL cannot be just restarted again. Therefore
the traditional receiver needs a complete re-acquisition
which takes some time. In contrast to the commercial
receiver, the joint satellite tracking receiver can recover
the signal as soon as itsC/N0 exceeds a certain threshold.
Actually the signal is continuously tracked, therefore the
shaded area, representing the time of tracking, is found
by considering the phase lock indicator.

5. CONCLUSION

The joint satellite code and carrier tracking loop shows to
greatly improve the performance of a GNSS receiver in
terms of tracking jitter and availability of satellites. When-
ever few satellites are lost due to masking, ionospheric
effects or the like, the joint satellite tracking receiver
avoids the re-acquisition and recovers the signal as soon it
becomes available again, as shown in this paper by using
an airborne GNSS receiver. Furthermore it was indicated
that even cycle slips could be avoided. Therefore the joint
tracking loop enhances the robustness of a GNSS receiver.
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APPENDIX

The Inphase- and Quadrature-components at the output of
the correlators can be approximated as in [5]:

Ii ≈ DiR(∆τi) · sinc

(
T

2
·∆ωi

)

· cos
(
∆ϕi

)
+ nI,i,

Qi ≈ DiR(∆τi) · sinc

(
T

2
·∆ωi

)

· sin
(
∆ϕi

)
+ nQ,i,

where ∆ωi,∆ϕi are the average frequency and phase
offsets respectively, during the interval[ti−1, ti], and

nI,i, nQ,i are zero-mean, uncorrelated Gaussian noise
samples of variance1/(2C/N0T ).

Using the arctangent-discriminatorDi = atan(Qi/Ii),
the noise is no more additive, especially in the low
C/N0 region. Due to this violation of the assumptions
of the Kalman filter, the measurement noise can also be
treated nonlinearly by augmenting the state-vector with
the measurement noise samples and by employing and
Extended Kalman filter [16]:

x̃i+1 =





xi+1

nI,i+1

nQ,i+1



 =

[
A 0

0 0

]

︸ ︷︷ ︸

Ã

x̃i +





wi+1

nI,i+1

nQ,i+1





︸ ︷︷ ︸

w̃i+1

.

The measurements, i.e. discriminator outputs, are related
to the states by the nonlinear function

Di = c̃ (x̃i, vi) = atan(Qi/Ii) + vi.

In the present case the measurement noise is already
contained inIi, Qi and thereforeE{vivj} = Rv = 0.
On the other hand the process-noise covariance matrix is
now consisting also of thenI,i andnQ,i:

E
{
w̃iw̃

T
j

}
= δ(i− j) ·

[
Q 0

0 Qn

]

︸ ︷︷ ︸

Q̃

andQn =
1

2C/N0T
· I2

In the iteration-equations of the EKF, the update for the

Kalman gain is instead of̂P−

i C
(

CP̂−

i C
T +Ri

)
−1

now:

K̃i =
ˆ̃
P−

i Jc̃

(

ˆ̃x−

i

)

·
[

Jc̃

(

ˆ̃x−

i

)
ˆ̃
P−

i J
T
c̃

(

ˆ̃x−

i

)

+ 0
]−1

,

where the Jacobian of̃c(x) is defined as∂c̃(x)/∂x.
Because of the shape of the state-transition matrixÃ,
the a priori estimated state vector will always beˆ̃x−

i =
[(
x̂−

i

)T
, 0, 0

]T

. Plugging in the a priori estimate, the
Jacobian reads

Jc̃

(

ˆ̃x−

i

)

=

[

C, −
sin(∆ϕi)

sinc2(∆ωi
T
2 )

,
cos(∆ϕi)

sinc2(∆ωi
T
2 )

]

.

Using the above result and the shape of theÃ-matrix,
the matrix to be inverted for the Kalman gain can be
evaluated:

Jc̃
ˆ̃
PiJ

T
c̃ = CP̂−

i C
T +

1

sinc2
(
∆ωi

T
2

) ·
1

2C/N0T
︸ ︷︷ ︸

Rϕ

. (11)

The result in Equation 11 encourages us to use
1/(2C/N0T ) for the measurement covariance matrix,
since in the lock case the term1/sinc2(∆ω ·T/2) is close
to 1. In a similar way the measurement covariance matrix
for the code discriminator can be found.


