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My surface is myself.
Under which

to witness, youth is
buried. Roots?

Everybody has roots.

William Carlos Williams, Paterson





Zusammenfassung

In dieser Arbeit werden statistische Fragen für lineare stochastische Prozesse unter-
sucht. Konsistenz und asymptotische Normalität des Quasi-Maximum-Likelihood
Schätzers für mehrdimensionale autoregressive Moving-Average (CARMA) Pro-
zesse in stetiger Zeit werden bewiesen. Um Eigenschaften des zugrundeliegenden
Lévy-Prozesses zu schätzen, wird die verallgemeinerte Momentenmethode erweitert
und auf approximative, aus einem beobachteten CARMA-Prozess rekonstruierte
Lévy-Zuwächse angewandt. Die Methode führt zu konsistenten und asymptotisch
normal verteilten Schätzwerten, wenn hochfrequente Beobachtungen zur Verfügung
stehen. Ein zweites Ziel der Arbeit ist es, die asymptotische Spektralverteilung
empirischer Kovarianzmatrizen linearer Prozesse durch deren Spektraldichte zu
charakterisieren. Schließlich werden ein zentraler Grenzwertsatz für ein Perkola-
tionsproblem bewiesen und die Übergangskerne einer verwandten Markovkette
explizit beschrieben.





Abstract

Several aspects of the statistical analysis of linear processes are investigated. For
equidistantly observed multivariate Lévy-driven continuous-time autoregressive
moving average (CARMA) processes we prove consistency and asymptotic normality
of the quasi maximum likelihood estimator. To infer further characteristics of the
driving Lévy process, we extend the classical generalized method of moments and
apply it to approximate Lévy increments that are reconstructed from a sampled
CARMA process. This approach results in consistent and asymptotically Gaussian
estimates if high-frequency observations are available. Another objective of our work
is to characterize the limiting spectral distribution of sample covariance matrices of
linear processes through their second-order properties. Finally, we prove a Central
Limit Theorem for a first-passage percolation problem, and describe the higher order
transition kernels of a related Markov chain.
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1. Introduction

1.1. Background and motivation

In the development of mathematical theories and models, one often faces the problem of
reconciling the antagonistic notions of generality and tractability. Restricting the complexity
of a model usually brings about the possibility of a deeper understanding of its properties,
but also the danger of its range of potential applications being reduced. For decades – and
still today – much of the research in the fields of mathematical statistics and probability
theory has been devoted to the definition and analysis of stochastic processes which are, on
the one hand, applicable to a wide range of real-world problems and, on the other hand,
mathematically tractable. These two requirements are not mutually exclusive, indeed the
possibility of rigorous statistical analysis of a stochastic model is a key prerequisite for
its successful application in practice. In addition to being sufficiently simple, stochastic
processes are considered practically useful only if they are able to reproduce the stylized
facts of the observed time series which they are meant to model. These stylized facts are
simplified generalizations of empirical findings and may include distributional properties
such as skewness or heavy tails, path properties such as jumps or a certain degree of
smoothness, volatility clustering and long-range dependence, see e. g. Cont (2001) for an
empirical analysis of financial data.

Of particular importance is the question whether a time series should be modelled by a
continuous-time or a discrete-time process, where the parameter of a stochastic process is
referred to as time even though, in practice, it might just as well represent a space variable or
some other physical quantity. The answer to this question might either be guided by physical
considerations as in the case of modelling temperature changes, which is an inherently
continuous-time phenomenon, or motivated by the availability of different mathematical
techniques. For instance, the pricing of financial derivatives is conveniently done within
the continuous-time framework, where Itô’s formula or variants thereof can be used, even
though the continuous nature of real asset prices is at least debatable due to the presence of
microstructure noise (Aït-Sahalia and Yu, 2009; Amihud, Mendelson and Pedersen, 2006;
Hansen and Lunde, 2006).

In practice, even phenomena for which a continuous-time model is appropriate are often
observed and recorded at discrete points in time only, and it is a major challenge to develop
a theory of how to recover characteristics of a suitable stochastic process from this partial
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2 1. Introduction

information. This question becomes particularly relevant if the available observations are
unequally spaced or are recorded at a high frequency, because in such situations discrete-
time models with their preferred fixed time scale can usually not be employed successfully.
Need for the ability to accommodate such irregular observations, the wish for mathematical
elegance, and the belief that many physical and economic quantities change at least in an
approximate way continually are the main reasons for the recently observed upsurge of
continuous-time processes in stochastic modelling.

One particularly rich class of stochastic processes that are versatile and at the same time
amenable to rigorous analysis are linear processes. The term linear process is not used
consistently in the literature, and, in fact, there is a hierarchy of definitions that begins with
finite-dimensional linear models and ends with a notion of linearity that contains almost
every stationary stochastic process. In the following, we will use several of these different
definitions and exercise the discretion to adopt that particular notion of linearity which is
most useful for the respective purpose.

In order to be able to employ a stochastic model in practice, it is crucial that one under-
stands in detail its statistical properties. This includes, but is not limited to, inference of
model parameters and hypothesis testing, a prerequisite of which is a detailed understanding
of the distribution of certain statistics derived from the model.

In this thesis, selected aspects of the statistical analysis of linear processes will be treated
from a theoretical point of view and illustrated by enlightening simulation studies and
examples. The results allow for the recently introduced promising continuous-time ARMA
models to be used in applications, they extend existing results in the literature about sample
covariance matrices of general infinite-order moving average processes in a mathematically
appealing way, and they provide an explicit description of the finite-time behaviour of a
first-passage percolation problem.

Continuous-time autoregressive moving average processes

The most restrictive definition of discrete-time linear stochastic processes are finite-order
autoregressive moving average (ARMA) processes and finite-dimensional linear stochastic
state space models, about which there exists an abundant literature (e. g. Brockwell and Davis,
1991; Hannan, 1970). It has been known for a long time that these two classes of stochastic
processes are equivalent, and that they constitute, from a second-order point of view, the
processes with rational spectral densities (Hannan and Deistler, 1988). Not surprisingly,
the special explicit structure of these processes allows for an extremely rich theory about
their probabilistic and analytical properties (e. g. Caines, 1988), and strong results with
respect to statistical inference (e. g. Hannan, 1973; Hannan and Kavalieris, 1984a,b), but
also restricts the areas of applicability of ARMA processes due to their inability to exhibit
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volatility clustering or long-range dependence. Since, as described above, continuous-time
processes are in many aspects superior to discrete-time ones, continuous-time analogues of
ARMA and linear state space models have been defined in order to make this convenient
linear structure available for models defined in continuous time (Brockwell, 2001b; Doob,
1944; Marquardt and Stelzer, 2007). Formally, a continuous-time autoregressive moving
average (CARMA) process Y with autoregressive polynomial P(z) = zp + A1zp−1 + . . . + Ap

and moving average polynomial Q(z) = B0zq + B1zq−1 + . . . + Bq is defined as the solution
of the differential equation

P(D)Y(t) = Q(D)DL(t), D B
d
dt

, (1.1.1)

which resembles the difference equation defining an ARMA process. The randomness is
introduced into the model by the driving Lévy process L, which allows for a CARMA
process to exhibit a wide variety of marginal distributions. The orders p and q determine
the smoothness of the sample paths of a CARMA process, which may be discontinuous
if p− q equals one. This is an important feature because many economic time series are
thought to exhibit jumps (see, e. g., Barndorff-Nielsen and Shephard, 2001a). By allowing
the process Y to be multidimensional, it is possible to employ one joint model for several
quantities and, thus, to capture their dependencies. With respect to volatility clustering and
long-range dependence CARMA processes have the same shortcomings as their discrete-
time counterparts; they serve, however, as building blocks for more complicated models
possessing these features (e. g. Barndorff-Nielsen and Stelzer, 2011; Brockwell and Marquardt,
2005; Haug and Stelzer, 2011).

A substantial part of this thesis will deal with statistical inference, or more precisely
parametric estimation, for multivariate Lévy-driven CARMA processes. Equation (1.1.1)
entails that the definition of a particular CARMA process requires the specification of the
integer-valued autoregressive and moving average orders p, q, of the coefficient matrices
Ai, Bj, and of the driving Lévy process L; it is thus a multi-step procedure, of which the
second and third step are treated in this thesis. To make allowance for the dominant role of
digital data processing and the fact that, for many phenomena of interest, continuous-time
observations are not available, the estimation is based on observations of the CARMA
process at discrete points in time.

To estimate the coefficient matrices Ai, Bj of a discretely observed CARMA process, we
make extensive use of the linear structure of an equidistantly sampled continuous-time
state space model. We derive different ARMA and state space representations for these
sampled processes and investigate their probabilistic and analytical properties. Extending
the work of Boubacar Mainassara and Francq (2011); Francq and Zakoïan (1998), we prove
asymptotic properties for the quasi maximum likelihood estimator of a very general class
of second-order linear state space models in discrete time; more precisely, we allow for
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both system and observation noise and impose only a strong-mixing assumption in the
sense of Rosenblatt (1956). These new results, together with our detailed understanding
of discretized CARMA processes, enable us to show that the same desirable asymptotic
properties, strong consistency and asymptotic normality, also hold for the quasi maximum
likelihood estimator of discretely observed CARMA processes.

Our approach to estimating the driving Lévy process is based on Brockwell, Davis and
Yang (2011), who suggested the following method for the special case of a univariate CARMA
process of order (p, q) = (2, 1). If the CARMA process satisfies a minimum phase condition,
it is possible to express the values of the driving Lévy process as a function of the values of
the CARMA process observed continuously since the infinite past. Refining this observation,
one can compute a set of approximate increments of the driving process from discrete
observations on a finite time interval. Since the increments of a Lévy process are independent
and identically distributed (i. i. d.), and their common distribution uniquely determines
the whole process, these approximate increments can be used to estimate a parametric
model of the driving Lévy process by, e. g., maximum likelihood. We extend this method
in two ways: we show how to recover the driving process from a continuously observed
multivariate CARMA process of any order p > q, and instead of restricting attention to
maximum likelihood estimators, we allow the sample of approximate increments to be used
with any suitable generalized method of moments estimator as defined by Hansen (1982). So
far, asymptotic properties of this class of estimators were known when the sample is part of
a sequence which is sufficiently independent for a Central Limit Theorem to hold. We relax
this assumption and consider data that can be represented as a general additive perturbation
of an i. i. d. sequence. Without imposing weak-dependence conditions on the perturbation,
we prove that general method of moments estimators based on such a sample are consistent
and asymptotically normally distributed if the length of the sample tends to infinity, and
the noise goes to zero in a suitable way; these results are used to show that a parametric
model of the driving Lévy process of multivariate CARMA process can be estimated if
high-frequency observations are available, and to derive the asymptotic properties of the
corresponding estimators.

Sample covariance matrices of linear processes

A very broad class of stochastic processes, which generalize causal finite-order ARMA
processes, and which are also often referred to as linear processes, consists of infinite-order
moving averages of the form Xt = ∑∞

j=0 cjZt−j, for some i. i. d. sequence Z. Such processes
extend the modelling capabilities of finite-dimensional state space models by including
long-range dependent processes such as fractionally integrated ARMA processes (Granger
and Joyeux, 1980; Hosking, 1981). Much fewer and, in general, only weaker results can be
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proved for this more general class of linear processes than for ARMA processes.

A fundamental paradigm in statistics is that population quantities should be estimated
by corresponding sample quantities, which, in the theory of stochastic processes or more
general dynamical systems, is formalized by the concept of ergodicity (Krengel, 1985). In
particular, the instantaneous covariance matrix of a p-dimensional stochastic process X,
which is an important measure for dependencies between the components of X, can be
estimated by the quantity n−1XXT, where n denotes the length of the sample and the
columns of the matrix X are given by the individual observations; if the process X is ergodic,
this estimate will converge to the true covariance matrix as the number n of observations
tends to infinity. The prominent role played by the sample covariance matrix n−1XXT in
multivariate statistics is described in Anderson (2003); Muirhead (1982).

In practice, one is often confronted with the situation that the number of variables is of
the same order of magnitude as the number of observations, and the basic assumption in
the classical limit theorems that n tends to infinity while p remains fixed might then not be
plausible. To overcome this and similar problems, a tremendous amount of research has
been dedicated to the analysis of spectral properties of large random matrices (see, e. g.,
Bai and Silverstein, 2010, for an introduction). It is by now a classical result in random
matrix theory that the distribution of the eigenvalues of the matrix n−1XXT converge to a
non-trivial limiting measure if the entries of the p× n matrix X are i. i. d. random variables
with mean zero, and both p and n converge to infinity such that the ratio p/n tends to a
positive finite limit (Marchenko and Pastur, 1967); this behaviour is qualitatively different
from the situation where p is fixed, in which case each of these eigenvalues converges to the
common variance of the entries of X.

Building on recent results about the limiting spectral distribution of products of random
matrices (Bai and Zhou, 2008; Pan, 2010), we investigate asymptotic spectral properties of
sample covariance matrices of a special class of high-dimensional stochastic processes, the
components of which are modelled by independent infinite-order moving average processes
with identical second-order characteristics. Our main result is an explicit characterization
of the Stieltjes transform of the limiting distribution of the eigenvalues of these sample
covariance matrices in terms of the spectral densities of the underlying linear processes.
Furthermore, we obtain the same result for a related random matrix model in which the
assumption of independence between the rows is relaxed.

First-passage percolation

If one relaxes the definition of a linear process even further and defines it as an infinite-order
moving average not of an i. i. d. sequence but rather of a merely uncorrelated random
sequence, then every purely non-deterministic stationary stochastic process in discrete time
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with finite second moments is linear (Caines, 1988; Wold, 1954). Since this characterization
of linearity applies to many stochastic processes which are thought of as being genuinely
non-linear, such as GARCH or regime-dependent ARMA processes (Tong, 1990), it is usually
not used in the literature. For the important special case of Markov chains, however, which
satisfy an ergodicity condition, many interesting mathematical results, such as Central Limit
Theorems, can be obtained without a strong notion of linearity (e. g., Chen, 1999).

In the last part of this thesis, we consider a first-passage percolation problem on a random
graph as a model for a porous medium, going back to Hammersley and Welsh (1965). In
this interpretation, the geometry of the medium is approximated by a discrete graph, and its
heterogeneous permeability is represented by random weights on its edges, which determine
the time it takes a fluid to travel from a vertex of the graph to one of its neighbours. Because
of an Ergodic Theorem for subadditive stochastic processes (Kingman, 1968), it is known that,
for many first-passage percolation models, a fluid asymptotically advances into the medium
at a constant speed, often referred to as the inverse time constant, which is characteristic for
the model under consideration.

Here, we investigate an essential one-dimensional model with independent edge weights,
for which the time constant is known explicitly. By proving a Central Limit Theorem for an
associated Markov chain and performing a quantitative analysis of its multi-step transition
kernels, we provide a characterization of the finite-time behaviour of this particular first-
passage percolation model. Moreover, we establish the necessary tools to understand the
fluctuations of the asymptotic speed at which a fluid percolates through the medium in that
model.

1.2. Outline of the thesis

In the following, we outline the structure and contents of this thesis. Each of the following
six chapters is based on a paper and therefore essentially self-contained. Unified notation is
used within each of the three parts of the thesis, with a summary of generally used symbols
and abbreviations given after the bibliography on page 249.

The first part, consisting of Chapters 2 to 4, deals with the statistical analysis and estimation
of Lévy-driven multivariate continuous-time autoregressive moving average (abbreviated
MCARMA) processes which are observed on an equidistant time grid. It is based on the
three papers Brockwell and Schlemm (2011); Schlemm and Stelzer (2011, 2012).

In Chapter 2 it is shown that, similar to the discrete-time theory, the class of multivariate
CARMA processes is equivalent to the class of continuous-time linear state space models in
the sense that the output process of any state space model possesses a CARMA representation
and vice versa. The second topic of the chapter is to investigate the probabilistic properties
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of an equidistantly sampled CARMA process, which, in the univariate setting, is known to
be a discrete-time ARMA process driven by a weak white noise sequence. We generalize
this result to the multidimensional setting and show under a mild continuity assumption on
the driving Lévy process that the noise sequence is not only uncorrelated, but exponentially
completely regular (β-mixing) and, in particular, strongly mixing. It is verified that this
continuity assumption is satisfied in most practically relevant situations, including the case
where the driving Lévy process has a non-singular Gaussian component, is compound
Poisson with an absolutely continuous jump size distribution, or has an infinite Lévy
measure admitting a density around zero. We thus establish a strong notion of asymptotic
independence for the linear innovations of a sampled CARMA process, which are useful in
the development of an estimation theory for this class of stochastic processes.

Thereafter, in Chapter 3, we turn our attention to parametric inference and consider quasi
maximum likelihood (QML) estimation for general non-Gaussian discrete-time linear state
space models and equidistantly observed multivariate Lévy-driven continuous-time autore-
gressive moving average processes. In the discrete-time setting, we prove strong consistency
and asymptotic normality of the QML estimator under standard moment assumptions and
a strong-mixing condition on the output process of the state space model, but without the
requirement that its linear innovations form a sequence of martingale differences. In the
second part of the chapter, we further investigate probabilistic and analytical properties
of sampled continuous-time state space models, and we apply our results from the dis-
crete-time setting to derive the asymptotic properties of the QML estimator of discretely
recorded MCARMA processes. Under natural identifiability conditions, the estimators are
again consistent and asymptotically normally distributed for any sampling frequency. We
also demonstrate the practical applicability of our method through a simulation study and a
data example from econometrics.

Our discussion of statistical inference for multivariate continuous-time ARMA processes is
concluded in Chapter 4, where we propose a procedure for estimating a parametric model of
the driving Lévy process if high-frequency observations are available. Beginning with a new
state space representation, we develop a method to recover the driving Lévy process exactly
from a continuous record of the observed CARMA process. We use tools from numerical
analysis and the theory of infinitely divisible distributions to extend this result to allow for
the approximate recovery of unit increments of the driving Lévy process from discrete-time
observations of the MCARMA process. These approximate increments can be represented as
a perturbation of the true i. i. d. increments by a dependent noise sequence, which we analyse
in detail as a function of the inverse sampling frequency h. We establish the asymptotic
properties of generalized method of moments (GMM) estimators based on an additively
disturbed i. i. d. sample, and we use this result to show that, if h = hN is chosen dependent
on the length N of the observation period such that hN N converges to zero, then any suitable
GMM estimator based on the reconstructed sample of unit increments of the driving process
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has the same asymptotic distribution as the one based on the true increments. In particular,
these estimators are consistent and asymptotically normally distributed. We illustrate the
theoretical results by a simulation study, in which we estimate the parameters of a discretely
observed Gamma-driven CARMA process of order (3, 1).

In the second part of the thesis, which incorporates material from the two papers Pfaffel
and Schlemm (2011, 2012), certain statistics of linear processes are investigated within the
framework of random matrix theory.

In Chapter 5 we derive the distribution of the eigenvalues of a large sample covariance
matrix when the data is dependent in time. More precisely, the dependence for each variable
i = 1, . . . , p is modelled as a linear process (Xi,t)t∈Z = (∑∞

j=0 cjZi,t−j)t∈Z, where the random
variables {Zi,t} are assumed to be independent with finite fourth moments and to satisfy
a Lindeberg-type condition. A sample of n observations from such a p-dimensional data-
generating process is represented by the matrix X = (Xi,t)it ∈ Rp×n. If the sample size n
and the number of variables p = pn both converge to infinity such that their asymptotic
ratio y = limn→∞ n/pn is positive, then the empirical spectral distribution of the sample
covariance matrix p−1XXT converges, as n tends to infinity, to a non-random distribution,
which only depends on y and the spectral density of the linear process (X1,t)t∈Z. Our results
contain the classical Marchenko–Pastur law as a special case, but also apply to more general
sample covariance matrices, in particular to those derived from (fractionally integrated)
ARMA processes.

A more complicated random matrix model, which is also derived from a linear process,
and in which the entries are dependent across both rows and columns, is studied in Chapter 6.
More precisely, we investigate matrices of the form X = (X(i−1)n+t)it ∈ Rp×n derived from
a linear process (Xt)t∈Z = (∑j cjZt−j)t∈Z, where the {Zt} satisfy the same assumptions as
before. Under the assumption that both p and n tend to infinity such that the ratio p/n
converges to a finite positive limit y, we show that the empirical spectral distribution of
the sample covariance matrix p−1XXT converges almost surely to the same deterministic
measure occurring in the apparently simpler model studied in Chapter 5.

The final part of the thesis consists of Chapter 7 and contains material from Schlemm
(2011). As a model for a porous medium we consider the first-passage percolation problem
on the random graph with vertex set N× {0, 1}, edges joining vertices at Euclidean distance
equal to unity, and independent exponential edge weights. We provide a Central Limit
Theorem for the first-passage times ln between the vertices (0, 0) and (n, 0), which can be
interpreted as the time it takes a fluid to percolate a distance n through the medium. This
extends earlier results about the almost sure convergence of the average speed ln/n, as
n tends to infinity, given in Schlemm (2009). We use generating function techniques to
compute the n-step transition kernels of a closely related Markov chain which can be used
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to calculate explicitly the asymptotic variance in the Central Limit Theorem and to quantify
the fluctuations of the average speed at which the fluid percolates.

1.3. Open problems for future research

Finally, in order to embed the results in this thesis into the context of on-going research, I
would like to mention some natural open questions arising from the present work.

1.3.1. Estimation of CARMA processes

As described above, the complete specification of a continuous-time autoregressive moving
average model is an intricate multi-step process, which is hierarchical in the sense that later
steps depend on the results of earlier ones. The first step, the selection of the autoregressive
and moving average orders p and q, or of an alternative set of structure indices describing the
algebraic structure of vector ARMA processes, like the Kronecker indices and the McMillan
degree, is not considered in this work at all. In the discrete-time setting, order selection for
ARMA and state space models is usually performed by the minimization of an information
criterion that quantifies the trade-off between the complexity of the considered model on
the one hand, and a goodness-of-fit measure on the other hand. The inclusion of a penalty
term that depends on the number of parameters in the model prevents an over-parametrized
model, which often describes the observed data better, from being selected and ensures
that the order of the process can be estimated consistently. The most famous choices
appear to be modified versions of the Akaike and Bayesian Information Criterion, AIC
and BIC, respectively, as well as the minimum description length (MDL) approach. For
more information on these criteria the reader is invited to consult Akaike (1977); Hannan
(1980); Hannan and Rissanen (1982); Rissanen (1983, 1986); Schwarz (1978). The difficulty
in transferring these discrete-time results to the continuous-time case comes from the fact
that, while a linear state space structure is preserved under sampling, its ARMA orders
and Kronecker indices are usually not (Åström, Hagander and Sternby, 1984; Bar-Ness and
Langholz, 1975; Hagiwara and Araki, 1988; Larsson, 2005; Söderström, 1990). Moreover,
the linear innovations of the sampled process are, in general, not a martingale difference
sequence, which would be necessary for the proofs of the discrete-time results to carry
over easily; however, as shown in Chapter 2, the linear innovations satisfy a strong-mixing
condition, which is likely to imply a sufficient amount of asymptotic independence for
comparable results to be established.

Once the model order is known or estimated, the second step in the specification of
a CARMA model is the determination of the coefficient matrices in the autoregressive
and moving average polynomials. Quasi maximum likelihood estimation, the asymptotic
properties of which are the subject of Chapter 3, is a robust way to perform this step which
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does not require assumptions on the distribution of the driving Lévy process except the
finiteness of certain moments. Its practical applicability would be enhanced significantly
if preliminary estimates as starting values for the maximization of the quasi likelihood
could be obtained without having to solve a computationally expensive high-dimensional
optimization problem. A potential solution to this preliminary estimation problem could be
the use of subspace identification techniques as described in Bauer (2009); Bauer, Deistler
and Scherrer (1999); Chiuso (2006); Chiuso and Picci (2005); Mari, Stoica and McKelvey
(2000); Peternell, Scherrer and Deistler (1996); van Overschee and De Moor (1996). If one is
interested in estimating heavy-tailed CARMA processes which do not satisfy the assumption
of having finite second moments, different techniques need to be developed (see, e. g.,
Klüppelberg and Mikosch, 1993; Mikosch, Gadrich, Klüppelberg and Adler, 1995).

The estimation of the driving Lévy process is developed in Chapter 4 for the case that
high-frequency observations of the CARMA process are available. The total number of
observations used in the estimation procedure is proportional to the length of the observation
horizon and to the sampling frequency. In practice, resources are limited, and it is therefore of
considerable importance to investigate how one should choose the length of the observation
period and the sampling frequency such that the possibility of recording a given number of
observations is used as efficiently as possible. Another important future research project is
the development of estimation approaches that do not rely on high-frequency observations.
One possible avenue in this direction is to observe that, by the results in Chapter 2, the
linear innovations of an equidistantly sampled CARMA process are themselves a vector
ARMA process driven by an infinitely divisible noise sequence whose characteristic triplet
is related to the characteristic triplet of the driving Lévy process via the formulæ given in
Rajput and Rosiński (1989). It seems therefore possible to estimate the linear innovations
using a Kalman filter as in Chapter 3, to invert the vector ARMA equations, and to estimate
the characteristics of the noise sequence. From these, one can extract information about the
characteristics of the driving Lévy process.

In the treatment of the different aspects of the estimation of CARMA processes in this
thesis, it is assumed that the results of the preceding steps are known exactly: quasi
maximum likelihood estimation of the autoregressive and moving average polynomials
requires knowledge of the McMillan degree of the true model, estimation of the driving
Lévy process cannot be carried out if one is ignorant of the coefficient matrices in these
polynomials. An important extension of the results in this thesis would be to remove this
restriction, and to allow for estimated approximate values of the McMillan degree and
the coefficient matrices to be used in subsequent steps. We expect that the asymptotic
results remain essentially unaltered for this genuinely multi-step estimation scheme, but the
proof of this conjecture appears to be non-trivial. Finally, in order to contribute to a more
widespread use of multivariate continuous-time linear processes in applications, it would
be helpful to have a ready-to-use software implementation of the results presented in this
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thesis and the extensions just mentioned.

1.3.2. Covariance matrices of linear processes

In this section I will comment on some extensions of the random matrix model described in
Chapter 5; these extensions are motivated partly by applications, partly by their intrinsic
mathematical appeal. The main feature of the random matrix model considered in Chapter 5
is that the rows are independent with identical second-order properties, and that the
dependence within the rows is modelled by a linear process. The assumption that the rows
are independent has been relaxed in Chapter 6 by introducing a dependence between the
rows, which turned out to be weak enough not to change the limiting spectral distribution.
For a realistic model, in which the rows of a random matrix can be interpreted as, for
example, price data of individual assets recorded over time, it is necessary to allow for
matrices whose rows are neither independent nor identically distributed. While dependence
in this context is very difficult to model adequately, non-identically distributed rows can be
easily accommodated in a random matrix model of the form

Rp×n 3 X = (Xi,t)it , Xi,t =
∞

∑
j=0

c(i)j Zi,t−j,

where the ith row is given by an infinite-order moving average process with coefficients
ci B (c(i)j )j. A quantitative way to explicitly characterize the limiting spectral distribution of
p−1XXT in terms of the spectral densities associated with the possibly non-identical filters
ci would constitute an important extension of our results.

In what has been said so far, the dimensions of the occurring random matrices had a
convenient interpretation as the number of variables and time, respectively. If one does not
adopt this point of view, it is perhaps more natural to model the random matrix X as the
output of a genuinely two-dimensional filter applied to an array (Zi,t)it of random variables,
that is

Rp×n 3 X = (Xi,t)it , Xi,t =
∞

∑
j,k=−∞

cj,kZi−j,t−k.

The model considered in Chapter 5 is a special case of this generalization, corresponding
to a filter satisfying cj,k = 0, for j , 0. In the Gaussian setting, a characterization of the
limiting spectral distribution for this random matrix model has been derived in Hachem,
Loubaton and Najim (2005). In view of the paradigm that many properties of random
covariance matrices depend on the distribution of their entries only through their first few
moments (Tao and Vu, 2010), it is a natural conjecture that comparable results also hold for
non-Gaussian random fields (Zi,t)it.
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2. Multivariate CARMA Processes,
Continuous-Time State Space Models and
Complete Regularity of the Innovations of
the Sampled Processes

2.1. Introduction

Continuous-time autoregressive moving average (CARMA) processes are the continuous-
time analogues of the widely known discrete-time ARMA processes (see, e. g., Brockwell
and Davis, 1991, for a comprehensive introduction); they were first defined in Doob (1944)
in the univariate Gaussian setting and have stimulated a considerable amount of research
in recent years (see, e. g., Brockwell, 2001a, and references therein). In particular, the
restriction of the driving process to Brownian motion was relaxed, and Brockwell (2001b)
allowed for Lévy processes with a finite logarithmic moment. Because of their applicability
to irregularly spaced observations and high-frequency data, they have turned out to be
a versatile and powerful tool in the modelling of phenomena from the natural sciences,
engineering and finance. Recently, Marquardt and Stelzer (2007) extended the concept
to multivariate CARMA (MCARMA) processes with the intention of being able to model
the joint behaviour of several dependent time series. MCARMA processes are thus also
the continuous-time analogues of discrete-time vector ARMA (VARMA) models (see, e. g.,
Lütkepohl, 2005).

The aim of this chapter is twofold: first, we establish the equivalence between multivariate
CARMA processes and multivariate continuous-time state space models, a correspondence
which is well known in the discrete-time setting (Hannan and Deistler, 1988); second, we
investigate the probabilistic properties of the discrete-time process obtained by recording
the values of an MCARMA process at discrete, equally spaced points in time. A detailed
understanding of the innovations of the weak VARMA process which arises is a prerequisite
for proving asymptotic properties of various statistics of a discretely observed MCARMA
process. One notion of asymptotic independence which is very useful in this context is
complete regularity in the sense of Volkonskiı̆ and Rozanov (1959) (see Section 2.4 for a
precise definition), and we show that the innovations of a discretized MCARMA process

15
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have this desirable property. Our results therefore not only provide important insight
into the probabilistic structure of CARMA processes, but they are also fundamental to the
development of an estimation theory for non-Gaussian continuous-time state space models
based on equidistant observations.

In this chapter, we show that a sampled MCARMA process is a discrete-time VARMA
process with dependent innovations. While the mixing behaviour of ARMA and more
general linear processes is fairly well understood (see, e. g., Athreya and Pantula, 1986;
Mokkadem, 1988; Pham and Tran, 1985), the mixing properties of the innovations of a
sampled continuous-time process have received very little attention. From Brockwell and
Lindner (2009), it is only known that the innovations of a discretized univariate Lévy-
driven CARMA process are weak white noise, which, by itself, is typically of little help in
applications. We show that the linear innovations of a sampled MCARMA process satisfy
a set of VARMA equations, and we conclude that, under a mild continuity assumption
on the driving Lévy process, they are geometrically completely regular and, in particular,
geometrically strongly mixing. This continuity assumption is further shown to be satisfied
for most of the practically relevant choices of the driving Lévy process, including processes
with a non-singular Gaussian component as well as compound Poisson processes with an
absolutely continuous jump size distribution, and infinite activity processes whose Lévy
measures admit a density in a neighbourhood of zero.

Outline of the chapter The chapter is structured as follows. In Section 2.2 we review
some well-known properties of Lévy processes, which we will use later on. The class of
multivariate CARMA processes, in a slightly more general form than in the original definition
of Marquardt and Stelzer (2007), is introduced and described in detail in Section 2.3; it
is further shown to be equivalent to the class of continuous-time state space models. In
Section 2.4 the main result about the mixing properties of the sampled processes is stated
and demonstrated to be applicable in many practical situations. The proofs of the results are
presented in Section 2.5.

Notation We use the following notation. The space of m× n matrices with entries in the
ring K is denoted by Mm,n(K) or Mm(K) if m = n. AT denotes the transpose of the matrix
A, the matrices 1m and 0m are the identity and the zero element of Mm(K), respectively,
and A⊗ B stands for the Kronecker product of the matrices A and B. The zero vector in
Rm is denoted by 0m, and ‖·‖ and 〈·, ·〉 represent the Euclidean norm and inner product,
respectively. Finally, K[z] (K{z}) is the ring of polynomial (rational) expressions in z over
K, and IB(·) is the indicator function of the set B.
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2.2. Multivariate Lévy processes

In this section we review the definition of a multivariate Lévy process and some elementary
facts about these processes which we will use later. More details and proofs can be found in,
for instance, Sato (1999).

Definition 2.1 (Lévy process) A (one-sided) Rm-valued Lévy process L = (L(t))t∈R+ is a
stochastic process on a probability space (Ω, F , P) with the following properties:

i) the increments of L are stationary and independent, that is the distribution of L(t +
s)− L(t) does not depend on t, and for every n ∈ N and all 0 < t0 < t1 . . . < tn < ∞,
the random variables L(t1)− L(t0), L(t2)− L(t1), . . . , L(tn)− L(tn−1) are independent,

ii) almost surely, L(0) = 0m,

iii) the process L is continuous in probability.

Every Rm-valued Lévy process(L(t))t>0 can without loss of generality be assumed to be
càdlàg and is completely characterized by its characteristic function in the Lévy–Khintchine
form Eei〈u,L(t)〉 = exp{tψL(u)}, u ∈ Rm, t > 0, where the characteristic exponent ψL has the
special form

ψL(u) = i〈γL, u〉 − 1
2
〈u, ΣGu〉+

∫
Rm

[
ei〈u,x〉 − 1− i〈u, x〉I{‖x‖61}

]
νL(dx).

The vector γL ∈ Rm is called the drift, the positive semidefinite, symmetric m×m matrix ΣG

is the Gaussian covariance matrix and νL is a measure on Rm, referred to as the Lévy measure,
satisfying

νL({0m}) = 0,
∫

Rm
min(‖x‖2 , 1)νL(dx) < ∞.

We will work with two-sided Lévy processes L = (L(t))t∈R. These are obtained from two
independent copies (L1(t))t>0, (L2(t))t>0 of a one-sided Lévy process via the construction

L(t) =

L1(t), t > 0,

− lims↗−t L2(s), t < 0.

Throughout, we restrict our attention to Lévy processes with zero means and finite second
moments.

Assumption L1 The Lévy process L satisfies EL(1) = 0m and E ‖L(1)‖2 < ∞.

The assumption that EL(1) = 0m is made only for notational convenience and is not essential
for our results. The premise that L has finite variance is, in contrast, a true restriction, which
is often made in the analysis of ARMA processes in both discrete and continuous time. The
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treatment of the infinite variance case requires different techniques and often does not lead
to comparable results (see, e. g., Klüppelberg and Mikosch, 1993; Mikosch et al., 1995). It is
well known that L has finite second moments if and only if

∫
‖x‖>1 ‖x‖

2 ν(dx) is finite, and
that ΣL = EL(1)L(1)T is then given by

∫
‖x‖>1 xxTνL(dx) + ΣG .

2.3. Lévy-driven multivariate CARMA processes and state space

models

If L is a two-sided Lévy process with values in Rm, and p > q are positive integers,
then the d-dimensional L-driven autoregressive moving average (MCARMA) process with
autoregressive polynomial

z 7→ P(z) B 1dzp + A1zp−1 + . . . + Ap ∈ Md(R[z]) (2.3.1a)

and moving average polynomial

z 7→ Q(z) B B0zq + B1zq−1 + . . . + Bq ∈ Md,m(R[z]) (2.3.1b)

is heuristically thought of as the solution of the formally written pth-order linear differential
equation

P(D)Y(t) = Q(D)DL(t), D ≡ d
dt

, (2.3.2)

which is the continuous-time analogue of a set of discrete-time ARMA equations. We note
that we allow for the driving Lévy process L and the L-driven multivariate CARMA process
Y to have different dimensions and thus slightly extend the original definition of Marquardt
and Stelzer (2007). All the results we need from this paper are easily seen to continue to
hold in this more general setting. Since, in general, Lévy processes are not differentiable,
the differential equation (2.3.2) is purely formal and is, as usually, interpreted as being
equivalent to the state space representation

dG(t) = AG(t)dt + BdL(t), Y(t) = CG(t), t ∈ R, (2.3.3)

where the matrices A, B and C are given by

A =



0 1d 0 . . . 0

0 0 1d
. . .

...
...

. . . . . . 0
0 . . . . . . 0 1d

−Ap −Ap−1 . . . . . . −A1


∈ Mpd(R), (2.3.4a)
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B =
(

βT
1 · · · βT

p

)T
∈ Mpd,m(R), (2.3.4b)

where

βp−j =− I{0,...,q}(j)

[
p−j−1

∑
i=1

Aiβp−j−i − Bq−j

]
,

and

C =
(

1d 0d . . . 0d

)
∈ Md,pd(R). (2.3.4c)

In view of representation (2.3.3), MCARMA processes are linear continuous-time state space
models. We will consider this class of processes and see that it is in fact equivalent to the
class of MCARMA models.

Definition 2.2 (State space model) A continuous-time linear state space model (A, B, C, L) of
dimension N with values in Rd is characterized by an Rm-valued driving Lévy process L,
a state transition matrix A ∈ MN(R), an input matrix B ∈ MN,m(R), and an observation
matrix C ∈ Md,N(R). It consists of a state equation of Ornstein–Uhlenbeck type

dX(t) = AX(t)dt + BdL(t), t ∈ R, (2.3.5a)

and an observation equation
Y(t) = CX(t), t ∈ R. (2.3.5b)

The RN-valued process X = (X(t))t∈R is the state vector process and Y = (Y(t))t∈R is the
output process.

A solution Y of Eqs. (2.3.5) is called causal if, for all t, Y(t) is independent of the σ-algebra
generated by the future values {L(s) : s > t}. Every solution of the state equation (2.3.5a)
satisfies

X(t) = eA(t−s)X(s) +
∫ t

s
eA(t−u)BdL(u), s, t ∈ R, s < t. (2.3.6)

The independent increment property of Lévy processes implies that X is a Markov process
(see also Protter, 1990, for more information on stochastic integration). We always work
under the following standard causal stationarity assumption.

Assumption E1 The eigenvalues of the matrix A have strictly negative real parts.

The following proposition is well known (Sato and Yamazato, 1984) and recalls conditions for
the existence of a stationary causal solution of the state equation (2.3.5a) for easy reference.
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Proposition 2.3 If Assumptions L1 and E1 hold, then the state equation (2.3.5a) has a unique
strictly stationary, causal solution X given by

X(t) =
∫ t

−∞
eA(t−u)BdL(u), t ∈ R, (2.3.7)

which has the same distribution as
∫ ∞

0 eAuBdL(u). Moreover, X(t) has mean zero,

Var(X(t)) =EX(t)X(t)T

=
∫ ∞

0
eAuBΣLBTeATudu B Γ0, (2.3.8a)

Cov (X(t + h), X(t)) =EX(t + h)X(t)T

=eAhΓ0, h > 0, (2.3.8b)

and Γ0 satisfies AΓ0 + Γ0AT = −BΣLBT.

It is an immediate consequence of Eqs. (2.3.5b) and (2.3.8b) that the output process Y has
mean zero and autocovariance function h 7→ γY(h) = CeAhΓ0CT, h > 0, and that Y can be
written as a moving average of the driving Lévy process as

Y(t) =
∫ ∞

−∞
g(t− u)dL(u), t ∈ R; g(t) = CeAtBI[0,∞)(t). (2.3.9)

These equations serve, with A, B and C defined as in Eqs. (2.3.4), as the definition of a
multivariate CARMA process with autoregressive and moving average polynomials given by
Eqs. (2.3.1). They also show that the behaviour of the process Y depends on the values of the
individual matrices A, B and C only through the products CeAtB, t ∈ R. These products are,
in turn, intimately related to the rational matrix function H : z 7→ C(z1N − A)−1B, which
is called the transfer function of the state space model (2.3.5). A pair (P, Q), P ∈ Md(R[z]),
Q ∈ Md.m(R[z]), of rational matrix functions is a left matrix fraction description for the rational
matrix function H ∈ Md,m(R{z}) if P(z)−1Q(z) = H(z) for all z ∈ C. The next theorem
gives an answer to the question of what other state space representations besides Eq. (2.3.3)
can be used to define an MCARMA process. The proof is given in Section 2.5.

Theorem 2.4 If (P, Q) is a left matrix fraction description for the transfer function z 7→ C(z1N −
A)−1B, then the stationary solution Y of the state space model (A, B, C, L) defined by Eqs. (2.3.5) is
an L-driven MCARMA process with autoregressive polynomial P and moving average polynomial
Q.

Corollary 2.5 The classes of MCARMA and causal continuous-time state space models are equiv-
alent.

Proof By definition, every MCARMA process is the output process of a state space model.
Conversely, given any state space model (A, B, C, L) with output process Y , Caines (1988,
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Appendix 2, Theorem 8) shows that the transfer function H : z 7→ C(zIN − A)−1B possesses
a left matrix fraction description H(z) = P(z)−1Q(z). Hence, by Theorem 2.4, Y is an
MCARMA process. �

2.4. Complete regularity of the innovations of sampled MCARMA

processes

For a continuous-time stochastic process Y = (Y(t))t∈R and a positive constant h, the
corresponding sampled process Y (h) = (Y (h)

n )n∈Z is defined by Y (h)
n = Y(nh). A common

problem in applications is the estimation of a set of model parameters based on observations
of the values of a realization of a continuous-time process at equally spaced points in
time. In order to make MCARMA processes Y amenable to parameter inference from
equidistantly sampled observations, it is important to have a good understanding of the
probabilistic properties of Y (h). One such property which has turned out to be useful for
the derivation of asymptotic properties of estimators is mixing, for which there are several
different notions (see, e. g., Bradley, 2007, for a detailed exposition). Let I denote Z or
R. For a stationary process X = (Xn)n∈I on some probability space (Ω, F , P), we write
F m

n = σ(Xj : j ∈ I, n < j < m), −∞ 6 n < m 6 ∞. The α-mixing coefficients (α(m))m∈I were
introduced in Rosenblatt (1956) and are defined by

α(m) = sup
A∈F 0

−∞, B∈F ∞
m

|P(A ∩ B)−P(A)P(B)|.

If limm→∞ α(m) = 0, then the process X is called strongly mixing, and if there exist constants
C > 0 and 0 < λ < 1 such that αm < Cλm, m > 1, it is called exponentially strongly mixing.
The β-mixing coefficients (β(m))m∈I , introduced in Volkonskiı̆ and Rozanov (1959), are
similarly defined as

β(m) = E sup
B∈F ∞

m

|P(B|F 0
−∞)−P(B)|.

If limm→∞ β(m) = 0, then the process X is called completely regular or β-mixing, and if there
exist constants C > 0 and 0 < λ < 1 such that βm < Cλm, m > 1, it is called exponentially
completely regular. The equivalent definition

β(m) =
1
2

sup
I,J>1

(Ai)16i6I∈(F 0
−∞)

I
,
⋃I

i=1 Ai=Ω

(Bj)16j6J∈(F ∞
m )J ,

⋃J
j=1 Bj=Ω

I

∑
i=1

J

∑
j=1

∣∣P(Ai ∩ Bj)−P(Ai)P(Bj)
∣∣ ,

given in Dedecker, Doukhan, Lang, León R., Louhichi and Prieur (2007, Eq. (1.2.4)), shows
that complete regularity, just like strong mixing, is preserved under sampling, aggregation
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and linear transformations. It is clear from these definitions that α(m) 6 β(m) and that
(exponential) complete regularity thus implies (exponential) strong mixing. It has been
shown in Marquardt and Stelzer (2007, Proposition 3.34) that every causal multivariate
CARMA process Y with a finite κth moment, κ > 0, is strongly mixing and this naturally
carries over to the sampled process Y (h) because the relevant σ-algebras, over which the
supremum is taken, become smaller by sampling. We therefore do not investigate the mixing
properties of the process Y (h) itself, but rather of its linear innovations.

Definition 2.6 (Linear innovations) Let (Yn)n∈Z be an Rd-valued stationary stochastic pro-
cess with finite second moments. The linear innovations (εn)n∈Z of (Yn)n∈Z are then defined
by

εn = Yn − Pn−1Yn, Pn = orthogonal projection onto span {Yν : −∞ < ν 6 n} , (2.4.1)

where the closure is taken in the Hilbert space of square-integrable random variables with
inner product (X, Y) 7→ E〈X, Y〉.

From now on, we work under an additional assumption, which is standard in the univariate
case.

Assumption E2 The eigenvalues λ1, . . . , λN of the state transition matrix A in Eq. (2.3.5a)
are distinct.

A polynomial p ∈ Md(C[z]) is called monic if its leading coefficient is equal to 1d and
Schur-stable if the zeros of z 7→ det p(z) all lie in the complement of the closed unit disk. We
first give a semi-explicit construction of a weak vector ARMA representation of Y (h) with
complex-valued coefficient matrices, a generalization of Brockwell et al. (2011, Proposition
3).

Theorem 2.7 (Weak ARMA representation) Assume that Y is the output process of the state
space system (2.3.5) satisfying Assumptions L1, E1 and E2, and that Y (h) is its sampled version
with linear innovations ε(h). Define the Schur-stable polynomial ϕ ∈ C[z] by

ϕ(z) =
N

∏
ν=1

(
1− ehλν z

)
C
(

1− ϕ1z− . . .− ϕNzN
)

. (2.4.2)

There then exists a monic Schur-stable polynomial Θ ∈ Md(C[z]) of degree at most N − 1, such
that

ϕ(B)Y (h)
n = Θ(B)ε(h)n , n ∈ Z, (2.4.3)

where B denotes the backshift operator, that is, Bj Y (h)
n = Y (h)

n−j for every non-negative integer j.

This result is very important for the proof of the mixing properties of the innovations
sequence ε(h) because it establishes an explicit linear relationship between ε(h) and Y (h). A
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good understanding of the mixing properties of ε(h) is not only theoretically interesting,
but is also practically of considerable relevance for the purpose of statistical inference for
multivariate CARMA processes. One estimation procedure in which the importance of
the mixing properties of the innovations of the sampled process is clearly visible is quasi
maximum likelihood (QML) estimation. Assume that Θ ⊂ Rr is a compact parameter set
and that a parametric family of MCARMA processes is given by the mapping Θ 3 ϑ 7→
(Aϑ , Bϑ , Cϑ , Lϑ). It follows from Theorem 2.7 and Brockwell and Davis (1991, §11.5) that the
Gaussian likelihood of observations yL = (y1, . . . , yL) under the model corresponding to a
particular value ϑ is given by

L (ϑ, yL) = (2π)−Ld/2

(
L

∏
n=1

det Vϑ,n

)−1/2

exp

{
−1

2

L

∑
n=1

eT
ϑ,nV−1

ϑ,n eϑ,n

}
, (2.4.4)

where eϑ,n is the residual of the minimum mean-squared error linear predictor of Yn given
the preceding observations, and Vϑ,n is the corresponding covariance matrix. From a
practical perspective, it is important to note that all quantities necessary to evaluate the
Gaussian likelihood (2.4.4) can be conveniently computed by using the Kalman recursions
(Brockwell and Davis, 1991, §12.2) and the state space representation given in Lemma 2.18.
In case the observations yL are (part of) a realization of the sampled MCARMA process Y (h)

ϑ0

corresponding to the parameter value ϑ0, the prediction error sequence (eϑ0,n)n>1 is – up to
an additive, exponentially decaying term which comes from the initialization of the Kalman
filter – (part of) a realization of the innovations sequence ε(h) of Y (h)

ϑ0
. In order to be able to

analyse the asymptotic behaviour of the natural QML estimator

ϑ̂
L
= argmaxϑ∈Θ L (ϑ, yL)

in the limit as L→ ∞, it is necessary to have a Central Limit Theorem for sums of the form

1√
L

L

∑
n=1

∂

∂ϑ

[
log det Vϑ,n + eT

ϑ,nV−1
ϑ,n eϑ,n

]∣∣∣
ϑ=ϑ0

. (2.4.5)

Existing results in the literature (Bradley, 2007; Herrndorf, 1984; Ibragimov, 1962) ensure
that various notions of weak dependence, and, in particular, strong mixing, are sufficient
for a Central Limit Theorem for the expression (2.4.5) to hold, provided that the asymptotic
independence is uniform in ϑ. Theorem 2.8 below is thus the necessary starting point for
the development of an estimation theory for multivariate CARMA processes, which involves
some additional issues like identifiability of parametrizations and is thus beyond the scope
of this chapter. In Chapter 3 we will pursue this topic further and develop a quasi maximum
likelihood estimation theory for state space models in both discrete and continuous time,
which is, in particular, applicable to multivariate CARMA processes.
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Before presenting a sufficient condition for the innovations ε(h) to be completely regular, we
first observe that the eigenvalues λ1, . . . , λN of the matrix A are the roots of the characteristic
polynomial z 7→ det(z1N − A), which, by the Fundamental Theorem of Algebra, implies
that they are either real or occur in complex conjugate pairs. We can therefore assume that
they are ordered in such a way that, for some r ∈ {0, . . . , N},

λν ∈ R, 1 6 ν 6 r, λν = λν+1 ∈ C\R, ν = r + 1, r + 3, . . . , N − 1.

By Lebesgue’s decomposition theorem (Klenke, 2008, Theorem 7.33), every measure µ on
Rd can be uniquely decomposed as µ = µc + µs, where µc and µs are absolutely continuous
and singular, respectively, with respect to the d-dimensional Lebesgue measure. If µc is not
the zero measure, then we say that µ has a non-trivial absolutely continuous component.

Theorem 2.8 (Mixing Innovations) Assume that Y is the output process of the linear continu-
ous-time state space model (A, B, C, L) satisfying Assumptions L1, E1 and E2. Denote by ε(h) the
linear innovations of the sampled process Y (h), and further assume that the law of the RmN-valued
random variable

M (h) =
[

M(h)
1

T
· · · M(h)

r
T

M(h)
r+1

T
M(h)

r+3

T
· · · M(h)

N−1

T
]T

, (2.4.6)

where

M(h)
ν =

[
Re M(h)

ν

T
Im M(h)

ν

T
]T

, M(h)
ν =

∫ h

0
e(h−u)λν dL(u), ν = 1, . . . , N, (2.4.7)

has a non-trivial absolutely continuous component with respect to the mN-dimensional Lebesgue
measure. Then, ε(h) is exponentially completely regular.

The assumption on the distribution of M (h) made in Theorem 2.8 is not very restrictive. Its
verification is based on the following lemma, which allows us to derive sufficient conditions
in terms of the Lévy process L which show that it is indeed satisfied in most practical
situations.

Lemma 2.9 There exist matrices G ∈ MmN(R) and H ∈ MmN,m(R) such that M (h) equals
M (h), where (M (t))t>0 is the unique solution of the stochastic differential equation

dM (t) = GM (t)dt + HdL(t), M (0) = 0mN . (2.4.8)

Moreover, rank H = m, and the mN ×mN matrix
[

H GH · · · GN−1H
]

is non-singular.

The last part of the statement is referred to as controllability of the pair (G, H) and is essential
in the proofs of the following explicit sufficient conditions for Theorem 2.8 to hold.
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Proposition 2.10 Assume that the Lévy process L has a non-singular Gaussian covariance matrix
ΣG . Theorem 2.8 then holds.

Proof By Sato (2006, Corollary 2.19), the law of M (h) is infinitely divisible with Gaussian
covariance matrix given by

∫ h
0 eGuHΣGHTeGTudu. By the controllability of (G, H) and

Bernstein (2005, Lemma 12.6.2) (see also Lemma 3.39 in the next chapter), this matrix is
non-singular, and Sato (1999, Exercise 29.14) completes the proof. �

A simple Lévy process of practical importance which does not have a non-singular Gaussian
covariance matrix is the compound Poisson Process, which is defined by L(t) = ∑N(t)

n=1 Jn,
where (N(t))t∈R+ is a Poisson process, and (Jn)n∈Z is an i. i. d. sequence independent of
(N(t))t∈R+ ; the law of Jn is called the jump size distribution. The proof of Priola and Zabczyk
(2009, Theorem 1.1), in conjunction with Lemma 2.9, implies the following result.

Proposition 2.11 Assume that L is a compound Poisson process with absolutely continuous jump
size distribution. Theorem 2.8 then holds.

Under a similar smoothness assumption, the conclusion of Theorem 2.8 also holds in the
case of infinite activity Lévy processes. The statement follows from applying Priola and
Zabczyk (2009, Theorem 1.1) to Eq. (2.4.8), see also Bodnarchuk and Kulik (2008); Picard
(1996).

Proposition 2.12 Assume that the Lévy measure νL of L satisfies νL(Rm) = ∞, and that there
exists a positive constant ρ such that νL restricted to the ball {x ∈ Rm : ‖x‖ 6 ρ} has a density
with respect to the m-dimensional Lebesgue measure. Theorem 2.8 then holds.

While the preceding three propositions already cover a wide range of Lévy processes
encountered in practice, there are some relevant cases which are not yet taken care of, in
particular the construction of the Lévy process as a vector of independent univariate Lévy
processes (Corollary 2.16 below). To also cover this and related choices, we employ the
polar decomposition for Lévy measures (Barndorff-Nielsen, Maejima and Sato, 2006, Lemma
2.1). By this result, for every Lévy measure νL, there exists a probability measure α on the
(m− 1)-sphere Sm−1 B {x ∈ Rm : ‖x‖ = 1} and a family {νξ : ξ ∈ Sm−1} of measures on
R+, such that for each Borel set B ∈ B(R+), the function ξ 7→ νξ(B) is measurable and

νL(B) =
∫

Sm−1

∫ ∞

0
IB(λξ)νξ(dλ)α(dξ), B ∈ B(Rm\{0m}). (2.4.9)

A linear subspace of a finite-dimensional vector space of codimension one is called a
hyperplane.

Proposition 2.13 If the Lévy measure νL has a polar decomposition (α, νξ : ξ ∈ Sm−1) such that
for any hyperplaneH ⊂ Rm, it holds that

∫
Sm−1 IRm\H(ξ)

∫ ∞
0 νξ(dλ)α(dξ) = ∞, then Theorem 2.8

holds.
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Proof The proof rests on the main theorem of Simon (2010). We denote by im H the
image of the linear operator associated with the matrix H. Since rank H = m and the pair
(G, H) is controllable, we only have to show that νL({x ∈ Rm : Hx ∈ im H\H}) = ∞
for all hyperplanes H ⊂ im H, and since Rm � im H, the last condition is equivalent to
νL(Rm\H) = ∞ for all hyperplanes H ⊂ Rm. Using Eq. (2.4.9) and the fact that for every
ξ ∈ Sm−1 and every λ ∈ R+, the vector λξ is in H if and only if the vector ξ is, this is seen
to be equivalent to the assumption of the proposition. �

Corollary 2.14 If the Lévy measure νL possesses a polar decomposition (α, νξ : ξ ∈ Sm−1) such
that α(Sm−1\H) is positive for all hyperplanes H ∈ Rm, and νξ(R

+) = ∞ for α-almost every ξ,
then Theorem 2.8 holds.

Corollary 2.15 If the Lévy measure νL has a polar decomposition (α, νξ : ξ ∈ Sm−1) such that for
some linearly independent vectors ξ1, . . . , ξm ∈ Sm−1, it holds that, for k = 1, . . . , m, α(ξk) > 0
and νξk

(R+) = ∞, then Theorem 2.8 holds.

Corollary 2.16 Assume that l > m is an integer and that the matrix R ∈ Mm,l(R) has full rank

m. If L = R
(

L1 · · · Ll

)T
, where Lk, k = 1, . . . , l, are independent univariate Lévy processes

with Lévy measures νL
k satisfying νL

k (R) = ∞, then Theorem 2.8 holds.

2.5. Proofs

2.5.1. Proofs for Section 2.3

Proof (of Theorem 2.4) The first step of the proof is to show that any pair (P, Q) of the
form (2.3.1) is a left matrix fraction description of C(z1pd −A)−1B, provided A, B and C are
defined as in Eqs. (2.3.4). We first show the relation

(z1pd −A)−1B =
[

w1(z)T · · · wT
p (z)

]T
, (2.5.1)

where wj(z) ∈ Md,m(R{z}), j = 1, . . . p, are defined by the equations

wj(z) =
1
z
(wj+1(z) + β j), j = 1, . . . , p− 1, (2.5.2a)

and

wp(z) =
1
z

(
−

p−1

∑
k=0

Ap−kwk+1(z) + βp

)
. (2.5.2b)

Since it has been shown in Marquardt and Stelzer (2007, Theorem 3.12) that w1(z) =

P(z)−1Q(z), this will prove the assertion. Eq. (2.5.1) is clearly equivalent to B = (z1pd −
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A)
[

w1(z)T · · · wT
p (z)

]T
, which explicitly reads

β j =zwj(z)− wj+1(z), j = 1, . . . p− 1,

βp =zwp(z) + Apw1(z) + . . . + A1wp(z),

and is thus equivalent to Eq. (2.5.2).
For the second step we consider a given state space model (A, B, C, L). Using the spectral
representation of the matrix exponential (Lax, 2002, Theorem 17.5),

eAt =
1

2πi

∫
Γ

ezt(z1N − A)−1dz, t ∈ R, (2.5.3)

where Γ is some closed contour in C winding around each eigenvalue of A exactly once, it
follows that

Y(t) =
∫ t

−∞
CeA(t−u)BdL(u)

=
1

2πi

∫ t

−∞

∫
Γ

ez(t−u)C(z1N − A)−1BdzdL(u)

=
1

2πi

∫ t

−∞

∫
Γ

ez(t−u)P(z)−1Q(z)dzdL(u)

=
1

2πi

∫ t

−∞

∫
Γ

ez(t−u)C(z1pd −A)−1BdzdL(u)

=
∫ t

−∞
CeA(t−u)BdL(u),

where the matrices A, B and C are defined in terms of (P, Q) by Eqs. (2.3.4). Thus, Y
is a multivariate CARMA process with autoregressive polynomial P and moving average
polynomial Q. �

2.5.2. Proofs for Section 2.4

In this section we present in detail the proofs of our main results, Theorems 2.7 and 2.8
and Lemma 2.9, as well as several auxiliary results. The first is a generalization of Brockwell
et al. (2011, Proposition 2) expressing MCARMA processes as a sum of multivariate Ornstein–
Uhlenbeck processes.

Proposition 2.17 Let Y be the the output process of the state space system (2.3.5), and assume
that Assumption E2 holds. Then, there exist vectors b1, . . . , bN ∈ Cd\{0d} and s1, . . . , sN ∈
Cm\{0m}, such that Y can be decomposed into a sum of dependent, complex-valued Ornstein–
Uhlenbeck processes as Y(t) = ∑N

ν=1 Yν(t), where

Yν(t) = eλν(t−s)Yν(s) + bν

∫ t

s
eλν(t−u)d〈sν, L(u)〉, s, t ∈ R, s < t. (2.5.4)
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Proof We first choose a left matrix fraction description (P, Q) of the transfer function
z 7→ C(z1N − A)−1B such that z 7→ det P(z) and z 7→ det Q(z) have no common zeros
and z 7→ det P(z) has no multiple zeros. This is always possible, by Assumption E2.
Inserting the spectral representation (2.5.3) of eAt into the kernel g(t) (Eq. (2.3.9)), we ob-
tain g(t) = 1

2πi

∫
Γ eztC(z1N − A)−1BdzI[0,∞)(t) and, by construction, the integrand equals

eztP(z)−1Q(z)I[0,∞)(t). After writing P(z)−1 = 1
det P(z) adj P(z), where adj denotes the adju-

gate of a matrix, an element-wise application of the Residue Theorem from complex analysis
(Dieudonné, 1968, 9.16.1) shows that

g(t) =
N

∑
ν=1

eλνt 1
(det P)′(λν)

adj P(λν)Q(λν)I[0,∞)(t),

where (det P)′(λν) B
d
dz det P(z)|z=λν

is non-zero because z 7→ det P(z) has only simple
zeros. The same fact, in conjunction with the Smith decomposition of P (Bernstein, 2005,
Theorem 4.7.5), also implies that rank P(λν) = d− 1, and thus rank adj P(λν) equals one
(Bernstein, 2005, Fact 2.14.7 ii)). Since det P and det Q have no common zeros, the matrix
[(det P)′(λν)]−1 adj P(λν)Q(λν) also has rank one and can thus be written as bνsT

ν for some
non-zero bν ∈ Cd and sν ∈ Cm (Halmos, 1974, §51, Theorem 1). �

Lemma 2.18 Assume that Y is the output process of the state space model (2.3.5). The sampled
process Y (h) then has the state space representation

Xn = eAhXn−1 + Nn, Nn =
∫ nh

(n−1)h
eA(nh−u)BdL(u), Y (h)

n = CX(h)
n . (2.5.5)

The sequence (Nn)n∈Z is i. i. d. with mean zero and covariance matrix

�Σ = ENnNT
n =

∫ h

0
eAuBΣLBTeATudu. (2.5.6)

Proof Eqs. (2.5.5) follow from setting t = nh, and s = (n− 1)h in the moving average repre-
sentation (2.3.6). It is an immediate consequence of the Lévy process L having independent
and stationary increments that the sequence (Nn)n∈Z is i. i. d., and that its covariance matrix

�Σ is given by Eq. (2.5.6). �

From this, we can now proceed to prove the weak vector ARMA representation of the
process Y (h).

Proof (of Theorem 2.7) It follows from setting t = nh, s = (n− 1)h in Eq. (2.5.4) that Y (h)
n

can be decomposed as Y (h)
n = ∑N

ν=1 Y (h)
ν,n , where Y (h)

ν , satisfying

Y (h)
ν,n = eλνhY (h)

ν,n−1 + Z(h)
ν,n , Z(h)

ν,n = bν

∫ nh

(n−1)h
eλν(nh−u)d〈sν, L(u)〉,
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are the sampled versions of the MCAR(1) processes from Proposition 2.17. Analogously to
Brockwell and Lindner (2009, Lemma 2.1), we can show by induction that, for each k ∈N0

and all complex d× d matrices c1, . . . , ck, it holds that

Y (h)
ν,n =

k

∑
r=1

crY
(h)
ν,n−r +

[
eλνhk −

k

∑
r=1

creλνh(k−r)

]
Y (h)

ν,n−k

+
k−1

∑
r=0

[
eλνhr −

r

∑
j=1

cjeλνh(r−j)

]
Z(h)

ν,n−r. (2.5.7)

If we then use the fact that e−hλν is a root of z 7→ ϕ(z), which means that the expression
eNhλν − ϕ1e(N−1)hλnu − . . . − ϕN equals zero, and set k = N, cr = 1d ϕr, then Eq. (2.5.7)
becomes

ϕ(B)Y (h)
ν,n =

N−1

∑
r=0

[
erhλν −

r

∑
j=1

ϕjeλνh(r−j)

]
Z(h)

ν,n−r.

Summing over ν and rearranging shows that this can be written as

ϕ(B)Y (h)
n =

N

∑
ν=1

V (h)
ν,n−ν+1, (2.5.8)

where the i. i. d. sequences
(

V (h)
ν,n

)
n∈Z

, ν ∈ {1, . . . , N}, are defined by

V (h)
ν,n =

∫ nh

(n−1)h

N

∑
µ=1

bµ

[
eλµh(ν−1) −

ν−1

∑
κ=1

ϕκeλµh(ν−κ−1)

]
eλµ(nh−u)d〈sµ, L(u)〉. (2.5.9)

By a straightforward generalization of Brockwell and Davis (1991, Proposition 3.2.1), there
exists a monic Schur-stable polynomial Θ(z) = 1d + Θ1z + . . . + ΘN−1zN−1 with matrix--
valued coefficients and a white noise sequence ε̃ such that the (N − 1)-dependent sequence
ϕ(B)Y (h) has the moving average representation ϕ(B)Y (h)

n = Θ(B)ε̃n. Since both ϕ and Θ
are monic, and ϕ is Schur stable (by Assumption E1), ε̃ is the innovations process of Y (h)

and so it follows that ε̃ = ε(h) because the innovations of a stochastic process are uniquely
determined. �

As a corollary, we obtain that the innovations sequence ε(h) itself satisfies a set of strong
VARMA equations, the attribute strong referring to the fact that the noise sequence is i. i. d.,
not merely white noise.

Corollary 2.19 Assume that Y is the output process of the state space system (2.3.5) satisfying
Assumptions L1, E1 and E2. Further assume that ε(h) is the innovations sequence of the sampled
process Y (h). There then exists a monic, Schur-stable polynomial Θ ∈ Md(C[z]) of degree at
most N − 1, a polynomial θ ∈ Md,dN(R[z]) of degree N − 1, and a CdN-valued i. i. d. sequence
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W (h) = (W (h)
n )n∈Z, such that

Θ(B)ε(h)n = θ(B)W (h)
n , n ∈ Z. (2.5.10)

Proof Combining Eqs. (2.4.3) and (2.5.8) gives

ε
(h)
n + Θ(h)

1 εn−1 + . . . + Θ(h)
N−1εn−N+1 = V (h)

1,n + V (h)
2,n−1 + . . . + V (h)

N,n−N+1, n ∈ Z, (2.5.11)

and with the definitions

W (h)
n =

[
V (h)

1,n

T
· · · V (h)

N,n

T
]T
∈ CdN , n ∈ Z, (2.5.12a)

θ(z) =
N

∑
j=1

θjzj−1, θν =
[

0d · · · 0d︸               ︷︷               ︸
ν−1 times

1d 0d · · · 0d︸               ︷︷               ︸
N−ν times

]
∈ Md,dN(R), (2.5.12b)

Eq. (2.5.11) becomes Θ(B)ε(h)n = θ(B)W (h)
n , showing that ε(h) is indeed a vector ARMA

process. �

Corollary 2.19 is the central step in establishing the complete regularity of the innovations
process ε(h).

Proof (of Theorem 2.8) We define the RmN-valued random variables

M
(h)
n =

[
M(h)

n,1

T
· · · M(h)

n,r
T

M(h)
n,r+1

T
M(h)

n,r+3

T
· · · M(h)

n,N−1

T
]T

, n ∈ Z,

where, for ν = 1, . . . , N,

M(h)
n,ν =

[
Re M(h)

n,ν
T

Im M(h)
n,ν

T
]T

, M(h)
n,ν =

∫ nh

(n−1)h
eλν(nh−u)dL(u), n ∈ Z.

It is clear that the sequence (M
(h)
n )n∈Z is i. i. d. and M (h) is equal to M

(h)
1 . We shall now

argue that the vector W (h)
n , as defined in Eq. (2.5.12a), is equal to a linear transformation of

M
(h)
n . By Eq. (2.5.9), we can write W (h)

n = [ΓT ⊗ 1d]
[
(b1sT

1 M(h)
n,1)

T · · · (bNsT
N M(h)

n,N)
T
]T

,

where Γ = (γµ,ν) ∈ MN(C) is given by γµ,ν = eλµh(ν−1) + ∑ν−1
κ=1 ϕκeλµh(ν−κ−1). With the

notation

B =


b1 0d . . . 0d

0d b2
. . .

...
...

. . . . . . 0d

0d . . . 0d bN

 ∈ MdN,N(C),
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and

S =


sT

1 0T
d . . . 0T

d

0T
d sT

2
. . .

...
...

. . . . . . 0T
d

0T
d . . . 0T

d sT
N

 ∈ MN,mN(C),

we obtain
[ (

b1sT
1 M(h)

n,1

)T
· · ·

(
bNsT

N M(h)
n,N

)T
]T

= BS
[

M(h)
n,1

T
· · · M(h)

n,N

T
]T

. We

recall that, for ν = r + 1, r + 3, . . . , N − 1, the eigenvalues of A satisfy λν = λν+1 ∈ C\R,
which implies that

M(h)
n,ν = Re M(h)

n,ν + i Im M(h)
n,ν and M(h)

n,ν+1 = M(h)
n,ν = Re M(h)

n,ν − i Im M(h)
n,ν .

Consequently, we obtain that
[

M(h)
n,1

T
· · · M(h)

n,N

T
]T

= [K⊗ 1m]M
(h)
n , where

K =


1r

J
. . .

J

 ∈ MN(C), J =

(
1 i
1 −i

)
,

so that, in total, W (h)
n = FM

(h)
n with F = [ΓT ⊗ 1d]BS[K⊗ 1m] ∈ MdN,mN(C). It follows that

the VARMA equation (2.5.10) for ε(h) becomes Θ(B)ε(h)n = θ̃(B)M (h)
n , where θ̃(z) = θ(z)F.

By the invertibility of Θ, the transfer function k : z 7→ Θ(z)−1θ̃(z) is analytic in a disk
containing the unit disk and permits a power series expansion k(z) = ∑∞

j=0 Ψjzj. We
next argue that the impulse responses Ψj are necessarily real d × mN matrices. Since
both ε

(h)
n and M

(h)
n are real-valued, it follows from taking the imaginary part of the

equation ε
(h)
n = k(B)M (h)

n that 0d = ∑∞
j=0 Im ΨjM

(h)
n−j. Consequently, 0 = Cov(0d) =

∑∞
j=0 Im Ψj Cov(M (h)

n−j) Im ΨT
j , and since each term in the sum is a positive semidefinite

matrix, it follows that Im Ψj Cov(M (h)
n−j) Im ΨT

j = 0 for every j. The existence of an absolutely

continuous component of the law of M
(h)
n−j with respect to the mN-dimensional Lebesgue

measure implies that Cov(M (h)
n−j) is non-singular, and it thus follows that Im Ψj = 0 for every

j. Hence, k(z) ∈ Md,mN(R) for all real z, and, consequently, k ∈ Md,mN(R{z}). Hannan
and Deistler (1988, Theorem 1.2.1, (iii)) then implies that there exists a stable (M

(h)
n )n∈N-

driven VARMA model for ε(h) with real-valued coefficient matrices. It has been shown in
Mokkadem (1988, Theorem 1) that a stable vector ARMA process is geometrically completely
regular provided that the driving noise sequence is i. i. d. and absolutely continuous with
respect to the Lebesgue measure. A careful analysis of the proof of this result shows that the
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existence of an absolutely continuous component of the law of the driving noise is already
sufficient for the conclusion to hold. We briefly comment on the necessary modifications to
the argument. We first note that under these weaker assumptions, the proof of Mokkadem
(1988, Lemma 3) implies that the n-step transition probabilities Pn(x, ·) of the Markov chain
X associated with a vector ARMA model via its state space representation have an absolutely
continuous component for all n greater than or equal to some n0. This immediately implies
aperiodicity and φ-irreducibility of X, where φ can be taken as the Lebesgue measure
restricted to the support of the continuous component of Pn0(x, ·). The rest of the proof, in
particular the verification of the Foster–Lyapunov drift condition for complete regularity,
is unaltered. This shows that ε(h) is geometrically completely regular and, in particular,
strongly mixing with exponentially decaying mixing coefficients. �

Proof (of Lemma 2.9) By definition, M(h)
ν = Mν(h), where (Mν(t))t>0 is the solution to

dMν(t) = λν Mν(t)dt + dL(t), Mν(0) = 0m.

Taking the real and imaginary parts of this equation gives

d Re Mν(t) =Re λν Mν(t)dt + dL(t) = [Re λν Re Mν(t)− Im λν Im Mν(t)]dt + dL(t),

d Im Mν(t) = Im λν Mν(t)dt = [Re λν Im Mν(t) + Im λν Re Mν(t)]dt,

and, consequently,

d

(
Re Mν(t)
Im Mν(t)

)
= [Λν ⊗ 1m]

(
Re Mν(t)
Im Mν(t)

)
dt +

(
1m

0m

)
dL(t),

where

Λν =

(
Re λν − Im λν

Im λν Re λν

)

is the matrix representation of the complex number λν. Using the fact that λν ∈ R for ν =

1, . . . , r, and λν = λν+1 ∈ C\R for ν = r + 1, r + 3, . . . , N − 1, it follows that M (h) = M (h),
where (M (t))t>0 satisfies dM (t) = GM (t)dt + HdL(t), and G = G̃⊗ 1m ∈ MmN(R) and
H = H̃ ⊗ 1m ∈ MmN,m are given by

G̃ =diag(λ1, . . . , λr, Λr+1, Λr+3, . . . , ΛN−1),

H̃ =( 1 · · · 1︸            ︷︷            ︸
r times

1 0 1 0 · · · 1 0 )T.

Since rank H = m, the first claim of the lemma is proved. Next, we show that the
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controllability matrix C B
[

H GH · · · GN−1H
]
∈ MmN(R) is non-singular. With

C̃ B
[

H̃ G̃H̃ · · · G̃N−1H̃
]

and by the properties of the Kronecker product, it follows

that C = C̃ ⊗ 1m and thus det C = [det C̃ ]m. The matrix C̃ is given explicitly by

C̃ =



1 λ1 λ2
1 · · · λN−1

1
...

...
1 λr λ2

r · · · λN−1
r

1 Re λr+1 Re λ2
r+1 · · · Re λN−1

r+1

0 Im λr+1 Im λ2
r+1 · · · Im λN−1

r+1
...

...
1 Re λN−1 Re λ2

N−1 · · · Re λN−1
N−1

0 Im λN−1 Im λ2
N−1 · · · Im λN−1

N−1


= T



1 λ1 λ2
1 · · · λN−1

1
...

...
1 λr λ2

r · · · λN−1
r

1 λr+1 λ2
r+1 · · · λN−1

r+1

i iλr+1 iλ2
r+1 · · · iλN−1

r+1
...

...
1 λN−1 λ2

N−1 · · · λN−1
N−1

i iλN−1 iλ2
N−1 · · · iλN−1

N−1


with T ∈ MN(R) given by T = diag (1, . . . , 1, R, . . . , R) and R = 1

2

(
1 −i
−i 1

)
. The formula

for the determinant of a Vandermonde matrix (Bernstein, 2005, Fact 5.13.3) implies that

det C =

(−1)
N−r

2 ∏
16µ<ν6r

(λµ − λν) ∏
µ,ν∈Ir,N

µ<ν

Im λµ|λµ − λν|2|λµ − λν|2 ∏
16µ6r
ν∈Ir,N

|λµ − λν|2


m

,

where Ir,N B {r + 1, r + 3, . . . , N − 1}. Hence, det C is not zero by Assumption E2, and the
proof is complete. �





3. Quasi Maximum Likelihood Estimation for
Strongly Mixing Linear State Space Models
and Multivariate CARMA Processes

3.1. Introduction

Linear state space models have been used in time series analysis and stochastic modelling
for many decades because of their wide applicability and analytical tractability (see, e. g.,
Brockwell and Davis, 1991; Hamilton, 1994, for a detailed account). In discrete time they are
defined by the equations

Xn = FXn−1 + Zn−1, Yn = HXn + Wn, n ∈ Z, (3.1.1)

where X = (Xn)n∈Z is a latent state process, F, H are coefficient matrices, and Z = (Zn)n∈Z,
W = (Wn)n∈Z are sequences of random variables, see Definition 3.1 for a precise formulation
of this model. In this chapter we investigate the problem of estimating the coefficient matrices
F, H as well as the covariances of Z and W from a sample of observed values of the output
process Y = (Yn)n∈Z, using a quasi maximum likelihood (QML) or generalized least squares
approach. Given the importance of this problem in practice, it is surprising that a proper
mathematical analysis of the quasi maximum likelihood estimation for the model (3.1.1) has
only been performed in cases where the model is in the so-called innovations form

Xn = FXn−1 + Kεn−1, Yn = HXn + εn, n ∈ Z, (3.1.2)

where the innovations ε form a martingale difference sequence (Hannan and Deistler,
1988, Chapter 4). This includes state space models in which the noise sequences Z, W are
Gaussian, because then the innovations, which are uncorrelated by definition, form an i. i. d.
sequence. Restriction to these special cases excludes, however, the state space representations
of aggregated linear processes, as well as of equidistantly observed continuous-time linear
state space models.

In the first part of the present chapter we shall prove consistency and asymptotic normality
of the quasi maximum likelihood estimator for the general linear state space model (3.1.1)
under the assumptions that the noise sequences Z, W are ergodic, and that the output pro-
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cess Y satisfies a strong-mixing condition in the sense of Rosenblatt (1956). This assumption
is not very restrictive, and is, in particular, satisfied if the noise sequence Z is i. i. d. with an
absolutely continuous component, and W is strongly mixing. Our results are a multivariate
generalization of Francq and Zakoïan (1998), who considered the quasi maximum likeli-
hood estimation for univariate strongly mixing ARMA processes. The very recent paper
Boubacar Mainassara and Francq (2011), which deals with the structural estimation of weak
vector ARMA processes, instead makes a mixing assumption about the innovations sequence
ε of the process under consideration, which is very difficult to verify for state space models;
their results can therefore not be used for the estimation of general discretely-observed
linear continuous-time state space models. More importantly, their proof appears to be
incomplete, because a crucial step in the proof of their Lemma 4 is claimed by the authors to
be analogous to the corresponding step in the proof of Francq and Zakoïan (1998, Lemma
3). It is, however, not clear how the argument given there can be modified in order to be
compatible with the assumption of strongly mixing innovations, which is weaker than the
assumption of a strongly mixing output process as employed in Francq and Zakoïan (1998).

As alluded to above, one advantage of relaxing the assumption of i. i. d. innovations
in a discrete-time state space model is the inclusion of sampled continuous-time state
space models. These were introduced in the form continuous-time ARMA (CARMA)
models in Doob (1944) as stochastic processes satisfying the formal analogue of the familiar
autoregressive moving average equations of discrete-time ARMA processes, namely

a(D)Y(t) = b(D)DW(t), D =
d
dt

, (3.1.3)

where a and b are suitable polynomials, and W denotes a Brownian motion. In the recent past,
a considerable body of research has been devoted to these processes (see, e. g., Brockwell,
2001a, and references therein). One particularly important extension of the model (3.1.3)
was introduced in Brockwell (2001b), where the driving Brownian motion was replaced by a
Lévy process with finite logarithmic moments. This allowed for a wide range of possibly
heavy-tailed marginal distribution of the process Y as well as the occurrence of jumps in
the sample paths, both characteristic features of many observed time series, e. g. in finance
(Cont, 2001). Recently, Marquardt and Stelzer (2007) further generalized Eq. (3.1.3) to the
multivariate setting, which gave researchers the possibility to model several dependent time
series jointly by one linear continuous-time process. This extension is important, because
many time series exhibit strong dependencies and can therefore not be modelled adequately
on an individual basis. In that paper, the multivariate non-Gaussian equivalent of Eq. (3.1.3),
namely P(D)Y(t) = Q(D)DL(t), for matrix-valued polynomials P and Q and a Lévy process
L, was interpreted by spectral techniques as a continuous-time state space model of the form

dG(t) = AG(t)dt + BdL(t), Y(t) = CG(t); (3.1.4)
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see Eq. (3.3.6) for an expression of the matrices A, B, and C. The structural similarity between
Eq. (3.1.1) and Eq. (3.1.4) is apparent, and it is essential for many of our arguments. Taking
a different route, multivariate CARMA processes can be defined as the continuous-time
analogue of discrete-time vector ARMA models, described in detail in Hannan and Deistler
(1988); Lütkepohl (2005). As continuous-time processes, CARMA processes are suited
particularly well to model irregularly spaced and high-frequency data, which makes them a
flexible and efficient tool for building stochastic models of time series arising in the natural
sciences, engineering and finance (e. g. Benth and Šaltytė Benth, 2009; Fan, Söderström,
Mossberg, Carlsson and Zon, 1998; Na and Rhee, 2002; Todorov and Tauchen, 2006).

In the univariate Gaussian setting, several different approaches to the estimation problem
of CARMA processes have been investigated (see, e. g., Larsson, Mossberg and Söderström,
2006; Nielsen, Madsen and Young, 2000, and references therein). Maximum likelihood
estimation based on a continuous record was considered in Brown and Hewitt (1975); Feigin
(1976); Pham (1977). Due to the fact that processes are typically not observed continuously
and the limitations of digital computer processing, inference based on discrete observations
has become more important in recent years; these approaches include variants of the Yule–
Walker algorithm for time-continuous autoregressive processes (Hyndman, 1993), maximum
likelihood methods (Brockwell et al., 2011; Duncan, Mandl and Pasik-Duncan, 1999), and
randomized sampling (Leneman and Lewis, 1966; Rivoira, Moudden and Fleury, 2002) to
overcome the aliasing problem. Alternative methods include discretization of the differential
operator (Larsson and Söderström, 2002; Söderström, Fan, Carlsson and Mossberg, 1997),
and spectral estimation (Gillberg and Ljung, 2009; Lahalle, Fleury and Rivoira, 2004; Lii
and Masry, 1995; Masry, 1978). For the special case of Ornstein–Uhlenbeck processes, least
squares and moment estimators have also been investigated without the assumptions of
Gaussianity (Hu and Long, 2009; Spiliopoulos, 2009).

In the second part of this chapter we consider the estimation of general multivariate
CARMA processes with finite second moments based on equally spaced discrete obser-
vations, exploiting the results about the quasi maximum likelihood estimation of general
linear discrete-time state space models. Under natural identifiability assumptions we obtain
strongly consistent and asymptotically normal estimators for the coefficient matrices of a sec-
ond-order MCARMA process and the covariance matrix of the driving Lévy process, which
together determine the second-order structure of the process. It is a natural restriction of the
quasi maximum likelihood method that distributional properties of the driving Lévy process
which are not determined by its covariance matrix cannot be estimated. However, once the
autoregressive and moving average coefficients of a CARMA process are (approximately)
known, and if high-frequency observations are available, a parametric model for the driving
Lévy process can be estimated by the methods described in Chapter 4.
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Outline of the chapter The organization of the chapter is as follows. In Section 3.2 we
develop a quasi maximum likelihood estimation theory for general discrete-time linear
stochastic state space models with finite second moments. In Section 3.2.1 we precisely
define the class of linear stochastic state space models as well as the quasi maximum
likelihood estimator. The following two sections 3.2.3 and 3.2.4 contain the proofs that,
under a set of technical conditions, this estimator is strongly consistent and asymptotically
normally distributed as the number of observations tends to infinity, see Theorems 3.7
and 3.8.

In Section 3.3 we use the results from Section 3.2 to establish asymptotic properties of a
quasi maximum likelihood estimator for multivariate CARMA processes which are observed
on a fixed equidistant time grid. As a first step, we review in Section 3.3.1 their definition as
well as their relation to the class of continuous-time state space models. This is followed by an
investigation of the probabilistic properties of a sampled MCARMA process in Section 3.3.2
and an analysis of the important issue of identifiability in Section 3.3.3. Finally, we are
able to state and prove our main result, Theorem 3.50, about the strong consistency and
asymptotic normality of the quasi maximum likelihood estimator for equidistantly sampled
multivariate CARMA processes in Section 3.3.4.

In the final Section 3.4, we present canonical parametrizations, and we demonstrate the
applicability of the quasi maximum likelihood estimation for continuous-time state space
models with a simulation study and a data example from economics.

Notation We use the following notation: The space of m× n matrices with entries in the
ring K is denoted by Mm,n(K) or Mm(K) if m = n. The set of symmetric matrices is denoted
by Sm(K), and the symbols S+

m(R) (S++
m (R)) stand for the subsets of positive semidefinite

(positive definite) matrices, respectively. AT denotes the transpose of the matrix A, im A
its image, ker A its kernel, σ(A) its spectrum, and 1m ∈ Mm(K) is the identity matrix. The
vector space Rm is identified with Mm,1(R) so that u = (u1, . . . , um)T ∈ Rm is a column
vector. ‖·‖ represents the Euclidean norm, 〈·, ·〉 the Euclidean inner product, and 0m ∈ Rm

the zero vector. K[X] (K{X}) denotes the ring of polynomial (rational) expressions in
X over K, IB(·) the indicator function of the set B, and δn,m the Kronecker symbol. The
symbols E, Var, and Cov stand for the expectation, variance and covariance operators,
respectively. Finally, we write ∂m for the partial derivative operator with respect to the mth
coordinate and ∇ =

(
∂1 · · · ∂r

)
for the gradient operator. When there is no ambiguity,

we use ∂m f (ϑ0) and ∇ϑ f (ϑ0) as shorthands for ∂m f (ϑ)|ϑ=ϑ0 and ∇ϑ f (ϑ)|ϑ=ϑ0 , respectively.
A generic constant, the value of which may change from line to line, is denoted by C.
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3.2. Quasi maximum likelihood estimation for discrete-time state

space models

In this section we investigate quasi maximum likelihood (QML) estimation for general
linear stochastic state space models in discrete time, and prove consistency and asymptotic
normality under a set of technical assumptions described below. On the one hand, due to the
wide applicability of state space systems in stochastic modelling and control, these results
are interesting and useful in their own right. In the present chapter they will be applied
in Section 3.3 to prove asymptotic properties of the QML estimator for discretely observed
multivariate continuous-time ARMA processes. This is possible because every such process
has a natural discrete-time state space structure, see Proposition 3.32.

Our theory extends existing results from the literature, in particular concerning the QML
estimation of Gaussian state space models (Ansley and Kohn, 1985; Jones, 1980; Stoffer and
Wall, 1991), of state space models whose innovations sequences are martingale differences
(Hannan, 1969, 1975; Reinsel, 1997), and of weak univariate ARMA processes which satisfy a
strong-mixing condition (Francq and Zakoïan, 1998). The techniques used in this section are
based on Boubacar Mainassara and Francq (2011), who consider the estimation of structural
discrete-time vector ARMA models with strongly mixing innovations.

3.2.1. Preliminaries and definition of the QML estimator

The general linear stochastic state space model for which we will develop a quasi maximum
likelihood estimation theory is defined as follows.

Definition 3.1 (State space model) An Rd-valued discrete-time linear stochastic state space
model (F, H, Z, W) of dimension N is characterized by a strictly stationary RN+d-valued

sequence
(

ZT W T
)T

with mean zero and finite covariance matrix

E

[(
Zn

Wn

)(
ZT

m W T
m

)]
= δm,n

(
Q R
RT S

)
, n, m ∈ Z, (3.2.1)

for some matrices Q ∈ S+
N(R), S ∈ S+

d (R), and R ∈ MN,d(R); a state transition matrix
F ∈ MN(R); and an observation matrix H ∈ Md,N(R). It consists of a state equation

Xn = FXn−1 + Zn−1, n ∈ Z, (3.2.2a)

and an observation equation

Yn = HXn + Wn, n ∈ Z. (3.2.2b)

The RN-valued autoregressive process X = (Xn)n∈Z is called the state vector process, and
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Y = (Yn)n∈Z is called the output process.

The assumption that the processes Z and W are centred is not essential for our results, but
simplifies the notation considerably. The following lemma collects important probabilistic
properties of the output process Y of such a state space model. Its proof is standard
(Brockwell and Davis, 1991, §12.1).

Lemma 3.2 Assume that (F, H, Z, W) is a state space model according to Definition 3.1, and that
the eigenvalues of F are less than unity in absolute value.

i) There exists a unique stationary process Y solving Eqs. (3.2.2). This process has the moving
average representation Yn = Wn + H ∑∞

ν=1 Fν−1Zn−ν.

ii) If both Z and W have a finite kth moments for some k > 0, then Y has finite kth moments as
well.

iii) If the expected value of Yn is finite, it is given by EYn = EW1 + H ∑∞
ν=1 Fν−1EZ1. In

particular, if both Z and W have mean zero, then Y has mean zero as well.

Before we turn our attention to the estimation problem for this class of state space
models, we review the necessary aspects of the theory of Kalman filtering, see Kalman
(1960) for the original control-theoretic account and Brockwell and Davis (1991, §12.2) for a
treatment in the context of time series analysis. The linear innovations of the output process
Y , which are introduced in the following definition, are of particular importance for the
quasi maximum likelihood estimation of state space models. Intuitively, their role in quasi
maximum likelihood estimation is similar to the one played by the residuals in least squares
estimation.

Definition 3.3 (Linear innovations) Let Y = (Yn)n∈Z be an Rd-valued stationary stochastic
process with finite second moments. The linear innovations ε = (εn)n∈Z of Y are then defined
by

εn = Yn − Pn−1Yn, Pn = orthogonal projection onto span {Yν : −∞ < ν 6 n} , (3.2.3)

where the closure is taken in the Hilbert space of square-integrable random variables with
inner product (X, Y) 7→ E〈X, Y〉.

This definition immediately implies that the innovations ε of a stationary stochastic process
Y are stationary and uncorrelated. The following proposition is a combination of Brockwell
and Davis (1991, Proposition 12.2.3) and Hamilton (1994, Proposition 13.2).

Proposition 3.4 Assume that Y is the output process of the state space model (3.2.2), that at least
one of the matrices Q and S is positive definite, and that the absolute values of the eigenvalues of F
are less than unity. Then the following hold.
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i) The discrete-time algebraic Riccati equation

Ω = FΩFT + Q−
[

FΩHT + R
] [

HΩHT + S
]−1 [

FΩHT + R
]T

(3.2.4)

has a unique positive semidefinite solution Ω ∈ S+
N(R).

ii) The absolute values of the eigenvalues of the matrix F−KH ∈ MN(R) are less than one, where

K =
[

FΩHT + R
] [

HΩHT + S
]−1
∈ MN,d(R) (3.2.5)

is the steady-state Kalman gain matrix.

iii) The linear innovations ε of Y are the unique stationary solution to

X̂n = (F− KH) X̂n−1 + KYn−1, εn = Yn − HX̂n, n ∈ Z. (3.2.6a)

Using the backshift operator B, which is defined by B Yn = Yn−1, this can be written equiva-
lently as

εn =
{

1d − H [1N − (F− KH)B]−1 K B
}

Yn

=Yn − H
∞

∑
ν=1

(F− KH)ν−1KYn−ν, n ∈ Z. (3.2.6b)

The covariance matrix V = EεnεT
n ∈ S+

d (R) of the innovations ε is given by

V = EεnεT
n = HΩHT + S. (3.2.7)

iv) The process Y has the innovations representation

X̂n = FXn−1 + Kεn−1, Yn = HXn + εn, n ∈ Z, (3.2.8a)

which, similar to Eqs. (3.2.6), allows for the moving average representation

Yn =
{

1d − H [1N − F B]−1 K B
}

Yn

=εn + H
∞

∑
ν=1

Fν−1Kεn−ν, n ∈ Z. (3.2.8b)

We now consider parametric families of state space models. For some parameter space
Θ ⊂ Rr, r ∈N, the mappings

F(·) : Θ→ MN(R), H(·) : Θ→ Md,N , (3.2.9a)
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together with a collection of strictly stationary stochastic processes Zϑ, Wϑ, ϑ ∈ Θ, with
finite second moments determine a parametric family (Fϑ , Hϑ , Zϑ , Wϑ)ϑ∈Θ of linear state
space models according to Definition 3.1. For the variance and covariance matrices of the
noise sequences Z, W we use the notation (cf. Eq. (3.2.1)) Qϑ = EZϑ,nZT

ϑ,n, Sϑ = EWϑ,nW T
ϑ,n,

and Rϑ = EZϑ,nW T
ϑ,n, which defines the functions

Q(·) : Θ→ S+
N(R), S(·) : Θ→ S+

d , R(·) : Θ→ MN,d(R). (3.2.9b)

It is well known (Brockwell and Davis, 1991, Eq. (11.5.4)) that for this model, minus twice
the logarithm of the Gaussian likelihood of ϑ based on a sample yL = (Y1, . . . , Y L) of
observations can be written as

L (ϑ, yL) =
L

∑
n=1

lϑ,n =
L

∑
n=1

[
d log 2π + log det Vϑ + εT

ϑ,nV−1
ϑ εϑ,n

]
, (3.2.10)

where εϑ,n and Vϑ are given by analogues of Eqs. (3.2.6a) and (3.2.7), namely

εϑ,n =
{

1d − Hϑ [1N − (Fϑ − Kϑ Hϑ)B]−1 Kϑ B
}

Yn, n ∈ Z, (3.2.11a)

Vϑ =HϑΩϑ HT
ϑ + Sϑ , (3.2.11b)

and Kϑ, Ωϑ are defined in the same way as K, Ω in Eqs. (3.2.4) and (3.2.5). In the following
we always assume that yL = (Yϑ0,1, . . . , Yϑ0,L) is a sample from the output process of the
state space model (Fϑ0 , Hϑ0 , Zϑ0 , Wϑ0) corresponding to the parameter value ϑ0. We therefore
call ϑ0 the true parameter value. It is important to note that εϑ0 are the true innovations of Yϑ0 ,
and that therefore Eεϑ0,nεT

ϑ0,n = Vϑ0 , but that this relation fails to hold for other values of ϑ.
This is due to the fact that εϑ is not the true innovations sequence of the state space model
corresponding to the parameter value ϑ, which could only be computed from knowledge of
the fictitious output process Yϑ, which is not observed. We therefore call the sequence εϑ

pseudo-innovations.

The goal of this section is to investigate how the value ϑ0 can be estimated from yL

by maximizing Eq. (3.2.10). The first difficulty one is confronted with is that the pseudo-
innovations εϑ are defined in terms of the full history of the process Y = Yϑ0 , which is not
observed. It is therefore necessary to use an approximation to these innovations which can be
computed from the finite sample yL. One such approximation is obtained if, instead of using
the steady-state Kalman filter described in Proposition 3.4, one initializes the filter at n = 1
with some prescribed values. More precisely, we define the approximate pseudo-innovations
ε̂ϑ via the recursion

X̂ϑ,n = (Fϑ − Kϑ Hϑ) X̂ϑ,n−1 + KϑYn−1, ε̂ϑ,n = Yn − HϑX̂ϑ,n, n ∈N, (3.2.12)
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and the prescription X̂ϑ,1 = X̂ϑ,initial. The initial values X̂ϑ,initial are usually either sampled
from the stationary distribution of Xϑ, if that is possible, or set to some deterministic
value. Alternatively, one can additionally define a positive semidefinite matrix Ωϑ,initial and
compute Kalman gain matrices Kϑ,n recursively via Brockwell and Davis (1991, Eq. (12.2.6)).
While this procedure might be advantageous for small sample sizes, the computational
burden is significantly smaller when the steady-state Kalman gain is used. The asymptotic
properties which we are dealing with in this chapter are expected to be the same for both
choices because the Kalman gain matrices Kϑ,n converge to their steady state values as n
tends to infinity (Hamilton, 1994, Proposition 13.2).

The quasi maximum likelihood estimator ϑ̂
L for the parameter ϑ based on the sample yL

is defined as
ϑ̂

L
= argminϑ∈Θ L̂ (ϑ, yL), (3.2.13)

where L̂ (ϑ, yL) is obtained from L (ϑ, yL) by substituting ε̂ϑ,n from Eq. (3.2.12) for εϑ,n, that
is

L̂ (ϑ, yL) =
L

∑
n=1

l̂ϑ,n

=
L

∑
n=1

[
d log 2π + log det Vϑ + ε̂T

ϑ,nV−1
ϑ ε̂ϑ,n

]
. (3.2.14)

3.2.2. Technical assumptions and main results

Our main results about the quasi maximum likelihood estimation for discrete-time state
space models are Theorem 3.7, stating that the estimator ϑ̂

L given by Eq. (3.2.13) is strongly
consistent, which means that ϑ̂

L converges to ϑ0 almost surely, and Theorem 3.8, which
asserts the asymptotic normality of ϑ̂

L with the usual L1/2 scaling. In order to prove these
results, we need to impose the following conditions.

Assumption D1 The parameter space Θ is a compact subset of Rr.

Assumption D2 The mappings F(·), H(·), Q(·), S(·), and R(·) in Eqs. (3.2.9) are continuous.

The next condition guarantees that the models under consideration describe stationary
processes.

Assumption D3 For every ϑ ∈ Θ, the following hold:

i) the eigenvalues of Fϑ have absolute values less than unity,

ii) at least one of the two matrices Qϑ and Sϑ is positive definite,

iii) the matrix Vϑ is non-singular.
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The next lemma shows that the assertions of Assumption D3 hold in fact uniformly in ϑ.

Lemma 3.5 Suppose that Assumptions D1 to D3 are satisfied. Then the following hold.

i) There exists a positive number ρ < 1 such that, for all ϑ ∈ Θ, it holds that

max {|λ| : λ ∈ σ (Fϑ)} 6 ρ. (3.2.15a)

ii) There exists a positive number ρ < 1 such that, for all ϑ ∈ Θ, it holds that

max {|λ| : λ ∈ σ (Fϑ − Kϑ Hϑ)} 6 ρ, (3.2.15b)

where Kϑ is defined by Eqs. (3.2.4) and (3.2.5).

iii) There exists a positive number C such that
∥∥∥V−1

ϑ

∥∥∥ 6 C for all ϑ.

Proof Assertion i) is a direct consequence of Assumption D3, i), the assumed smoothness of
ϑ 7→ Fϑ (Assumption D2), the compactness of Θ (Assumption D1), and the fact (Bernstein,
2005, Fact 10.11.2) that the eigenvalues of a matrix are continuous functions of its entries.
The claim ii) follows with the same argument from Proposition 3.4, ii) and the fact that
the solution of a discrete-time algebraic Riccati equation is a continuous function of the
coefficient matrices (Lancaster and Rodman, 1995, Chapter 14),(Sun, 1998). Moreover, by
Eq. (3.2.7) and what was already said, the function ϑ 7→ Vϑ is continuous, which shows that
Assumption D3, iii) holds uniformly in ϑ as well, and so iii) is proved. �

For the following assumption about the noise sequences Z and W we recall the notion
of ergodicity from Durrett (2010, Chapter 6). Assume that (Xn)n∈Z is a strictly stationary
Rk-valued process considered as a random variable on the canonical probability space((

Rk)Z , F , P
)

, where F = B
((

Rk)Z
)

is the Borel σ-algebra. An element A ∈ F is said

to be shift-invariant if P
(

A4 φ−1(A)
)
= 0, where 4 denotes the symmetric difference, and

φ :
(

Rk
)Z

→
(

Rk
)Z

, (Xn)n∈Z 7→ (Xn+1)n∈Z ,

is the Bernoulli shift operator. The class of all shift-invariant sets A ∈ F is a σ-algebra,
denoted by I . The process X is said to be ergodic if I is the trivial σ-algebra, i. e.,P(A) ∈
{0, 1} for every A ∈ I . The fundamental result about ergodic sequences is Birkhoff’s
Ergodic Theorem (Birkhoff, 1931), which allows for time averages to be approximated by
population averages, or more precisely

1
N

N

∑
n=1

Xn −−−→
N→∞

E [X1|I ] ,

both almost surely and in L1. In particular, if X is ergodic, the right side equals EX1.
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Assumption D4 The process
(

W T
ϑ0

ZT
ϑ0

)T
is ergodic.

The assumption that the processes Zϑ0 and Wϑ0 are ergodic implies via the moving average
representation in Lemma 3.2, i) and Krengel (1985, Theorem 4.3) that the output process
Y = Yϑ0 is ergodic. As a consequence, the pseudo-innovations εϑ defined in Eq. (3.2.11a) are
ergodic for every ϑ ∈ Θ.

Our first identifiability assumption precludes redundancies in the parametrization of the
state space models under consideration and is therefore necessary for the true parameter
value ϑ0 to be estimated consistently. It will be used in Lemma 3.13 to show that the quasi
likelihood function given by Eq. (3.2.14) asymptotically has a unique global minimum at ϑ0.

Assumption D5 For all ϑ0 , ϑ ∈ Θ, there exists a z ∈ C such that

Hϑ [1N − (Fϑ − Kϑ Hϑ) z]−1 Kϑ , Hϑ0 [1N − (Fϑ0 − Kϑ0 Hϑ0) z]−1 Kϑ0 , (3.2.16a)

or
Vϑ , Vϑ0 . (3.2.16b)

Assumption D5 can be rephrased in terms of the spectral densities fYϑ
of the output

processes Yϑ of the state space models (Fϑ , Hϑ , Zϑ , Wϑ), which are defined as the inverse
Fourier transforms of the autocovariance functions γYϑ

:

fYϑ
: [−π, π]→ S+

d (R), ω 7→ ∑
h∈Z

e−ihωγYϑ
(h); γYϑ

(h) = EYϑ,nYT
ϑ,n+h.

This characterization will be very useful when we apply the estimation theory developed
in this section to state space models that arise from sampling a continuous-time ARMA
process.

Lemma 3.6 If, for all ϑ0 , ϑ ∈ Θ, there exists an ω ∈ [−π, π] such that fYϑ
(ω) , fYϑ0

(ω), then
Assumption D5 holds.

Proof We recall from Hamilton (1994, Eq. (10.4.43)) that the spectral density fYϑ
of the

output process Yϑ of the state space model (Fϑ , Hϑ , Zϑ , Wϑ) is given by

fYϑ
(ω) =

1
2π

Hϑ

(
eiω)VϑHϑ

(
e−iω)T

, ω ∈ [−π, π], (3.2.17)

where Hϑ(z) B Hϑ [1N − (Fϑ − Kϑ Hϑ) z]−1 Kϑ + z. If Assumption D5 does not hold, we have
that both Hϑ(z) = Hϑ0(z) for all z ∈ C, and Vϑ = Vϑ0 , and thus Eq. (3.2.17) implies that
fYϑ

(ω) = fYϑ0
(ω), for all ω ∈ [−π, π], contradicting the assumption of the lemma. �

Under the assumptions described so far we obtain the following consistency result.
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Theorem 3.7 (Consistency of ϑ̂
L

) Assume that (Fϑ , Hϑ , Zϑ , Wϑ)ϑ∈Θ is a parametric family of
state space models according to Definition 3.1, and let yL = (Yϑ0,1, . . . , Yϑ0,L) be a sample of length
L from the output process of the model corresponding to ϑ0. If Assumptions D1 to D5 hold, then
the quasi maximum likelihood estimator ϑ̂

L
= argminϑ∈Θ L̂ (ϑ, yL) is strongly consistent, that is

ϑ̂
L → ϑ0 almost surely, as L→ ∞.

We now describe the conditions which we need to impose in addition to Assumptions D1
to D5 for the asymptotic normality of the quasi maximum likelihood estimator to hold. The
first one excludes the case that the true parameter value ϑ0 lies on the boundary of the
domain Θ.

Assumption D6 The true parameter value ϑ0 is an element of the interior of Θ.

Next we need to impose a higher degree of smoothness than stated in Assumption D2 and a
stronger moment condition than Assumption D4.

Assumption D7 The mappings F(·), H(·), Q(·), S(·), and R(·) in Eqs. (3.2.9) are three times
continuously differentiable.

By the results of the sensitivity analysis of the discrete-time algebraic Riccati equation in
Sun (1998), the same degree of smoothness, namely C3, also carries over to the mapping
ϑ 7→ Vϑ .

Assumption D8 The process
(

W T
ϑ0

ZT
ϑ0

)T
has finite (4 + δ)th moments for some δ > 0,

that is
E ‖Wϑ0,n‖4+δ < ∞, E ‖Zϑ0,n‖4+δ < ∞. (3.2.18)

By Lemma 3.2, ii), Assumption D8 implies that the process Y has finite (4+ δ)th moments. In
the definition of the general linear stochastic state space model and in Assumption D4, it was
only assumed that the sequences Z and W are stationary and ergodic. This structure alone
does not entail a sufficient amount of asymptotic independence for results like Theorem 3.8
to be established. Unless one is willing to restrict attention to Gaussian processes, not even
imposing that Z and W are i. i. d. sequences leads a priori to a satisfactory asymptotic theory.
It turns out that a certain degree of asymptotic independence stronger than ergodicity is
required for the output process Y . The notion of strong (or α-) mixing, which goes back
to Rosenblatt (1956), is one possibility to define asymptotic independence quantitatively.
It has turned out to be a very useful substitute for true independence allowing for many
asymptotic results in the theory of inference for stochastic processes to be established. Given
a probability space (Ω, F , P) and a stationary stochastic process X = (Xt)t∈I on that space,
where I is either R or Z, we introduce the σ-algebras F m

n = σ(Xj : j ∈ I, n < j < m),
−∞ 6 n < m 6 ∞. The strong-mixing coefficients α(m), m ∈ I, are defined by

α(m) = sup
A∈F 0

−∞, B∈F ∞
m

|P(A ∩ B)−P(A)P(B)| . (3.2.19)
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If limm→∞ α(m) = 0, the process X is called strongly mixing; it is called exponentially strongly
mixing if α(m) = O(λm) for some 0 < λ < 1. We assume that the process Y is strongly
mixing and we impose a summability condition on the strong-mixing coefficients, which is
known to be sufficient for a Central Limit Theorem for Y to hold (Bradley, 2007; Ibragimov,
1962).

Assumption D9 Denote by αY the strong-mixing coefficients of the process Y = Yϑ0 . There
exists a constant δ > 0 such that

∞

∑
m=0

[αY(m)]
δ

2+δ < ∞. (3.2.20)

In the case of exponential strong mixing, Assumption D9 is always satisfied, and it is no
restriction to assume that the δ appearing in Assumptions D8 and D9 are the same. It follows
from Mokkadem (1988) and the results in Chapter 2 that, because of the autoregressive
structure of the state equation (3.2.2a), exponential strong mixing of the output process Yϑ0

can be assured by imposing the condition that the process Zϑ0 is an i. i. d. sequence whose
marginal distributions possess a non-trivial absolutely continuous component in the sense of
Lebesgue’s decomposition theorem, see, e. g., Halmos (1950, §31, Theorem C) or the original
account Lebesgue (1904).

Finally, we require another identifiability assumption, that will be used to ensure that
the Fisher information matrix of the quasi maximum likelihood estimator is non-singular.
This is necessary because the asymptotic covariance matrix in the asymptotic normality
result for ϑ̂

L is directly related to the inverse of that matrix. Assumption D10 is formulated
in terms of the first derivative of the parametrization of the model only, which makes it
relatively easy to check in practice; the Fisher information matrix, in contrast, is related to
the second derivative of the logarithmic Gaussian likelihood. For j ∈ N and ϑ ∈ Θ, the
vector ψϑ,j ∈ R(j+2)d2

is defined as

ψϑ,j =

 [
1j+1 ⊗ KT

ϑ ⊗ Hϑ

] [
(vec 1N)

T (vec Fϑ)
T · · ·

(
vec Fj

ϑ

)T
]T

vec Vϑ

 , (3.2.21)

where ⊗ denotes the Kronecker product of two matrices, and vec is the linear operator that
transforms a matrix into a vector by stacking its columns on top of each other.

Assumption D10 There exists an integer j0 ∈N such that the [(j0 + 2)d2]× r matrix∇ϑψϑ0,j0

has rank r.

Our main result about the asymptotic distribution of the quasi maximum likelihood
estimator for discrete-time state space models is the following theorem. Equation (3.2.23)
shows in particular that this asymptotic distribution is independent of the choice of the
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initial values X̂ϑ,initial.

Theorem 3.8 (Asymptotic normality of ϑ̂
L

) Assume that (Fϑ , Hϑ , Zϑ , Wϑ)ϑ∈Θ is a parametric
family of state space models according to Definition 3.1, and let yL = (Yϑ0,1, . . . , Yϑ0,L) be a sample
of length L from the output process of the model corresponding to ϑ0. If Assumptions D1 to D10
hold, then the maximum likelihood estimator ϑ̂

L
= argminϑ∈Θ L̂ (ϑ, yL) is asymptotically normally

distributed with asymptotic covariance matrix Ξ = J−1 I J−1, that is

√
L
(

ϑ̂
L − ϑ0

)
d−−−→

L→∞
N (0, Ξ), (3.2.22)

where

I = lim
L→∞

L−1 Var
(
∇ϑL

(
ϑ0, yL

))
, J = lim

L→∞
L−1∇2

ϑL
(

ϑ0, yL
)

. (3.2.23)

3.2.3. Proof of Theorem 3.7 – Strong consistency

In this section we prove the strong consistency of the quasi maximum likelihood estimator
ϑ̂

L. As a first step we show that the stationary pseudo-innovations processes defined by the
steady-state Kalman filter are uniformly approximated by their counterparts based on the
finite sample yL.

Lemma 3.9 Under Assumptions D1 to D3, the pseudo-innovations sequences εϑ and ε̂ϑ defined by
the Kalman filter equations (3.2.6a) and (3.2.12) have the following properties.

i) If the initial values X̂ϑ,initial are such that supϑ∈Θ

∥∥X̂ϑ,initial
∥∥ is almost surely finite, then, with

probability one, there exist a positive number C and a positive number ρ < 1, such that

sup
ϑ∈Θ
‖εϑ,n − ε̂ϑ,n‖ 6 Cρn, n ∈N. (3.2.24)

In particular, ε̂ϑ0,n converges to the true innovations εn = εϑ0,n at an exponential rate.

ii) The sequences εϑ are linear functions of Y , that is there exist matrix sequences (cϑ,ν)ν>1, such
that

εϑ,n = Yn +
∞

∑
ν=1

cϑ,νYn−ν, n ∈ Z. (3.2.25)

The matrices cϑ,ν are uniformly exponentially bounded, that is there exist a positive constant C
and a positive constant ρ < 1, such that

sup
ϑ∈Θ
‖cϑ,ν‖ 6 Cρν, ν ∈N. (3.2.26)
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Proof We first prove part i) about the uniform exponential approximation of ε by ε̂. Iterating
the Kalman equations (3.2.6a) and (3.2.12), we find that, for n ∈N,

εϑ,n =Yn − Hϑ (Fϑ − Kϑ Hϑ)
n−1 X̂ϑ,1 −

n−1

∑
ν=1

Hϑ (Fϑ − Kϑ Hϑ)
ν−1 KϑYn−ν

and

ε̂ϑ,n =Yn − Hϑ (Fϑ − Kϑ Hϑ)
n−1 X̂ϑ,initial −

n−1

∑
ν=1

Hϑ (Fϑ − Kϑ Hϑ)
ν−1 KϑYn−ν.

Thus, using the fact that, by Lemma 3.5, the spectral radii of Fϑ − Kϑ Hϑ are bounded by
ρ < 1, it follows that

sup
ϑ∈Θ
‖εϑ,n − ε̂ϑ,n‖ = sup

ϑ∈Θ

∥∥∥Hϑ (Fϑ − Kϑ Hϑ)
n−1 (Xϑ,0 − Xϑ,initial)

∥∥∥
6 ‖H‖L∞(Θ) ρn−1 sup

ϑ∈Θ
‖Xϑ,0 − Xϑ,initial‖ ,

where ‖H‖L∞(Θ) B supϑ∈Θ ‖Hϑ‖ denotes the supremum norm of H(·), which is finite by the
Extreme Value Theorem. Since the last factor is almost surely finite by assumption, the claim
(3.2.24) follows.

For part ii), we observe that Eq. (3.2.6a) and Lemma 3.5, ii) imply that εϑ has the infinite-
order moving average representation

εϑ,n = Yn − Hϑ

∞

∑
ν=1

(Fϑ − Kϑ Hϑ)
ν−1 KϑYn−ν, (3.2.27)

with uniformly exponentially bounded coefficients cϑ,ν B −Hϑ (Fϑ − Kϑ Hϑ)
ν−1 Kϑ . Explicitly,

‖cϑ.ν‖ 6 ‖H‖L∞(Θ) ‖K‖L∞(Θ) ρn−1. This shows Eqs. (3.2.25) and (3.2.26). �

Lemma 3.10 Let L and L̂ be given by Eqs. (3.2.10) and (3.2.14). If Assumptions D1 to D3 are
satisfied, then, almost surely,

1
L

sup
ϑ∈Θ

∣∣∣L̂ (ϑ, yL)−L (ϑ, yL)
∣∣∣→ 0, as L→ ∞. (3.2.28)

Proof We first observe that∣∣∣L̂ (ϑ, yL)−L (ϑ, yL)
∣∣∣ = L

∑
n=1

[
ε̂T

ϑ,nV−1
ϑ ε̂ϑ,n − εT

ϑ,nV−1
ϑ εϑ,n

]
=

L

∑
n=1

[
(ε̂ϑ,n − εϑ,n)

T V−1
ϑ ε̂ϑ,n + εT

ϑ,nV−1
ϑ (ε̂ϑ,n − εϑ,n)

]
.
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The fact that, by Lemma 3.5, iii), there exists a constant C such that
∥∥∥V−1

ϑ

∥∥∥ 6 C, for all ϑ ∈ Θ,
implies that

1
L

sup
ϑ∈Θ

∣∣∣L̂ (ϑ, yL)−L (ϑ, yL)
∣∣∣ 6C

L

L

∑
n=1

ρn

[
sup
ϑ∈Θ
‖ε̂ϑ,n‖+ sup

ϑ∈Θ
‖εϑ,n‖

]
. (3.2.29)

Lemma 3.9, ii) and the assumption that Y has finite second moments imply that the expecta-
tion E supϑ∈Θ ‖εϑ,n‖ is finite. Applying Markov’s inequality, one sees that, for every positive
number ε,

∞

∑
n=1

P

(
ρn sup

ϑ∈Θ
‖εϑ,n‖ > ε

)
6 E sup

ϑ∈Θ
‖εϑ,1‖

∞

∑
n=1

ρn

ε
< ∞,

because ρ < 1. The Borel–Cantelli Lemma shows that ρn supϑ∈Θ ‖εϑ,n‖ converges to zero
almost surely, as n→ ∞. In an analogous way one can show that ρn supϑ∈Θ ‖ε̂ϑ,n‖ converges
to zero almost surely, and, consequently, so does the Cesàro mean in Eq. (3.2.29). The claim
(3.2.28) thus follows. �

Lemma 3.11 Assume that Assumptions D3 and D4 as well as the first part of Assumption D5,
Eq. (3.2.16a), hold. If εϑ,1 = εϑ0,1 almost surely, then ϑ = ϑ0.

Proof Assume, for the sake of contradiction, that ϑ , ϑ0. By Assumption D5, there exist
matrices Cj ∈ Md(R), j ∈N0, such that, for |z| 6 1,

Hϑ [1N − (Fϑ − Kϑ Hϑ)z]
−1 Kϑ − Hϑ0 [1N − (Fϑ0 − Kϑ0 Hϑ0 z]−1 Kϑ0 =

∞

∑
j=j0

Cjzj, (3.2.30)

where Cj0 , 0, for some j0 > 0. Using Eq. (3.2.6b) and the assumed equality of εϑ,1 and
εϑ0,1, this equation implies that 0d = ∑∞

j=j0 CjY j0−j almost surely; in particular, the random
variable Cj0Y0 is almost surely equal to a linear combination of the components of Yn, n < 0.
It thus follows from the interpretation of the innovations sequence εϑ0 as linear prediction
errors for the process Y that Cj0 εϑ0,0 is equal to zero, which implies that

ECj0 εϑ0,0εT
ϑ0,0CT

j0 = Cj0Vϑ0 CT
j0 = 0d.

Since Vϑ0 is assumed to be non-singular, this implies that the matrix Cj0 is the null matrix, a
contradiction to Eq. (3.2.30). �

Lemma 3.12 If Assumptions D1 to D4 hold, then, with probability one, the sequence of random
functions ϑ 7→ L−1L̂ (ϑ, yL) converges, as L tends to infinity, uniformly in ϑ to the limiting
function Q : Θ→ R defined by

Q(ϑ) = d log(2π) + log det Vϑ + EεT
ϑ,1V−1

ϑ εϑ,1. (3.2.31)
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Proof In view of the approximation results in Lemma 3.10, it is enough to show that the
sequence of random functions ϑ 7→ L−1L (ϑ, yL) converges uniformly to Q. The proof of
this assertion is based on the observation following Assumption D4 that for each ϑ ∈ Θ the
sequence εϑ is ergodic and its consequence that, by Birkhoff’s Ergodic Theorem (Durrett,
2010, Theorem 6.2.1), the sequence L−1L (ϑ, yL) converges to Q(ϑ) point-wise. The stronger
statement of uniform convergence follows from Assumption D1 that Θ is compact by an
argument that is inspired by the proof of Ferguson (1996, Theorem 16): for δ > 0, we write
Bδ(ϑ) =

{
ϑ′ ∈ Θ :

∥∥ϑ′ − ϑ
∥∥ < δ

}
for the open ball of radius δ around ϑ. The sequences

σδ
ϑ =

(
σδ

ϑ,n

)
n∈Z

and σδ
ϑ =

(
σδ

ϑ,n

)
n∈Z

, which are defined by

σδ
ϑ,n = inf

ϑ′∈Bδ(ϑ)

[
εT

ϑ′,nV−1
ϑ′

εϑ′,n −EεT
ϑ′,1V−1

ϑ′
εϑ′,1

]
and

σδ
ϑ,n = sup

ϑ′∈Bδ(ϑ)

[
εT

ϑ′,nV−1
ϑ′

εϑ′,n −EεT
ϑ′,1V−1

ϑ′
εϑ′,1

]
,

are strictly stationary, ergodic and monotone in δ. By Lemma 3.9, ii) there exists an integrable
random variable Z such that σδ

ϑ,1 < Z for all δ and all ϑ ∈ Θ. Since, moreover, εT
ϑ,1V−1

ϑ εϑ,1 is
almost surely a continuous function of ϑ, and thus

σδ
ϑ,n

a. s.−−→
δ→0

εT
ϑ,nV−1

ϑ εϑ,n −EεT
ϑ,1V−1

ϑ εϑ,1,

it follows from the Ergodic Theorem and Lebesgue’s Dominated Convergence Theorem
(Klenke, 2008, Corollary 6.26) that

1
L

L

∑
n=1

σδ
ϑ,n

a. s.−−−→
L→∞

Eσδ
ϑ,1 −−→

δ→0
E
[
εT

ϑ,nV−1
ϑ εϑ,n −EεT

ϑ,1V−1
ϑ εϑ,1

]
= 0, (3.2.32)

and similarly for σδ
ϑ . Since, for any ϑ′ ∈ Bδ(ϑ), it holds that

1
L

L

∑
n=1

σδ
ϑ,n 6

1
L

L

∑
n=1

εT
ϑ′,nV−1

ϑ′
εϑ′,n −EεT

ϑ′,1V−1
ϑ′

εϑ′,1 6
1
L

L

∑
n=1

σδ
ϑ,n,

it follows that

sup
ϑ′∈Bδ(ϑ)

∣∣∣∣∣ 1
L

L

∑
n=1

εT
ϑ′,nV−1

ϑ′
εϑ′,n −EεT

ϑ′,1V−1
ϑ′

εϑ′,1

∣∣∣∣∣ 6
∣∣∣∣∣ 1
L

L

∑
n=1

σδ
ϑ,n

∣∣∣∣∣+
∣∣∣∣∣ 1
L

L

∑
n=1

σδ
ϑ,n

∣∣∣∣∣ .
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Letting L tend to infinity on both sides of this inequality, we see that, almost surely,

lim sup
L→∞

sup
ϑ′∈Bδ(ϑ)

∣∣∣∣∣ 1
L

L

∑
n=1

εT
ϑ′,nV−1

ϑ′
εϑ′,n −EεT

ϑ′,1V−1
ϑ′

εϑ′,1

∣∣∣∣∣ 6 ∣∣∣Eσδ
ϑ,1

∣∣∣+ ∣∣∣Eσδ
ϑ,1

∣∣∣ .

By Eq. (3.2.32) one finds, for every ε > 0 and every ϑ ∈ Θ, a δ(ε, ϑ) > 0 such that∣∣∣Eσδ
ϑ,1

∣∣∣+ ∣∣∣Eσδ
ϑ,1

∣∣∣ < ε, for all δ < δ(ε, ϑ). The collection of balls
{

Bδ(ε,ϑ)(ϑ)
}

ϑ∈Θ
covers Θ,

and since the domain Θ is assumed to be compact, one can extract a finite subcover. This
means that there exist a finite number of points ϑ1, . . . , ϑk such that Θ is covered by the
union of the δ(ε, ϑi)-balls centred at the ϑi, that is Θ ⊂ ⋃k

i=1 Bδ(ε,ϑi)(ϑi). Defining δ(ε) to be
the minimum of the radii δ(ε, ϑi), i = 1, . . . , k, it follows that, with probability one,

lim sup
L→∞

sup
ϑ∈Θ

∣∣∣∣∣ 1
L

L

∑
n=1

εT
ϑ,nV−1

ϑ εϑ,n −EεT
ϑ,1V−1

ϑ′
εϑ,1

∣∣∣∣∣
= lim sup

L→∞
max

i=1,...,k
sup

ϑ∈Bδ(ε,ϑi)

∣∣∣∣∣ 1
L

L

∑
n=1

εT
ϑ,nV−1

ϑ εϑ,n −EεT
ϑ,1V−1

ϑ εϑ,1

∣∣∣∣∣
6 max

i=1,...,k

{∣∣∣Eσ
δ(ε,ϑi)
ϑi ,1

∣∣∣+ ∣∣∣Eσ
δ(ε,ϑi)
ϑi ,1

∣∣∣}
6ε, ∀δ 6 δ(ε).

Intersecting over a sequence εn which converges to zero proves the result. More precisely,

P

(
sup
ϑ∈Θ

∣∣∣∣∣ 1
L

L

∑
n=1

εT
ϑ,nV−1

ϑ εϑ,n −EεT
ϑ,1V−1

ϑ′
εϑ,1

∣∣∣∣∣ −−−→L→∞
0

)

>P

(
lim sup

L→∞
sup
ϑ∈Θ

∣∣∣∣∣ 1
L

L

∑
n=1

εT
ϑ,nV−1

ϑ εϑ,n −EεT
ϑ,1V−1

ϑ′
εϑ,1

∣∣∣∣∣ 6 εn n = 1, 2 . . .

)

=P

(
∞⋂

n=1

{
lim sup

L→∞
sup
ϑ∈Θ

∣∣∣∣∣ 1
L

L

∑
n=1

εT
ϑ,nV−1

ϑ εϑ,n −EεT
ϑ,1V−1

ϑ′
εϑ,1

∣∣∣∣∣ 6 εn

})
= 1,

because, by countable additivity, the probability of the intersection of a countably infinite
number of events, each having full probability, is equal to unity. �

Lemma 3.13 Under Assumptions D1 to D3 and D5, the function Q : Θ → R, as defined in
Eq. (3.2.31), has a unique global minimum at ϑ0.

Proof We first observe that the difference εϑ,1 − εϑ0,1 is an element of the Hilbert space
spanned by the random variables {Yn, n 6 0}, and that εϑ0,1 is, by definition, orthogonal to
this space. This implies that the expectation E (εϑ,1 − εϑ0,1)

T V−1
ϑ εϑ0,1 is equal to zero and,
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consequently, that Q(ϑ) can be written as

Q(ϑ) = d log(2π) + EεT
ϑ0,1V−1

ϑ εϑ0,1 + E (εϑ,1 − εϑ0,1)
T V−1

ϑ (εϑ,1 − εϑ0,1) + log det Vϑ .

In particular, since EεT
ϑ0,1V−1

ϑ0
εϑ0,1 = tr

[
V−1

ϑ0
Eεϑ0,1εT

ϑ0,1

]
= d, it follows that

Q(ϑ0) = log det Vϑ0 + d(1 + log(2π)).

The elementary inequality x− log x > 1, for x > 0, implies that

tr M− log det M = ∑
x∈σ(M)

(x− log x) > d,

for all symmetric positive definite d× d matrices M ∈ S++
d (R) with equality if and only if

M = 1d. Using this inequality for M = V−1
ϑ0

Vϑ , we thus obtain that, for all ϑ ∈ Θ,

Q(ϑ)−Q(ϑ0) =d + tr
[
V−1

ϑ Eεϑ0,1εT
ϑ0,1

]
− log det

(
V−1

ϑ0
Vϑ

)
+ E (εϑ,1 − εϑ0,1)

T V−1
ϑ (εϑ,1 − εϑ0,1)−EεT

ϑ0,1V−1
ϑ0

εϑ0,1

>E (εϑ,1 − εϑ0,1)
T V−1

ϑ (εϑ,1 − εϑ0,1)

>0.

It remains to argue that this chain of inequalities is in fact a strict inequality if ϑ , ϑ0.
If Vϑ , Vϑ0 , the first inequality is strict, and we are done. If Vϑ = Vϑ0 , the first part of
Assumption D5, Eq. (3.2.16a), is satisfied. The second inequality is an equality if and only if
εϑ,1 = εϑ0,1 almost surely, which, by Lemma 3.11, implies that ϑ = ϑ0. Thus, the function Q

has a unique global minimum at ϑ0. �

Proof (of Theorem 3.7) We shall first show that the sequence L−1L̂ (ϑ̂
L, yL) converges al-

most surely to Q(ϑ0) as the sample size L tends to infinity. Assume that, for some positive
number ε, it holds that supϑ∈Θ

∣∣∣L−1L̂ (ϑ, yL)−Q(ϑ)
∣∣∣ 6 ε. It then follows that

L−1L̂ (ϑ̂
L, yL) 6L−1L̂ (ϑ0, yL) 6 Q(ϑ0) + ε,

and

L−1L̂ (ϑ̂
L, yL) >Q(ϑ̂

L
)− ε > Q(ϑ0)− ε,

where it was used that ϑ̂
L is defined to minimize L̂ (·, yL) and that, by Lemma 3.13, ϑ0

minimizes Q(·). In particular, it follows that
∣∣∣L−1L̂ (ϑ̂

L, yL)−Q(ϑ0)
∣∣∣ 6 ε. This observation
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and Lemma 3.12 immediately imply that

P

(
1
L

L̂ (ϑ̂
L, yL) −−−→

L→∞
Q(ϑ0)

)
> P

(
sup
ϑ∈Θ

∣∣∣∣ 1
L

L̂ (ϑ, yL)−Q(ϑ)

∣∣∣∣ −−−→L→∞
0

)
= 1. (3.2.33)

To complete the proof of the theorem, it suffices to show that, for every neighbourhood U of
ϑ0, with probability one, ϑ̂

L will eventually lie in U. For every such neighbourhood U of
ϑ0, we define the real number δ(U) B infϑ∈Θ\U Q(ϑ)−Q(ϑ0), which is strictly positive by
Lemma 3.13. Then the following sequence of inequalities holds:

P

(
ϑ̂

L −−−→
L→∞

ϑ0

)
=P

(
∀U ∃L0 : ϑ̂

L ∈ U ∀L > L0

)
>P
(
∀U ∃L0 : Q(ϑ̂

L
)−Q(ϑ0) < δ(U) ∀L > L0

)
>P

(
∀U ∃L0 :

∣∣∣∣ 1
L

L̂ (ϑ̂
L, yL)−Q(ϑ0)

∣∣∣∣ < δ(U)

2

and
∣∣∣∣ 1
L

L̂ (ϑ̂
L, yL)−Q(ϑ̂

L
)

∣∣∣∣ < δ(U)

2
∀L > L0

)
>P

(
∀U ∃L0 :

∣∣∣∣ 1
L

L̂ (ϑ̂
L, yL)−Q(ϑ0)

∣∣∣∣ < δ(U)

2
∀L > L0

)
+ P

(
∀U ∃L0 : sup

ϑ∈Θ

∣∣∣∣ 1
L

L̂ (ϑ, yL)−Q(ϑ)

∣∣∣∣ < δ(U)

2
∀L > L0

)
− 1.

The first probability in the last line is equal to one by Eq. (3.2.33), the second because, by
Lemma 3.12, the random functions ϑ 7→ L−1L̂ (ϑ, yL) converge almost surely uniformly

to the function ϑ 7→ Q(ϑ). It thus follows that P

(
ϑ̂

L −−−→
L→∞

ϑ0

)
= 1, which proves the

theorem. �

3.2.4. Proof of Theorem 3.8 – Asymptotic normality

In this section we prove the assertion of Theorem 3.8, namely that the distribution of
L1/2

(
ϑ̂

L − ϑ0

)
converges to a normal random variable with mean zero and covariance

matrix Ξ = J−1 I J−1, an expression for which is given in Eq. (3.2.23). We first present a chain
rule and some well-known explicit formulæ for the differentiation of common matrix-valued
functions for easy reference; these can be found in Horn and Johnson (1994, Sections 6.5 and
6.6).

Proposition 3.14 Assume that g : R → Mm,n(R) and f : Mm,n(R) → R are differentiable
functions. The following chain rule holds.

∂

∂x
f (g(x)) = tr

[(
∂

∂MT f (M)

∣∣∣∣
M=g(x)

)(
∂

∂x
g(x)

)]
, (3.2.34)
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where, for M = (mij)ij ∈ Mm,n(R) and x ∈ R, we write

∂

∂MT f (M) =

(
∂

∂mji
f (M)

)
ij
∈ Mn,m(R), (3.2.35a)

and

∂

∂x
g(x) =

(
∂

∂x
[g(x)]ij

)
ij
∈ Mm,n(R). (3.2.35b)

If M ∈ Mm(R) is invertible, the following hold:

∂

∂MT log |det M| =M−1, (3.2.36a)

∂

∂MT tr (AMB) =BA, (3.2.36b)

∂

∂MT tr
(

AM−1B
)
=−M−1BAM−1, (3.2.36c)

where A ∈ Mk,m(R) and B ∈ Mm,l(R) are matrices of appropriate dimensions.

Next, we collect basic properties of ∂mεϑ,n and ∂mε̂ϑ,n, where ∂m = ∂/∂ϑm denotes the
partial derivative with respect to the mth component of ϑ; the following lemma mirrors
Lemma 3.9.

Lemma 3.15 Assume that Assumptions D1 to D3 and D7 hold. The pseudo-innovations sequences
εϑ and ε̂ϑ defined by the Kalman filter equations (3.2.6a) and (3.2.12) have the following properties.

i) If, for some k ∈ {1, . . . , r}, the initial values X̂ϑ,initial are such that both supϑ∈Θ

∥∥X̂ϑ,initial
∥∥ and

supϑ∈Θ

∥∥∂kX̂ϑ,initial
∥∥ are almost surely finite, then, with probability one, there exist a positive

number C and a positive number ρ < 1, such that

sup
ϑ∈Θ
‖∂kεϑ,n − ∂k ε̂ϑ,n‖ 6 Cρn, n ∈N. (3.2.37)

ii) For each k ∈ {1, . . . , r}, the random sequences ∂kεϑ are linear functions of Y , that is there exist
matrix sequences

(
c(k)ϑ,ν

)
ν>1

, such that

∂kεϑ,n =
∞

∑
ν=1

c(k)ϑ,νYn−ν, n ∈ Z. (3.2.38)

The matrices c(k)ϑ,ν are uniformly exponentially bounded, that is there exist a positive constant C
and a positive constant ρ < 1, such that

sup
ϑ∈Θ

∥∥∥c(k)ϑ,ν

∥∥∥ 6 Cρν, ν ∈N. (3.2.39)
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iii) If, for some k, l ∈ {1, . . . , r}, the initial values X̂ϑ,initial are such that both supϑ∈Θ

∥∥X̂ϑ,initial
∥∥,

supϑ∈Θ

∥∥∂iX̂ϑ,initial
∥∥, i ∈ {k, l}, and supϑ∈Θ

∥∥∥∂2
k,lX̂ϑ,initial

∥∥∥ are almost surely finite, then, with
probability one, there exist a positive number C and a positive number ρ < 1, such that

sup
ϑ∈Θ

∥∥∂2
k,lεϑ,n − ∂2

k,l ε̂ϑ,n
∥∥ 6 Cρn, n ∈N. (3.2.40)

iv) For each k, l ∈ {1, . . . , r}, the random sequences ∂2
k,lεϑ are linear functions of Y , that is there

exist matrix sequences
(

c(k,l)
ϑ,ν

)
ν>1

, such that

∂2
k,lεϑ,n =

∞

∑
ν=1

c(k,l)
ϑ,ν Yn−ν, n ∈ Z. (3.2.41)

The matrices c(k,l)
ϑ,ν are uniformly exponentially bounded, that is there exist a positive constant

C and a positive constant ρ < 1, such that

sup
ϑ∈Θ

∥∥∥c(k,l)
ϑ,ν

∥∥∥ 6 Cρν, ν ∈N. (3.2.42)

Proof Analogous to the proof of Lemma 3.9, repeatedly interchanging differentiation and
summation, and using the fact that, by Assumptions D1 to D3 and D7, both

∂k

[
Hϑ (Fϑ − Kϑ Hϑ)

ν−1 Kϑ

]
and ∂2

k,l

[
Hϑ (Fϑ − Kϑ Hϑ)

ν−1 Kϑ

]
are uniformly exponentially bounded in ν. �

Lemma 3.16 For each ϑ ∈ Θ and every m = 1, . . . , r, the random variable ∂mL (ϑ, yL) has finite
variance.

Proof By Assumption D8 and the exponential decay of the coefficient matrices cϑ,ν and c(m)
ϑ,ν

proved in Lemma 3.9, ii) and Lemma 3.15, ii), it follows that

E ‖εϑ,n‖4 6

[
C

∞

∑
ν=0

ρν

]4

E ‖Y1‖4 < ∞,

and

E ‖∂mεϑ,n‖4 6

[
C

∞

∑
ν=0

ρν

]4

E ‖Y1‖4 < ∞.

Consequently, the derivative rules presented in Proposition 3.14 and the Cauchy–Schwarz
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inequality imply that, for some constant C,

E

∣∣∣∂m

(
εT

ϑ,nV−1
ϑ εϑ,n

)∣∣∣2 =E

∣∣∣− tr
[
V−1

ϑ εϑ,nεT
ϑ,n (∂mVϑ)

]
+ 2

(
∂mεT

ϑ,n

)
V−1

ϑ εϑ,n

∣∣∣2
6C
{

E ‖εϑ,n‖4 +
(

E ‖εϑ,n|4 E ‖∂mεϑ,n‖4
)1/2

}
<∞,

which proves that ∂mL (ϑ, yL) has finite second moments. �

We need the following multivariate covariance inequality which is a consequence of
Davydov’s inequality and the multidimensional generalization of an inequality used in the
proof of Francq and Zakoïan (1998, Lemma 3). An overview of covariance inequalities for
strongly mixing processes can be found in Bradley (2007); Doukhan (1994). For a positive
real number α, we denote by bαc the greatest integer smaller than or equal to α.

Lemma 3.17 Let X be a strictly stationary, strongly mixing d-dimensional stochastic process with
finite (4 + δ)th moments for some δ > 0. Then there exists a constant C, such that for all d× d
matrices A, B, every n ∈ Z, ∆ ∈ N, and time indices ν, ν′ ∈ N0, µ, µ′ = 0, 1 . . . , b∆/2c, it holds
that

Cov
(

XT
n−ν AXn−ν′ ; XT

n+∆−µBXn+∆−µ′

)
6 C ‖A‖ ‖B‖

[
αX

(⌊
∆
2

⌋)]δ/(δ+2)

, (3.2.43)

where αX denotes the strong-mixing coefficients of the process X, defined in Eq. (3.2.19).

Proof We first note that the bilinearity of Cov(·; ·) and the elementary inequality Mij 6 ‖M‖,
M ∈ Md(R), imply that

Cov
(

XT
n−ν AXn−ν′ ; XT

n+∆−µBXn+∆−µ′

)
=

d

∑
i,j,s,t=1

AijBst Cov
(

Xi
n−νX j

n−ν′ ; Xs
n+∆−µXt

n+∆−µ′

)
6d4 ‖A‖ ‖B‖ max

i,j,s,t=1,...,d
Cov

(
Xi

n−νX j
n−ν′ ; Xs

n+∆−µXt
n+∆−µ′

)
.

Since the projection operator which maps a vector to one of its components is measurable,
it follows that, for each i, j, the random variable Xi

n−νX j
n−ν′ is measurable with respect to

F
n−min{ν,ν′}
−∞ , the σ-algebra generated by {Xk : −∞ < k 6 n−min{ν, ν′}}. Similarly, for each

s, t, the random variable Xs
n+∆−µXt

n+∆−µ′ is measurable with respect to F ∞
n+∆−max{µ,µ′}, the σ-

algebra generated by {Xk : n + ∆−max {µ, µ′} 6 k < ∞}. Davydov’s inequality (Davydov,
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1968, Lemma 2.1) implies that there exists a universal constant K such that

Cov
(

Xi
n−νX j

n−ν′ ; Xs
n+∆−µXt

n+∆−µ′

)
6K
(

E

∣∣∣Xi
n−νX j

n−ν′

∣∣∣2+δ
)1/(2+δ) (

E

∣∣∣Xs
n+∆−µXt

n+∆−µ′

∣∣∣2+δ
)1/(2+δ)

×
[
αX
(
∆−max

{
µ, µ′

}
+ min

{
ν, ν′

})]δ/(2+δ)

6C
[

αX

(⌊
∆
2

⌋)]δ/(2+δ)

,

where it was used that ∆ −max {µ, µ′} + min {ν, ν′} > b∆/2c, and that strong-mixing
coefficients are non-increasing. By the Cauchy–Schwarz inequality the constant C satisfies

C = K
(

E

∣∣∣Xi
n−νX j

n−ν′

∣∣∣2+δ
)1/(2+δ) (

E

∣∣∣Xs
n+∆−µXt

n+∆−µ′

∣∣∣2+δ
)1/(2+δ)

6 K
(

E ‖X1‖4+2δ
) 2

2+δ
,

and thus does not depend on n, ν, ν′, µ, µ′, ∆, nor on i, j, s, t. �

The next lemma is a multivariate generalization of Francq and Zakoïan (1998, Lemma 3).
In the proof of Boubacar Mainassara and Francq (2011, Lemma 4) this generalization is used
without providing details and, more importantly without imposing Assumption D9 about
the strong mixing of Y . In view of the derivative terms ∂mεϑ,n in Eq. (3.2.45) it is not clear how
the result of the lemma can be proved under the mere assumption of strong mixing of the
innovations sequence εϑ0 . We therefore think that a detailed account, properly generalizing
the arguments in the original paper (Francq and Zakoïan, 1998) to the multidimensional
setting, is justified.

Lemma 3.18 Suppose that Assumptions D1 to D3, D8 and D9 are satisfied. It then holds that,
for every ϑ ∈ Θ, the sequence L−1 Var∇ϑL (ϑ, yL) of deterministic matrices converges to a limit
I(ϑ), as L→ ∞.

Proof It is enough to show that, for each ϑ ∈ Θ, and all k, l = 1, . . . , r, the sequence of
real-valued random variables I(k,l)

ϑ,L , defined by

I(k,l)
ϑ,L =

1
L

L

∑
n=1

L

∑
t=1

Cov
(
`
(k)
ϑ,n, `(l)ϑ,t

)
, (3.2.44)

converges to a limit as L tends to infinity, where `
(m)
ϑ,n = ∂mlϑ,n is the partial derivative of the

nth term in expression (3.2.10) for L (ϑ, yL). It follows from the derivative rules stated in
Proposition 3.14 that

`
(m)
ϑ,n = tr

[
V−1

ϑ

(
1d − εϑ,nεT

ϑ,nV−1
ϑ

)
(∂mVϑ)

]
+ 2

(
∂mεT

ϑ,n

)
V−1

ϑ εϑ,n. (3.2.45)
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By the assumed stationarity of the processes εϑ , the covariances in the sum (3.2.44) depend
only on the difference n− t. For the proof of the lemma it suffices to show that the sequence

c
(k,l)
ϑ,∆ = Cov

(
`
(k)
ϑ,n, `(l)n+∆,ϑ

)
, ∆ ∈ Z, (3.2.46)

is absolutely summable for all k, l = 1, . . . , r, because then the Dominated Convergence
Theorem implies that

I(k,l)
ϑ,L =

1
L

L

∑
∆=−L

(L− |∆|) c(k,l)
ϑ,∆ −−−→L→∞

∑
∆∈Z

c
(k,l)
ϑ,∆ < ∞. (3.2.47)

In view of the of the symmetry c(k,l)
ϑ,∆ = c

(k,l)
ϑ,−∆, it is no restriction to assume that ∆ ∈ N. In

order to show that ∑∆

∣∣∣c(k,l)
ϑ,∆

∣∣∣ is finite, we first use the bilinearity of Cov(·; ·) to estimate

∣∣∣c(k,l)
ϑ,∆

∣∣∣ 64
∣∣∣Cov

((
∂kεT

ϑ,n

)
V−1

ϑ εϑ,n;
(

∂lε
T
ϑ,n+∆

)
V−1

ϑ εϑ,n+∆

)∣∣∣
+
∣∣∣Cov

(
tr
[
V−1

ϑ εϑ,nεT
ϑ,nV−1

ϑ ∂kVϑ

]
; tr
[
V−1

ϑ εϑ,n+∆εT
ϑ,n+∆V−1

ϑ ∂lVϑ

])∣∣∣+
+ 2

∣∣∣Cov
(

tr
[
V−1

ϑ εϑ,nεT
ϑ,nV−1

ϑ ∂kVϑ

]
;
(

∂lε
T
ϑ,n+∆

)
V−1

ϑ εϑ,n+∆

)∣∣∣+
+ 2

∣∣∣Cov
((

∂kεT
ϑ,n

)
V−1

ϑ εϑ,n; tr
[
V−1

ϑ εϑ,n+∆εT
ϑ,n+∆V−1

ϑ ∂lVϑ

])∣∣∣ .

Each of these four terms can be analysed separately. We give details only for the first one, the
arguments for the other three terms being similar. Using the moving average representations
(3.2.25) and (3.2.38) for εϑ , ∂kεϑ and ∂lεϑ , it follows that∣∣∣Cov

((
∂kεT

ϑ,n

)
V−1

ϑ εϑ,n;
(

∂lε
T
ϑ,n+∆

)
V−1

ϑ εϑ,n+∆

)∣∣∣
=

∞

∑
ν,ν′,µ,µ′=0

∣∣∣Cov
(

YT
n−νc(k),Tϑ,ν V−1

ϑ cϑ,ν′Yn−ν′ , YT
n+∆−µc(l),Tϑ,µ V−1

ϑ cϑ,µ′Yn+∆−µ′

)∣∣∣ .

This sum can be split into one part I+ in which at least one of the summation indices ν, ν′, µ

and µ′ exceeds ∆/2, and one part I− in which all summation indices are less than or equal
to ∆/2. Using the fact that, by the Cauchy–Schwarz inequality,∣∣∣Cov

(
YT

n−νc(k),Tϑ,ν V−1
ϑ cϑ,ν′Yn−ν′ ; YT

n+∆−µc(l),Tϑ,µ V−1
ϑ cϑ,µ′Yn+∆−µ′

)∣∣∣
6
∥∥∥V−1

ϑ

∥∥∥2 ∥∥∥c(k)ϑ,ν

∥∥∥ ‖cϑ,ν′‖
∥∥∥c(l)ϑ,µ′

∥∥∥ ∥∥cϑ,µ′
∥∥E ‖Yn‖4 ,

it follows from Assumption D8 and the uniform exponential decay of ‖cϑ,ν‖ and
∥∥∥c(m)

ϑ,ν

∥∥∥
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proved in Lemma 3.9, ii) and Lemma 3.15, ii) that there exist constants C and ρ < 1 such that

I+ =
∞

∑
ν,ν′,µ,µ′=0

max{ν,ν′,µ,µ′}>∆/2

∣∣∣Cov
(

YT
n−νc(k),Tϑ,ν V−1

ϑ cϑ,ν′Yn−ν′ , YT
n+∆−µc(l),Tϑ,µ V−1

ϑ cϑ,µ′Yn+∆−µ′

)∣∣∣
6Cρ∆/2. (3.2.48)

For the contribution from all indices smaller than or equal to ∆/2, Lemma 3.17 implies that

I− =
b∆/2c

∑
ν,ν′,µ,µ′=0

∣∣∣Cov
(

YT
n−νc(k),Tϑ,ν V−1

ϑ cϑ,ν′Yn−ν′ , YT
n+∆−µc(l),Tϑ,µ V−1

ϑ cϑ,µ′Yn+∆−µ′

)∣∣∣
6C
[

αY

(⌊
∆
2

⌋)]δ/(2+δ)

. (3.2.49)

It thus follows from Assumption D9 that the sequences
∣∣∣c(k,l)

ϑ,∆

∣∣∣, ∆ ∈N, are summable, and
Eq. (3.2.47) completes the proof of the lemma. �

We shall also need the following multivariate Chebyshev inequality.

Lemma 3.19 Let Z be an Rd valued random variable with finite second moments. It holds that, for
every ε > 0,

P (‖Z−EZ‖ > ε) 6
d
ε2 tr Var (Z) . (3.2.50)

Proof The claim is a consequence of the standard one-dimensional Chebyshev inequality.
Using the subadditivity of the probability measure P, we obtain that

P (‖Z−EZ‖ > ε) =P

(
d

∑
i=1

(
Zi −EZi

)2
> ε2

)

6P

(
d⋃

i=1

{∣∣∣Zi −EZi
∣∣∣ > ε√

d

})

6
d

∑
i=1

P

(∣∣∣Zi −EZi
∣∣∣ > ε√

d

)
6

d
ε2

d

∑
i=1

Var
(

Zi
)
=

d
ε2 tr Var (Z) . �

Lemma 3.20 Let L and L̂ be given by Eqs. (3.2.10) and (3.2.14). Assume that Assumptions D1
to D3 and D7 are satisfied. Then the following hold.

i) For each m = 1, . . . , r,

1√
L

sup
ϑ∈Θ

∣∣∣∂mL̂ (ϑ, yL)− ∂mL (ϑ, yL)
∣∣∣→ 0, in probability, (3.2.51)

as L→ ∞.



3.2. Quasi maximum likelihood estimation for discrete-time state space models 61

ii) For all k, l = 1, . . . , r,

1
L

sup
ϑ∈Θ

∣∣∣∂2
k,lL̂ (ϑ, yL)− ∂2

k,lL (ϑ, yL)
∣∣∣→ 0, almost surely, (3.2.52)

as L→ ∞.

Proof Similar to the proof of Lemma 3.10. �

Lemma 3.21 Under Assumptions D1, D3 and D7 to D9, the random variable L−1/2∇ϑL̂ (ϑ0, yL)

is asymptotically normally distributed with mean zero and covariance matrix I(ϑ0).

Proof Because of Lemma 3.20, i) it is enough to show that L−1/2∇ϑL
(
ϑ0, yL) is asymptoti-

cally normally distributed with mean zero and covariance matrix I(ϑ0). We begin the proof
by recalling the equation

∂iL (ϑ, yL) =
L

∑
n=1

{
tr
[
V−1

ϑ

(
1d − εϑ,nεT

ϑ,nV−1
ϑ

)
∂iVϑ

]
+ 2

(
∂iε

T
ϑ,n

)
V−1

ϑ εϑ,n

}
, (3.2.53)

which holds for every component i = 1, . . . , r. The facts that Eεϑ0,nεT
ϑ0,n equals Vϑ0 , and

that εϑ0,n is orthogonal to the Hilbert space generated by {Y t, t < n}, of which ∂iε
T
ϑ,n is

an element, show that E∂iL
(
ϑ0, yL) = 0. Using Eq. (3.2.25), expression (3.2.53) can be

rewritten as

∂iL
(

ϑ0, yL
)
=

L

∑
n=1

[
Y(i)

m,n −EY(i)
m,n

]
+

L

∑
n=1

[
Z(i)

m,n −EZ(i)
m,n

]
,

where, for every m ∈N, the processes Y(i)
m and Z(i)

m are defined by

Y(i)
m,n = tr

[
V−1

ϑ0
(∂iVϑ0)

]
+

m

∑
ν,ν′=0

{
− tr

[
V−1

ϑ0
cϑ0,νYn−νYT

n−ν′c
T
ϑ,ν′V

−1
ϑ0

(∂iVϑ0)
]

+2YT
n−νc(i),Tϑ0,ν V−1

ϑ0
cϑ0,ν′Yn−ν′

}
, (3.2.54a)

Z(i)
m,n =U(i)

m,n + V(i)
m,n, (3.2.54b)

and

U(i)
m,n =

∞

∑
ν=0

∞

∑
ν′=m+1

{
− tr

[
V−1

ϑ0
cϑ0,νYn−νYT

n−ν′c
T
ϑ,ν′V

−1
ϑ0

(∂iVϑ0)
]
+ 2YT

n−νc(i),Tϑ0,ν V−1
ϑ0

cϑ0,ν′Yn−ν′

}
,

V(i)
m,n =

∞

∑
ν=m+1

m

∑
ν′=0

{
− tr

[
V−1

ϑ0
cϑ0,νYn−νYT

n−ν′c
T
ϑ,ν′V

−1
ϑ0

(∂iVϑ0)
]
+ 2YT

n−νc(i),Tϑ0,ν V−1
ϑ0

cϑ0,ν′Yn−ν′

}
.
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It is convenient to also introduce the notations

Ym,n =
(

Y(1)
m,n · · · Y(r)

m,n

)T
and Zm,n =

(
Z(1)

m,n · · · Z(r)
m,n

)T
. (3.2.55)

The rest of the proof proceeds in three steps: first we show that, for each m ∈ N, the
sequence L−1/2 ∑n [Ym,n −EYm,n] is asymptotically normally distributed with asymptotic
covariance matrix Im, and that Im converges to I(ϑ0) as m tends to infinity. In the second
step we prove that L−1/2 ∑n [Zm,n −EZm,n] goes to zero uniformly in L, as m→ ∞, and the
last step is devoted to proving the asymptotic normality of L−1/2∇ϑL

(
ϑ0, yL).

Step 1 Since Y is stationary, it is clear that Ym is a stationary process. Moreover, the strong-
mixing coefficients αYm(k) of Ym satisfy αYm(k) 6 αY(max{0, k−m}) because Ym,n depends
only on the finitely many values Yn−m, . . . , Yn of Y (see Bradley, 2007, Remark 1.8 b)). In
particular, by Assumption D9, the strong-mixing coefficients of the processes Ym satisfy
the summability condition ∑k[αYm(k)]

δ/(2+δ) < ∞. Since, by the Cramér–Wold device, weak
convergence of the sequence L−1/2 ∑L

n=1 [Ym,n −EYm,n] to a multivariate normal distribution
with mean zero and covariance matrix Σ is equivalent to the condition that, for every vector
u ∈ Rr, the sequence L−1/2uT ∑L

n=1 [Ym,n −EYm,n] converges to a one-dimensional normal
distribution with mean zero and variance uTΣu, we can apply the Central Limit Theorem
for univariate strongly mixing processes (Herrndorf, 1984),(Ibragimov, 1962, Theorem 1.7) to
obtain that

1√
L

L

∑
n=1

[Ym,n −EYm,n]
d−−−→

L→∞
N (0r, Im), where Im = ∑

∆∈Z

Cov (Ym,n;Ym,n+∆) . (3.2.56)

The claim that Im converges to I(ϑ0) will follow if we can show that

Cov
(

Y(k)
m,n; Y(l)

m,n+∆

)
−−−→
m→∞

Cov
(
`
(k)
ϑ0,n; `(l)ϑ0,n+∆

)
, ∀∆ ∈ Z, (3.2.57)

and that
∣∣∣Cov

(
Y(k)

m,n; Y(l)
m,n+∆

)∣∣∣ is dominated by an absolutely summable sequence. For the
first condition, we note that the bilinearity of Cov(·; ·) implies that

Cov
(

Y(k)
m,n; Y(l)

m,n+∆

)
−Cov

(
`
(k)
ϑ0,n; `(l)ϑ0,n+∆

)
=Cov

(
Y(k)

m,n; Y(l)
m,n+∆ − `

(l)
ϑ0,n+∆

)
+ Cov

(
Y(k)

m,n − `
(k)
ϑ0,n; `(l)ϑ0,n+∆

)
.

These two terms can be treated in a similar manner so we restrict our attention to the second
one. The definitions of Y(i)

m,n (Eq. (3.2.54a)) and `
(i)
ϑ,n (Eq. (3.2.44)) allow us to compute

Y(k)
m,n − `

(k)
ϑ0,n = ∑

ν,ν′
max{ν,ν′}>m

[
tr
[
V−1

ϑ0
cϑ0,νYn−νYT

n−ν′c
T
ϑ,ν′V

−1
ϑ0

∂iVϑ0

]
− 2YT

n−νc(i),Tϑ0,ν V−1
ϑ0

cϑ0,ν′Yn−ν′

]
.
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As a consequence of the Cauchy–Schwarz inequality, Assumption D8 and the exponential
bounds in Eq. (3.2.26), we therefore obtain that Var

(
Y(k)

m,n − `
(k)
ϑ0,n

)
6 Cρm independent of

n. The L2-continuity of Cov(·; ·) thus implies that the sequence Cov
(

Y(k)
m,n − `

(k)
ϑ0,n; `(l)ϑ0,n+∆

)
converges to zero as m tends to infinity at an exponential rate uniformly in ∆. The existence
of a summable sequence dominating

∣∣∣Cov
(

Y(k)
m,n; Y(l)

m,n+∆

)∣∣∣ is ensured by the arguments given
in the proof of Lemma 3.18, reasoning as in the derivation of Eqs. (3.2.48) and (3.2.49).

Step 2 In this step we shall show that there exist positive constants C and ρ < 1, indepen-
dent of L, such that

tr Var

(
1√

L

L

∑
n=1
Zm,n

)
6 Cρm, Zm,n given in Eq. (3.2.55). (3.2.58)

Since

tr Var

(
1√

L

L

∑
n=1
Zm,n

)
6 2

[
tr Var

(
1√

L

L

∑
n=1
Um,n

)
+ tr Var

(
1√

L

L

∑
n=1
Vm,n

)]
, (3.2.59)

it suffices to consider the latter two terms. We first observe that

tr Var

(
1√

L

L

∑
n=1
Um,n

)
=

1
L

tr
L

∑
n,n′=1

Cov (Um,n;Um,n′)

=
1
L

r

∑
k,l=1

L−1

∑
∆=−L+1

(L− |∆|) u(k,l)
m,∆ 6

r

∑
k,l=1

∑
∆∈Z

∣∣∣u(k,l)
m,∆

∣∣∣ , (3.2.60)

where

u
(k,l)
m,∆ =Cov

(
U(k)

m,n; U(l)
m,n+∆

)
=

m

∑
ν,µ=0

ν′,µ′=m+1

Cov
(
− tr

[
V−1

ϑ0
cϑ0,νYn−νYT

n−ν′c
T
ϑ,ν′V

−1
ϑ0

∂kVϑ0

]
+ YT

n−νc(k),Tϑ0,ν V−1
ϑ0

cϑ0,ν′Yn−ν′ ;

− tr
[
V−1

ϑ0
cϑ0,µYn+∆−µYT

n+∆−µ′c
T
ϑ,µ′V

−1
ϑ0

∂lVϑ0

]
+ YT

n+∆−µc(l),Tϑ0,µ V−1
ϑ0

cϑ0,µ′Yn+∆−µ′

)
.

As before, under Assumption D8, the Cauchy–Schwarz inequality and the exponential
bounds (3.2.26) and (3.2.39) for ‖cϑ0,ν‖ and

∥∥∥c(k)ϑ0,ν

∥∥∥ imply that
∣∣∣u(k,l)

m,∆

∣∣∣ < Cρm. By arguments
similar to the ones used in the proof of Lemma 3.17 it can be shown that Davydov’s inequality
implies that for m < b∆/2c it holds that

∣∣∣u(k,l)
m,∆

∣∣∣ 6C
∞

∑
ν=0

∞

∑
ν′=m+1

b∆/2c

∑
µ,µ′=0

ρν+ν′+µ+µ′
[

αY

(⌊
∆
2

⌋)]δ/(2+δ)

+ C
∞

∑
ν,ν′=0

∑
µ,µ′

max{µ,µ′}>b∆/2c

ρν+ν′+µ+µ′
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6Cρm

{[
αY

(⌊
∆
2

⌋)]δ/(2+δ)

+ ρ∆/2

}
.

It thus follows that, independent of the value of k and l,

∞

∑
∆=0

∣∣∣u(k,l)
m,∆

∣∣∣ = 2m

∑
∆=0

∣∣∣u(k,l)
m,∆

∣∣∣+ ∞

∑
∆=2m+1

∣∣∣u(k,l)
m,∆

∣∣∣ 6 Cρm

{
m +

∞

∑
∆=0

[αY (∆)]δ/(2+δ)

}
,

and therefore, by Eq. (3.2.60), that tr Var
(

L−1/2 ∑L
n=1 Um,n

)
6 Cρm. In an analogous way

one can show that tr Var
(

L−1/2 ∑L
n=1 Vm,n

)
6 Cρm, and thus the claim (3.2.58) follows with

Eq. (3.2.59).

Step 3 In step 1 it has been shown that L−1/2 ∑n [Ym,n −EYm,n]
d−−−→

L→∞
N (0r, Im), and that

Im −−−→m→∞
I(ϑ0). In particular, the limiting normal random variables with covariances Im

converge weakly to a normal random variable with covariance matrix I(ϑ0). Step 2 together
with the multivariate Chebyshev inequality (Lemma 3.19) implies that, for every ε > 0,

lim
m→∞

lim sup
L→∞

P

(∥∥∥∥∥ 1√
L
∇ϑL

(
ϑ0, yL

)
− 1√

L

L

∑
n=1

[Ym,n −EYm,n]

∥∥∥∥∥ > ε

)

= lim
m→∞

lim sup
L→∞

P

(∥∥∥∥∥ 1√
L

L

∑
n=1

[Zm,n −EZm,n]

∥∥∥∥∥ > ε

)

6 lim
m→∞

lim sup
L→∞

r
ε2 tr Var

(
1√

L

L

∑
n=1
Zm,n

)

6 lim
m→∞

Cr
ε2 ρm = 0.

Brockwell and Davis (1991, Proposition 6.3.9) thus shows that

1√
L
∇ϑL

(
ϑ0, yL

)
d−−−→

L→∞
N (0r, I(ϑ0)) ,

which completes the proof. �

A very important step in the proof of asymptotic normality of quasi maximum likelihood
estimators is to establish that the Fisher information matrix J, evaluated at the true parameter
value, is non-singular. We shall now show that Assumption D10 is sufficient to ensure that
J−1 exists for linear state space models. For vector ARMA processes, formulæ similar to
Eqs. (3.2.62) below have been derived in the literature (see, e. g., Klein, Mélard and Saidi,
2008; Klein and Neudecker, 2000), but have not been used to derive criteria for J being
non-singular. Our arguments are similar to Boubacar Mainassara and Francq (2011, Lemma
4).
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Lemma 3.22 Assume that Assumptions D1 to D4, D7 and D10 hold. With probability one, the
matrix J = limL→∞ L−1∇2

ϑL̂ (ϑ0, yL) exists and is non-singular.

Proof We note that, by Lemma 3.20, ii), it is enough to show that limL→∞ L−1∇2
ϑL (ϑ0, yL)

exists and is non-singular. As seen earlier, for every i = 1, . . . , r,

∂ilϑ,n = tr
[
V−1

ϑ

(
1d − εϑ,nεT

ϑ,nV−1
ϑ

)
∂iVϑ

]
+ 2

(
∂iε

T
ϑ,n

)
V−1

ϑ εϑ,n. (3.2.61)

Consequently, the second partial derivatives are given by

∂2
i,jlϑ,n = tr

[
V−1

ϑ

(
∂2

i,jVϑ

)
−V−1

ϑ (∂iVϑ)V−1
ϑ

(
∂jVϑ

)
−V−1

ϑ εϑ,nεT
ϑ,nV−1

ϑ

(
∂2

i,jVϑ

)
+V−1

ϑ (∂iVϑ)V−1
ϑ εϑ,nεT

ϑ,nV−1
ϑ

(
∂jVϑ

)
+ V−1

ϑ εϑ,nεT
ϑ,nV−1

ϑ (∂iVϑ)V−1
ϑ

(
∂jVϑ

)
−V−1

ϑ (∂iVϑ)V−1
ϑ

(
∂iεϑ,nεT

ϑ,n

)]
+ 2

(
∂2

i,jε
T
ϑ,n

)
V−1

ϑ εϑ,n + 2
(

∂iε
T
ϑ,n

)
V−1

ϑ

(
∂jεϑ,n

)
− 2 tr

[
V−1

ϑ εϑ,n

(
∂iε

T
ϑ,n

)
V−1

ϑ

(
∂jεϑ,n

)]
.

By Lemma 3.2, iii), Eεϑ0,n = 0d, and by Eq. (3.2.7), Eεϑ0,nεT
ϑ0,n = Vϑ0 . The sequence εϑ0 being

the innovations of the process Y implies that εϑ0,n is orthogonal to the Hilbert space spanned
by {Y t, t < n}, of which, by Eq. (3.2.25), both ∂iεϑ0,n and ∂2

i,jεϑ0,n are elements. It thus follows
that

E
[
∂2

i,jlϑ0,n

]
= tr

[
V−1

ϑ0
(∂iVϑ0)V−1

ϑ0

(
∂jVϑ0

)]
+ 2E

[(
∂iε

T
ϑ,n

)
V−1

ϑ

(
∂jεϑ,n

)]
.

Equations (3.2.25), (3.2.38) and (3.2.41), the ergodicity of Y , and Krengel (1985, Theorem 4.3)
imply that the sequence ∂2

i,jlϑ0 is ergodic, and Birkhoff’s Ergodic Theorem shows that

1
L
∇2

ϑL
(

ϑ0, yL
)
=

1
L

L

∑
n=1
∇2

ϑ lϑ0,n
a.s−−−→

L→∞
E
[
∇2

ϑ lϑ0,n
]
C J1 + J2,

where
J1 = 2E

[
(∇ϑεϑ0,1)

T V−1
ϑ0

(∇ϑεϑ0,1)
]

(3.2.62a)

and
J2 =

(
tr
[
V−1/2

ϑ0
(∂iVϑ0)V−1

ϑ0

(
∂jVϑ0

)
V−1/2

ϑ0

])
ij

. (3.2.62b)

The matrix J2 can be factorized as

J2 =


bT

1
...

bT
r

( b1 . . . br

)
, bm =

(
V−1/2

ϑ0
⊗V−1/2

ϑ0

)
vec (∂mVϑ0) , (3.2.63)

and is thus positive semidefinite. Because J1 is positive semidefinite as well, proving that J is
non-singular is equivalent to proving that for any non-zero vector c ∈ Rr, the numbers cT Jic,
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i = 1, 2, are not both zero. Assume, for the sake of contradiction, that there exists such a
vector c = (c1, . . . , cr)T. The condition cT J1c implies that, almost surely, ∑r

k=1 ck∂kεϑ0,n = 0d,
for all n ∈ Z. It thus follows from the infinite-order moving average representation (3.2.8b)
that

∞

∑
ν=1

r

∑
k=1

ck (∂kMϑ0,ν)εϑ0,−ν = 0d, (3.2.64)

where the Markov parameters Mϑ,ν are given by Mϑ,ν = −Hϑ Fν−1
ϑ Kϑ, ν > 1. Since the

sequence εϑ0 is uncorrelated with positive definite covariance matrix, Eq. (3.2.64) implies
that

r

∑
k=1

ck (∂kMϑ0,ν) = 0d, ∀ν ∈N.

Using the relation vec(ABC) =
(
CT ⊗ A

)
vec B (Bernstein, 2005, Proposition 7.1.9), we see

that the last display is equivalent to ∇ϑ

([
KT

ϑ0
⊗ Hϑ0

]
vec Fν−1

ϑ0

)
c = 0d2 for every ν ∈ N.

In view of Eq. (3.2.63), the condition cT J2c = 0 implies that (∇ϑ vec Vϑ0) c = 0d2 . By the
definition of ψϑ,j in Eq. (3.2.21) it thus follows that ∇ϑψϑ0,jc = 0(j+2)d2 , for every j ∈ N,
which, by Assumption D10, is equivalent to the contradiction that c = 0r. �

Proof (of Theorem 3.8) Since ϑ̂
L converges almost surely to ϑ0 by the consistency result

proved in Theorem 3.7, and ϑ0 is an element of the interior of Θ by Assumption D6, the
estimate ϑ̂

L is an element of the interior of Θ eventually almost surely. The assumed
smoothness of the parametrization (Assumption D7) implies that the extremal property of
ϑ̂

L can be expressed as the first order condition ∇ϑL̂ (ϑ̂
L, yL) = 0r. A Taylor expansion of

ϑ 7→ ∇ϑL̂ (ϑ, yL) around the point ϑ0 shows that there exist parameter vectors ϑi ∈ Θ of
the form ϑi = ϑ0 + ci(ϑ̂

L − ϑ0), 0 6 ci 6 1, such that

0r = L−1/2∇ϑL̂ (ϑ0, yL) +
1
L
∇2

ϑL̂ (ϑL, yL)L1/2
(

ϑ̂
L − ϑ0

)
, (3.2.65)

where ∇2
ϑL̂ (ϑL, yL) denotes the matrix whose ith row, i = 1, . . . , r, is equal to the ith row of

∇2
ϑL̂ (ϑi, yL). By Lemma 3.21 the first term on the right hand side converges weakly to a

multivariate normal random variable with mean zero and covariance matrix I = I(ϑ0). As
in Lemma 3.12 one can show that the sequence(

ϑ 7→ L−1∇3
ϑL̂ (ϑ, yL)

)
L∈N

(3.2.66)

of random functions converges almost surely uniformly to the continuous function ϑ 7→
∇3

ϑQ(ϑ) taking values in the space Rr×r×r. Since on the compact space Θ this function is
bounded in the operator norm obtained from identifying Rr×r×r with the space of linear
functions from Rr to Mr(R), the sequence (3.2.66) is almost surely uniformly bounded, and
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we obtain that∥∥∥∥ 1
L
∇2

ϑL̂ (ϑL, yL)− 1
L
∇2

ϑL̂ (ϑ0, yL)

∥∥∥∥ 6 sup
ϑ∈Θ

∥∥∥∥ 1
L
∇3

ϑL̂ (ϑ, yL)

∥∥∥∥ ∥∥∥ϑL − ϑ0

∥∥∥ a. s.−−−→
L→∞

0,

because, by Theorem 3.7, the second factor almost surely converges to zero as L tends to
infinity. It follows from Lemma 3.22 that L−1∇2

ϑL̂ (ϑL, yL) converges to the matrix J almost
surely, and thus from Eq. (3.2.65) that

L1/2
(

ϑ̂
L − ϑ0

)
d−→ N

(
0r, J−1 I J−1

)
,

as L→ ∞. This shows Eq. (3.2.22) and completes the proof. �

In practice, one is interested in also estimating the asymptotic covariance matrix Ξ,
which is useful in constructing confidence regions for the estimated parameters or in
performing statistical tests. This problem has been considered in the framework of estimating
weak VARMA processes in Boubacar Mainassara and Francq (2011) where the following
procedure has been suggested, which is also applicable in our set-up. First, J(ϑ0) is estimated
consistently by ĴL = L−1∇2L̂ϑ

(
ϑ̂

L, yL
)

. For the computation of ĴL we rely on the fact that
the Kalman filter can not only be used to evaluate the Gaussian log-likelihood of a state space
model but also its gradient and Hessian. The most straightforward, but computationally
burdensome way of achieving this is by direct differentiation of the Kalman filter equations,
which results in increasing the number of passes through the filter to r + 1 and r(r + 3)/2
for the gradient and the Hessian, respectively. More sophisticated algorithms, including
the Kalman smoother and/or the backward filter have been devised and can be found in
Kulikova and Semoushin (2006); Segal and Weinstein (1989). The construction of a consistent
estimator of I = I(ϑ0) is based on the observation that I = ∑∆∈Z Cov(`ϑ0,n, `ϑ0,n+∆), where
`ϑ0,n = ∇ϑ

[
log det Vϑ0 + εT

ϑ0,nV−1
ϑ0

εϑ0,n

]
. Assuming that (`ϑ0,n)n∈N+ admits an infinite-order

AR representation Φ(B)`ϑ0,n = Un, where Φ(z) = 1r + ∑∞
i=1 Φizi and (Un)n∈N+ is a weak

white noise with covariance matrix ΣU , it follows from the interpretation of I/(2π) as the
value of the spectral density of (`ϑ0,n)n∈N+ at frequency zero that I can also be written as
I = Φ−1(1)ΣU Φ(1)−1. The idea is to fit a long autoregression to (`

ϑ̂
L,n
)n=1,...L, the empirical

counterparts of (`ϑ0,n)n∈N+ which are defined by replacing ϑ0 with the estimate ϑ̂
L in the

definition of `ϑ0,n. This is done by choosing an integer s > 0, and performing a least-squares
regression of `

ϑ̂
L,n

on `
ϑ̂

L,n−1
, . . . , `

ϑ̂
L,n−s

, s + 1 6 n 6 L. Denoting by Φ̂L
s (z) = 1r + ∑s

i=1 Φ̂L
i,sz

i

the obtained empirical autoregressive polynomial and by Σ̂L
s the empirical covariance matrix

of the residuals of the regression, it was claimed in Boubacar Mainassara and Francq (2011,
Theorem 4) that under the additional assumption E

[
‖εn‖8+δ

]
< ∞ the spectral estimator

ÎL
s =

(
Φ̂L

s (1)
)−1 Σ̂L

s
(
Φ̂L

s (1)
)T,−1 converges to I in probability as L, s → ∞ if s3/L → 0. The
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covariance matrix of ϑ̂
L is then estimated consistently as

Ξ̂L
s =

1
L

(
ĴL
)−1

ÎL
s

(
ĴL
)−1

. (3.2.67)

In the simulation study performed in Section 3.4.2, this estimator for Ξ performs convinc-
ingly.

3.3. Quasi maximum likelihood estimation for Lévy-driven

multivariate CARMA processes

In this section we pursue the second main topic of the present chapter, a detailed investigation
of the asymptotic properties of the quasi maximum likelihood estimator of discretely
observed multivariate continuous-time autoregressive moving average processes. We will
make use of the equivalence between MCARMA and continuous-time linear state space
models, as well as of the important observation that the state space structure of a continuous-
time process is preserved under equidistant sampling, which allows for the results of the
previous section to be applied. The conditions we need to impose on the parametrization of
the models under consideration are therefore closely related to the assumptions made in
the discrete-time case, except that the mixing and ergodicity assumptions D4 and D9 are
automatically satisfied (Marquardt and Stelzer, 2007, Proposition 3.34).

We start the section with a short recapitulation of the definition and basic properties
of Lévy-driven continuous-time ARMA processes; this is followed by a discussion of the
second-order properties of discretely observed CARMA process, leading to a set of accessible
identifiability conditions. Section 3.3.4 contains our main result about the consistency and
asymptotic normality of the quasi maximum likelihood estimator for equidistantly sampled
MCARMA processes.

3.3.1. Lévy-driven multivariate CARMA processes and continuous-time state
space models

A natural source of randomness in the specification of continuous-time stochastic processes
are Lévy processes. For a thorough discussion of these processes we refer the reader to the
monographs Applebaum (2004); Bertoin (1996); Sato (1999).

Definition 3.23 (Lévy process) A two-sided Rm-valued Lévy process (L(t))t>0 is a stochastic
process, defined on a probability space (Ω, F , P), with stationary, independent increments,
continuous in probability, and satisfying L(0) = 0m almost surely.

The class of Lévy processes includes many important processes such as Brownian motions,
stable processes, and compound Poisson processes as special cases, which makes them very
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useful in stochastic modelling. Another advantage is that the property of having stationary
independent increments implies that Lévy process have a rather particular structure which
makes many problems analytically tractable. More precisely, the Lévy–Itô decomposition
theorem asserts that every Lévy process can be additively decomposed into a Brownian
motion, a compound Poisson process, and a square-integrable pure-jump martingale, where
the three terms are independent. This is equivalent to the statement that the characteristic
function of a Lévy process L has the special form

Eei〈u,L(t)〉 = exp{tψL(u)}, u ∈ Rm, t ∈ R+, (3.3.1)

where the characteristic exponent ψL has the form

ψL(u) = i〈γL, u〉 − 1
2
〈u, ΣGu〉+

∫
Rm

[
ei〈u,x〉 − 1− i〈u, x〉I{‖x‖61}

]
νL(dx). (3.3.2)

γL ∈ Rm is called the drift vector, ΣG is a non-negative definite, symmetric m× m matrix
called the Gaussian covariance matrix, and the Lévy measure νL satisfies

νL({0m}) = 0,
∫

Rm
min(‖x‖2 , 1)νL(dx) < ∞.

For the present purpose it is enough to know that a Lévy process L has finite kth absolute
moments, k > 0, that is E ‖L(t)‖k < ∞, if and only if

∫
‖x‖>1 ‖x‖

k νL(dx) < ∞ (Sato, 1999,
Corollary 25.8), and that the covariance matrix of L(1), if it exists, is given by Sato (1999,
Example 25.11)

ΣL B E (L(1)−EL(1)) (L(1)−EL(1)T = ΣG +
∫
‖x‖>1

xxTνL(dx).

Assumption L2 The Lévy process L has mean zero and finite second moments, which
means in terms of the characteristic triplet of L that γL +

∫
‖x‖>1 xνL(dx) is zero, and that

the integral
∫
‖x‖>1 ‖x‖

2 νL(dx) is finite.

Just like i. i. d. sequences are used in time series analysis to define ARMA processes, Lévy
processes can be used to construct (multivariate) continuous-time autoregressive moving
average processes, called (M)CARMA processes. If L is a two-sided Lévy process with
values in Rm, and p > q are integers, the d-dimensional L-driven MCARMA(p, q) process
with autoregressive polynomial

z 7→ P(z) B 1dzp + A1zp−1 + . . . + Ap ∈ Md(R[z]) (3.3.3a)



70 3. QML estimation for strongly mixing state space models and MCARMA processes

and moving average polynomial

z 7→ Q(z) B B0zq + B1zq−1 + . . . + Bq ∈ Md,m(R[z]) (3.3.3b)

is defined as the solution to the formal differential equation

P(D)Y(t) = Q(D)DL(t), D ≡ d
dt

. (3.3.4)

It is often useful to allow for the dimensions of the driving Lévy process L and the L-driven
MCARMA process to be different, which is a slight extension of the original definition of
Marquardt and Stelzer (2007). The results obtained in that paper remain true if our definition
is used. In general, the paths of a Lévy process are not differentiable, so in order to make
sense of Eq. (3.3.4), we interpret it as being equivalent to the state space representation

dG(t) = AG(t)dt + BdL(t), Y(t) = CG(t), t ∈ R, (3.3.5)

where the matrices A, B, and C are given by

A =



0 1d 0 . . . 0

0 0 1d
. . .

...
...

. . . . . . 0
0 . . . . . . 0 1d

−Ap −Ap−1 . . . . . . −A1


∈ Mpd(R), (3.3.6a)

B =
(

βT
1 · · · βT

p

)T
∈ Mpd,m(R), (3.3.6b)

where

βp−j =− I{0,...,q}(j)

[
p−j−1

∑
i=1

Aiβp−j−i − Bq−j

]
,

and

C =
(

1d 0d . . . 0d

)
∈ Md,pd(R). (3.3.6c)

It follows from representation (3.3.5) that MCARMA processes are special cases of linear
multivariate continuous-time state space models, and in fact, the class of linear state space
models is equivalent to the class of MCARMA models (Corollary 2.5). By considering the
class of linear state space models, one can define representations of MCARMA processes
which are different from Eq. (3.3.5) and better suited for the purpose of estimation.
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Definition 3.24 (State Space Model) An Rd-valued continuous-time linear state space mo-
del (A, B, C, L) of dimension N is characterized by an Rm-valued driving Lévy process L,
a state transition matrix A ∈ MN(R), an input matrix B ∈ MN,m(R), and an observation
matrix C ∈ Md,N(R). It consists of a state equation of Ornstein–Uhlenbeck type

dX(t) = AX(t)dt + BdL(t), t ∈ R, (3.3.7a)

and an observation equation
Y(t) = CX(t), t ∈ R. (3.3.7b)

The RN-valued process X = (X(t))t∈R is the state vector process, and Y = (Y(t))t∈R the
output process.

A solution Y to Eq. (3.3.7) is called causal if, for all t, Y(t) is independent of the σ-algebra
generated by {L(s) : s > t}. Every solution to Eq. (3.3.7a) satisfies

X(t) = eA(t−s)X(s) +
∫ t

s
eA(t−u)BdL(u), ∀s, t ∈ R, s < t, (3.3.8)

where the stochastic integral with respect to L is well-defined by Protter (1990, Theorem 3.9).
The independent-increment property of Lévy processes implies that X is a Markov process.
The following can be seen as the multivariate extension of Brockwell et al. (2011, Proposition
1) and recalls conditions for the existence of a stationary causal solution of the state equation
(3.3.7a) for easy reference. We always work under the following assumption.

Assumption E1 The eigenvalues of A have strictly negative real parts.

Proposition 3.25 (Sato and Yamazato (1983, Theorem 5.1)) If Assumptions E1 and L2 hold,
then Eq. (3.3.7a) has a unique strictly stationary, causal solution X given by

X(t) =
∫ t

−∞
eA(t−u)BdL(u), t ∈ R, (3.3.9)

which has the same distribution as
∫ ∞

0 eAuBdL(u). Moreover, X(t) has mean zero and second-order
structure given by

Var(X(t)) CΓ0 =
∫ ∞

0
eAuBΣLBTeATudu, (3.3.10a)

Cov (X(t + h), X(t)) CγY(h) = eAhΓ0, h > 0, (3.3.10b)

where the variance Γ0 satisfies
AΓ0 + Γ0AT = −BΣLBT. (3.3.10c)

It is an immediate consequence that the output process Y has mean zero and autocovariance
function R 3 h 7→ γY(h) given by γY(h) = CeAhΓ0CT, h > 0, and that Y itself can be written
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succinctly as a moving average of the driving Lévy process as

Y(t) =
∫ ∞

−∞
g(t− u)dL(u), t ∈ R; g(t) = CeAtBI[0,∞)(t). (3.3.11)

As in Marquardt and Stelzer (2007, Proposition 3.30) one shows the following result about
the existence of moments.

Proposition 3.26 Let Y be the output process of the state space model (3.3.7) driven by the Lévy
process L. If L(1) is in Lr(Ω, P) for some r > 0, then so are Y(t) and the state vector X(t), t ∈ R.

Equation (3.3.11) which, in conjunction with Eq. (3.3.6), serves as the definition of a mul-
tivariate CARMA process with autoregressive and moving average polynomials given by
Eq. (3.3.3), shows that the behaviour of the process Y depends on the values of the individual
matrices A, B, and C only through the products CeAtB, t ∈ R. The following lemma relates
this analytical statement to an algebraic one about rational matrices, allowing us to draw a
connection to the identifiability theory of discrete-time state space models.

Lemma 3.27 Two matrix triplets (A, B, C), (Ã, B̃, C̃) of appropriate dimensions satisfy CeAtB =

C̃eÃtB̃ for all t ∈ R if and only if C(z1− A)−1B = C̃(z1− Ã)−1B̃ for all z ∈ C.

Proof If we start at the first equality and replace the matrix exponentials by their spectral
representations (see Lax, 2002, Theorem 17.5), we obtain∫

γ
eztC(z1− A)−1Bdz =

∫
γ̃

eztC̃(z1− Ã)−1B̃dz, ∀t ∈ R, (3.3.12)

where γ is a closed contour in C winding around each eigenvalue of A exactly once, and
likewise for γ̃. Since we can always assume that γ = γ̃ by taking γ to be R times the unit
circle, R > max{|λ| : λ ∈ σA ∪ σÃ}, we can write Eq. (3.3.12) as∫

γ
ezt
[
C(z1− A)−1B− C̃(z1− Ã)−1B̃

]
dz = 0, ∀t ∈ R. (3.3.13)

Since the rational matrix function ∆(z) = C(z1− A)−1B− C̃(z1− Ã)−1B̃ has only poles with
modulus less than R, it has an expansion around infinity, ∆(z) = ∑∞

n=0 Anz−n, An ∈ Md(C),
which converges in a region {z ∈ C : |z| > r} containing γ. Using the fact that this series
converges uniformly on the compact set γ and applying the Residue Theorem from complex
analysis (Dieudonné, 1968, 9.16.1), which implies

∫
γ eztz−ndz = tn/n!, Eq. (3.3.13) becomes

∑∞
n=0

tn

n! An+1 ≡ 0N . Consequently, by the Identity Theorem (Dieudonné, 1968, Theorem
9.4.3), An is the zero matrix for all n > 1, and since ∆(z) → 0 as z → ∞, it follows that
∆(z) ≡ 0d,m. �

Because of its importance for the following discussion, the rational matrix function H : z 7→
C(z1N − A)−1B is given a special name: it is called the transfer function of the state space
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model (3.3.7) and is intimately related to the spectral density fY of the output process Y ,
which is defined as fY(ω) =

∫
R

e−iωhγY(h)dh – the Fourier transform of γY . Before we make
this relation explicit, we prove the following lemma.

Lemma 3.28 For any real number v, and matrices A, B, ΣL, Γ0 as in Eq. (3.3.10a), it holds that∫ ∞

−v
eAuBΣLBTeATudu = e−AvΓ0e−ATv. (3.3.14)

Proof We define the functions l, r : R→ MN(R) by

l(v) =
∫ ∞

−v
eAuBΣLBTeATudu,

r(v) =e−AvΓ0e−ATv.

Clearly, both l : v 7→ l(v) and r : v 7→ r(v) are differentiable functions of v; taking the
derivatives yields

d
dv

l(v) =e−AvBΣLBTe−ATv,

d
dv

r(v) =− Ae−AvΓ0e−ATv − e−AvΓ0ATe−ATv.

Using the identity AΓ0 + Γ0AT = −BΣLBT, Eq. (3.3.10c), one sees immediately that

d
dv

l(v) =
d

dv
r(v), ∀v ∈ R.

Hence, l and r differ only by an additive constant. Since l(0) equals r(0) by the definition of
Γ0, the constant is zero, and l(v) = r(v) for all real numbers v. �

Proposition 3.29 Let Y be the output process of the state space model (3.3.7), and denote by H :
z 7→ C(z1N − A)−1B its transfer function. Then the relation

fY(ω) =
1

2π
H(iω)ΣLH(−iω)T (3.3.15)

holds for all real ω; in particular, ω 7→ fY(ω) is a rational matrix function.

Proof First, we recall (Bernstein, 2005, Proposition 11.2.2) that the Laplace transform of any
matrix A is given by its resolvent, that is, for any complex number z,

(zI − A)−1 =
∫ ∞

0
e−zueAudu. (3.3.16)
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We are now ready to compute

1
2π

H(iω)ΣLH(−iω)T =
1

2π
C(iω1N − A)−1BΣLBT(−iω1N − AT)

−1
CT

=
1

2π
C
[∫ ∞

0
e−iωueAuduBΣLBT

∫ ∞

0
eiωveATvdv

]
dhCT,

where the last line follows from Eq. (3.3.16). Introducing the new variable h = u− v, and
using Lemma 3.28, this becomes

1
2π

C
[∫ ∞

0

∫ ∞

−v
e−iωheAheAvBΣLBTeATvdhdv

]
CT

=
1

2π
C
[∫ ∞

0

∫ ∞

0
e−iωheAheAvBΣLBTeATvdhdv +

∫ ∞

0

∫ 0

−v
e−iωheAheAvBΣLBTeATvdhdv

]
CT

=
1

2π
C
[∫ ∞

0
e−iωheAhΓ0dh +

∫ 0

−∞
e−iωhΓ0e−AThdh

]
CT.

By Eq. (3.3.10b) and the fact that the spectral density and the autocovariance function of a
stochastic process are Fourier duals of each other, the last expression is equal to

1
2π

∫ ∞

−∞
e−iωhγY(h)dh = fY(ω),

which completes the proof. �

One can also express the spectral density of a multivariate CARMA process in terms of its
autoregressive and moving average polynomials.

Proposition 3.30 (Marquardt and Stelzer (2007, Proposition 3.28)) The spectral density ma-
trix function fY of an MCARMA process Y with autoregressive polynomial P and moving average
polynomial Q is given by

fY(ω) =
1

2π
P(iω)−1Q(iω)ΣLQ(−iω)T

(
P(−iω)−1

)T
. (3.3.17)

A converse of Proposition 3.29, which will be useful in our later discussion of identifiability,
is the Spectral Factorization Theorem. Its proof can be found in Rozanov (1967, Theorem
1.10.1) and also in Caines (1988, Theorem 4.1.4).

Theorem 3.31 Every positive definite rational matrix function f ∈ S+
d (C{ω}) of full rank can be

factorized as f (ω) = (2π)−1W(iω)W(−iω)T, where the rational matrix function z 7→ W(z) ∈
Md,N (R{z}), called a spectral factor, has full rank. For fixed N, the spectral factor W is uniquely
determined up to an orthogonal transformation, i. e.

W(z) 7→W(z)O, (3.3.18)
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for some orthogonal N × N matrix O.

3.3.2. Equidistant observations

We now turn to properties of the sampled process Y (h) = (Y (h)
n )n∈Z which is defined by

Y (h)
n = Y(nh) and represents observations of the process Y at equally spaced points in time.

A very fundamental observation is that the linear state space structure of the continuous-time
process is preserved under sampling, as detailed in the following proposition. Of particular
importance is the explicit formula (3.3.21) for the spectral density of the sampled process
Y (h).

Proposition 3.32 Assume that Y is the output process of the state space model (3.3.7). Then the
sampled process Y (h) has the state space representation

Xn = eAhXn−1 + N(h)
n , N(h)

n =
∫ nh

(n−1)h
eA(nh−u)BdL(u), Y (h)

n = CX(h)
n . (3.3.19)

The sequence
(

N(h)
n

)
n∈Z

is i. i. d. with mean zero and covariance matrix

�Σ(h) =
∫ h

0
eAuBΣLBTeATudu. (3.3.20)

Moreover, the spectral density of Y (h), denoted by f (h)Y , is given by

f (h)Y (ω) = C
(

eiω1N − eAh
)−1

�Σ(h)
(

e−iω1N − eATh
)−1

CT; (3.3.21)

in particular, f (h)Y : [−π, π]→ S+
d

(
R
{

eiω}) is a rational matrix function.

Proof Eqs. (3.3.19) follow from setting t = nh, s = (n− 1)h in Eq. (3.3.8). That the sequence
(Zn)n∈Z is i. i. d. as well as expression (3.3.20) for �Σ(h) are immediate consequences of the
Lévy process L having independent, homogeneous increments. Expression (3.3.21) follows
from calculations analogous to the ones used for the continuous-time case (Proposition 3.29):
using a Neumann series representation for the inverse of the matrix eiω1N − eAh it follows
that

C(eiω1N − eAh)−1
�Σ(h)(e−iω1N − eATh)−1CT

=C

[
∑

l,m∈N0

ei(m−l)ωeAlh
�Σ(h)eATmh

]
CT

=C

 ∑
k∈−N
l∈N0

eikωeA(l−k)h
�Σ(h)eAT lh + ∑

l∈N0

eAlh
�Σ(h)eAT lh + ∑

k∈N
l∈N0

eikωeAlh
�Σ(h)eAT(k+l)h

CT.
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The observations that

∑
l∈N0

eAlh
�Σ(h)eAT lh = ∑

l∈N0

eAlh
[∫ h

0
eAuBΣLBTeATudu

]
eAlh = Γ0,

and that the autocovariance function of Y (h) is given by γY (h)(k) = γY(kh), imply that the
last expression can be further simplified to

C

[
∑

k∈N

e−ikωe−AkhΓ0 + Γ0 + ∑
k∈−N

e−ikωΓ0e−ATkh

]
CT = ∑

k∈Z

e−ikωγY (h)(k) = f (h)Y (ω),

which proves the claim. �

In the following we analyse further the sampled state space model (3.3.19), in particular we
will derive conditions for it to be minimal in the sense that the process Y (h) is not the output
process of any state space model of dimension less than N, and for the noise covariance
matrix �Σ(h) given in Eq. (3.3.20) to be non-singular. We begin by recalling some well-known
notions from discrete-time realization and control theory. For a detailed account we refer to
Åström (1970); Caines (1988); Sontag (1998), which also explain the origin of the terminology.

Definition 3.33 (Algebraic realization) Let H ∈ Md,m(R{z}) be a rational matrix function.
A matrix triple (A, B, C) is called an algebraic realization of H of dimension N if H(z) =

C(z1N − A)−1B, where A ∈ MN(R), B ∈ MN,m(R), and C ∈ Md,N(R).

Every rational matrix function has many algebraic realizations of various dimensions. A
particularly convenient class are the ones of minimal dimension, which have a number of
useful properties.

Definition 3.34 (Minimality) Let H ∈ Md,m(R{z}) be a rational matrix function. A minimal
realization of H is an algebraic realization of H of dimension smaller than or equal to the
dimension of every other algebraic realization of H. The dimension of a minimal realization
of H is the McMillan degree of H.

Two other important properties of algebraic realizations, which are intimately related to the
notion of minimality and play a key role in the study of identifiability, are introduced in the
following definitions.

Definition 3.35 (Controllability) An algebraic realization (A, B, C) of dimension N is con-
trollable if the controllability matrix C =

[
B AB · · · An−1B

]
∈ Mm,mN(R) has full rank,

i. e., if rank C = N.

Definition 3.36 (Observability) An algebraic realization (A, B, C) of dimension N is observ-

able if the observability matrix O =
[

CT (CA)T · · · (CAn−1)T
]T
∈ MdN,N(R) has full

rank, i. e., if rank O = N.
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Remark 3.37 We will often say that a state space system (3.3.7) is minimal, controllable or
observable if the corresponding transfer function has this property.

The next theorem characterizes minimality in a useful way in terms of controllability and
observability.

Theorem 3.38 (Hannan and Deistler (1988, Theorem 2.3.3)) A realization (A, B, C) is mini-
mal if and only if it is both controllable and observable.

Lemma 3.39 For all matrices A ∈ MN(R), B ∈ MN,m(R), Σ ∈ S++
m (R), and every real number

t > 0, the following linear subspaces of RN are equal:

i) im
[

B, AB, . . . , AN−1B
]

, ii) im
∫ t

0
eAuBΣBTeATudu. (3.3.22)

Proof The assertion is a generalization of Bernstein (2005, Lemma 12.6.2). The proof
relies on two simple facts from linear algebra: first, that for any two subspaces V, W of
RN , V is a subspace of W if and only if W⊥ is a subset of V⊥, where ⊥ denotes the
orthogonal complement; second that for any matrix M the orthogonal complement of
the range of M is equal to the kernel of MT. In order to show that i) ⊂ ii), we pick
v ∈ ker

[∫ t
0 eAuBΣBTeATudu

]
. Then, clearly,

vT
[∫ t

0
eAuBΣBTeATudu

]
v = 0;

this, together with the fact that for any u ∈ [0, t], eAuBΣBTeATu is positive semidefinite
and the assumption that Σ is positive definite, implies that vTeAuB = 0T

m for any 0 6 u 6
t. Differentiating with respect to u and evaluating at u = 0 yields vT AiB = 0T

m for all

i = 0, 1, . . . , N − 1, which shows that v is an element of im
[

B AB · · · AN−1B
]⊥

. In

order to prove the converse, that ii) ⊂ i), we choose v ∈ im
[
B, AB, . . . , AN−1B

]⊥. Then, v is
an element of ker

[
B, AB, . . . , AN−1B

]T, and therefore vT AiB = 0T
m for all i = 0, 1, . . . , N −

1. Since, by the Cayley–Hamilton theorem, the matrix eAu can be expanded as eAu =

∑N−1
i=0 ψi(u)Ai, it follows that

[∫ t

0
eAuBΣBTeATudu

]
v =

∫ t

0
eAuBΣ

n−1

∑
i=0

ψi(u)
(

vT AiB
)T

du = 0N ,

which means that v ∈ ker
[∫ t

0 eAuBΣBTeATudu
]

and thus completes the proof. �

Corollary 3.40 If the triple (A, B, C) is minimal of dimension N, and Σ is positive definite, then
the N × N matrix �Σ =

∫ h
0 eAuBΣBTeATudu has full rank N.
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Proof By Theorem 3.38, minimality of (A, B, C) implies controllability, i. e. full rank of the
controllability matrix

[
B AB · · · AN−1B

]
. By Lemma 3.39, this is equivalent to �Σ

having full rank. �

Proposition 3.41 Assume that Y is the d-dimensional output process of the state space model (3.3.7)
with (A, B, C) being a minimal realization of McMillan degree N. Then a sufficient condition for
the sampled process Y (h) to have the same McMillan degree, is the Kalman–Bertram criterion

λ− λ′ ,
2πik

h
, ∀(λ, λ′) ∈ σ(A)× σ(A), ∀k ∈ Z\{0}. (3.3.23)

Proof We will prove the assertion by showing that the N-dimensional state space repre-
sentation (3.3.19) is both controllable and observable, and thus, by Theorem 3.38, minimal.
Observability has been shown in Sontag (1998, Proposition 5.2.11) using the Hautus criterion
(Hautus, 1969). The key ingredient in the proof of controllability is Corollary 3.40, where we
showed that the autocovariance matrix �Σ(h) of N(h)

n , given by Eq. (3.3.20), has full rank; this
shows that the representation (3.3.19) is indeed minimal and completes the proof. �

Remark 3.42 Since, by Hannan and Deistler (1988, Theorem 2.3.4), minimal realizations
are unique up to a change of basis (A, B, C) 7→ (TAT−1, TB, CT−1), for some non-singular
N × N matrix T, and such a transformation does not change the eigenvalues of A, the
criterion (3.3.23) does not depend on what particular triple (A, B, C) one chooses.

Uniqueness of the principal logarithm (Higham, 2008, Theorem 1.31) implies the following.

Lemma 3.43 Assume that the matrices A, B ∈ MN(R) satisfy ehA = ehB for some h > 0. If the
spectra σA, σB of A, B satisfy | Im λ| < π/h for all λ ∈ σA ∪ σB, then A = B.

Lemma 3.44 Assume that A ∈ MN(R) satisfies Assumption E1. For every h > 0, the linear map

M : MN(R)→ MN(R), M 7→
∫ h

0
eAu MeATudu, (3.3.24)

is injective.

Proof If we apply the vectorization operator vec : MN(R)→ RN2
and use the well-known

identity (Bernstein, 2005, Proposition 7.1.9) vec(UVW) = (WT ⊗U) vec(V) for matrices
U, V and W of appropriate dimensions, we obtain the induced linear operator

vec ◦M ◦ vec−1 : RN2 → RN2
, vec M 7→

∫ h

0
eAu ⊗ eAudu vec M.

To prove the claim that M is injective, it is thus sufficient to show that the matrix A B∫ h
0 eAu ⊗ eAudu ∈ MN2(R) is non-singular. We write A ⊕ A B A ⊗ 1N + 1N ⊗ A. By



3.3. Quasi maximum likelihood estimation for multivariate CARMA processes 79

Bernstein (2005, Fact 11.14.37), A =
∫ h

0 e(A⊕A)udu and since σ(A⊕ A) = {λ + µ : λ, µ ∈
σ(A)} (Bernstein, 2005, Proposition 7.2.3), Assumption E1 implies that all eigenvalues of the
matrix A⊕ A have strictly negative real parts; in particular, A⊕ A is invertible. Consequently,
it follows from Bernstein (2005, Fact 11.13.14) that A = (A⊕ A)−1

[
e(A⊕A)h − 1N2

]
. Since,

for any matrix M, it holds that σ(eM) = {eλ, λ ∈ σ(M)} (Bernstein, 2005, Proposition 11.2.3),
the spectrum of e(A⊕A)h is a subset of the open unit disk. Using the fact that ‖Mn‖1/n

converges to the spectral radius of the matrix M as n tends to infinity, one sees that there
exists a natural number n such that

∥∥∥en(A⊕A)h
∥∥∥ is strictly smaller than one. This implies that

e(A⊕A)h − 1N2 is non-singular, because(
e(A⊕A)h − 1N2

)−1
=
(

1N2 + e(A⊕A)h + . . . + e(n−1)(A⊕A)h
) (

en(A⊕A)h − 1N2

)−1
.

The existence of the last factor follows from its convergent Neumann series representation,
which completes the proof. �

3.3.3. Overcoming the aliasing effect

One goal in this chapter is the estimation of multivariate CARMA processes or, equiva-
lently, continuous-time state space models, based on discrete observations. We are now in
the position to begin formulating precisely what assumptions we need to impose on the
parametrizations of these models in order to ensure consistency and asymptotic normality
of the quasi maximum likelihood estimator. In this brief section we concentrate on the issue
of identifiability, and we derive sufficient conditions that prevent redundancies from being
introduced into an otherwise properly specified model by the process of sampling, an effect
known as aliasing (Hansen and Sargent, 1983; McCrorie, 2003).

For ease of notation we choose to parametrize the state matrix, the input matrix, and
the observation matrix of the state space model (3.3.7), as well as the driving Lévy process
L; from these one can always obtain an autoregressive and a moving average polynomial
which describe the same process by applying a left matrix fraction decomposition to the
corresponding transfer function, see Patel (1981) and the upcoming Theorems 3.52 and 3.53.
We hence assume that there is some compact parameter set Θ ⊂ Rr, and that, for each ϑ ∈ Θ,
one is given matrices Aϑ, Bϑ and Cϑ of matching dimensions, as well as a Lévy process Lϑ.
A basic assumption is that we always work with second order processes (cf. Assumption L2).

Assumption C1 For each ϑ ∈ Θ, it holds that ELϑ = 0m, that E ‖Lϑ(1)‖2 is finite, and that
the covariance matrix ΣL

ϑ = ELϑ(1)Lϑ(1)T is non-singular.

To ensure that the model corresponding to ϑ describes a stationary output process we impose
the analogue of Assumption E1.
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Assumption C2 For each ϑ ∈ Θ, the eigenvalues of Aϑ have strictly negative real parts.

Next, we restrict the model class so as to only contain minimal algebraic realizations of a
fixed McMillan degree.

Assumption C3 For all ϑ ∈ Θ, the triple (Aϑ , Bϑ , Cϑ) is minimal with McMillan degree N.

Since we shall base the inference on a quasi maximum likelihood approach and thus on
second-order properties of the observed process, we require the model class to be identifiable
from these available information according to the following definitions.

Definition 3.45 (L2-equivalence) Two stochastic processes, irrespective of whether their
index sets are continuous or discrete, are L2-observationally equivalent if their spectral densities
are the same.

Definition 3.46 (Identifiability) A family (Yϑ , ϑ ∈ Θ) of continuous-time stochastic pro-
cesses is identifiable from the spectral density if, for every ϑ1 , ϑ2, the two processes Yϑ1 and
Yϑ2 are not L2-observationally equivalent. It is h-identifiable from the spectral density, h > 0,
if, for every ϑ1 , ϑ2, the two sampled processes Y (h)

ϑ1
and Y (h)

ϑ2
are not L2-observationally

equivalent.

Assumption C4 The collection of output processes K(Θ) B (Yϑ , ϑ ∈ Θ) corresponding to
the state space models (Aϑ , Bϑ , Cϑ , Lϑ) is identifiable from the spectral density.

Since we shall use only observations of Y at discrete points in time separated by a sampling
interval h, it would seem more natural to impose the stronger requirement that K(Θ) be
h-identifiable. We will see, however, that this is implied by the previous assumptions if we
additionally assume that the following holds.

Assumption C5 For all ϑ ∈ Θ, the spectrum of Aϑ is a subset of{
z ∈ C : −π

h
< Im z <

π

h

}
.

Theorem 3.47 (Identifiability) Assume that Θ ⊃ ϑ 7→
(

Aϑ , Bϑ , Cϑ , ΣL
ϑ

)
is a parametrization

of continuous-time state space models satisfying Assumptions C1 to C5. Then the corresponding
collection of output processes K(Θ) is h-identifiable from the spectral density.

Proof We will show that for every ϑ1, ϑ2 ∈ Θ, ϑ1 , ϑ2, the sampled output processes Y (h)
ϑ1

and Y (h)
ϑ2

(h) are not L2-observationally equivalent. Suppose, for the sake of contradiction,
that the spectral densities of the sampled output processes were the same. Then the Spectral
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Factorization Theorem (Theorem 3.31) would imply that there exists an orthogonal N × N
matrix O such that

Cϑ1(e
iω1N − eAϑ1 h)�Σ

(h),1/2
ϑ1

O = Cϑ2(e
iω1N − eAϑ2 h)�Σ

(h),1/2
ϑ2

, −π 6 ω 6 π,

where �Σ
(h),1/2
ϑi

, i = 1, 2, are the unique positive definite matrix square roots of the matrices∫ h
0 eAϑi uBϑi Σ

L
ϑi

BT
ϑi

eAT
ϑi

udu, defined by spectral calculus. This means that the two triples(
eAϑ1 h,�Σ

(h),1/2
ϑ1

O, Cϑ1

)
and

(
eAϑ2 h,�Σ

(h),1/2
ϑ2

, Cϑ2

)
are algebraic realizations of the same rational matrix function. Since Assumption C5 clearly
implies the Kalman–Bertram criterion (3.3.23), it follows from Proposition 3.41 in conjunction
with Assumption C3 that these realizations are minimal, and hence from Hannan and
Deistler (1988, Theorem 2.3.4) that there exists an invertible matrix T ∈ MN(R) satisfying

eAϑ1 h = T−1eAϑ2 hT, �Σ
(h),1/2
ϑ1

O = T−1
�Σ
(h),1/2
ϑ2

, Cϑ1 = Cϑ2 T. (3.3.25)

It follows from the power series representation of the matrix exponential that T−1eAϑ2 hT
equals eT−1 Aϑ2 Th. Under Assumption C5, the first equation in conjunction with Lemma 3.43
therefore implies that Aϑ1 = T−1Aϑ2 T. Using this, the second of the three equations (3.3.25)
gives

�Σ
(h)
ϑ1

=
∫ h

0
eAϑ1 u

(
T−1Bϑ2

)
ΣL

ϑ2

(
T−1Bϑ2

)T
eAT

ϑ1
udu,

which, by Lemma 3.44, implies that (T−1Bϑ2)Σ
L
ϑ2
(T−1Bϑ2)

T = Bϑ1 ΣL
ϑ1

BT
ϑ1

. Together with the
last of the equations (3.3.25) and Proposition 3.32 it follows that, for every ω ∈ [−π, π],

fϑ1(ω) =Cϑ1(iω1N − Aϑ1)
−1Bϑ1 ΣL

ϑ1
BT

ϑ1
(−iω1N − AT

ϑ1
)−1CT

ϑ1

=Cϑ2(iω1N − Aϑ2)
−1Bϑ2 ΣL

ϑ2
BT

ϑ2
(−iω1N − AT

ϑ2
)−1CT

ϑ2
= fϑ2(ω);

this contradicts Assumption C4 that Yϑ1 and Yϑ2 are not L2-observationally equivalent. �

3.3.4. Asymptotic properties of the QML estimator

In this section we apply the theory that we developed in Section 3.2 for the quasi maximum
likelihood estimation of general discrete-time linear state space models to the estimation of
continuous-time linear state space models or, equivalently, multivariate CARMA processes.
We have already seen that a discretely observed MCARMA process can be represented by a
discrete-time state space model and that, thus, a parametric family of MCARMA processes
induces a parametric family of discrete-time state space models. More precisely, Eqs. (3.3.19)
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show that the process of sampling with spacing h maps the continuous-time state space
models (Aϑ , Bϑ , Cϑ , Lϑ)ϑ∈Θ to the discrete-time state space models

(
eAϑ h, Cϑ , N(h)

ϑ , 0
)

ϑ∈Θ
, N(h)

ϑ,n =
∫ nh

(n−1)h
eAϑuBϑdLϑ(u). (3.3.26)

which are not in the innovations form (3.1.2). The quasi maximum likelihood estimator ϑ̂
L,(h)

is defined by Eq. (3.2.14), applied to the state space model (3.3.26), that is

ϑ̂
L,(h)

= argminϑ∈Θ L̂ (h)(ϑ, yL,(h)), (3.3.27a)

L̂ (h)(ϑ, yL,(h)) =
L

∑
n=1

[
d log 2π + log det V(h)

ϑ + ε̂
(h),T
ϑ,n V(h),−1

ϑ ε̂
(h)
ϑ,n

]
, (3.3.27b)

where ε̂
(h)
ϑ are the pseudo-innovations of the observed process Y (h) = Y (h)

ϑ0
, which are

computed from the sample yL,(h) = (Y (h)
1 , . . . , Y (h)

L ) via the recursion

X̂ϑ,n =
(

eAϑ h − K(h)
ϑ Cϑ

)
X̂ϑ,n−1 + K(h)

ϑ Y (h)
n−1, ε̂

(h)
ϑ,n = Y (h)

n − CϑX̂ϑ,n, n ∈N.

The initial value X̂ϑ,1 may be chosen in the same ways as in the discrete-time case. The steady-
state Kalman gain matrices K(h)

ϑ and pseudo-covariances V(h)
ϑ are computed as functions of

the unique positive definite solution Ω(h)
ϑ to the discrete-time algebraic Riccati equation

Ω(h)
ϑ = eAϑ hΩ(h)

ϑ eAT
ϑ h + �Σ

(h)
ϑ −

[
eAϑ hΩ(h)

ϑ CT
ϑ

] [
CϑΩ(h)

ϑ CT
ϑ

]−1 [
eAϑ hΩ(h)

ϑ CT
ϑ

]T
,

namely

K(h)
ϑ =

[
eAϑ hΩ(h)

ϑ CT
ϑ

] [
CϑΩ(h)

ϑ CT
ϑ

]−1
, V(h)

ϑ = CϑΩ(h)
ϑ CT

ϑ .

In order to obtain the asymptotic normality of the quasi maximum likelihood estimator
for multivariate CARMA processes, it is therefore only necessary to make sure that As-
sumptions D1 to D10 hold for the model (3.3.26). The discussion of identifiability in the
previous section allows us to specify accessible conditions on the parametrization of the
continuous-time model under which the quasi maximum likelihood estimator is strongly
consistent. In addition to the identifiability assumptions C3 to C5, we impose the following
conditions.

Assumption C6 The parameter space Θ is a compact subset of Rr.

Assumption C7 The functions ϑ 7→ Aϑ, ϑ 7→ Bϑ, ϑ 7→ Cϑ, and ϑ 7→ ΣL
ϑ are continuous.

Moreover, for each ϑ ∈ Θ, the matrix Cϑ has full rank.
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Lemma 3.48 Assumptions C1 to C3, C6 and C7 imply that the family
(

eAϑ h, Cϑ , N(h)
ϑ , 0

)
ϑ∈Θ

of
discrete-time state space models satisfies Assumptions D1 to D4.

Proof Assumption D1 is clear. Assumption D2 follows from the observation that the
functions A 7→ eA and (A, B, Σ) 7→

∫ h
0 eAuBΣBTeATudu are continuous. By Assumptions C2,

C6 and C7, and the fact that the eigenvalues of a matrix are continuous functions of its
entries, it follows that there exists a positive real number ε such that, for each ϑ ∈ Θ,
the eigenvalues of Aϑ have real parts less than or equal to −ε. The observation that the
eigenvalues of eA are given by the exponentials of the eigenvalues of A thus shows that
Assumption D3, i) holds with ρ B e−εh < 1. Assumption C1 that the matrices ΣL

ϑ are non-
singular and the minimality assumption C3 imply by Corollary 3.40 that the noise covariance
matrices �Σ

(h)
ϑ = EN(h)

ϑ,nN(h),T
ϑ,n are non-singular, and thus Assumption D3, ii) holds. Further,

by Proposition 3.4, the matrices Ωϑ are non-singular, and so are, because the matrices Cϑ

are assumed to be of full rank, the matrices Vϑ; this means that Assumption D3, iii) is
satisfied. Assumption D4 is a consequence of Proposition 3.32, which states that the noise
sequences Nϑ are i. i. d. and, in particular, ergodic; their second moments are finite because
of Assumption C1. �

In order to be able to show that the quasi maximum likelihood estimator ϑ̂
L,(h) is asymp-

totically normally distributed, we impose the following conditions in addition to the ones
described so far.

Assumption C8 The true parameter value ϑ0 is an element of the interior of Θ.

Assumption C9 The functions ϑ 7→ Aϑ, ϑ 7→ Bϑ, ϑ 7→ Cϑ, and ϑ 7→ ΣL
ϑ are three times

continuously differentiable.

Assumption C10 There exists a positive number δ such that E ‖Lϑ0(1)‖
4+δ < ∞.

Lemma 3.49 Assumptions C8 to C10 imply that Assumptions D6 to D8 hold for the model (3.3.26).

Proof Assumption D6 is clear. Assumption D7 follows from the fact that the functions
A 7→ eA and (A, B, Σ) 7→

∫ h
0 eAuBΣBTeATudu are not only continuous, but infinitely often

differentiable. For Assumption D8 we need to show that the random variables N B Nϑ0,1

have bounded (4 + δ)th absolute moments. It follows from Rajput and Rosiński (1989,
Theorem 2.7) that N is infinitely divisible with characteristic triplet (γ, Σ, ν) given by

γ =
∫ h

0
eAϑ0 (h−s)Bϑ0

[
γL

ϑ0
+
∫

Rd
x
(

I[0,1]

(∥∥∥eAϑ0 (h−s)Bϑ0 x
∥∥∥)− I[0,1](‖x‖)

)
νLϑ0 (dx)

]
ds,

Σ =
∫ h

0
eAϑ0 (h−s)Bϑ0 ΣGBT

ϑ0
eAT

ϑ0
(h−s)ds,

ν(B) =
∫ h

0

∫
Rm

IB

(
eAϑ0 (h−s)Bϑ0 x

)
νLϑ0 (dx)ds, B ∈ B(RN\{0N}),
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where B(·) denotes the Borel σ-algebra. These formulæ imply that

∫
‖x‖>1

‖x‖4+δ ν(dx) 6
∫ 1

0

∥∥∥eAϑ0 (h−s)Bϑ

∥∥∥4+δ
ds
∫
‖x‖>1

‖x‖4+δ νLϑ0 ϑ(dx).

The first factor on the right side is finite by Assumptions C6 and C9, the second by As-
sumption C10 and the well known equivalence of finiteness of the αth absolute moment
of an infinitely divisible distribution and finiteness of the αth absolute moments of the
corresponding Lévy measure restricted to the exterior of the unit ball (Sato, 1999, Corollary
25.8). The same corollary shows that E ‖N‖4+δ < ∞ and thus Assumption D8. �

Our final assumption is the analogue of Assumption D10. It will ensure that the Fisher
information matrix of the quasi maximum likelihood estimator ϑ̂

L,(h) is non-singular by
imposing a non-degeneracy condition on the parametrization of the model.

Assumption C11 There exists a positive index j0 such that the
[
(j0 + 2)d2]× r matrix

∇ϑ

 [
1j0+1 ⊗ K(h),T

ϑ ⊗ Cϑ

] [ (
vec e1N h)T (

vec eAϑ h)T · · ·
(

vec eAj0
ϑ h
)T

]T

vec Vϑ


ϑ=ϑ0

has rank r.

Theorem 3.50 (Asymptotic normality of ϑ̂
L,(h)

) Assume that (Aϑ , Bϑ , Cϑ , Lϑ)ϑ∈Θ is a para-
metric family of continuous-time state space models, and denote by yL,(h) = (Y (h)

ϑ0.1, . . . , Y (h)
ϑ0.L)

a sample of length L from the discretely observed output process corresponding to the parameter
value ϑ0 ∈ Θ. Under Assumptions C1 to C7 the quasi maximum likelihood estimator ϑ̂

L,(h)
=

argminϑ∈Θ L̂ (ϑ, yL,(h)) is strongly consistent, that is

ϑ̂
L,(h) a. s.−−−→

L→∞
ϑ0. (3.3.29)

If, moreover, Assumptions C8 to C11 hold, then ϑ̂
L,(h) is asymptotically normally distributed, that

is √
L
(

ϑ̂
L,(h) − ϑ0

)
d−−−→

L→∞
N (0, Ξ), (3.3.30)

where the asymptotic covariance matrix Ξ = J−1 I J−1 is given by

I = lim
L→∞

L−1 Var
(
∇ϑL

(
ϑ0, yL

))
, J = lim

L→∞
L−1∇2

ϑL
(

ϑ0, yL
)

. (3.3.31)

Proof Strong consistency is a consequence of Theorem 3.7 if we can show that the parametric
family

(
eAϑ h, Cϑ , Nϑ , 0

)
ϑ∈Θ of discrete-time state space models satisfies Assumptions D1

to D5. The first four of these are shown to hold in Lemma 3.48. For the last one, we observe
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that, by Lemma 3.6, Assumption D5 is equivalent to the family of state space models (3.3.26)
being identifiable from the spectral density. Under Assumptions C3 to C5 this is guaranteed
by Theorem 3.47.

In order to prove Eq. (3.3.30), we shall apply Theorem 3.8 and therefore need to verify
Assumptions D6 to D10 for the state space models

(
eAϑ h, Cϑ , Nϑ , 0

)
ϑ∈Θ. The first three

hold by Lemma 3.49, the last one as a reformulation of Assumption C11. Assumption D9,
that the strong-mixing coefficients α of a sampled multivariate CARMA process satisfy

∑m[α(m)]δ/(2+δ) < ∞, follows from Assumption C1 and Marquardt and Stelzer (2007,
Proposition 3.34), where it was shown that MCARMA processes with a finite logarithmic
moment are exponentially strongly mixing. �

3.4. Practical applicability

In this section we complement the theoretical results from Sections 3.2 and 3.3 by commenting
on their applicability in practical situations. Canonical parametrizations are a classical subject
of research about discrete-time dynamical systems, and most of the results carry over to
the continuous-time case; without going into great detail we present the basic notions and
results about these parametrizations. The assertions of Theorem 3.50 are confirmed by means
of a simulation study for a bivariate non-Gaussian CARMA process. Finally, we estimate the
parameters of a CARMA model for a bivariate time series from economics using our quasi
maximum likelihood approach.

3.4.1. Canonical parametrizations

We present parametrizations of multivariate CARMA processes that satisfy the identifiability
conditions C3 and C4, as well as the smoothness conditions C7 and C9; if, in addition,
the parameter space Θ is restricted so that Assumptions C2, C5, C6 and C8 hold, and the
driving Lévy process satisfies Assumption C1, the canonically parametrized MCARMA
model can be estimated consistently. In order for this estimate to be asymptotically normally
distributed, one must additionally impose Assumption C10 on the Lévy process and check
that Assumption C11 holds – a condition which we are unable to verify analytically for the
general model; for explicit parametrizations, however, it can be checked numerically with
moderate computational effort. The parametrizations we are to present are well-known from
the discrete-time setting; detailed descriptions with proofs can be found in Deistler (1983);
Hannan (1971, 1976, 1979); Hannan and Deistler (1988); Luenberger (1967); Lütkepohl and
Poskitt (1996); Poskitt (1992); Reinsel (1997); Rosenbrock (1970) or, from a slightly different
perspective, in the control theory literature Gevers (1986); Gevers and Wertz (1983, 1984);
Guidorzi (1975, 1981). We begin with a canonical decomposition for rational matrix functions.
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Theorem 3.51 (Bernstein (2005, Theorem 4.7.5)) Let H ∈ Md,m(R{z}) be a rational matrix
function of rank r. There exist matrices S1 ∈ Md(R[z]) and S2 ∈ Mm(R[z]) with constant
determinant, such that H = S1MS2, where

M =

[
diag {εi/ψi}r

i=1 0r,m−r

0d−r,r 0d−r,m−r

]
∈ Md,m(R{z}), (3.4.1)

and ε1, . . . εr, ψ1, . . . , ψr ∈ R[z] are polynomials with leading coefficient one, uniquely determined
by H satisfying the following conditions:

i) for each i = 1, . . . , r, the polynomials εi and ψi have no common roots,

ii) for each i = 1, . . . , r− 1, the polynomial εi divides the polynomial εi+1, and

iii) for each i = 1, . . . , r− 1, the polynomial ψi+1 divides the polynomial ψi.

The triple (S1, M, S2) is called the Smith–McMillan decomposition of H.

The degrees νi of the denominator polynomials ψi in the Smith–McMillan decomposition
of a rational matrix function H are called the Kronecker indices of H, and they define the
vector ν = (ν1, . . . , νd) ∈ Nd, where we set νk = 0 for k = r + 1, . . . , d. They satisfy the
important relation ∑d

i=1 νi = δM(H), where δM(H) denotes the McMillan degree of H, that
is the smallest possible dimension of an algebraic realization of H, see Definition 3.34. For
1 6 i, j 6 d, we also define the integers νij = min{νi + I{i>j}, νj}, and if the Kronecker indices
of the transfer function of an MCARMA process Y are ν, we call Y an MCARMAν process.

Theorem 3.52 (Echelon state space realization, Guidorzi (1975, Section 3)) For positive in-
tegers d and m, let H ∈ Md,m(R{z}) be a rational matrix function with Kronecker indices ν =

(ν1, . . . , νd). Then a unique minimal algebraic realization (A, B, C) of H of dimension N = δM(H)

is given by the following structure.

(i) The matrix A = (Aij)i,j=1,...,d ∈ MN(R) is a block matrix with blocks Aij ∈ Mνi ,νj(R) given
by

Aij =


0 · · · · · · · · · · · · 0
...

...
0 · · · · · · · · · · · · 0

αij,1 · · · αij,νij 0 · · · 0

+ δi,j


0

1νi−1
...
0
0 · · · 0

 , (3.4.2a)

(ii) B = (bij) ∈ MN,m(R) unrestricted,
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(iii) if νi > 0, i = 1, . . . , d, then

C =


1 0 . . . 0

... 0 0 . . . 0
...

...
0(d−1),νd

0(d−1),ν1

... 1 0 . . . 0
...

...
... 0(d−2),ν2

...
... 1 0 . . . 0

 ∈ Md,N(R). (3.4.2b)

If νi = 0, the elements of the ith row of C are also freely varying, but we concentrate here on
the case where all Kronecker indices νi are positive. To compute ν as well as the coefficients
αij,k and bij for a given rational matrix function H, several numerically stable and efficient
algorithms are available in the literature (see, e. g., Rózsa and Sinha, 1975, and the references
therein). The orthogonal invariance inherent in spectral factorization (see Theorem 3.31)
implies that this parametrization alone does not ensure identifiability. In the case m = d, one
remedy is to restrict the parametrization to those transfer functions H satisfying H(0) = H0,
for a non-singular matrix H0. To see how one must constrain the parameters αij,k, bij in order
to ensure this normalization, we work in terms of left matrix fraction descriptions.

Theorem 3.53 (Echelon MCARMA realization, Guidorzi (1975, Section 3)) For positive in-
tegers d and m, let H ∈ Md,m(R{z}) be a rational matrix function with Kronecker indices ν =

(ν1, . . . , νd). Assume that (A, B, C) is a realization of H, parametrized as in Eqs. (3.4.2). Then a
unique left matrix fraction description P−1Q of H is given by

P(z) =
[
pij(z)

]
i,j=1,...,d , (3.4.3a)

Q(z) =
[
qij(z)

]
i=1,...,d
j=1,...,m

, (3.4.3b)

where

pij(z) =δi,jzνi −
νij

∑
k=1

αij,kzk−1, (3.4.4a)

qij(z) =
νi

∑
k=1

κν1+...+νi−1+k,jzk−1, (3.4.4b)

and the coefficient κi,j is the (i, j)th entry of the matrix K = TB, where T = (Tij)i,j=1,...,d ∈ MN(R)
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is a block matrix with blocks Tij ∈ Mνi ,νj(R) given by

Tij =



−αij,2 . . . −αij,νij 0 . . . 0
... . . . ...

−αij,νij

...

0
...

...
...

0 . . . . . . . . . . . . 0


+ δi,j



0 0 . . . . . . 0 1
0 0 . . . 1 0
...

... . . . ...
... . . . ...

...
0 1 . . . 0 0
1 0 . . . . . . 0 0


. (3.4.5)

The orders p, q of the polynomials P, Q satisfy p = max{ν1, . . . , νd} and q 6 p− 1. Using this
parametrization, there are different ways to impose the normalization H(0) = H0 ∈ Md,m(R).
One first observes that the special structure of the polynomials P and Q implies that
H(0) = P(0)−1Q(0) = −(αij,1)

−1
ij (κν1+...+νi−1+1,j)ij. The canonical state space parametrization

(A, B, C) given by Eqs. (3.4.2) therefore satisfies H(0) = −CA−1B = H0 if one makes the
coefficients αij,1 functionally dependent on the free parameters αij,m, m = 1, . . . νij and bij by
setting αij,1 = −[(κν1+...+νk−1+1,l)kl H∼1

0 ]ij, where κij are the entries of the matrix K appearing
in Theorem 3.53 and H∼1

0 is a right inverse of H0. Another possibility, which has the
advantage of preserving the multi-companion structure of the matrix A, is to keep the αij,1 as
free parameters, and to restrict some of the entries of the matrix B instead. Since |det K| = 1
and the matrix T is thus invertible, the coefficients bij can be written as B = T−1K. Replacing
the (ν1 + . . . + νi−1 + 1, j)th entry of K by the (i, j)th entry of the matrix −(αkl,1)kl H0 makes
some of the bij functionally dependent on the entries of the matrix A, and results in a state
space representation with prescribed Kronecker indices and satisfying H(0) = H0. This
latter method has also the advantage that it does not require the matrix H0 to possess a right
inverse. In the special case that d = m and H0 = −1d, it suffices to set κν1+...+νi−1+1,j = αij,1,
for i, j = 1, . . . , d. Examples of normalized low-order canonical parametrizations are given in
Tables 3.1 and 3.2.

3.4.2. Simulation study

In order to get a better feeling for how the quasi maximum likelihood estimation procedure
performs in reality, we present a simulation study for a bivariate CARMA process with
Kronecker indices (1, 2), i. e. CARMA indices (p, q) = (2, 1). As the driving Lévy process
we chose a zero-mean normal-inverse Gaussian (NIG) process (L(t))t∈R. Such processes
have been found to be useful in the modelling of stock returns and stochastic volatility, as
well as turbulence data (see, e. g., Barndorff-Nielsen, 1997, 1998; Barndorff-Nielsen, Blæsild
and Schmiegel, 2004; Rydberg, 1997). The distribution of the increments L(t)− L(t− 1) of a
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ν n(ν) A B C

(1, 1) 7
(

ϑ1 ϑ2
ϑ3 ϑ4

) (
ϑ1 ϑ2
ϑ3 ϑ4

) (
1 0
0 1

)
(1, 2) 10

 ϑ1 ϑ2 0
0 0 1
ϑ3 ϑ4 ϑ5

  ϑ1 ϑ2
ϑ6 ϑ7

ϑ3 + ϑ5ϑ6 ϑ4 + ϑ5ϑ7

 (
1 0 0
0 1 0

)

(2, 1) 11

 0 1 0
ϑ1 ϑ2 ϑ3
ϑ4 ϑ5 ϑ6

  ϑ7 ϑ8
ϑ1 + ϑ2ϑ7 ϑ3 + ϑ2ϑ8
ϑ4 + ϑ5ϑ7 ϑ6 + ϑ5ϑ8

 (
1 0 0
0 0 1

)

(2, 2) 15


0 1 0 0
ϑ1 ϑ2 ϑ3 ϑ4
0 0 0 1
ϑ5 ϑ6 ϑ7 ϑ8




ϑ9 ϑ10
ϑ1 + ϑ4ϑ11 + ϑ2ϑ9 ϑ3 + ϑ2ϑ10 + ϑ4ϑ12

ϑ11 ϑ12
ϑ5 + ϑ8ϑ11 + ϑ6ϑ9 ϑ7 + ϑ6ϑ10 + ϑ8ϑ12

 (
1 0 0 0
0 0 1 0

)

Table 3.1.: Canonical state space realizations (A, B, C) of normalized (H(0) = −12) rational transfer
functions in M2(R{z}) with different Kronecker indices ν; the number of parameters,
n(ν), includes three parameters for a covariance matrix ΣL.

ν n(ν) P(z) Q(z) (p, q)

(1, 1) 7
(

z− ϑ1 −ϑ2
−ϑ3 z− ϑ4

) (
ϑ1 ϑ2
ϑ3 ϑ4

)
(1, 0)

(1, 2) 10
(

z− ϑ1 −ϑ2
−ϑ3 z2 − ϑ4z− ϑ5

) (
ϑ1 ϑ2

ϑ6z + ϑ3 ϑ7z + ϑ5

)
(2, 1)

(2, 1) 11
(

z2 − ϑ1z− ϑ2 −ϑ3
−ϑ4z− ϑ5 z− ϑ6

) (
ϑ7z + ϑ2 ϑ8z + ϑ3

ϑ5 ϑ6

)
(2, 1)

(2, 2) 15
(

z2 − ϑ1z− ϑ2 −ϑ3z− ϑ4
−ϑ5z− ϑ6 z2 − ϑ7z− ϑ8

) (
ϑ9z + ϑ2 ϑ10z + ϑ4
ϑ11z + ϑ6 ϑ12z + ϑ8

)
(2, 1)

Table 3.2.: Canonical MCARMA realizations (P, Q) with order (p, q) of normalized (H(0) = −12)
rational transfer functions in M2(R{z}) with different Kronecker indices ν; the number of
parameters, n(ν), includes three parameters for a covariance matrix ΣL.
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bivariate normal-inverse Gaussian Lévy process is characterized by the density

fNIG(x; µ, α, β, δ, ∆) =
δ exp(δκ)

2π

exp(〈βx〉)
exp(αg(x))

1 + αg(x)
g(x)3 , x ∈ R2,

where
g(x) =

√
δ2 + 〈x− µ, ∆(x− µ〉, κ2 = α2 − 〈β, ∆β〉 > 0,

and µ ∈ R2 is a location parameter, α > 0 is a shape parameter, β ∈ R2 is a symmetry
parameter, δ > 0 is a scale parameter and ∆ ∈ M+

2 (R), det ∆ = 1, determines the dependence
between the two components of (L(t))t∈R. For our simulation study we chose parameters

δ = 1, α = 3, β = (1, 1)T, ∆ =

(
5/4 −1/2
−1/2 1

)
, µ = − 1

2
√

31
(3, 2)T, (3.4.6)

resulting in a skewed, semi-heavy-tailed distribution with mean zero and covariance matrix

ΣL =
1

313/2

(
82 −28
−28 64

)
≈
(

0.4751 −0.1622
−0.1622 0.3708

)
. (3.4.7)

A sample of 350 independent replicates of the bivariate CARMA1,2 process (Y(t))t∈R driven
by a normal-inverse Gaussian Lévy process (L(t))t∈R with parameters given in Eq. (3.4.6)
were simulated on the equidistant grid 0, 0.01, 0.02, . . . , 2000 by applying an Euler scheme to
the stochastic differential equation

dX(t) =

 ϑ1 ϑ2 0
0 0 1
ϑ3 ϑ4 ϑ5

X(t)dt +

 ϑ1 ϑ2

ϑ6 ϑ7

ϑ3 + ϑ5ϑ6 ϑ4 + ϑ5ϑ7

dL(t), (3.4.8a)

Y(t) =

(
1 0 0
0 1 0

)
X(t), (3.4.8b)

making use of the canonical parametrization given in Table 3.1. For the simulation, the
parameter values

(ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6, ϑ7) = (−1,−2, 1,−2,−3, 1, 2),

and the initial value X(0) = 03 were used. Each realization was sampled at integer times
(h = 1). Figures 3.1 and 3.2 show one typical realization of this NIG-driven CARMA process
as well as the effect of sampling the process at discrete times.
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Figure 3.1.: Typical realization of the bivariate NIG-driven MCARMA1,2 process given by Eqs. (3.4.8)
on the interval [0, 2000]

Figure 3.2.: Zoom-in of Fig. 3.1 onto the time interval [600, 650]. The thick line is the linear interpola-
tion of the values of the displayed MCARMA process at integer times, illustrating the
effect of sampling.
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Using a differential evolution optimization routine (Price, Storn and Lampinen, 2005) in
conjunction with a subspace trust-region method (Branch, Coleman and Li, 1999; Byrd,
Schnabel and Shultz, 1988), we computed quasi maximum likelihood estimates of ϑ1, . . . , ϑ7

as well as (ϑ8, ϑ9, ϑ10) B vech ΣL by numerical maximization of the quasi log-likelihood
function. In Table 3.3 the sample means and sampled standard deviations of the estimates
are reported. Moreover, the standard deviations were estimated using the square roots of
the diagonal entries of the asymptotic covariance matrix (3.2.67) with s(L) = bL/ log Lc1/3,
and the estimates are also displayed in Table 3.3. One sees that the bias, the difference
between the sample mean and the true parameter value, is very small in accordance with
the asymptotic consistency of the estimator. Moreover, the estimated standard deviation
is always slightly larger than the sample standard deviation, yet close enough to provide
a useful approximation for, e. g., the construction of confidence regions. In order not to
underestimate the uncertainty in the estimate, such a conservative approximation to the true
standard deviations is desirable in practice. Overall, the estimation procedure performs very
well in the simulation study.

3.4.3. Application to weekly bond yields

In this section we provide an illustrative data example and apply the techniques established
in the preceding sections to the bivariate weekly series of Moody’s seasoned Aaa and
Baa corporate bond yields from October 1966 through April 2009; these data are available
from the Federal Reserve Bank of St. Louis. We first took the logarithm of the data and
the resulting series was seen to have a unit root in each component, so the next step in
the data preparation was differencing at lag 1. Using a moving window of length 52 —
corresponding to a period of one year — we removed the stochastic volatility effects displayed
by the differenced time series to obtain data with no obvious departure from stationarity.
Figure 3.3 shows the weekly bond log-yields after differencing and devolatilization.

We fitted bivariate CARMA processes of McMillan degrees n = 2, 3, 4 using the quasi
maximum likelihood method described in Section 3.3.4 and employing the canonical pa-
rametrizations of Section 3.4.1. The numerical values of ϑ̂ as well as their standard errors
estimated by the square root of the diagonal entries in the approximate asymptotic covariance
matrix Ξ̂L

s , defined in Eq. (3.2.67), can be found in Table 3.4. The last row displays the value of
twice the negative logarithm of the Gaussian likelihood of the observations under the model
corresponding to the estimated parameter value ϑ̂. The quality of the fit can be assessed
from Fig. 3.4 where we compare the autocorrelation functions of the fitted models with the
empirical autocorrelation function of the data. One sees how the fit becomes better as one
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Figure 3.3.: Weekly Aaa and Baa bond yields after differencing and devolatilization

increases the model order in accordance with an increasing value of the Gaussian likelihood;
in particular, the autocorrelations at higher lags are better captured by the higher order
models. This phenomenon is well known from the estimation of discrete-time parametric
processes where penalty terms in the likelihood together with order selection criteria like
the Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC) are used
to formalize the trade-off between goodness of fit and model complexity. Understanding
their applicability in a continuous-time set-up remains a problem for future research.
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Figure 3.4.: Empirical auto- and crosscorrelations of the weekly bond data from Fig. 3.3 compared to
the theoretical auto- and crosscorrelations of estimated MCARMAα,β models, for different
Kronecker indices (α, β)
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parameter sample mean bias sample std. dev. mean est. std. dev.
ϑ1 -1.0001 0.0001 0.0354 0.0381
ϑ2 -2.0078 0.0078 0.0479 0.0539
ϑ3 1.0051 -0.0051 0.1276 0.1321
ϑ4 -2.0068 0.0068 0.1009 0.1202
ϑ5 -2.9988 -0.0012 0.1587 0.1820
ϑ6 1.0255 -0.0255 0.1285 0.1382
ϑ7 2.0023 -0.0023 0.0987 0.1061
ϑ8 0.4723 -0.0028 0.0457 0.0517
ϑ9 -0.1654 0.0032 0.0306 0.0346
ϑ10 0.3732 0.0024 0.0286 0.0378

Table 3.3.: Quasi maximum likelihood estimates for the parameters of a bivariate NIG-driven
CARMA1,2 process observed at integer times over the time horizon [0, 2000]. The second
column reports the empirical mean of the estimators as obtained from 350 independent
simulated paths; the third and fourth columns contain the resulting bias and the sample
standard deviation of the estimators, respectively, while the last column reports the average
of the expected standard deviations of the estimators as obtained from the asymptotic
normality result Theorem 3.50.

(α, β) (1, 1) (1, 2) (2, 1) (2, 2)
ϑ̂i σ(ϑi) ϑ̂i σ(ϑi) ϑ̂i σ(ϑi) ϑ̂i σ(ϑi)

ϑ̂1 -1.1326 0.1349 -1.1538 0.1401 -1.3776 0.0320 -0.0010 0.0336
ϑ̂2 0.2054 0.1171 0.2307 0.1008 -2.4033 0.0197 -1.1601 0.5964
ϑ̂3 0.3316 0.1206 -0.2528 0.1716 0.0228 0.0050 -0.0098 0.0268
ϑ̂4 -1.0935 0.1065 -0.0362 0.0472 -4.9948 0.1096 0.1829 0.7429
ϑ̂5 2.4105 0.2324 -1.2516 0.1286 -4.6276 0.1538 1.4646 0.3931
ϑ̂6 2.2483 0.2061 -2.5747 0.4595 -0.0153 0.0108 1.3662 0.4039
ϑ̂7 2.7055 0.2116 1.6345 0.2940 -1.2442 0.0391 -0.7438 0.2387
ϑ̂8 2.8552 0.1966 0.2573 0.0492 -1.7563 0.7209
ϑ̂9 3.5702 0.2151 2.4302 0.1370 -2.6936 0.6694
ϑ̂10 4.9076 0.3888 2.9784 0.2766 1.7369 0.5381
ϑ̂11 4.1571 0.5043 -3.6136 3.0265
ϑ̂12 2.8483 2.5122
ϑ̂13 4.4848 0.3327
ϑ̂14 5.5079 0.1803
ϑ̂15 7.0218 1.4357

L (ϑ̂, yL) 9,893.8 9,850.4 9,853.0 9,840.7

Table 3.4.: Quasi maximum likelihood estimates of the parameters of an MCARMAα,β model for
weekly yields of Moody’s seasoned corporate bonds. The marginal standard deviations
σ(ϑi) are estimated from the diagonal elements of the asymptotic covariance matrix in
Theorem 3.50. The parameters whose confidence region contains zero are marked in bold.





4. Parametric Estimation of the Driving Lévy
Process of Multivariate CARMA Processes
from High-Frequency Observations

4.1. Introduction

Continuous-time autoregressive moving average (CARMA) processes generalize the widely
employed discrete-time ARMA process to a continuous-time setting. Heuristically, a multi-
variate CARMA process of order (p, q), p > q, can be thought of as a stationary solution Y
of the linear differential equation

[
Dp + A1Dp−1 + . . . + Ap

]
Y(t) =

[
B0 + B1D + . . . + BqDq]DL(t), D =

d
dt

, (4.1.1)

where L is a Lévy process and Ai, Bj are coefficient matrices, see Section 4.3 for a precise
definition. They first appeared in the literature in Doob (1944), where univariate Gaussian
CARMA processes were defined. Recent years have seen a rapid development in both the
theory and the applications of this class of stochastic processes (see, e. g., Brockwell, 2004,
and references therein). In Brockwell (2001b), the restriction of Gaussianity was relaxed and
CARMA processes driven by Lévy processes with finite moments of any order greater than
zero were introduced (see also Brockwell and Lindner, 2009). This extension allowed for
CARMA processes to have jumps as well as a wide variety of marginal distributions, possibly
exhibiting fat tails. Shortly after that, Marquardt and Stelzer (2007) defined multivariate
CARMA processes and thereby made it possible to model a set of dependent time series
jointly by a single continuous-time linear process. For further developments of the concept,
which led to fractionally integrated CARMA (FICARMA) and superpositions of CARMA
(supCARMA) processes, and allow for long-memory effects, we refer the reader to Barndorff-
Nielsen and Stelzer (2011); Brockwell and Marquardt (2005); Marquardt (2007). In many
contexts, continuous-time processes are particularly suitable for stochastic modelling because
they allow for irregularly-spaced observations and high-frequency sampling. We refer the
reader to Barndorff-Nielsen and Shephard (2001b); Benth and Šaltytė Benth (2009); Todorov
and Tauchen (2006) for an overview of successful applications of CARMA processes in
economics and mathematical finance.
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Despite the growing interest of practitioners in using CARMA processes as stochastic
models for observed time series, the statistical theory for such processes has received little
attention in the past. One of the basic questions with regard to parameter inference or model
selection is how to determine which particular member of a class of stochastic models best
describes the characteristic statistical properties of an observed time series. If one decides to
model a phenomenon by a CARMA process as in Eq. (4.1.1), which can often be argued to
be a reasonable choice of model class, this problem reduces to the three tasks of choosing
suitable integers p, q describing the order of the process; estimating the coefficient matrices
Ai, Bj; and suggesting an appropriate model for the driving Lévy process L.

In this chapter, we address the last of these three problems and develop a method
to estimate a parametric model for the driving Lévy process of a multivariate CARMA
process, building on an idea suggested in Brockwell et al. (2011) for the special case of a
univariate CARMA process of order (2, 1). The strategy is to observe that the distribution
of a Lévy process L is uniquely determined by the distribution of the unit increments
∆Ln = L(n)− L(n− 1); if one therefore had access to the increments (∆Ln)n=1,...,N over a
sufficiently long time-horizon, one could easily estimate a model for L by any of several well-
established methods, including parametric as well as non-parametric approaches (Figueroa-
López, 2009; Gugushvili, 2009, and references therein). It is thus natural to try and express
the increments of the driving Lévy process – at least approximately – in terms of the
observed values of the CARMA process, and to subject this approximate sample from the
unit-increment distribution to the same estimation method one would use with the true
sample. One difficulty arising in this step is that one usually does not observe a CARMA
processes continuously but that one instead only has access to its values on a discrete, yet
possibly very fine, time grid; in fact, as we shall see in Section 4.4, it is this assumption of
discrete-time observations that prevents us from exactly recovering the increments of the
Lévy process from the recorded CARMA process.

In the following, we concentrate on the parametric generalized moment estimators (see,
e. g., Hansen, 1982; Newey and McFadden, 1994), and we prove that the estimate based on
the reconstructed increments of L has the same asymptotic distribution as the estimate based
on the true increments, provided that both the length N of the observation period and the
sampling frequency h−1 at which the CARMA process is recorded, go to infinity at the right
rate. In fact we obtain the quantitative high-frequency condition that h = hN must be chosen
dependent on N such that NhN converges to zero as N tends to infinity. The generalized
method of moments (GMM) estimators contain as special cases the classical maximum
likelihood estimators as well as non-linear least squares estimators that are based on fitting
the empirical characteristic function of the observed sample to its theoretical counterpart.
In view of the structure of the Lévy–Khintchine formula, the latter method is particularly
well suited for the estimation of Lévy processes. We impose no assumptions on the driving
Lévy process except for the finiteness of certain moments that depend on the particular
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moment function used in the GMM approach. In our main result, Theorem 4.34, we prove
the consistency and asymptotic normality of a wide class of GMM estimators that satisfy a
set of mild standard technical assumptions.

It seems possible to relax the assumption of uniform sampling as long as the maximal
distance between two recording times in the observation interval tends to zero. More
important, however, is the natural question if there exist methods to estimate the driving
Lévy process of a CARMA process that do not require high-frequency sampling but still
have desirable asymptotic properties. Another interesting topic for further investigation
is the behaviour of non-parametric estimators for the driving Lévy process when they are
used with a disturbed sample of the unit increments as described in this chapter. Maximum
likelihood estimation of continuously observed Gaussian diffusions and one-dimensional
Lévy-driven Ornstein–Uhlenbeck processes has been considered in Liptser and Shiryaev
(2001); Mai (2009). An extension of their methods to multivariate CARMA models remains
an important open problem.

Outline of the chapter The chapter is structured as follows. In Section 4.2 we take a closer
look at multivariate Lévy processes and infinitely divisible distributions, the fundamental
ingredients in the definition of a multivariate CARMA process. First, we briefly review
their definition and some important basic properties. In Section 4.2.2 we obtain a new
quantitative bound for the absolute moments of an infinitely divisible distribution in terms
of its characteristic triplet, which is essential for many of the subsequent proofs. We also
derive the exact polynomial time-dependence of the absolute moments of a Lévy process in
Proposition 4.3. As a further preparation for the proofs of our main results, Theorem 4.4
in Section 4.2.3 establishes a Fubini-type result for double integrals with respect to a Lévy
process over an unbounded domain.

The definition of multivariate CARMA processes as well as important properties, such
as moments, mixing and smoothness of sample paths, are presented in Section 4.3. In
Theorem 4.6 we prove an alternative state space representation for multivariate CARMA pro-
cesses, called the controller canonical form, which lends itself more easily to the estimation
of the driving Lévy process than the original definition.

In Section 4.4 we show that, conditional on an initial value whose influence decays
exponentially fast, one can exactly recover the value of the driving Lévy process from a
continuous record of the multivariate CARMA process. The functional dependence is explicit
and given in Theorem 4.11.

Since such a continuous record is usually not available, Section 4.5 is devoted to discretiz-
ing the result found in Theorem 4.11. To this end, we analyse how path-wise derivatives and
definite integrals of Lévy-driven CARMA processes can be approximated from observations
on a discrete time grid, and we determine the asymptotic behaviour of these approximations
as the mesh size tends to zero. To our knowledge, this is the first time that numerical differ-
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entiation and integration schemes are investigated quantitatively for this class of stochastic
processes. The results of this section are summarized in Theorem 4.25.

In Section 4.6 we prove consistency and asymptotic normality of the generalized method of
moments estimator when the sample is not i. i. d., but instead disturbed by a noise sequence,
which corresponds to the discretization error from the previous section. Theorem 4.28 shows
that if the sampling frequency h−1

N goes to infinity fast enough with the length N of the
observation interval, such that NhN converges to zero, then the effect of the discretization
becomes asymptotically negligible, and the limiting distribution of the estimated parameter
is identical to the one obtained from an unperturbed sample. Finally, in Theorem 4.34, we
apply this result to give an answer to the question of how to estimate a parametric model of
the driving Lévy process of a multivariate CARMA process if high-frequency observations
are available.

Finally, in Section 4.7, we present the results of a simulation study for a Gamma-driven
CARMA(3,1) process, which illustrate our theoretical results and demonstrate their practical
applicability.

Notation We use the following notation. The natural, real, complex numbers, and the
integers are denoted by N, R, C, and Z, respectively. Vectors in Rm are printed in bold,
and we use superscripts to denote the components of a vector, e. g., Rm 3 x = (x1, . . . , xm).
We write 0m for the zero vector in Rm, and we let ‖·‖ and 〈·〉 represent the Euclidean norm
and inner product, respectively. The ring of polynomial expressions in z over a ring K is
denoted by K[z]. The symbols Mm,n(K), or Mm(K) if m = n, stand for the space of m× n
matrices with entries in K. The transpose of a matrix A is written as AT, and 1m and 0m

denote the identity and the zero element in Mm(K), respectively. The symbol ‖·‖ is also
used for the operator norm on Mm,n(R) induced by the Euclidean vector norm. For any
topological space X, the symbol B(X) denotes the Borel σ-algebra on X. We frequently use
the following Landau notation: for two functions f and g defined on the interval [0, 1], we
write f (h) = O (g(h)) if there exists a constant C such that ‖ f (h)‖ 6 Cg(h) for all h < 1. We
use the notation ‖·‖Lp for the norm on the classical Lp spaces. The symbol Leb stands for
the Lebesgue measure, and the indicator function of a set B is denoted by IB(·), defined to

be one if the argument lies in B, and zero otherwise. We write
p−→ and d−→ for convergence in

probability and convergence in distribution, respectively, and use the symbol d
= to denote

equality in distribution of two random variables. Finally, for a positive real number α, we
write (α)0 for the smallest even integer greater than or equal to α.
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4.2. Lévy processes and infinitely divisible distributions

4.2.1. Definition and Lévy–Itô decomposition

Lévy processes are the main ingredient in the definition of a multivariate CARMA process
and an important object of study in this thesis. In this section we review their definition and
some elementary properties. A detailed account can be found in Applebaum (2004); Sato
(1999).

Definition 4.1 (Lévy process) A (one-sided) Rm-valued Lévy process (L(t))t>0 is a stochastic
process, defined on the probability space (Ω, F , P), with stationary, independent increments,
continuous in probability and satisfying L(0) = 0m almost surely.

Every Rm-valued Lévy process (L(t))t>0 can without loss of generality be assumed to be
càdlàg, which means that the sample paths are right-continuous and have left limits; it is
completely characterized by its characteristic function in the Lévy–Khintchine form

Eei〈u,L(t)〉 = exp{tψL(u)}, u ∈ Rm, t > 0,

where ψL has the special form

ψL(u) = i〈γL, u〉 − 1
2
〈u, ΣGu〉+

∫
Rm

[
ei〈u,x〉 − 1− i〈u, x〉I{‖x‖61}

]
νL(dx). (4.2.1)

The vector γL ∈ Rm is called the drift, the positive semidefinite, symmetric m×m matrix ΣG

is the Gaussian covariance matrix and νL is a measure on Rm, referred to as the Lévy measure,
satisfying

νL({0m}) = 0,
∫

Rm
min(‖x‖2 , 1)νL(dx) < ∞.

Put differently, for every t > 0, the distribution of L(t) is infinitely divisible with characteristic
triplet (tγL, tΣG , tνL). By the Lévy–Itô decomposition, the paths of L can be decomposed
almost surely into a Brownian motion with drift, a compound Poisson process, and a purely
discontinuous L2-martingale according to

L(t) = γLt +
(

ΣG
)1/2

W t +
∫
‖x‖>1

∫ t

0
xN(ds, dx) + lim

ε↘0

∫
ε6‖x‖<1

∫ t

0
xÑ(ds, dx), (4.2.2)

where W is a standard m-dimensional Wiener process and
(
ΣG
)1/2 is the unique positive

semidefinite matrix square root of ΣG defined by functional calculus. The measure N is
a Poisson random measure on R×Rm\{0m}, independent of W with intensity measure
Leb⊗νL describing the jumps of L. More precisely, for any measurable set B ∈ B(R×
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Rm\{0m}),
N(B) = # {s > 0 : (s, L(s)− L(s−)) ∈ B} ,

where L(s−) B limt↗s L(t) denotes a left limit of L. Finally, Ñ is the compensated jump
measure defined by Ñ(ds, dx) = N(ds, dx) − ds νL(dx). We will work with two-sided
Lévy processes L = (L(t))t∈R. These are obtained from two independent copies (L1(t))t>0,
(L2(t))t>0 of a one-sided Lévy process via the construction

L(t) =

L1(t), t > 0,

−L2(−t−), t < 0.

In the following we present some elementary facts about stochastic integrals with respect
to Lévy processes, which we will use later. Comprehensive accounts of this wide field
are given in the textbooks Applebaum (2004); Protter (1990). Let f : R → Md,m(R) be a
measurable, square-integrable function. Under the condition that L(1) has finite second
moments, the stochastic integral

I =
∫

R
f (s)dL(s)

exists in L2(Ω, P). Moreover, the distribution of the random variable I is infinitely divisible
with characteristic triplet (γ f , Σ f , ν f ) which can be expressed explicitly in terms of the
characteristic triplet of L via the formulæ (Rajput and Rosiński, 1989, Theorem 2.7)

γ f =
∫

R
f (s)

[
γL +

∫
Rd

x
(

I[0,1](‖ f (s)x‖)− I[0,1](‖x‖)
)

νL(dx)
]

ds, (4.2.3a)

Σ f =
∫

R
f (s)ΣG f (s)Tds, (4.2.3b)

and

ν f (B) =
∫

R

∫
Rm

IB( f (s)x)νL(dx)ds, B ∈ B(Rd\{0d}). (4.2.3c)

4.2.2. Bounds for the absolute moments of infinitely divisible distributions and
Lévy processes

In this short section we derive some bounds for the absolute moments of multivariate
infinitely divisible distributions and Lévy processes which will turn out to be essential for
the proofs of our main results later. It is well known (Sato, 1999, Corollary 25.8) that the
kth absolute moment of an infinitely divisible random variable X with characteristic triplet
(γ, Σ, ν) is finite if and only if the measure ν, restricted to {‖x‖ > 1}, has a finite kth absolute
moment. We need the following stronger result, which establishes a quantitative bound
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for the absolute moments of an infinitely divisible distribution in terms of its characteristic
triplet.

Lemma 4.2 Let X be an infinitely divisible, Rm-valued random variable with characteristic triplet
(γ, Σ, ν), and let k be a positive even integer. Assume that the constants ci, Ci, i = 1, 2, satisfy∫

‖x‖<1
‖x‖r ν(dx) 6 C0cr

0, r = 2, . . . , k, (4.2.4a)∫
‖x‖>1

‖x‖r ν(dx) 6 C1cr
1, r = 1, . . . , k. (4.2.4b)

Then there exists a constant C > 0, depending on m and k, but not on (γ, Σ, ν), such that

E ‖X‖k 6 C
[
‖γ‖k + ‖Σ‖k/2 + ck

0 + ck
1

]
. (4.2.5)

Proof Denote by ν0 = ν|{‖x‖<1} and ν1 = ν|{‖x‖>1} the restrictions of the measure ν to
the unit ball of Rm and its complement, respectively. It follows from the Lévy–Khintchine
formula (4.2.1) that we can construct a standard normal random variable W and two infinitely
divisible random variables X0, X1, with characteristic triplets (0m, 0m, ν0), (0m, 0m, ν1), and

distributions µ0, µ1, respectively, such that X d
= γ + Σ1/2W + X0 + X1. Using the notation

n!! for the double factorial of the natural number n as well as Bauer (2002, Eq. (4.20)) for the
absolute moments of a standard normal random variable, the kth absolute moment of the
Gaussian part is readily estimated as

E

∥∥∥Σ1/2W
∥∥∥k
6 ‖Σ‖k/2

E ‖W‖k 6 ‖Σ‖k/2
E

(
m

∑
i=1

∣∣∣W i
∣∣∣)k

6 ‖Σ‖k/2 mk+1E

∣∣∣W1
∣∣∣k 6 (k− 1)!! ‖Σ‖k/2 mk+1,

which implies that

E ‖X‖k 6 4k
[
‖γ‖k + mk+1(k− 1)!! ‖Σ‖k/2 + E ‖X0‖k + E ‖X1‖k

]
. (4.2.6)

The first two terms in this sum are already of the form asserted in Eq. (4.2.5). We next
consider the fourth term. By construction, the characteristic function of X1 is given by

µ̂1(u) B Eei〈u,X1〉 = exp
{∫
‖x‖>1

[
ei〈u,x〉 − 1

]
ν(dx)

}
, u ∈ Rm.

By assumption (4.2.4b) and Sato (1999, Corollary 25.8), the integral
∫
‖x‖k µ1(dx) is finite,

and Sato (1999, Proposition 2.5(ix)) shows that the mixed moments of X1 of order k are given
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by

E
(

Xi1
1 · . . . · Xik

1

)
=
∫

Rm
xi1 · . . . · xik µ1(dx) =

1
ik

∂k

∂ui1 · . . . · ∂uik
µ̂1(u)

∣∣∣∣
u=0m

, ij = 1, . . . , m.

It is easy to see by induction that

∂k

∂ui1 · . . . · ∂uik
µ̂1(u) = [µ̂1(u)]

k ik ∑
π∈Pk

∏
B∈π

∫
‖x‖>1

[
∏
j∈B

xij

]
ei〈u,x〉ν(dx),

where Pk denotes the set of partitions of {1, 2, . . . , k}, a partition being a subset of the power
set of {1, . . . , k} with pair-wise disjoint elements such that their union is equal to {1, . . . , k}.
We write #π for the number of sets in a partition π and |B| for the number of elements in
such a set. Setting u = 0m, specializing to ij = i, and making use of the assumption that k is
even, the last display yields the explicit formula

E

∣∣∣Xi
1

∣∣∣k = E
(

Xi
1

)k
= ∑

π∈Pk

∏
B∈π

∫ (
xi
)|B|

ν(dx), i = 1, . . . , m.

Using the fact that xi 6 ‖x‖ for every x ∈ Rm as well as assumption (4.2.4b), we thus obtain
that

E ‖X1‖k 6mk/2
m

∑
i=1

E

∣∣∣Xi
1

∣∣∣k
6mk/2+1 ∑

π∈Pk

∏
B∈π

∫
‖x‖>1

‖x‖|B| ν(dx) 6 ck
1mk/2+1 ∑

π∈Pk

C#π
1 . (4.2.7)

The third term in Eq. (4.2.6) can be analysed similarly: the characteristic function of X0 has
the form

µ̂0(u) B Eei〈u,X0〉 = exp
{∫
‖x‖<1

[
ei〈u,x〉 − 1− i〈u, x〉

]
ν(dx)

}
, u ∈ Rm.

With ν0 having bounded support, all moments of X0 are finite, which implies that µ̂0

is infinitely often differentiable and that the mixed moments of X0 are given by partial
derivatives of µ̂0, as before. The additional compensatory term i〈u, x〉 in the integral ensures
that the first derivative of µ̂0 vanishes at zero, which leads to

E

∣∣∣Xi
0

∣∣∣k = E
(

Xi
0

)k
= ∑

π∈Pk
min{|B|,B∈π}>2

∏
B∈π

∫
‖x‖<1

(
xi
)|B|

ν(dx), i = 1, . . . , m.
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Using assumption (4.2.4a), we can thus estimate

E ‖X0‖k 6mk/2
m

∑
i=1

E

∣∣∣Xi
0

∣∣∣k
6mk/2+1 ∑

π∈Pk
min{|B|,B∈π}>2

∏
B∈π

∫
‖x‖<1

‖x‖|B| ν(dx) 6 ck
0mk/2+1 ∑

π∈Pk
min{|B|,B∈π}>2

C#π
0 . (4.2.8)

The bounds (4.2.6) to (4.2.8) show that the claim (4.2.5) holds with

C B 4k

mk+1(k− 1)!! + mk/2+1

 ∑
π∈Pk

C#π
1 + ∑

π∈Pk
min{|B|,B∈π}>2

C#π
0


 . �

Since the marginal distributions of a Lévy process L are infinitely divisible, the behaviour
of their moments can be analysed by the previous Lemma 4.2. We prefer, however, to give
an exact description of the time-dependence of E ‖L(t)‖k for even exponents k and derive
from that the asymptotic behaviour as t tends to zero.

Proposition 4.3 Let k be a positive real number and L be a Lévy process.

i) If k is an even integer and E ‖L(1)‖k is finite, then there exist real numbers m1, . . . , mk such
that

E ‖L(t)‖k = m1t + . . . + mktk, t > 0. (4.2.9)

ii) If E ‖L(1)‖(k)0 is finite, then E ‖L(h)‖k = O(hk/(k)0), as h→ 0.

Proof For the proof of i) we introduce the notation K
(

Li1(t), . . . , Lik(t)
)
, 1 6 i1, . . . , ik 6 m,

for the mixed cumulants of L(t) of order k. They are defined in terms of the characteristic
function of L as

K
(

Li1(t), . . . , Lik(t)
)
=

∂k

∂ui1 · · · ∂uik

log Eei〈u,L(t)〉

∣∣∣∣∣
u=0m

,

and are homogeneous functions of t of degree one, which is most easily seen from the
Lévy–Khintchine formula. There is a close combinatoric relationship between moments and
cumulants, which was used implicitly in the proof of Lemma 4.2, and which explicitly reads
(see Shiryaev, 1996, §12, Theorem 6)

ELi1(t) · · · · · Lik(t) = ∑
π∈Pk

∏
B∈π

K
(

Lij(t) : j ∈ B
)

= ∑
π∈Pk

t#π ∏
B∈π

K
(

Lij(1) : j ∈ B
)
=

k

∑
κ=1

mi1,...,ik
k,κ tκ,
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where
mi1,...,ik

k,κ = ∑
π∈Pk
#π=κ

∏
B∈π

K
(

Lij(1) : j ∈ B
)

.

Writing k = 2l, the Multinomial Theorem implies that

‖L(t)‖k =

[(
L1(t)

)2
+ . . . + (Lm(t))2

]l

= ∑
06l1,...,lm6l
l1+...+lm=l

l!
l1! · · · · · lm!

m

∏
i=1

(
Li(t)

)2li
,

and thus it follows, by what was just shown and linearity of the expectation operator, that

E‖L(t)‖k =
k

∑
κ=1

 ∑
06l1,...,lm6l
l1+...+lm=l

l!
l1! · · · · · lm!

m

2l1 times︷︸︸︷
1,...,1 ,...,

2lm times︷ ︸︸ ︷
m,...,m

k,κ

 tκ.

This proves Eq. (4.2.9). Assertion ii) follows for even k directly from the polynomial time-
dependence of E ‖L(t)‖k which we have just established. For general k, we use Hölder’s
inequality which implies that

E ‖L(t)‖k 6
(

E ‖L(t)‖(k)0
) k

(k)0 ,

and since (k)0 is even by definition, the claim follows again from part i). �

4.2.3. A Fubini-type theorem for stochastic integrals with respect to Lévy
processes

The next result is a Fubini-type theorem for a special class of stochastic integrals with respect
to Lévy processes over an unbounded domain.

Theorem 4.4 (Fubini) Let [a, b] ⊂ R be a bounded interval and L be a Lévy process with finite
second moments. Assume that F : [a, b] × R → Md,m(R) is a bounded function, and that the
family {u 7→ F(s, u)}s∈[a,b] is uniformly absolutely integrable and uniformly converges to zero as
|u| → ∞. It then holds that

∫ b

a

∫
R

F(s, u)dL(u)ds =
∫

R

∫ b

a
F(s, u)dsdL(u), (4.2.10)

almost surely.

Proof We first note that, since L has finite second moments and F is square-integrable, both
integrals in Eq. (4.2.10) are well-defined as L2-limits of approximating Riemann–Stieltjes
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sums. We start the proof by introducing the notations

I =
∫ b

a

∫
R

F(s, u)dL(u)ds, IN =
∫ b

a

∫ N

−N
F(s, u)dL(u)ds,

as well as

←→
I =

∫
R

∫ b

a
F(s, u)dsdL(u),

←→
IN =

∫ N

−N

∫ b

a
F(s, u)dsdL(u).

It follows from Kailath, Segall and Zakai (1978, Theorem 1) (see also Protter, 1990, Theorem
64) that, for each N, IN =

←→
IN almost surely. We also write

∆N B I − IN ,
←→
∆N B

←→
I −←→IN , N > 0.

The strategy of the proof is to show that both ∆N and
←→
∆N converge to zero as N tends to

infinity, and then to use the uniqueness of limits to conclude that I must equal
←→

I . We first
investigate E ‖∆N‖2. Clearly,

∆N =
∫ b

a

∫
|u|>N

F(s, u)dL(u)ds. (4.2.11)

Consequently, in order to analyse the absolute moments of ∆N it suffices to consider the
absolute moments of the infinite divisible random variables

∫
|u|>N F(s, u)dL(u), s ∈ [a, b].

By Eqs. (4.2.3), their characteristic triplets (γs
F,N , Σs

F,N , νs
F,N) satisfy

∥∥γs
F,N
∥∥ 6 ∫

|u|>N
‖F(s, u)‖du

∥∥γL∥∥+ ∫
|u|>N

‖F(s, u)‖
∫
‖x‖<1

‖x‖ I[1,∞)(‖F(s, u)x‖)νL(dx)du

+
∫
|u|>N

‖F(s, u)‖
∫
‖x‖>1

‖x‖ I[0,1](‖F(s, u)x‖)νL(dx)du

6
∫
|u|>N

‖F(s, u)‖du
[∥∥γL∥∥+ ∫

‖x‖>1
‖x‖ νL(dx)

]
,

for all N exceeding some N0 which satisfies ‖F(s, u)‖ < 1 for all |u| > N0, s ∈ [a, b]; such an
N0 exists by assumption. Similarly, one obtains that

∥∥Σs
F,N
∥∥ 6 ∥∥∥ΣG

∥∥∥ ∫
|u|>N

‖F(s, u)‖2 du 6
∥∥∥ΣG

∥∥∥ ∫
|u|>N

‖F(s, u)‖du, ∀N > N0,

and

∫
‖x‖<1

‖x‖2 νs
F,N(dx) =

∫
|u|>N

∫
Rd

I[0,1](‖F(s, u)x‖) ‖F(s, u)x‖2 νL(dx)du

6
∫
|u|>N

‖F(s, u)‖du
∫

Rd
‖x‖2 νL(dx), ∀N > N0,
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∫
‖x‖>1

‖x‖r νs
F,N(dx) =

∫
|u|>N

∫
Rd

I[1,∞)(‖F(s, u)x‖) ‖F(s, (u)x‖r νL(dx)du

6
∫
|u|>N

∫
Rd

I[1,∞]

(
‖F‖L∞([a,b]×R) ‖x‖

)
‖F(s, u)‖r ‖x‖r νL(dx)du

6
∫
|u|>N

‖F(s, u)‖du
∫
‖x‖>max{1,‖F‖−1

L∞([a,b]×R)}
‖x‖2 νL(dx), r = 1, 2.

Applying Lemma 4.2 with k = 2 and using the assumed uniform absolute integrability of
the family {u 7→ F(s, u)}s∈[a,b], we can deduce that

sup
s∈[a,b]

E

∥∥∥∥∫|u|>N
F(s, u)dL(u)

∥∥∥∥2

→ 0, as N → ∞.

Together with Eq. (4.2.11) and Jensen’s inequality, this implies that

E ‖∆N‖2 6E

(∫ b

a

∥∥∥∥∫|u|>N
F(s, u)dL(u)

∥∥∥∥ds
)2

6E

∫ b

a

∥∥∥∥∫|u|>N
F(s, u)dL(u)

∥∥∥∥2

ds

6(b− a) sup
s∈[a,b]

E

∥∥∥∥∫|u|>N
F(s, u)dL(u)

∥∥∥∥2

→ 0, (4.2.12)

as N → ∞, showing that ∆N converges to zero in L2. In order to prove the same convergence
also for

←→
∆N =

←→
I −←→IN =

∫
|u|>N

∫ b

a
F(s, u)dsdL(du),

we first define the function F̃ : R → Md,m(R) by F̃(u) =
∫ b

a F(s, u)ds. Since, for all u ∈ R,∥∥∥F̃(u)
∥∥∥ is smaller than (b− a) ‖F‖L∞([a,b]×R), the function F̃ is bounded. It is also integrable

because the normal variant of Fubini’s theorem and the assumed uniform integrability of
{F(s, ·)}s∈[a,b] imply that

∫
|u|>N

∥∥∥F̃(u)
∥∥∥du 6

∫ b

a

∫
|u|>N

‖F(s, u)‖duds

6(b− a) sup
s∈[a,b]

∫
|u|>N

‖F(s, u)‖du→ 0, N → ∞.

Similar arguments to the ones given above then show that
←→
∆N converges to zero in L2 as

well. It thus follows by the triangle inequality that, for every N and every ε,

P
(∥∥∥I −←→I

∥∥∥ > ε
)
6P
({
‖I − IN‖ >

ε

2

}
∪
{∥∥∥←→I − IN

∥∥∥ > ε

2

})
6P
({
‖I − IN‖ >

ε

2

})
+ P

({∥∥∥←→I −←→I N

∥∥∥ > ε

2

})
,
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where we have used the subadditivity of P as well as the fact that IN is equal to
←→
IN almost

surely. Since L2-convergence implies convergence in probability (Jacod and Protter, 2003,
Theorems 17.2), it follows that the probability of the absolute difference between I and

←→
I

exceeding ε is equal to zero for every positive ε. This means that I equals
←→

I almost surely,
and completes the proof. �

4.3. Controller canonical form of multivariate CARMA processes

Multivariate, continuous-time autoregressive moving average (abbreviated MCARMA) pro-
cesses are the continuous-time analogue of the well known vector ARMA processes. They
also generalize the much-studied univariate CARMA processes to a multidimensional setting.
A d-dimensional MCARMA process Y , specified by an autoregressive polynomial

P̃(z) = z p̃ + Ã1z p̃−1 + . . . + Ã p̃ ∈ Md(R[z]), (4.3.1)

a moving average polynomial

Q̃(z) = B̃0 + B̃1z + . . . + B̃q̃zq̃ ∈ Md,m(R[z]), (4.3.2)

and driven by an m-dimensional Lévy process L is defined as a solution of the formal
differential equation

P̃(D)Y(t) = Q̃(D)DL(t), D =
d
dt

, t ∈ R, (4.3.3)

the continuous-time version of the well-known ARMA equations. Equation (4.3.3) is only
formal because, in general, the paths of a Lévy process are not differentiable. It has been
shown in (Marquardt and Stelzer, 2007) that an MCARMA process Y can equivalently be
defined by the continuous-time state space model

dX(t) = AX(t)dt + BdL(t), Y(t) = CX(t), t ∈ R, (4.3.4)

where the matrices Ã, β and C are given by

A =



0 1d 0 . . . 0

0 0 1d
. . .

...
...

. . . . . . 0
0 . . . . . . 0 1d

−Ã p̃ −Ã p̃−1 . . . . . . −Ã1


∈ Mp̃d(R), (4.3.5a)

B =
(

βT
1 · · · βT

p̃

)T
∈ Mp̃d,m(R), (4.3.5b)
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where

β p̃−j =− I{0,...,q̃}(j)

[
p̃−j−1

∑
i=1

Ãiβ p̃−j−i − B̃j

]
,

and

C =
(

1d 0d . . . 0d

)
∈ Md,p̃d(R). (4.3.5c)

This is but one of several possible parametrizations of the general continuous-time state
space model and is in the discrete-time literature often referred to as the observer canonical
form (Kailath, 1980). For the purpose of estimating the driving Lévy process L, it is more
convenient to work with a different parametrization, which, in analogy to a canonical state
space representation used in discrete-time control theory, might be called the controller
canonical form. It is the multivariate generalization of the parametrization used for univariate
CARMA processes in Brockwell et al. (2011). We first state an auxiliary lemma which we
could not find in the literature.

Lemma 4.5 Let r and s be positive integers. Assume that R(z) = zr + M1zr−1 + . . . + Mr ∈
Ms(R[z]) is a matrix polynomial and denote by

M =



0 1s 0 · · · 0
0 0 1s · · · 0
...

...
...

. . .
...

0 0 0 · · · 1s

−Mr −Mr−1 −Mr−2 · · · −M1


∈ Mrs(R) (4.3.6)

the associated multi-companion matrix. The rational matrix function

S(z) = [Sij(z)]16i,j6r = (z1rs −M)−1 ∈ Mrs(R{z}), Sij(z) ∈ Ms(R{z}), (4.3.7)

is then given by the following formula for the block Sij(z):

Sij(z) = R(z)−1

zr−1+i−j1s + ∑
r−j
k=1 Mkzr−1−k+i−j, j > i,

−∑r
k=r−j+1 Mkzr−1−k+i−j, j < i.

(4.3.8)

Proof We compute the (i, j)th block of S(z) (z1rs −M). Assuming i < j, this block is given
by

[S(z) (z1rs −M)]ij
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=
r

∑
k=1

Sik(z) (z1rs −M)kj

=zSij(z)− Si,j−1(z) + Sir(z)Mr−j+1

=R(z)−1

[
zr+i−j1s +

r−j

∑
k=1

Mkzr−k+i−j − zr+i−j1s −
r−j+1

∑
k=1

Mkzr−k+i−j + zi−1Mr−j+1

]
= 0.

A similar calculation shows that for i > j, [S(z) (z1rs −M)]ij = 0. For the blocks on the
diagonal we obtain, for i > 2,

[S(z) (z1rs −M)]ii =
r

∑
k=1

Sik(z) (z1rs −M)ki

=zSii(z)− Si,i−1(z) + Sir(z)Mr−i+1

=R(z)−1

[
zr1s +

r−i

∑
k=1

Mkzr−k +
r

∑
k=r−i+2

Mkzr−k + zi−1Mr−i+1

]
= 1s,

and finally

[S(z) (z1rs −M)]11 =
r

∑
k=1

S1k(z) (z1rs −M)k1 =zS11(z) + S1r(z)Mr

=R(z)−1

[
zr1s +

r−1

∑
k=1

Mkzr−k + Mr

]
= 1s.

This shows that S(z) is the inverse of z1rs −M and completes the proof. �

Theorem 4.6 (Controller form) Assume that L is an Rm-valued Lévy process, and that Y is a
d-dimensional L-driven MCARMA process with autoregressive polynomial P̃ ∈ Md(R[z]) and
moving average polynomial Q̃ ∈ Md,m(R[z]). Then there exist integers p > q > 0 and matrix
polynomials

z 7→ P(z) =zp + A1zp−1 + . . . + Ap ∈ Mm(R[z]), (4.3.9a)

z 7→ Q(z) =B0 + B1z + . . . + Bqzq ∈ Md,m(R[z]) (4.3.9b)

satisfying P̃(z)−1Q̃(z) = Q(z)P(z)−1 for all z ∈ C, and det P(z) = 0 if and only if det P̃(z) = 0.
Moreover, the process Y has the state space representation

dX(t) =AX(t)dt + EpdL(t), t ∈ R, (4.3.10a)

Y(t) =BX(t), t ∈ R, (4.3.10b)
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where

A =



0 1m 0 · · · 0
0 0 1m · · · 0
...

...
...

. . .
...

0 0 0 · · · 1m

−Ap −Ap−1 −Ap−2 · · · −A1


∈ Mpm(R), (4.3.11a)

Ep =
[

0 0 . . . 0 1m

]T
∈ Mpm,m(R), (4.3.11b)

and

B =
[

B0 B1 · · · Bp−1

]
∈ Md,pm(R), Bj = 0d,m, q + 1 6 j 6 p− 1. (4.3.11c)

Proof The existence of matrix polynomials P ∈ Mm(R[z]) and Q ∈ Mm,d(R[z]) with the
asserted properties has been shown in Kailath (1980, Lemma 6.3-8). In order to prove
Eqs. (4.3.10), it suffices, by Theorem 2.4, to prove that the triple (A, Ep, B), defined in
Eqs. (4.3.11), is a realization of the right matrix fraction QP−1, that is

B
[
z1pm −A

]−1 Ep = Q(z)P(z)−1, ∀z ∈ C.

Using Lemma 4.5 and the fact that right multiplication by Ep selects the last block-column,
one sees that [

z1pm −A
]−1 Ep =

[
1 z · · · zp−1

]T
⊗ P(z)−1,

where ⊗ denotes the Kronecker product of two matrices. By definition it holds that

B
[

1 z · · · zp−1
]T

= B0 + B1z + . . . + Bqzq = Q(z),

and so the claim follows. �

In view of Theorem 4.6 one can assume without loss of generality that an MCARMA process
Y is given by a state space representation (4.3.10) with coefficient matrices of the form
(4.3.11). We make the following assumptions about the zeros of the polynomials P, Q in
equations (4.3.9). The first one is a stability assumption guaranteeing the existence of a
stationary solution of the state equation (4.3.10a).

Assumption A1 The zeros of the polynomial det P(z) ∈ R[z] have strictly negative real
parts.

The second assumption corresponds to the minimum-phase assumption in classical time
series analysis. For a matrix M ∈ Md,m(R), any matrix M∼1 satisfying M∼1M = 1m is
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called a left inverse of M. It is easy to check that the existence of a left inverse of M is
equivalent to the conditions m 6 d, rank M = m, and that in this case M∼1 can be computed
as M∼1 = (MT M)−1MT.

Assumption A2 The dimension m of the driving Lévy process L is smaller than or equal to
the dimension of the multivariate CARMA process Y , and both Bq and BT

q B0 have full rank
m. The zeros of the polynomial det B∼1

q Q(z) ∈ R[z] have strictly negative real parts.

It is well known that every solution of Eq. (4.3.10a) satisfies

X(t) = eA(t−s)X(s) +
∫ t

s
eA(t−u)EpdL(u), s, t ∈ R, s < t.

Under Assumption A1, the state equation (4.3.10a) has a unique strictly stationary, causal
solution given by

X(t) =
∫ t

−∞
eA(t−u)EpdL(u), t ∈ R. (4.3.12)

and consequently, the multivariate CARMA process Y has the moving average representation

Y(t) =
∫ ∞

−∞
g(t− u)dL(u), t ∈ R; g(t) = BeAtEp I[0,∞](t). (4.3.13)

In the next section we will express the increments of the driving Lévy process L in terms
of the multivariate CARMA process Y . In particular, we will need to know that the paths
of Y and also of the state process X are sufficiently often differentiable. We recall that we
denote by Xi(t) the ith component of the vector X(t), and we define, for j = 1, . . . , p, the jth
m-block of X by the formula

X(j)(t) =
[

X(j−1)m+1(t)
T · · · X jm(t)T

]T
, t ∈ R. (4.3.14)

A very useful property, which the sequence of approximation errors
(

∆Ln − ∆̂Ln

)
n∈N

might enjoy, is asymptotic independence, which heuristically means, that ∆Ln − ∆̂Ln and
∆Lm − ∆̂Lm are almost independent if |n−m| � 1. One possibility of making this concept
precise is to introduce the notion of strong (or α-) mixing, which has first been defined in
Rosenblatt (1956). Since then it has turned out to be a very powerful tool for establishing
asymptotic results in the theory of inference for stochastic processes. For a stationary
stochastic process X = (Xt)t∈I , where I is either R or Z, we first introduce the σ-algebras
F m

n = σ(Xj : j ∈ I, n < j < m), where −∞ 6 n < m 6 ∞. For m ∈ I, the strong mixing
coefficient α(m) is defined as

α(m) = sup
A∈F 0

−∞, B∈F ∞
m

|P(A ∩ B)−P(A)P(B)| . (4.3.15)
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The process X is called strongly mixing if limm→∞ α(m) = 0; if α(m) = O(λm) for some
0 < λ < 1, it is called exponentially strongly mixing.

Lemma 4.7 Assume that L is a Lévy process, and that Y is an L-driven multivariate CARMA
process given by the state space representation (4.3.10) and satisfying Assumption A1. Then the
following hold.

(i) The process Y is strictly stationary.

(ii) The paths of Y are p− q− 1 times differentiable. Moreover, for j = 1, . . . , p, the paths of the
jth m-block of the state process X are p− j times differentiable.

(iii) For any k > 0 and any t,∈ R, finiteness of E ‖L(1)‖k implies finiteness of both E ‖X(t)‖k

and E ‖Y(t)‖k. Conversely, finiteness of the kth moment of X(t) implies finiteness of L(1).

(iv) If E ‖L(1)‖k is finite for some k > 0, then the process Y is strongly mixing with exponentially
decaying mixing coefficients.

Proof The first claim is an immediate consequence of the moving average representation
(4.3.13). Part ii) follows from Marquardt and Stelzer (2007, Proposition 3.30) and the
observation that Ep is injective. The assertion iv) follows from Masuda (2004, Theorem 4.3),
see also the proof of Marquardt and Stelzer (2007, Proposition 3.34). �

The following lemma relates strong mixing of a continuous-time process to strong mixing
of functionals of the process.

Lemma 4.8 Let X = (Xt)t∈R be an Rd-valued (exponentially) strongly mixing stochastic process.
If, for each n ∈ Z, the random variable Yn is measurable with respect to σ(Xt : n− 1 6 t 6 n) then
the stochastic process (Yn)n∈Z is (exponentially) strongly mixing. In particular, if f : Rd×[0,1] →
Rm is a measurable function, then the Rm-valued stochastic process

(
f ((Xn−1+t)t∈[0,1])

)
n∈Z

is
(exponentially) strongly mixing.

Proof This follows immediately from Eq. (4.3.15), the definition of the strong mixing
coefficients. �

4.4. Recovery of the driving Lévy process from continuous-time

observations

In this section we address the problem of recovering the driving Lévy process of a multi-
variate CARMA process given by a state space representation (4.3.10), if continuous-time
observations are available. We assume that the order (p, q) as well as the coefficient matrices
A and B are known. If they are not, they can first be estimated by, e. g. maximization of the
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Gaussian likelihood, although the precise statistical properties of this two-step estimator
are beyond the scope of the present work. More precisely, we show that, conditional on
the value X(0) of the state vector at time zero, one can write the value of L(t), for any
t ∈ [0, T], as a function of the continuous-time record (Y(t) : 0 6 t 6 T). In particular, one
can obtain an i. i. d. sample from the distribution of the unit increments L(n)− L(n− 1),
1 6 n 6 T, which, when subjected to one of several well-established estimation procedures,
can be used to estimate a parametric model for L. It can be argued that most of the time a
continuous record of observations is not available. The results of this section will, however,
serve as the starting point for the recovery of an approximate sample from the unit increment
distribution based on discrete-time observation of Y , which is presented in Section 4.5. The
strategy is to first express the state vector X in terms of the observations Y , and then to
invert the state equation (4.3.10a) to obtain the driving Lévy process as a function of the
state vector. We first define the upper q-block truncation of X, denoted by Xq, as

Xq(t) =
[

X(1)(t)
T · · · X(q)(t)

T
]T

, t ∈ R,

where the m-blocks X(j) have been defined in Eq. (4.3.14).

Lemma 4.9 Assume that L is a Lévy process, and that Y is a multivariate CARMA process given
as the solution of the state space equations (4.3.10). If Assumption A2 holds, the truncated state
vector Xq satisfies the stochastic differential equation

dXq(t) = BXq(t)dt + EqY(t)dt, t ∈ R, (4.4.1)

where

B =



0 1m 0 · · · 0
0 0 1m 0
...

...
. . .

...
0 0 0 1m

−B∼1
q B0 −B∼1

q B1 −B∼1
q B2 · · · −B∼1

q Bq−1


∈ Mmq(R), (4.4.2a)

Eq =

[
0 0 · · · 0

(
B∼1

q

)T
]T

∈ Mmq,d(R), (4.4.2b)

and B∼1
q denotes the left inverse of Bq. Moreover, the eigenvalues of the matrix B have strictly

negative real parts.

Proof Equation (4.4.1) follows easily from combining the first q block-rows of the state
transition equation (4.3.10a) with the observation equation (4.3.10b). The assertion about
the eigenvalues of B is a consequence of the well-known correspondence between the
eigenvalues of a multi-companion matrix and the zeros of the associated polynomial (see,
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e. g., Marquardt and Stelzer, 2007, Lemma 3.8). By this correspondence, the eigenvalues of B
are exactly the zeros of the polynomial function

z 7→ det
(

1mzq + B∼1
q Bq−1zq−1 + . . . + B∼1

q B0

)
,

whose zeros have strictly negative real parts by Assumption A2. �

As before, we see that Eq. (4.4.1) is readily integrated to

Xq(t) = eB(t−s)Xq(s) +
∫ t

s
eB(t−u)EqY(u)du, s, t ∈ R, s < t. (4.4.3)

The remaining blocks X(i), q < i 6 p, are obtained from Xq and Y by differentiation. The
existence of the occurring derivatives of the state process X and the MCARMA process Y is
guaranteed by Lemma 4.7.

Lemma 4.10 For 1 6 n 6 p− q, the block X(q+n) is given by

X(q+n)(t) = ET
q

[
BnXq(t) +

n−1

∑
ν=0

Bn−1−νEqDνY(t)

]
, t ∈ R. (4.4.4)

Proof We first observe that Eqs. (4.3.10) and Eq. (4.4.1) imply that

X(q+n)(t) = DX(q+n−1)(t), DXq(t) = BXq(t) + EqY(t).

Therefore, the claim is true for n = 1. Assuming it is true for some 1 < n < p− q, it follows
that

X(q+n+1)(t) =DX(q+n)(t)

=DET
q

[
BnXq(t) +

n−1

∑
ν=0

Bn−1−νEqDνY(t)

]

=ET
q

[
Bn+1Xq(t) + BnEqY(t) +

n−1

∑
ν=0

Bn−1−νEqDν+1Y(t)

]

=ET
q

[
Bn+1Xq(t) +

n

∑
ν=0

Bn−νEqDνY(t)

]
. �

Equations (4.4.3) and (4.4.4) allow to compute the value of X(t) based on the knowledge of
the initial value X(0) and the continuous-time record {Y(s) : 0 6 s 6 t}. In order to obtain
the value of L(t), we integrate the last block-row of the state transition equation (4.3.10a) to
obtain

L(t) = X(p)(t)− X(p)(0) + A
∫ t

0
X(s)ds, (4.4.5)
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where A B
[

Ap . . . A1

]
. We also write Aq B

[
Ap . . . Ap−q+1

]
.

Theorem 4.11 (Recovery of ∆Ln) Let Y be the multivariate CARMA process defined by the state
space representation (4.3.10) and assume that Assumption A2 holds. The increment ∆Ln = L(n)−
L(n− 1) is then given by

∆Ln =
p−q−1

∑
ν=0

[
ET

q Bp−q−1−νEq +
p−q−2

∑
k=ν

Ap−q−k−1ET
q Bk−νEq

]
[DνY(n)−DνY(n− 1)]

+

[
AqB−1 +

p−q

∑
k=1

Ap−q−k+1ET
q Bk−1 + ET

q Bp−q

] [
Xq(n)− Xq(n− 1)

]
+ Ap

[
B∼1

q B0

]−1
B∼1

q

∫ n

n−1
Y(s)ds, (4.4.6)

and

Xq(n) =eBXq(n− 1) +
∫ n

n−1
eB(n−u)EqY(u)du, n > 1. (4.4.7)

Proof Substituting Eq. (4.4.4) into Eq. (4.4.5) leads to

∆Ln =
p−q−1

∑
ν=0

[
ET

q Bp−q−1−ν +
p−q−2

∑
k=ν

Ap−q−k−1ET
q Bk−ν

]
Eq [DνY(n)−DνY(n− 1)]

+ ET
q Bp−q [Xq(n)− Xq(n− 1)

]
+

[
Aq +

p−q

∑
k=1

Ap−q−k+1ET
q Bk

] ∫ n

n−1
Xq(s)ds

+
p−q

∑
k=1

Ap−q−k+1ET
q Bk−1Eq

∫ n

n−1
Y(s)ds.

Assumption A2 implies that B∼1
q B0 is invertible and, by Lemma 4.5, the matrix B is invertible

as well. Thus, integration of Eq. (4.4.1) shows that

∫ n

n−1
Xq(s)ds = B−1

[
Xq(n)− Xq(n− 1)− Eq

∫ n

n−1
Y(s)ds

]
.

Inserting this equation into the last expression for ∆Ln and using the equality AqB−1Eq =

Ap

[
B∼1

q B0

]−1
B∼1

q proves Eq. (4.4.6). Equation (4.4.7) follows from setting t = n, s = n− 1
in Eq. (4.4.3). �

In order to keep the notation simple, we restrict our attention to unit increments ∆L. In all
our arguments and results, ∆Ln can be replaced by ∆δLn B L(nδ)− L((n− 1)δ) for some
δ > 0.
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4.5. Approximate recovery of the driving Lévy process from

discrete-time observations

In this section we consider the question of how to obtain estimates of the increments ∆Ln

of the driving Lévy process based on a discrete-time record of the multivariate CARMA
process Y . The starting point is Eq. (4.4.6), which expresses the increment ∆Ln in terms
of derivatives and integrals of Y . In order to approximate ∆Ln, it is therefore necessary to
approximate these derivatives and integrals. We always assume that values of Y are available
at the discrete times (0, h, 2h, . . .) only. For notational convenience, we also assume that
h−1 ∈N; our results continue to hold with minor modifications if this restriction is dropped.

4.5.1. Approximation of derivatives

Throughout, we will approximate derivatives by so-called forward differences, which can be
interpreted as iterated difference quotients. For a general introduction to finite difference
approximations, see LeVeque (2007, Chapter 1). For any function f and any positive integer
ν, we define

∆ν
h[ f ](t) B

1
hν

ν

∑
i=0

(−1)ν−i
(

ν

i

)
f (t + ih). (4.5.1)

It is apparent from this formula that knowledge of f on the discrete time grid (0, h, . . . , T)
is sufficient to compute ∆ν

h[ f ](t) for any t ∈ [0, T − νh] ∩ hZ. The following lemma collects
some useful properties of forward differences; in particular, it shows that if the function f is
sufficiently smooth, then the derivative Dν f (t) is well approximated by ∆ν

h[ f ](t).

Lemma 4.12 For h > 0 and a positive integer ν, let the forward differences ∆ν
h[ f ](t), t ∈ R, be

defined by Eq. (4.5.1). The following properties hold:

i) For every positive integer k < ν and every function f , one has ∆ν
h[ f ] = ∆k

h

[
∆ν−k

h [ f ](·)
]
.

ii) If the function f : R→ Rm is ν+ 1 times continuously differentiable on the interval [t, t+ νh],
then there exist t∗i ∈ [t, t + νh], i = 1, . . . , m, such that

∆ν
h[ f ](t) = Dν f (t)− h

2
Dν+1 f (t∗), (4.5.2)

where Dν+1 f (t∗) is the vector whose ith component equals the ith component of Dν+1 f (t∗i ). In
particular, for every polynomial p of degree at most ν, one has ∆ν

h[p] = Dνp.

iii) If the (ν + 1)th derivative of f is not assumed to be continuous, it holds that

‖∆ν
h[ f ](t)−Dν f (t)‖ 6 h sup

s∈[t,t+νh]

∥∥∥Dν+1 f (s)
∥∥∥ . (4.5.3)
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Proof Property i) is immediate from the definition (4.5.1). The assertions of ii) and iii) follow
from a component-wise application of Taylor’s theorem (Apostol, 1974, Theorem 5.19). �

In the next lemma we will show that the supremum of an Ornstein–Uhlenbeck-type process
has finite absolute kth moments if and only if the driving Lévy process has finite kth
moments. This will allow us to effectively employ the error bound (4.5.3) for multivariate
CARMA processes.

Lemma 4.13 Let (L(t))t>0 be an m-variate Lévy process, and let A ∈ MN(R), B ∈ MN,m(R) be
given coefficient matrices. Assume that all eigenvalues of A have strictly negative real parts, and
that X = (X(t))t>0 is the unique stationary solution of the stochastic differential equation

dX(t) = AX(t)dt + BdL(t), t ∈ R. (4.5.4)

Further denote by
X∗(t) = sup

06s6t
‖X(s)‖ (4.5.5)

the supremum of ‖X‖ on the compact interval [0, t]. It then holds that, for every t ∈ R and every
k > 0, the kth moment E (X∗(t))k is finite if and only if E ‖L(1)‖k is finite.

Proof If E ‖L(1)‖k is infinite, it follows from Lemma 4.7, iii) that E ‖X(t)‖k is infinite as
well for every t ∈ R, and that therefore E (X∗(t))k must be infinite. The other implication
requires more work.

We first note that X∗(t) 6 ∑N
i=1 X∗i (t), where X∗i (t) = sup06s6t

∣∣Xi(s)
∣∣ is the supremum of

the ith component of X over the interval [0, t]. Since each Xi is a semi-martingale, Protter
(1990, Theorem V.2) shows that there exists a universal constant ck such that E (X∗i (t))

k 6

ck
∥∥Xi

∥∥
H k

t
, where the norm ‖·‖H k

t
is defined by

∥∥∥Xi
∥∥∥

H k
t

= inf
Xi=Ṽi+M̃i

E

(∫ t

0

∣∣∣dṼi(s)
∣∣∣+ [M̃i, M̃i]

1/2
t

)k

.

Here, the infimum is taken over all decompositions of Xi into a local martingale M̃i and
an adapted, càdlàg process Ṽi with finite variation and [·, ·] denotes the quadratic variation
process. In our situation, Eq. (4.5.4) defines a canonical decomposition of Xi, i = 1, . . . , N,
into the finite variation process Vi = (Vi(t))t>0 given by

Vi(t) = eT
i

[
X(0) +

∫ t

0
AX(s)ds + tBEL(1)

]
,

where ei denotes the ith unit vector in RN , and the martingale Mi = (Mi(t))t>0 given by

Mi(t) = eT
i B [L(t)− tEL(1)] .
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Since clearly,

(X∗(t))k = sup
06s6t

(
X1(s)2 + . . . + XN(s)2

)k/2
6
(
X∗1 (t)

2 + . . . + X∗N(t)
2)k/2

6Nk/2 max
16i6N

X∗i (t)
k

6Nk/2
N

∑
i=1

X∗i (t)
k,

it suffices to bound the kth moments of X∗i (t) in order to obtain a bound for the kth moment
of X∗(t). The former can be estimated as

E (X∗i (t))
k 6 ck

∥∥∥Xi
∥∥∥

H k
t

6 ck

[
E

(∫ t

0
|dVi(s)|

)k

+ E[Mi, Mi]
k/2
t

]
. (4.5.6)

The first term in this expression is seen to satisfy

E

(∫ t

0
|dVi(s)|

)k

6E

(∫ t

0

∣∣∣eT
i AX(s)

∣∣∣ds + t
∣∣∣eT

i BL(1)
∣∣∣)k

62k
[
‖A‖k

∫ t

0
E ‖X(s)‖k ds + tk ‖B‖k

E ‖L(1)‖k
]
< ∞,

where the finiteness of the integral
∫ t

0 E ‖X(s)‖k ds follows from the assumption that the
absolute moment E ‖X(s)‖k is finite and the strict stationarity of X. For the second term in
Eq. (4.5.6) one obtains the bound

E[Mi, Mi]
k/2
t = E

(
eT

i B[L, L]tBTei

)k/2
6 ‖B‖k

E ‖[L, L]t‖k/2

62k ‖B‖k

{∥∥∥ΣG
∥∥∥k/2

tk/2 + E

∥∥∥∥∫ t

0

∫
Rm

xxT N(ds, dx)
∥∥∥∥k/2

}
,

where we have used Jacod and Shiryaev (2003, Theorem I.4.52) to compute the quadratic
variation of the Lévy process L with characteristic triplet (γL, ΣG , νL). To see that this
expression is finite, we observe that

E

∥∥∥∥∫ t

0

∫
Rm

xxT N(ds, dx)
∥∥∥∥k/2

6mk/2E

(∫ t

0

∫
Rm
‖x‖2 N(ds, dx)

)k/2

=mk/2E

(
lim
ε→0

∫ t

0

∫
‖x‖>ε

‖x‖2 N(ds, dx)
)k/2

=mk/2 lim
ε→0

E

(∫ t

0

∫
‖x‖>ε

‖x‖2 N(ds, dx)
)k/2

C mk/2 lim
ε→0

EYk/2
ε ,

where we have applied the Monotone Convergence Theorem (Klenke, 2008, Theorem 4.20) to
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interchange the order of expectation and passing to the limit. By Sato (1999, Proposition 19.5),
for each ε > 0, the random variable Yε =

∫ t
0

∫
‖x‖>ε ‖x‖

2 N(ds, dx) is infinitely divisible with
characteristic measure ρε = (Leb |[0,t] ⊗ νL|{‖x‖>ε})φ

−1
ε , where φε : [0, t]× {‖x‖ > ε} → R+

maps (s, x) to ‖x‖2, and with characteristic drift γε =
∫

R
yρε(dy). From this it follows that,

for every positive ε,∫ ∞

0
yk/2ρε(dy) = t

∫
‖x‖>ε

‖x‖k νL(dx) 6 t
∫
‖x‖<1

‖x‖2 νL(dx) + t
∫
‖x‖>1

‖x‖k νL(dx) < ∞,

and

γε =
∫ ∞

0
yρε(dy) = t

∫
‖x‖>ε

‖x‖2 νL(dx) 6 t
∫
‖x‖<1

‖x‖2 νL(dx) + t
∫
‖x‖>1

‖x‖2 νL(dx) < ∞.

Lemma 4.2 then implies that limε→0 EYk/2
ε is finite, which completes the proof. �

Next, we consider the differentiation of integrals of functions, for which we introduce the
notations

I f (t) B
∫ t

0
f (s)ds. (4.5.7)

The corresponding approximation error is denoted by

e(h)I f ,n B ∆1
h
[
I f
]
(n)− f (n). (4.5.8)

In the next lemma we analyse this approximation when f is a Lévy process.

Lemma 4.14 The sequence of approximation errors e(h)IL
is i. i. d. Moreover, for every ω ∈ Ω and

for every integer n, the approximation error e(h)IL,n converges to zero as h → 0. If, for some positive

integer k, the absolute moment E ‖L(1)‖(k)0 is finite, then E

∥∥∥e(h)IL,n

∥∥∥k
= O(hk/(k)0), as h → 0,

where the constant implicit in the O(·) notation does not depend on n.

Proof We first observe that

‖IL(n + h)− IL(n)− hL(n)‖ =
∥∥∥∥∫ n+h

n
[L(s)− L(n)]ds

∥∥∥∥ 6 ∫ n+h

n
‖L(s)− L(n)‖ds.

The right continuity of t 7→ L(t) implies that for, every integer n and each ε > 0, there exists
a δε,n such that ‖L(n + t)− L(n)‖ 6 ε, for all 0 6 t 6 δε,n. This means that the difference
IL(n + h)− IL(n)− hL(t) is less than hε in absolute value, provided h is smaller than δε,n.
Dividing by h thus proves that e(h)IL,n converges to zero as h tends to zero. The proof also

shows that e(h)IL,n is a deterministic function of the increments {L(s)− L(n), n 6 s 6 n + h}.
Since the increments of a Lévy process are stationary and independent, this implies that e(h)IL

is an i. i. d. sequence.
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For the second claim about the size of the absolute moments of e(h)IL,n for small h, it is
no restriction to assume that n = 0. Successive application of the triangle inequality and
Hölder’s inequality with the dual exponent k′ determined by 1/k + 1/k′ = 1 shows that

E

∥∥∥e(h)IL,0

∥∥∥k
=

1
hk E

∥∥∥∥∫ h

0
L(s)ds

∥∥∥∥k

6
1
hk E

(∫ h

0
‖L(s)‖ds

)k

6
1
hk E

((∫ h

0
‖L(s)‖k ds

)1/k (∫ h

0
1ds
)1/k′

)k

.

Using k/k′ = k− 1, it follows that

E

∥∥∥e(h)IL,0

∥∥∥k
6

1
h

E

∫ h

0
‖L(s)‖k ds.

Since ‖L(s)‖k is positive, we can interchange the expectation and integral. By Proposition 4.3,

E ‖L(s)‖k is of order O(sk/(k)0), which implies that
∥∥∥e(h)IL,0

∥∥∥k
= O(hk/(k)0). �

Lemma 4.14 was dedicated to the analysis of the error of approximating the first derivative
of the integral of a Lévy process. We will also need analogous results for higher order
derivatives of iterated integrals of Lévy processes. The proofs are similar in spirit and only
technically more complicated. For a positive integer ν, we generalize the notations (4.5.7)
and (4.5.8) to

Iν
f (t) =

∫ t

0
Iν−1

f (s)ds, I1
f (t) =

∫ t

0
f (s)ds (4.5.9)

for the ν-fold iterated integral of the function f , and

eν,(h)
Iν

f ,n B ∆ν
h

[
Iν

f

]
(n)− f (n). (4.5.10)

Clearly, if the function f has only countably many jump discontinuities, then Dν Iν[ f ](t) =
f (t) almost everywhere. We first prove the following locality property.

Lemma 4.15 For every positive integer ν > 2 and every function f , the approximation error eν,(h)
Iν

f ,n

is a function only of the increments { f (t)− f (n) : n 6 t 6 n + νh}. This function is independent
of n. In particular, eν,(h)

Iν
L

is an i. i. d. sequence.

Proof The claim can be shown by direct calculations: Lemma 4.12, i) implies that

∆ν
h

[
Iν

f

]
(n) =∆1

h∆ν−1
h

[
Iν

f

]
(n)

=∆1
h

[
1

hν−1

ν−1

∑
i=0

(−1)ν−1−i
(

ν− 1
i

)
Iν

f (·+ ih)

]
(n)

=
1
hν

ν−1

∑
i=0

(−1)ν−1−i
(

ν− 1
i

) ∫ n+(i+1)h

n+ih
Iν−1

f (s)ds
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=
1
hν

ν−1

∑
i=0

(−1)ν−1−i
(

ν− 1
i

) ∫ n+(i+1)h

n+ih

[∫
06tν−16···6t16s

f (tν−1)dtν−1 · · ·dt1

]
ds.

Using that the set {tν−1 6 tν−2 6 · · · 6 t1 6 s} is congruent to the (ν − 2)-dimensional
simplex in the hypercube with side lengths s− tν−1, and that thus

∫
tν−16tν−26···6t16s

dtν−2 · · ·dt1 =
1

(ν− 2)!
(s− tν−1)

ν−2,

we obtain that

∆ν
h

[
Iν

f

]
(n) =

1
hν(ν− 2)!

ν−1

∑
i=0

(−1)ν−1−i
(

ν− 1
i

) ∫ n+(i+1)h

n+ih

∫ s

0
(s− tν−1)

ν−2 f (tν−1)dtν−1ds

=
1

hν(ν− 2)!

∫ n

0

[
ν−1

∑
i=0

(−1)ν−1−i
(

ν− 1
i

) ∫ n+(i+1)h

n+ih
(s− tν−1)

ν−2ds

]
f (tν−1)dtν−1

+
1

hν(ν− 2)!

ν−1

∑
i=0

(−1)ν−1−i
(

ν− 1
i

) ∫ n+(i+1)h

n+ih

∫ s

n
(s− tν−1)

ν−2 f (tν−1)dtν−1ds.

It is easy to see that
∫ n+(i+1)h

n+ih (s− tν−1)
ν−2ds is equal to pν,h(n− tν−1 + ih) for some polyno-

mial pν,h of degree ν− 2. It then follows from Lemma 4.12, ii) that

ν−1

∑
i=0

(−1)ν−1−i
(

ν− 1
i

) ∫ n+(i+1)h

n+ih
(s− tν−1)

ν−2ds = ∆ν−1
h [pν,h] (n− tν−1) = 0, ∀tν−1 ∈ [0, n],

which implies that the first term in the last expression for ∆ν
h

[
Iν

f

]
(n) vanishes. It is similarly

easy to see that

1
hν(ν− 2)!

ν−1

∑
i=0

(−1)ν−1−i
(

ν− 1
i

) ∫ n+(i+1)h

n+ih

∫ s

n
(s− tν−1)

ν−2dtν−1ds = 1.

Consequently,

eν,(h)
Iν

f ,n = ∆ν
h

[
Iν

f

]
(n)− f (n)

=
1

hν(ν− 2)!

ν−1

∑
i=0

(−1)ν−1−i
(

ν− 1
i

) ∫ (i+1)h

ih

∫ s

0
(s− tν−1)

ν−2 [ f (n + tν−1)− f (n)]dtν−1ds,

(4.5.11)

which completes the proof of the first part of the lemma. The fact that Lévy processes
have stationary and independent increments together with the last display implies that the
sequence eν,(h)

Iν
L

is i. i. d. �

Lemma 4.16 For every positive integer ν > 1 and every integer n, the error eν,(h)
Iν
L,n converges to zero
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as h → 0. If, moreover, E ‖L(1)‖(k)0 is finite for some k > 0, then E

∥∥∥eν,(h)
Iν
L,n

∥∥∥k
= O(hk/(k)0)), as

h→ 0.

Proof Let ε > 0 be given. By the right-continuity of L there exists a positive number δε,n

such that ‖L(n + t)− L(n)‖ 6 ε for all t ∈ [0, δε,n]. Hence, assuming νh 6 δε,n, Eq. (4.5.11)
implies that

∥∥∥eν,(h)
Iν
L,n

∥∥∥ 6 ε

hν(ν− 2)!

ν−1

∑
i=0

(
ν− 1

i

) ∫ (i+1)h

ih

∫ s

0
(s− tν−1)

ν−2dtν−1ds

=
ε

ν!

ν−1

∑
i=0

(
ν− 1

i

)
[(i + 1)ν − iν].

This proves that
∥∥∥eν,(h)

Iν
L,n

∥∥∥ → 0, as h → 0. We now turn to the absolute moments of eν,(h)
Iν
L,n .

Again it entails no loss of generality to assume that n = 0. Equation (4.5.11) and the triangle
inequality lead to

E

∥∥∥eν,(h)
Iν
L,0

∥∥∥k
=E

∥∥∥∥∥ 1
hν(ν− 2)!

ν−1

∑
i=0

(−1)ν−1−i
(

ν− 1
i

) ∫ (i+1)h

ih

∫ s

0
(s− t)ν−2L(t)dtds

∥∥∥∥∥
k

6

[
1

hν(ν− 2)!

]k

E

(
ν−1

∑
i=0

(
ν− 1

i

) ∫ (i+1)h

ih

∫ s

0
(s− t)ν−2 ‖L(t)‖dtds

)k

.

An application of Hölder’s inequality with the dual exponent k′ determined by 1/k + 1/k′ =
1 shows that the last line of the previous display is dominated by

6

[
1

hν(ν− 2)!

]k

E

(
ν−1

∑
i=0

(
ν− 1

i

)k′ ∫ (i+1)h

ih

∫ s

0
(s− t)k′(ν−2)dtds

)k/k′ (∫ νh

0

∫ s

0
‖L(t)‖k dtds

)
=

C
h2 E

(∫ νh

0
(νh− t) ‖L(t)‖k dt

)
,

where the constant C depends only on ν and k and is given by

1
[(ν− 2)!]k

[
1

[k′(ν− 2) + 2][k′(ν− 2) + 1]

ν−1

∑
i=0

(
ν− 1

i

)k′ [
(i + 1)k′(ν−2)+2 − ik′(ν−2)+2

]]k−1

.

Proposition 4.3 asserts the existence of a constant C′ such that E ‖L(t)‖k < C′tk/(k)0 for all
t 6 νh. Consequently

E

∥∥∥eν,(h)
Iν
L,0

∥∥∥k
6

CC′

h2

∫ νh

0
(νh− t)tk/(k)0dt =

CC′νk/(k)0+2

[k/(k)0 + 1] [k/(k)0 + 2]
hk/(k)0 ,
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showing that E

∥∥∥eν,(h)
Iν
L,0

∥∥∥k
= O(hk/(k)0)) and thereby completing the proof of the lemma. �

With these auxiliary results finished, we turn to approximating derivatives of the multivariate
CARMA process Y . This is the first big step towards discretizing Eq. (4.4.6).

Proposition 4.17 Let Y be an L-driven multivariate CARMA process satisfying Assumption A1,
let n > 0 be an integer, and denote by eν,(h)

Y ,n = ∆ν
h[Y ](n)−DνY(n) the error of approximating the

νth derivative of Y by the forward differences defined in Eq. (4.5.1). Assume that, for some k > 0,
E ‖L(1)‖(k)0 < ∞. Then the following hold.

i) If 1 6 ν 6 p − q − 2, then E

∥∥∥eν,(h)
Y ,n

∥∥∥k
= O(hk). If ν = p − q − 1, then E

∥∥∥eν,(h)
Y ,n

∥∥∥k
=

O(hk/(k)0).

ii) The sequence eν,(h)
Y is strictly stationary and strongly mixing with exponentially decaying mix-

ing coefficients.

Proof We first prove the assertions i) about the behaviour of the absolute moments of
eν,(h)

Y ,n for small values of h. If 1 6 ν 6 p− q− 2, it follows from Lemma 4.7 that the paths

of Y are at least ν + 1 times differentiable; therefore, Lemma 4.12 implies that
∥∥∥eν,(h)

Y ,n

∥∥∥ 6
h supn6s6n+νh

∥∥Dν+1Y(s)
∥∥. To prove the claim, it is thus sufficient to show the finiteness

of E supn6s6n+νh

∥∥Dν+1Y(s)
∥∥k. By the defining observation equation (4.3.10b), Y is a linear

combination of the first q + 1 m-blocks of the state process X; the state equation (4.3.10a)
implies DX i = X i+1, i = 1, . . . , p− 1, and since ν is assumed to be no bigger than p− q− 2, it
follows that Dν+1Y is a linear combination of the first p− 1 m-blocks of X, say Dν+1Y = ΛX,
for some matrix Λ ∈ Md,pm(R). We can then apply Lemma 4.13 to estimate

E sup
n6s6n+νh

∥∥∥Dν+1Y(s)
∥∥∥k
6 ‖Λ‖k

E sup
n6s6n+νh

‖X(s)‖k < ∞,

which proves the first claim. If ν = p− q− 1, we start again from the observation that Y is a
linear combination of the first q + 1 m-blocks of X, namely,

Y(t) = BqXq(t) + BqX(q+1)(t), t ∈ R, Bq =
[

B0 · · · Bq−1

]
.

By solving the last p − q + 1 block-rows of the state equation (4.3.10a), one can express
X(q+1) as

X(q+1)(t) =
tp−q−1

(p− q− 1)!
X(p)(0)− AIp−q

X (t) + Ip−q−1
L (t),

where the notation Iν
f for the ν-fold iterated integral of a function f has been introduced

in Eq. (4.5.9). By linearity and the fact that ∆ν
h[p]−Dνp = 0 for polynomials p of degree ν
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(Lemma 4.12, ii)), it follows that

ep−q−1,(h)
Y ,n =∆p−q−1

h [Y ](n)−Dp−q−1Y(n)

=Bq

[
∆p−q−1

h [Xq](n)−Dp−q−1Xq(n)
]

− Bq A
[
∆p−q−1

h

[
Ip−q
X

]
(n)−Dp−q−1 Ip−q

X (n)
]

+ Bq

[
∆p−q−1

h

[
Ip−q−1
L

]
(n)−Dp−q−1 Ip−q−1

L (n)
]

.

Both Xq (by Lemma 4.7) and Ip−q
X are p− q times differentiable so we can apply Lemma 4.12,

iii) to bound the differences in the first two lines of the last display by h times the supremum
of the (p− q)th derivative of Xq and Ip−q

X , respectively. The contribution from the last line
is the approximation error for the (p− q− 1)th derivative of the (p− q− 1)-fold iterated
integral of the Lévy process L, which has been investigated in Lemma 4.16. We thus obtain
that

∥∥∥ep−q−1,(h)
Y ,n

∥∥∥ 6h

[∥∥∥Bq

∥∥∥ sup
n6t6n+(p−q−1)h

∥∥Dp−qXq(t)
∥∥+ ∥∥Bq

∥∥ ‖A‖ sup
n6t6n+(p−q−1)h

‖X(t)‖
]

+
∥∥Bq

∥∥ ∥∥∥∥ep−q−1,(h)

Ip−q−1
L ,n

∥∥∥∥ .

As before, one shows that the first term has finite kth moments which is of order O(hk). The
second term has been shown in Lemma 4.16 to have finite kth moment of order O(hk/(k)0)

which dominates the first term for h < 1; this completes the proof of i).

In order to prove that the sequence eν,(h)
Y is strongly mixing, it is enough, by virtue of

Lemma 4.7, iv) and Lemma 4.8, to show that the approximation error eν,(h)
Y ,n is measurable

with respect to Y n+νh
n , the σ-algebra generated by {Y(t) : n 6 t 6 νh}. Clearly, ∆ν

h[Y ](t) is
measurable with respect to the σ-algebra generated by {Y(t), Y(t+ h), . . . , Y(t+ νh)}. By the
definition of derivatives as the limit of different quotients and the assumed differentiability
of t 7→ Y(t), the derivative Dν

t Y(t) is the ω-wise limit, as s goes to zero, of the functions
ω 7→ ∆ν

s [Yω](t), where ω is an element of Ω. Each of these functions is measurable with
respect to σ(Y(t), Y(t + s), . . . , Y(t + νs)), and therefore in particular with respect to the
larger σ-algebra Y n+νh

n . Since point-wise limits of measurable functions are measurable
(Klenke, 2008, Theorem 1.92), the claim follows.

The claim that the sequence eν,(h)
Y is strictly stationary is a consequence of the fact that the

multivariate CARMA process Y is strictly stationary (Lemma 4.7, i)). By the definition of
stationarity, it is enough to show that for every natural number K, all indices n1, . . . , nK ∈ Z,
and every integer k, the two arrays (eν,(h)

Y ,n1
, . . . , eν,(h)

Y ,nK
) and (eν,(h)

Y ,n1+k, . . . , eν,(h)
Y ,nK+k) have the same

distribution. We first observe that for each n ∈ Z and each ω ∈ Ω, eν,(h)
Y ,n = lims→0+ eν,(h,s)

Y ,n ,

where eν,(h,s)
Y ,n B ∆ν

h[Y ](n)− ∆ν
s [Y ](n). In particular, since ω-wise convergence implies con-
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vergence in distribution, it holds that

(eν,(h,s)
Y ,n1

, . . . , eν,(h,s)
Y ,nK

)
d−→(eν,(h)

Y ,n1
, . . . , eν,(s)

Y ,nK
),

(eν,(h,s)
Y ,n1+k, . . . , eν,(h,s)

Y ,nK+k)
d−→(eν,(h)

Y ,n1+k, . . . , eν,(s)
Y ,nK+k),

as s tends to zero. For every finite s, the strict stationarity of Y implies that the tuple
(eν,(h,s)

Y ,n1
, . . . , eν,(h,s)

Y ,nK
) is equal in distribution to (eν,(h,s)

Y ,n1+k, . . . , eν,(h,s)
Y ,nK+k). The assertion then follows

from the fact that in Polish spaces weak limits are uniquely determined (Klenke, 2008,
Remark 13.13). �

4.5.2. Approximation of integrals

This section is devoted to the approximations of the integrals appearing in Eq. (4.4.6),
namely

∫ n
n−1 Y(s)ds and

∫ n
n−1 eB(n−s)Y(s)ds. One of the simplest approximations for definite

integrals is the trapezoidal rule, see, e. g., Deuflhard and Hohmann (2008, Chapter 9) for an
introduction to the topic of numerical integration. For any function f : R→ M with values
in a metric space M, it is defined as

TK
[a,b] f B

b− a
K

[
f (a) + f (b)

2
+

K−1

∑
k=1

f (n− 1 + k
b− a

K
)

]
, K ∈N, (4.5.12)

and is meant to approximate the definite integral
∫ b

a f (s)ds. We will usually set [a, b] =
[n− 1, n], n ∈ N, and = h−1. It is clear that Th−1

[n−1,n] f can be computed from knowledge
of the values of f on the discrete time grid (0, h, 2h, . . .). The following result provides a
quantitative bound for the accuracy with which the trapezoidal rule approximates a definite
integral if the integrand is a smooth function.

Proposition 4.18 Let [a, b] ⊂ R be an interval, and let K be a positive integer.

i) Assume that f : [a, b]→ R is a twice differentiable function. Then∣∣∣∣∫ b

a
f (s)ds− TK

[a,b] f
∣∣∣∣ 6 (b− a)3

12K2 sup
t∈[a,b]

∣∣ f ′′(t)∣∣ . (4.5.13)

ii) Assume that F : [a, b]→ Rd is a twice differentiable function. Then∥∥∥∥∫ b

a
F(s)ds− TK

[a,b]F
∥∥∥∥ 6 (b− a)3

√
d

12K2 sup
t∈[a,b]

∥∥F′′(t)
∥∥ . (4.5.14)
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iii) Assume that F : [a, b]→ Md(R) is a twice differentiable function. Then∥∥∥∥∫ b

a
F(s)ds− TK

[a,b]F
∥∥∥∥ 6 (b− a)3d3/2

12K2 sup
t∈[a,b]

∥∥F′′(t)
∥∥ . (4.5.15)

Proof Part i) is Deuflhard and Hohmann (2008, Lemma 9.8). To see that ii) holds, it is
enough to apply i) component-wise to obtain that∥∥∥∥∫ b

a
F(s)ds− TK

[a,b]F
∥∥∥∥ 6√d max

i=1,....d

∣∣∣∣[∫ b

a
F(s)ds− TK

[a,b]F
]

i

∣∣∣∣
6
(b− a)3

√
d

12K2 max
i=1,....d

sup
ti∈[a,b]

∣∣F′′i (ti)
∣∣

=
(b− a)3

√
d

12K2 sup
t∈[a,b]

max
i=1,....d

∣∣F′′i (t)∣∣ 6 (b− a)3
√

d
12K2 sup

t∈[a,b]

∥∥F′′(t)
∥∥ .

The claim (4.5.15) about matrix-valued integrands follows from the fact that Md(R) is
canonically isomorphic to Rd2

and that the operator norm and the Euclidean vector norm
induced by this isomorphism satisfy

1√
d
‖M‖

Rd2 6 ‖M‖ 6 ‖M‖
Rd2 ,

for all M ∈ Md(R) (Stone, 1962). �

The last proposition can be used to derive properties of the approximation error of convolu-
tions of vector-valued functions with matrix-valued kernels. For any compatible functions
f : [0, ∞]→ Rd and g : [0, 1]→ Md(R), we use the notation

ε
(h)
g◦ f ,n =Th−1

[n−1,n]g(n− ·) f (·)−
∫ n

n−1
g(n− s) f (s)ds (4.5.16)

for the difference between the exact value of the convolution integral and the one obtained
from the trapezoidal approximation with sampling interval h. In the next proposition we
analyse this approximation error if f is a multivariate CARMA process; this is the second
big step towards discretizing Eq. (4.4.6).

Proposition 4.19 Assume that L is a Lévy process. Let Y be a d-dimensional L-driven MCARMA
process satisfying Assumption A1, let F : [0, 1] → Md(R) a twice continuously differentiable
function, and denote by ε

(h)
F◦Y ,n the approximation error of the trapezoidal rule, defined in Eq. (4.5.16).

If E ‖L(1)‖k is finite, then E

∥∥∥ε
(h)
F◦Y ,n

∥∥∥k
= O(h2k), as h→ 0. Moreover, the sequence ε

(h)
F◦Y is strictly

stationary and strongly mixing.
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Proof By the definition of ε
(h)
F◦Y (Eqs. (4.5.12) and (4.5.16)), we can write

ε
(h)
F◦Y ,n = h

h−1

∑
i=0

α
(h)
i Y(n− 1 + ih)−

∫ n

n−1
F(n− s)Y(s)ds,

where
α
(h)
0 =

F(1)
2

, αh−1 =
F(0)

2
, α

(h)
i = F(1− ih), i = 1, . . . h−1 − 1.

Using Dirac’s δ-distribution, which is defined by the property that
∫

f (x)δx0(x)dx = f (x0)

for all compactly supported smooth functions f , as well as the moving average representation
(4.3.13) of Y , we obtain that

ε
(h)
F◦Y =

∫ n

n−1

[
∑

i
α
(h)
i δn−1+ih(s)− F(n− s)

]
Y(s)ds

=
∫ n

n−1

[
h ∑

i
α
(h)
i δn−1+ih(s)− F(n− s)

] ∫ s

−∞
BeA(s−u)EpdL(u)ds.

Theorem 4.4 allows us to interchange the order of integration so that we obtain

ε
(h)
F◦Y ,n =

∫ n

−∞

∫ n

max{u,n−1}

[
h ∑

i
α
(h)
i δn−1+ih(s)− F(n− s)

]
BeA(s−u)EpdsdL(u)

=
∫ n−1

−∞

∫ n

n−1

[
−h ∑

i
α
(h)
i δn−1+ih(s)− F(n− s)

]
BeA(s−u)EpdsdL(u)

+
∫ n

n−1

∫ n

u

[
h ∑

i
α
(h)
i δn−1+ih(s)− F(n− s)

]
BeA(s−u)EpdsdL(u).

With the notations

Γ(h) B

∫ 1

0

[
−h ∑

i
α
(h)
i δih(s)− F(1− s)

]
BeAsds (4.5.17)

and

G(h) :

[0, 1] → Md,m(R),

t 7→
∫ t

0

[
h ∑i α

(h)
i δt−1+ih(s)− F(t− s)

]
BeAsds Ep,

(4.5.18)

we can rewrite the previous display as

ε
(h)
F◦Y ,n = Γ(h)X(n− 1) +

∫ n

n−1
G(h)(n− u)dL(u), (4.5.19)
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where we have used the moving average representation (4.3.12) of the state vector process
X. This equation and the strict stationarity of X asserted in Lemma 4.7, i) immediately
imply that the sequence ε

(h)
F◦Y is strictly stationary and strongly mixing. By Proposition 4.18

there exists a constant C such that
∥∥∥Γ(h)

∥∥∥ 6 Ch2 and
∥∥∥G(h)(t)

∥∥∥ 6 Ch2 for all t ∈ [0, 1], which
implies that

E

∥∥∥ε
(h)
F◦Y

∥∥∥k
6 h2kCk2kE ‖X(n− 1)‖k + 2kE

∥∥∥∥∫ n

n−1
G(h)(n− u)dL(u)

∥∥∥∥k

.

The kth moment of X(n− 1) is finite by Lemma 4.7, iii), so it suffices to prove that the second
term is of order O(h2k). To this end we use the fact that

∫ n
n−1 G(h)(n− u)dL(u) is an infinitely

divisible random variable whose characteristic triplet (γ
(h)
G , Σ(h)

G , ν
(h)
G ) can be expressed

explicitly in terms of the characteristic triplet (γL, ΣG , νL) of the Lévy process L. Using the
explicit transformation rules (4.2.3), one sees that the condition

∥∥∥G(h)(s)
∥∥∥

L∞([0,1],Leb)
= O(h2)

implies that ∥∥∥γ
(h)
G

∥∥∥ =O(h2),∥∥∥Σ(h)
G

∥∥∥ =O(h4),∫
‖x‖<1

‖x‖r ν
(h)
G (dx) =O(h2r), r = 2, 3 . . . ,∫

‖x‖>1
‖x‖r ν

(h)
G (dx) =O(h2r), r = 2, . . . , k,

so that we can apply Lemma 4.2 to conclude that E

∥∥∥∫ n
n−1 G(n− u)dL(u)

∥∥∥k
= O(h2k). �

If one is willing to make the assumption that the jump part of the driving Lévy process has
finite variation, then the norm of the approximation error ε

(h)
F◦Y ,n can be bounded by path-

wise defined quantities. In our forthcoming treatment of the general method of moments
estimation in Section 4.6 we only rely on the moment bounds given in Proposition 4.19,
but a path-wise understanding of the approximation error of convolution integrals of Lévy
process might be useful in other contexts and is of interest in its own right. We will consider
the three components in the Lévy–Itô decomposition (4.2.2) of a Lévy process separately.

For the Brownian part, the Hölder norms will play an important role, which, for any
function f : [a, b]→ M with values in a metric space (M, d), and any 0 < α < 1, are defined
as

‖ f ‖Λα([a,b]) = sup
s,t∈[a,b]

d( f (s), f (t))
|s− t|α .

Lemma 4.20 Assume that WG is an m-dimensional Brownian motion with covariance matrix ΣG ,
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and that F : [0, 1] → Mm(R) is a twice continuously differentiable function. Then, for every
δ ∈ (0, 1/2), there are constants c1, c2 such that∥∥∥ε

(h)
F◦WG ,n

∥∥∥ 6 h1/2−δ
[
c1 ‖W‖L∞([n−1,n]) + c2 ‖W‖Λ1/2−δ([n−1,n])

]
, (4.5.20)

where W =
(
ΣG
)−1/2 WG is a standard m-dimensional Brownian motion. Moreover, for every

k > 0,

E

∥∥∥ε
(h)
F◦WG ,n

∥∥∥k
= O(hk(1/2−δ)), as h→ 0. (4.5.21)

Proof We note that it has been proven in Cruz-Uribe and Neugebauer (2002, Theorem 1.1)
that for any α-Hölder continuous function f : [a, b]→ R,∣∣∣∣∫ b

a
f (s)ds− TK

[a,b] f
∣∣∣∣ 6 (b− a)1+α

(1 + α)(2K)α
‖ f ‖Λα([a,b]) . (4.5.22)

It is well known that, for any α strictly between 0 and 1/2, paths of Brownian motion are
α-Hölder continuous with probability one (Mörters and Peres, 2010, Corollary 1.20), and,
consequently, so are the paths of W : t 7→ F(n− t)

(
ΣG
)1/2 W(t). We therefore only need to

generalize Eq. (4.5.22) to vector valued functions to obtain

∥∥∥ε
(h)
F◦WG ,n

∥∥∥ =

∥∥∥∥∫ n

n−1
W(s)ds− Th−1

[n−1,n]W
∥∥∥∥ 6√m max

i=1,....d

∣∣∣∣∣
[∫ n

n−1
W(s)ds− Th−1

[n−1,n]W
]i
∣∣∣∣∣

6

√
m

(1 + α)2α
hα max

i=1,....d
sup

s,t∈[a,b]

∣∣W i(s)−W i(t)
∣∣

|s− t|α

6

√
m

(1 + α)2α
hα ‖W‖Λα([a,b]) . (4.5.23)

The α-Hölder norm of W can be estimated as

‖W‖Λα([n−1,n])

= sup
s,t∈[n−1,n]

∥∥∥F(n− s)
(
ΣG
)1/2 W(s)− F(n− t)

(
ΣG
)1/2 W(t)

∥∥∥
|s− t|α

6 sup
s,t∈[n−1,n]

∥∥∥[F(n− s)− F(n− t)]
(
ΣG
)1/2 W(s)

∥∥∥+ ∥∥∥F(n− t)
(
ΣG
)1/2

[W(s)−W(t)]
∥∥∥

|s− t|α

6 ‖F‖Λα([0,1])

∥∥∥∥(ΣG
)1/2

∥∥∥∥ ‖W‖L∞([n−1,n]) + ‖F‖L∞([0,1])

∥∥∥∥(ΣG
)1/2

∥∥∥∥ ‖W‖Λα([n−1,n]) . (4.5.24)

By assumption, both ‖F‖Λα([0,1]) and ‖F‖L∞([0,1]) are finite, so combining displays (4.5.23)
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and (4.5.24), and setting α = 1/2− δ proves Eq. (4.5.20) with

c1 =

√
m

(1 + α)2α
‖F‖Λα([0,1])

∥∥∥∥(ΣG
)1/2

∥∥∥∥ , c2 =

√
m

(1 + α)2α
‖F‖L∞([0,1])

∥∥∥∥(ΣG
)1/2

∥∥∥∥ .

To show the claim (4.5.21), it suffices to argue that the kth moments of the α-Hölder norm of
W are finite. By the last display, these moments are bounded by

E ‖W‖k
Λα([n−1,n]) 6 c̃1E ‖W‖k

L∞([n−1,n]) + c̃2E ‖W‖k
Λα([n−1,n]) ,

for some positive constants c̃1 and c̃2. The first term on the right is finite by Klenke (2008,
Theorem 21.19). With respect to the second term it has been shown in Kwapień and Rosiński
(2004, Example 3.3), using the theory of majorizing measures that, for a univariate Brownian
motion W, there exists a constant C such that

E exp

{
C sup

s,t∈[0,1]

|W(t)−W(s)|2
|t− s| log(e/|t− s|)

}
< ∞.

We shall use this result to show that for any α ∈ (0, 1/2) there exists a constant C′ such that
the exponential moment E exp

{
C′ ‖W‖2

Λα([0,1])

}
is finite, which implies that all ordinary

moments of ‖W‖Λα([0,1]) are finite as well. For convenience, we write α = 1/2− δ for some
δ ∈ (0, 1/2). We first note that, for all δ ∈ (0, 1),

1
d1−δ

6
(eδ)−1

d log(e/d)
, ∀d ∈ (0, 1],

which can be shown by elementary calculus. Using the fact that the components of W are
independent standard Brownian motions, denoted by W i, it follows that

E exp
{

C′ ‖W‖2
Λ1/2−δ([0,1])

}
=E exp

{
C′ sup

s,t∈[0,1]

‖W(t)−W(s)‖2

|t− s|1−2δ

}

6
m

∏
i=1

E exp

{
C′ sup

s,t∈[0,1]

|W i(t)−W i(s)|2
|t− s|1−2δ

}

6
m

∏
i=1

E exp

{
C′(2eδ)−1 sup

s,t∈[0,1]

|W i(t)−W i(s)|2
|t− s| log(e/|t− s|)

}
<∞,

if C′ is less than or equal to 2eδC. �



4.5. Approximate recovery of the Lévy process from discrete-time observations 133

In the next lemma we derive a path-wise bound for
∥∥∥ε

(h)
F◦ f ,n

∥∥∥ for the case that the function f

is a pure jump Lévy process. Every pure jump Lévy process Lj has the representation

Lj(t) = ∑
0<s6t

δLj(s), t > 0,

where δLj(s) = Lj(s) − Lj(s−) denotes the jump size of the process Lj at time s, and
Lj(s−) = limr↗s Lj(r). If Lj is of finite variation, the sum of jumps is even absolutely
convergent.

Lemma 4.21 Assume that Lj is an m-dimensional pure jump Lévy process with Lévy measure
νL satisfying

∫
‖x‖61 ‖x‖ν

L(dx) < ∞, and that F : [0, 1] → Mm(R) is a twice continuously
differentiable function. Then there is a constant C such that∥∥∥ε

(h)
F◦Lj,n

∥∥∥ 6 Ch ∑
n−1<s6n

‖δLj(s)‖, δLj(s) = Lj(s)− Lj(s−). (4.5.25)

If Lj possesses a finite kth absolute moment, then

E

∥∥∥ε
(h)
F◦Lj,n

∥∥∥k
= O(hk), as h→ 0. (4.5.26)

Moreover, there exists an i. i. d. sequence ε̃
(h)
F◦Lj

and a matrix M(h) ∈ Mm(R), such that

ε
(h)
F◦Lj,n

= ε̃
(h)
F◦Lj,n

+ M(h)Lj(n). (4.5.27)

Proof It is enough to give the proof for the case n = 1. For some integer 1 6 k 6 h−1 − 1, we
consider the interval [kh, (k + 1)h]. Writing Lj(s) = ∑0<t6s δLj(t) it is clear that

Ik B

∫ (k+1)h

kh
F(1− s)Lj(s)ds

=
∫ (k+1)h

kh
F(1− s)dsLj(kh) + ∑

kh<t6(k+1)h
δLj(t)

∫ (k+1)h

t
F(1− s)ds

The simple trapezoidal approximation of that integral on the other hand is given by

Jk B
h
2
[
F(1− (k + 1)h)Lj((k + 1)h) + F(1− kh)Lj(kh)

]
=

h
2

F(1− (k + 1)h) ∑
kh<t6(k+1)h

δLj(t) +
F(1− (k + 1)h) + F(1− kh)

2
hLj(kh),
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and it thus follows that

‖Ik − Jk‖ =
∥∥∥∥[∫ (k+1)h

kh
F(1− s)ds− F(1− (k + 1)h) + F(1− kh)

2
h
]

Lj(kh)

+ ∑
kh<t6(k+1)h

[∫ (k+1)h

t
F(1− s)ds− h

2
F(1− (k + 1)h)

]
δLj(t)

∥∥∥∥∥ .

By Proposition 4.18 and the assumed differentiability of F, the error of the simple trapezoidal
approximation in the first term in this expression is bounded by some constant C1, which is
independent of k, times h2. For the second term we observe that for every k = 1, . . . , h−1 − 1
and every t ∈ [kh, (k + 1)h],∥∥∥∥∫ (k+1)h

t
F(1− s)ds− h

2
F(1− (k + 1)h)

∥∥∥∥
6
∫ (k+1)h

t
‖F(1− s)− F(1− (k + 1)h)‖ds +

[(
k +

1
2

)
h− t

]
‖F(1− (k + 1)h)‖

6
∥∥F′
∥∥

L∞([0,1])

∫ (k+1)h

t
[(k + 1)h− s]ds +

h
2
‖F‖L∞([0,1])

=
1
2

∥∥F′
∥∥

L∞([0,1]) [(k + 1)h− t]2 +
h
2
‖F‖L∞([0,1])

6
1
2

∥∥F′
∥∥

L∞([0,1]) h2 +
h
2
‖F‖L∞([0,1]) 6 C2h, for all h 6 1,

where C2 = 1
2 [‖F‖L∞([0,1]) + ‖F′‖L∞([0,1])]. The triangle inequality then implies that

‖Ik − Jk‖ 6 C1h2 ∥∥Lj(kh)
∥∥+ C2h ∑

kh<t6(k+1)h

∥∥δLj(t)
∥∥,

and the claim (4.5.25) follows from the following chain of inequalities:

∥∥∥ε
(h)
F◦Lj,1

∥∥∥ =

∥∥∥∥∥h−1−1

∑
k=1

[Ik − Jk]

∥∥∥∥∥ 6 h−1−1

∑
k=1
‖Ik − Jk‖

6C1h2
h−1−1

∑
k=1

∑
0<t6kh

∥∥δLj(t)
∥∥+ C2h

h−1−1

∑
k=1

∑
kh<t6(k+1)h

‖δLj(t)‖

6C1h2 ∑
0<t61−h

h−1−1

∑
k=t/h

∥∥δLj(t)
∥∥+ C2h ∑

0<t61
‖δLj(t)‖

6C1h ∑
0<t61

[1− t]
∥∥δLj(t)

∥∥+ C2h ∑
0<t61

‖δLj(t)‖

6Ch ∑
0<t61

‖δLj(t)‖,

for some constant C which only depends on C1 and C2. In order to quantify the absolute
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moments of the approximation error ε
(h)
F◦Lj,1

, we observe that the last display and the Lévy–Itô
decomposition imply that

E

∥∥∥ε
(h)
F◦Lj,1

∥∥∥k
6ChkE

(
∑

0<t61
‖δLj(t)‖

)k

=Chk
∫ 1

0
· . . . ·

∫ 1

0

∫
Rd
· . . . ·

∫
Rd
‖x1‖ · . . . · ‖xk‖EN(dx1, ds1) · · · . . . · N(dxk, dsk).

From here, the proof proceeds along the same lines as the proof of Lemma 4.2; in order not
to repeat the same arguments, we only give a heuristic explanation here. Using the facts
that the random variables N(dxi, dsi) and N(dxj, dsj) are independent for si , sj, and that
they satisfy N(dxi, ds)N(dxj, ds) = δxi ,xj N(dxi, ds), it follows that the last integral can be
decomposed according to which of the si are equal. We denote by Pk the set of partitions
of {1, 2, . . . , k}; for π ∈ Pk we write #π for the number of blocks in π and the number of
elements in such a block B is denoted by |B|. With these notations we can write the integral
as

∑
π∈Pk

#π

∏
i=1

E

∫ 1

0

∫
Rd
‖xi‖|Bi |N(dxi, ds).

The expectations in this expression are finite by the assumption of finite variation and finite
kth moment of Lj. To prove Eq. (4.5.27), it is enough to note that

ε
(h)
F◦Lj,n

=
∫ n

n−1
F(n− s)

[
Lj(s)− Lj(n)

]
ds +

∫ n

n−1
F(n− s)dsLj(n)

− h

[
F(0)Lj(n)− F(1)Lj(n− 1)

2
+

h−1−1

∑
k=1

F(1− kh)Lj(n− 1 + kh)

]
. (4.5.28)

Introducing the approximation error

M(h) =
∫ n

n−1
F(n− s)ds− h

[
F(0)− F(1)

2
+

h−1−1

∑
k=1

F(1− kh)

]
,

which is clearly independent of n, Eq. (4.5.28) becomes

ε
(h)
F◦Lj,n

=
∫ n

n−1
F(n− s)

[
Lj(s)− Lj(n)

]
ds + M(h)Lj(n)

− h

[
−F(1)

[
Lj(n− 1)− Lj(n)

]
2

+
h−1−1

∑
k=1

F(1− kh)
[
Lj(n− 1 + kh)− Lj(n)

]]
.

The sequence ε
(h)
F◦Lj
−M(h)Lj(n) is therefore i. i. d. by the stationarity and the independence

of the increments of Lj. �

Proposition 4.22 Assume that L is a Lévy process with characteristic triplet (γL, ΣL, νL). Let Y
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be a d-dimensional L-driven MCARMA(p, q) process, F : [0, 1] → Md(R) a twice continuously
differentiable function, and denote by ε

(h)
F◦Y ,n the approximation error of the trapezoidal rule.

i) If p− q > 3, then there exists a constant C such that∥∥∥ε
(h)
F◦Y ,n

∥∥∥ 6 Ch2 ∑
i=0,1,2

∥∥∥DiY
∥∥∥

L∞([n−1,n])
. (4.5.29)

ii) If p− q = 2, then there exists a constant C such that∥∥∥ε
(h)
F◦Y ,n

∥∥∥ 6 Ch ∑
i=0,1

∥∥∥DiY
∥∥∥

L∞([n−1,n])
. (4.5.30)

iii) If p− q = 1 and
∫
‖x‖61 ‖x‖ νL(dx) < ∞, then, for every 0 < δ < 1/2, there exists a constant

C such that

∥∥∥ε
(h)
F◦Y ,n

∥∥∥ 6C

[
h ∑

i=0,1

∥∥∥Di J
∥∥∥

L∞([n−1,n])
+ h ∑

n−1<s6n

∥∥δLj(s)
∥∥

+h1/2−δ
[
‖W‖L∞([n−1,n]) + ‖W‖Λ1/2−δ([n−1,n])

]]
, (4.5.31)

where the function J is defined below in Eq. (4.5.32).

Proof If p − q > 3, the function I : s 7→ F(n − s)Y(s) is twice differentiable, so Proposi-
tion 4.18 implies that

∥∥∥ε
(h)
F◦Y ,n

∥∥∥ 6 √d
12

h2 sup
t∈[n−1,n]

∥∥D2I(t)
∥∥

6

√
d

12
h2 sup

t∈[n−1,n]

[
C0
∥∥D2Y(t)

∥∥+ C1

∥∥∥D1Y(t)
∥∥∥+ C2 ‖Y(t)‖

]
,

where for i = 0, 1, 2, the number Ci is defined as
∥∥DiF

∥∥
L∞([n−1,n]). The claim thus follows

with C B
√

d/12 maxi=0.1,2{Ci}. If p− q = 2, the paths of I are one time differentiable with
discontinuous, yet bounded derivative, so they are in particular locally Lipschitz and we can
apply Cruz-Uribe and Neugebauer (2002, Corollary 1.4), and obtain

∣∣∣∣[ε(h)F◦Y ,n

]i
∣∣∣∣ 6 h

8

[
sup

n−16ti6n
DIi(ti)− inf

n−16ti6n
DIi(ti)

]
, i = 1, . . . .d,

for each component of ε
(h)
F◦Y ,n. This implies that

∥∥∥ε
(h)
F◦Y ,n

∥∥∥ 6√d max
i=1,....d

∣∣∣∣[ε(h)F◦Y ,n

]i
∣∣∣∣



4.5. Approximate recovery of the Lévy process from discrete-time observations 137

6
h
√

d
8

max
i=1,....d

[
sup

n−16ti6n
DIi(ti)− inf

n−16ti6n
DIi(ti)

]

6
h
√

d
4

max
i=1,....d

sup
n−16t16n

∣∣∣DIi(ti)
∣∣∣ 6 h

√
d

4
sup

n−16t6n
‖DI(t)‖ .

Noting that ‖DI(t)‖ 6 C0 ‖DY(t)‖ + C1 ‖Y(t)‖, the assertion of ii) follows with C equal
to
√

d/4 maxi=0,1{Ci}. If p − q = 1, the paths of Y , and thus of I, are in general, not
differentiable. Using the abbreviation Bq =

[
B0 . . . Bq−1

]
, we can, however, write

Y(t) =BqXq(t) + BqX(p)(t)

=BqXq(t) + BqX(p)(0)− Bq A
∫ t

0
X(s)ds + BqL(t)

=BqXq(t) + BqX(p)(0)− Bq A
∫ t

0
X(s)ds + BqγLt + BqΣLW(t) + BqLj(t), �

where the last line is an application of the Lévy–Itô decomposition. We can now analyse
how the different terms in the last expression contribute to the approximation error ε

(h)
F◦Y .

The function
J : t 7→ BqXq(t) + BqX(p)(0)− Bq A

∫ t

0
X(s)ds + BqγLt (4.5.32)

is differentiable, and one therefore sees by the same argument used to prove ii) that its
contribution to

∥∥∥ε
(h)
F◦Y ,n

∥∥∥ is bounded by a constant multiple of h times ∑i=0,1
∥∥Di J

∥∥
L∞([n−1,n]).

In Lemma 4.20 it has been shown that the contribution from the Gaussian part is of order
h1/2−δ times the sum of the Hölder and the supremum norms of W on the interval [n− 1, n].
Finally, the approximation error for the pure jump Lévy process Lj with summable small
jumps has been shown in Lemma 4.21 to be bounded by a constant multiple of h times the
sum of the absolute sizes of the jumps in the integration interval. Combining these partial
results proves part iii) of the proposition.

It remains to estimate Xq(n). In view of the AR(1) structure given in Eq. (4.4.7), we compute
estimates

X̂(h)
q (n) = eBX̂(h)

q (n− 1) + Î(h)n , X̂(h)
q (0) = X̂(h)

q,0 , n > 1, (4.5.33)

where Î(h)n = Th−1

[n−1,n]e
B(n−·)EqY(·) is the trapezoidal rule approximation to the integral∫ n

n−1 eB(n−s)EqY(s)ds, and X̂(h)
q,0 is a deterministic or random initial value. We introduce the

notation
e(h)X,n = X̂q(n)− Xq(n). (4.5.34)

It is easy to see that the sequence e(h)X satisfies e(h)X,n = eBe(h)X,n−1 + ε
(h)
F◦Y ,n, n ∈ N, where

F : t 7→ eBtEq and ε
(h)
F◦Y ,n is of the form analysed in Proposition 4.19. For the following result

we recall the notion of an absolutely continuous measure. By Lebesgue’s decomposition



138 4. Estimation of the driving Lévy process of MCARMA processes

theorem (Klenke, 2008, Theorem 7.33), every measure µ on Rm can be uniquely decomposed
as µ = µc + µs, where µc and µs are absolutely continuous and singular, respectively, with
respect to m-dimensional Lebesgue measure. If µc is not the zero measure, we say that µ has
a non-trivial absolutely continuous component.

Proposition 4.23 Assume that L is a Lévy process. Let Y be a d-dimensional L-driven MCARMA
process satisfying Assumptions A1 and A2. The sequence e(h)X defined by Eqs. (4.5.33) and (4.5.34)
converges almost surely to a stationary and ergodic sequence which is independent of X̂(h)

q,0 . If, for

some integer k, E ‖L(1)‖k is finite, then the absolute moment E

∥∥∥e(h)X,n

∥∥∥k
is of order O(h2k) as

h→ 0. If, moreover, the distribution of the random variable

∫ 1

0
G̃(1− s)dL(s), G̃(s) =

(
G(s)T (exp(As)Ep)T

)T
, (4.5.35)

where G(s) is defined in Eq. (4.5.18), has a non-trivial absolutely continuous component, then the
process e(h)X is exponentially strongly mixing.

Proof We first observe that

e(h)X,n = e(n−1)Be(h)X,1 +
n−2

∑
ν=0

eνBε
(h)
F◦Y ,n−ν, n > 1,

and define the sequence ẽ(h)X by

ẽ(h)X,n =
∞

∑
ν=0

eνBε
(h)
F◦Y ,n−ν, n ∈ Z.

By this definition, ẽ(h)X is obviously independent of X̂(h)
q,0 . Since ε

(h)
F◦Y is strongly mixing by

Proposition 4.19, it is in particular ergodic (Klenke, 2008, Exercise 20.5.1). The sequence ẽ(h)X

is the unique stationary solution of the AR(1) equations

ẽ(h)X,n = eBẽ(h)X,n−1 + ε
(h)
F◦Y ,n, n ∈ Z,

and an application of Krengel (1985, Theorem 4.3) to the infinite-order moving average
representation of ẽ(h)X shows that this last sequence is ergodic as well. It remains to prove
that e(h)X,n converges to ẽ(h)X,n almost surely as n→ ∞. This follows from

∥∥∥e(h)X,n − ẽ(h)X,n

∥∥∥ 6 ∥∥∥e(n−1)B
∥∥∥ ∥∥∥e(h)X,1

∥∥∥+ ∥∥∥∥∥ ∞

∑
ν=n−1

eνBε
(h)
F◦Y ,n−ν

∥∥∥∥∥ ,

the fact that by Lemma 4.9 the eigenvalues of the matrix B have strictly negative real parts,
and the almost sure convergence of the last sum (Brockwell and Davis, 1991, Proposition
3.1.1). For the proof that the kth moments of e(h)X,n are of order O(h2k) we use the following
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generalization of Hölder’s inequality, which can be proved by induction: for any k random
variables Z1, . . . , Zk and positive numbers p1, . . . , pk such that ∑ 1/pi = 1, it holds that

E (Z1 · . . . · Zk) 6
k

∏
i=1

(
EZpi

i

)1/pi . (4.5.36)

Choosing pi = 1/k, i = 1, . . . , k, and using that, by Proposition 4.19, there exists a constant

C, independent of n, such that E

∥∥∥ε
(h)
F◦Y ,n

∥∥∥k
6 Ch2k, it follows that

E

∥∥∥ẽ(h)X,n

∥∥∥k
6

∞

∑
ν1=0
· . . . ·

∞

∑
νk=0

∥∥∥eν1B
∥∥∥ · . . . ·

∥∥∥eνkB
∥∥∥E

(∥∥∥ε
(h)
F◦Y ,n−ν1

∥∥∥ · . . . ·
∥∥∥ε

(h)
F◦Y ,n−νk

∥∥∥)

6Ch2k

(
∞

∑
ν=0

∥∥∥eνB
∥∥∥)k

,

which is of order O(h2k) because the sum is finite due to the eigenvalues of B having strictly
negative real parts. In order to show that the sequence e(h)X is strongly mixing, we note that

the stacked process
(

e(h)X

T
XT

)T
satisfies the AR(1) equations

(
e(h)X,n

X(n)

)
=

(
eB Γ
0 eA

)(
e(h)X,n−1

X(n− 1)

)
+ Zn, n ∈ Z,

Zn =
∫ n

n−1

(
G(n− s)
eA(n−s)Ep

)
dL(s), n ∈ Z,

where (Zn)n∈Z is an i. i. d. noise sequence. An extension of the arguments leading to
Mokkadem (1988, Theorem 1), which is detailed in the proof of Theorem 2.8, shows that
ARMA, and in particular, AR(1) processes are strongly mixing with exponentially decaying
mixing coefficients if the driving noise sequence has a non-trivial absolutely continuous
component, which is precisely what is assumed in the proposition. �

Remark 4.24 Sufficient conditions for the assumption made in the previous proposition
to hold can be obtained from the observation that the random variable

∫ 1
0 G̃(1− s)dL(s)

is infinitely divisible, and that its characteristic triplet can be obtained as in Eqs. (4.2.3).
Sufficient conditions for an infinitely divisible random variable to be absolutely continuous,
in terms of its characteristic triplet, can be found in Tucker (1965) and Sato (1999, Section 27).
Since mixing is not our primary concern in this chapter, and our results hold without it, we
do not pursue this issue further here.



140 4. Estimation of the driving Lévy process of MCARMA processes

4.5.3. Approximation of the increments ∆Ln

If we combine what we have so far, it follows that we can obtain estimates ∆̂Ln of the
increments of the Lévy process L by discretizing Eq. (4.4.6), that is

∆̂L
(h)
n =

p−q−1

∑
ν=0

[
ET

q Bp−q−1−νEq +
p−q−2

∑
k=ν

Ap−q−k−1ET
q Bk−νEq

]
[∆ν

h[Y ](n)− ∆ν
h[Y ](n− 1)]

+

[
AqB−1 +

p−q

∑
k=1

Ap−q−k+1ET
q Bk−1 + ET

q Bp−q

] [
X̂(h)

q (n)− X̂(h)
q (n− 1)

]
+ Ap

[
B∼1

q B0

]−1
B∼1

q Th−1

[n−1,n]Y , (4.5.37)

where the forward differences ∆ν
h[Y ](n) are defined in Eq. (4.5.1), the estimates X̂(h)

q are
computed recursively by Eq. (4.5.33), and the formula for the trapezoidal approximation
Th−1

[n−1,n]Y is given in Eq. (4.5.12). Writing

∆̂L
(h)
n = ∆Ln + ε

(h)
n , (4.5.38)

the approximation error ε
(h)
n is given by

ε
(h)
n =

p−q−1

∑
ν=0

[
ET

q Bp−q−1−νEq +
p−q−2

∑
k=ν

Ap−q−k−1ET
q Bk−νEq

] [
eν,(h)

Y ,n − eν,(h)
Y ,n−1

]
+

[
AqB−1 +

p−q

∑
k=1

Ap−q−k+1ET
q Bk−1 + ET

q Bp−q

] [
e(h)X,n − e(h)X,n−1

]
+ ApB−1

0 Bq−1ε
(h)
Y ,n.

The following theorem summarizes the results of the previous two subsections about the
probabilistic properties of the sequence of approximation errors ε(h), both for fixed values of
h and as h tends to zero.

Theorem 4.25 (Properties of ∆̂L
(h)
n ) Assume that L is a Lévy process, and that Y is an L-driven

multivariate CARMA process given by the state space representation (4.3.10) and satisfying As-
sumptions A1 and A2. Denote by ∆Ln = L(n) − L(n − 1) the unit increments of L and by

∆̂L
(h)
n the estimates of the unit increments of L obtained from Eq. (4.5.38). The stochastic process

ε(h) = ∆̂L
(h) − ∆L has the following properties:

i) There exists a stationary, ergodic stochastic process ε̃(h) such that
∥∥∥ε

(h)
n − ε̃

(h)
n

∥∥∥ → 0 almost
surely as n → ∞. If the random variable defined in Eq. (4.5.35) has a non-trivial absolutely
continuous component with respect to the Lebesgue measure, then ε(h) is exponentially strongly
mixing.
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ii) If E ‖L(1)‖(k)0 < ∞, for some positive integer k, then there exists a constant C > 0 such that,
for κ = 1, . . . , k and 0 < h 6 1,

sup
n∈N

E

∥∥∥ε
(h)
n

∥∥∥κ
6 Ch1/2. (4.5.39)

Proof Both claims follow directly from Propositions 4.17, 4.19 and 4.23. �

For the purpose of estimating a parametric model of the Lévy process L based on the noisy

observations ∆̂L
(h)

, it is important not only to have a sound quantitative understanding of
the extent to which the true increments ∆L differ from the estimated increments ∆̂L, but also
to know how strongly this difference is affected when a function is applied to the increments.
This issue is investigated in the next lemma.

Lemma 4.26 Let f : Rm → Rq be a function with bounded kth derivative, and let l be some fixed
positive integer. Assume that E ‖L(1)‖(kl)0 < ∞, and further that, for any integer 1 6 r 6 k− 1
and any integers 1 6 i1, . . . , ir 6 m, the moments of the partial derivatives of f satisfy

E ‖∂i1 · · · ∂ir f (L(1))‖kl < ∞. (4.5.40)

It then holds that

sup
n∈N

E

∥∥∥∥ f
(

∆̂L
(h)
n

)
− f (∆Ln)

∥∥∥∥l

= O(h1/2), (4.5.41)

where the approximate increments ∆̂L
(h)
n are defined by Eq. (4.5.37).

Proof By Taylor’s theorem (Apostol, 1974, Theorem 12.14) we have that

f
(

∆̂L
(h)
n

)
− f (∆Ln) = f

(
∆Ln + ε

(h)
n

)
− f (∆Ln)

=
k−1

∑
r=1

1
r!

d(r) f (∆Ln)
(

ε
(h)
n

)r
+ R

(
∆Ln; ε

(h)
n

)
,

where

d(r) f (∆Ln)
(

ε
(h)
n

)r
=

m

∑
i1=1
· · ·

m

∑
ir=1

∂i1 · · · ∂ir f (∆Ln) ε
(h),i1
n · · · ε(h),irn

defines the action of the rth derivative of f . We note that

∥∥∥d(r) f (∆Ln)
(

ε
(h)
n

)r∥∥∥ 6 m

∑
i1=1
· · ·

m

∑
ir=1
‖∂i1 · · · ∂ir f (∆Ln)‖

∥∥∥ε
(h)
n

∥∥∥r
C
∥∥∥d(r) f (∆Ln)

∥∥∥ ∥∥∥ε
(h)
n

∥∥∥r
,
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and assumption (4.5.40) implies that

E

∥∥∥d(r) f (∆Ln)
∥∥∥kl
6mrlk

m

∑
i1=1
· · ·

m

∑
ir=1

E ‖∂i1 · · · ∂ir f (∆Ln)‖kl

<∞.

It follows from the boundedness of the kth derivative of f that the remainder R
(

∆Ln; ε
(h)
n

)
satisfies ∥∥∥R

(
∆Ln; ε

(h)
n

)∥∥∥ 6 C
∥∥∥ε

(h)
n

∥∥∥k
,

for some constant C. In particular,

E

∥∥∥∥ f
(

∆̂L
(h)
n

)
− f (∆Ln)

∥∥∥∥l

62lE

(
k−1

∑
r=1

1
r!

∥∥∥d(r) f (∆Ln)
(

ε
(h)
n

)r∥∥∥)l

+ 2lE

∥∥∥R
(

∆Ln; ε
(h)
n

)∥∥∥l

62l
k−1

∑
r1=1
· · · · ·

k−1

∑
rl=1

1
r1! · . . . · rl !

E

(∥∥∥d(r1) f (∆Ln)
∥∥∥ · . . . ·

∥∥∥d(rl) f (∆Ln)
∥∥∥ ∥∥∥ε

(h)
n

∥∥∥r1+...+rl
)

+ C2lE

∥∥∥ε
(h)
n

∥∥∥kl
.

By Theorem 4.25, the assumption that L(1) has a finite (kl)0th absolute moment implies that

E

∥∥∥ε
(h)
n

∥∥∥κ
is of order O(hκ/κ0) as h → 0 for all 1 6 κ 6 k, where the constant implicit in the

O(·) notation does not depend on n. It thus follows by an application of the generalized
Hölder inequality (4.5.36) with exponents p1 = . . . = pl = kl, pl+1 = k/(k− 1) that

E

∥∥∥∥ f
(

∆̂L
(h)
n

)
− f (∆Ln)

∥∥∥∥l

6
k−1

∑
r1,...,rl=1

[
l

∏
i=1

2
ri!

E

(∥∥∥d(ri) f (∆Ln)
∥∥∥kl
) 1

kl
]

E

(∥∥∥ε
(h)
n

∥∥∥ (r1+...+rl )k
k−1

) k−1
k

︸                            ︷︷                            ︸
=O

(
h

r1+...+rl
[(r1+...+rl )k/(k−1)]0

)
+O

(
h

kl
(kl)0

)
.

Since for any α ∈ [0, 2] and any positive integer r it holds that (rα)0 6 rα0, the dominating
term in this sum is the one corresponding to r1 = . . . = rl = 1, which is of order O(h1/2).
Thus Eq. (4.5.41) is shown. �
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4.6. Generalized method of moments estimation with noisy data

In this section we consider the problem of estimating a parametric model Pϑ if only a
disturbed i. i. d. sample of the true distribution is available. More precisely, assume that Θ is
some parameter space, that (Pϑ : ϑ ∈ Θ) is a family of probability distributions on Rm, and
that

XN = (X1, . . . , XN), Rm 3 Xn ∼ Pϑ0 , (4.6.1)

is an i. i. d. sample from Pϑ0 . The classical generalized method of moments (abbreviated as
GMM) is a well-established procedure for estimating the value of ϑ0 from the observations
XN , see for instance Hall (2005); Hansen (1982); Newey and McFadden (1994) for a general
introduction. After introducing some relevant notation and taking a closer look at two
particularly important special cases of this class of estimators, we state the result about the
consistency and asymptotic normality of GMM estimators for easy reference in Theorem 4.27.
Our goal in this section is to extend this result to the situation where the sample XN from
the distribution Pϑ0 cannot be observed directly. Instead, we assume that, for each, h > 0
there is a stochastic process ε(h) not necessarily independent of XN , which we think of
as a disturbance to the i. i. d. sample XN , and the value of ϑ0 is to be estimated from the
observations (X1 + ε

(h)
1 , . . . , XN + ε

(h)
N ). In Theorem 4.28 we prove under a mild moment

assumption that the asymptotic properties of the GMM estimator, as N becomes large and h
becomes small, are not altered by the inclusion of the noise process ε(h). Finally, we use this
result in Theorem 4.34 to answer the question of how to estimate a parametric model for the
driving Lévy process of a multivariate CARMA process from high-frequency discrete-time
observations.

Underlying the construction of any GMM estimator is the existence of a function g :
Rm ×Θ→ Rq such that for X1 ∼ Pϑ0 ,

Eg (X1, ϑ) = 0⇔ ϑ = ϑ0. (4.6.2)

The analogy principle, that is the philosophy that unknown population averages should be
approximated by sample averages, then suggests that an estimator ϑ̂

N of ϑ0 based on the
sample XN , given by Eq. (4.6.1), can be defined as

ϑ̂
N
= argminϑ∈Θ

∥∥∥∥∥ 1
N

N

∑
n=1

g (Xn, ϑ)

∥∥∥∥∥
WN

, (4.6.3)

where WN is a positive definite, possibly data-dependent, q× q matrix defining the norm

‖·‖WN
: Rq → R+, ‖x‖WN

= (xTWNx)1/2, x ∈ Rq.
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As we will see shortly, the choice of WN influences the asymptotic variance Σ of the
estimator ϑ̂

N , given in Eq. (4.6.5). The optimal choice of weighting matrices WN is described
in Corollary 4.33.

The advantage in considering a GMM approach to the estimation problem is that it
contains many classical estimation procedures as special cases. Here, we only mention two
such special cases which are particularly useful in the context of estimating a parametric
model for a Lévy process. It is an immediate consequence of the Definition 4.1 that a Lévy-
process L is uniquely determined by the distribution of the unit increments L(n)− L(n− 1),
which, in turn, is characterized by their common characteristic function E exp{i〈u, L(n)−
L(n− 1)〉} = exp{ψ(u)} in its Lévy–Khintchine form (Eq. (4.2.1)). It is therefore natural
to specify a parametric model for L by parametrizing the characteristic exponents, which
amounts to defining, for each ϑ ∈ Θ, a function u 7→ ψϑ(u) of the form (4.2.1). A promising
estimator for ϑ0 in such a model is that value of ϑ that best matches the characteristic function
u 7→ exp {ψϑ(u)} with its empirical counterpart. This leads to choosing the function g in
Eq. (4.6.3) as

g : Rm ×Θ→ Rq : (X, ϑ) 7→

 Re
(

ei〈uk ,X〉 − eψϑ(uk)
)

Im
(

ei〈uk ,X〉 − eψϑ(uk)
) 

k=1,...,q/2

,

where u1, . . . , uq/2 are suitable elements of Rm at which the characteristic functions are
to be matched. The value of q ∈ 2N as well as the particular uj are chosen such that
condition (4.6.2) holds, which means that the model is identifiable. Another special case of
the generalized method of moments estimator of considerable practical importance arises
if Θ is a subset of Rr, and the parametric family of distributions Pϑ is given as a family

of probability densities pϑ(·). Denoting by ∇ =
(

∂/∂ϑ1 · · · ∂/∂ϑr
)T

the differential
operator and choosing the moment function g as

g : Rm ×Θ→ Rr : (X, ϑ) 7→ ∇ϑ log pϑ(X),

one obtains the classical maximum likelihood estimator, which, under some regularity
assumptions about the densities pϑ, enjoys well-known desirable asymptotic properties
(van der Vaart, 1998, Section 5.5).

In order to be able to state the classical result about the asymptotic properties of the
generalized method of moments estimator for a general moment function g, we introduce
the notations

Ω0 = Eg(X1, ϑ0)g(X1, ϑ0)
T, and G0 = −E∇ϑ g(X1, ϑ0)

for the covariance matrix of the moments and the generalized score matrix, respectively.
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Theorem 4.27 (Newey and McFadden (1994, Theorem 2.6 and Theorem 3.4) ) Assume that
(Pϑ)ϑ∈Θ is a parametric family of probability distributions, and let XN = (X1, . . . , XN) be an i. i. d.
sample from the distribution Pϑ0 of length N. Denote by ϑ̂

N the GMM estimator based on XN

defined in Eq. (4.6.3). Assume that the following conditions hold.

i) The domain Θ of ϑ is a compact subset of Rr, and ϑ0 is in the interior of Θ.

ii) For each ϑ ∈ Θ, the function x 7→ g(x, ϑ) is measurable; for almost every x ∈ Rm, the function
ϑ 7→ g(x, ϑ) is continuous on Θ and continuously differentiable in a neighbourhood U of ϑ0.
Moreover there exists a function α : Rm → R satisfying Eα(X1) < ∞ such that, for every
ϑ1, ϑ2 ∈ U, it holds that ‖∇ϑ g(x, ϑ1)−∇ϑ g(x, ϑ2)‖ 6 α(x) ‖ϑ1 − ϑ2‖.

iii) Eg (X1, ϑ) = 0 if and only if ϑ = ϑ0.

iv) E ‖g (X1, ϑ)‖2 < ∞ for all ϑ ∈ Θ, Ω0 is a positive definite q× q matrix, and G0 is a q× r
matrix of rank r.

v) WN are q× q matrices converging in probability to a positive definite matrix W.

vi) There exists a function α : Rm → R satisfying Eα(X1) < ∞ such that
∥∥g(x, ϑ)g(x, ϑ)T

∥∥ 6
α(x) and ‖∇ϑ g(x, ϑ)‖ 6 α(x).

It then holds that ϑ̂
N is consistent and asymptotically normally distributed, that is

N1/2(ϑ̂
N − ϑ0)

d−→ N (0r, Σ), N → ∞, (4.6.4)

where the asymptotic covariance matrix Σ is given by

Σ =
[

GT
0 WG0

]−1
GT

0 WΩ0WG0

[
GT

0 WG0

]−1
. (4.6.5)

A result analogous to Theorem 4.27 holds in the more general set-up, where we do not
have access to the sample XN but only to a noisy variant. We first introduce the necessary
notation, which we will need in the proof. The generalized method of moments estimator
ˆ̂ϑN,h of ϑ0 based on the disturbed sample XN,h = (X1 + ε

(h)
1 , . . . , XN + ε

(h)
N ) is defined as

ˆ̂ϑN,h = argminϑ∈Θ QN,h(ϑ), (4.6.6)

where the random criterion function QN,h : Θ→ R+ has the form

QN,h(ϑ) = ‖mN,h(ϑ)‖2
WN,h

(4.6.7)
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and mN,h : Θ→ Rq is given by

mN,h(ϑ) =
1
N

N

∑
n=1

g
(

Xn + ε
(h)
n , ϑ

)
, g : Rm ×Θ→ Rq.

Again, WN,h is a positive definite q× q matrix, which might depend on the sample XN,h. As
before, we write Ω(ϑ) = Eg (X1, ϑ) g (X1, ϑ)T, and

ΩN,h(ϑ) =
1
N

N

∑
n=1

g
(

Xn + ε
(h)
n , ϑ

)
g
(

Xn + ε
(h)
n , ϑ

)T

for the covariance matrix of the moments g and its empirical counterpart. The sample
analogue of the score matrix G(ϑ) = −E∇ϑ g (X1, ϑ) is defined as

GN,h(ϑ) = −
1
N

N

∑
n=1
∇ϑ g

(
Xn + ε

(h)
n , ϑ

)
.

Theorem 4.28 (GMM with noisy data) Assume that (Pϑ)ϑ∈Θ is a parametric family of proba-
bility distributions, that XN is an i. i. d. sample from the distribution Pϑ0 of length N, and that, for
each h > 0, there is a stochastic process ε(h) =

(
ε
(h)
n

)
n∈N

. Denote by ˆ̂ϑN,h the GMM estimator

based on XN,h defined in Eq. (4.6.6). In addition to the assumptions of Theorem 4.27 assume that
the following hold.

vii) There exists a function β : R+ → R+ satisfying β(h)→ 0, as h→ 0, such that

sup
n

E

∥∥∥g
(

Xn + ε
(h)
n , ϑ0

)
− g(Xn, ϑ0)

∥∥∥ = O (β(h)) , (4.6.8)

as h tends to zero.

viii) For all ϑ ∈ Θ, it holds that supn E

∥∥∥g
(

Xn + ε
(h)
n , ϑ

)
− g (Xn, ϑ)

∥∥∥2
→ 0, as h→ 0.

ix) For all ϑ ∈ Θ, the derivative of g satisfies supn E

∥∥∥∇ϑ g
(

Xn + ε
(h)
n , ϑ

)
−∇ϑ g (X1, ϑ)

∥∥∥→ 0,
as h→ 0.

If h = hN is chosen dependent on N such that N1/2β(hN)→ 0 as N → ∞, then it holds that ˆ̂ϑN,hN

is consistent and asymptotically normally distributed with the same asymptotic covariance as ϑ̂
N ,

given in Eq. (4.6.5).

The proof of Theorem 4.28 closely follows the arguments in Newey and McFadden (1994).
We give a detailed proof in order to clarify the impact of the additional parameter h and the
difficulties arising from the need to take the double limit N → ∞ and h → 0. We first lay
ground for the proof by recalling a sequence of auxiliary lemmata.
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Lemma 4.29 For sequences (Yn)n>1, (Zn)n>1 of vector- or matrix-valued random variables the
following hold:

i) For every constant c, Yn
p−→ c if and only if Yn

d−→ c.

ii) If Yn
d−→ Y∞ and Zn −Yn

p−→ 0, then Zn
d−→ Y∞.

iii) Denote by supp Yn the support of Yn. If Yn
d−→ Y∞, for some Y∞, and the function f is defined

on
⋂

n>1 supp Yn and continuous on an open set containing supp Y∞, then f (Yn)
d−→ f (Y∞).

Proof Parts i) and ii) are proved in van der Vaart (1998, Theorem 2.7). Assertion iii) is
Klenke (2008, Theorem 13.25)). �

The next result that we will need is a uniform version of the weak law of large numbers,
given by (Newey and McFadden, 1994, Lemma 2.4).

Lemma 4.30 Assume that, for every ϑ ∈ Θ, Θ a compact subset of Rr, there is a sequence
(Yn(ϑ))n>1 of independent identically distributed random variables with finite expectation ψ(ϑ) =

EY1(ϑ) < ∞. Further assume that, for each ϑ′ ∈ Θ, the random function ϑ 7→ Y1(ϑ) is al-
most surely continuous at ϑ′ and that there exists a random variable Z satisfying EZ < ∞,
such that supϑ∈Θ ‖Y1(ϑ)‖ 6 Z. It then holds that the function ϑ 7→ ψ(ϑ) is continuous, and
that the time averages YN(ϑ) = ∑N

n=1 Yn(ϑ) converge uniformly in probability to ψ(ϑ), that is
supϑ∈Θ

∥∥YN(ϑ)− ψ(ϑ)
∥∥ p−→ 0.

Lemma 4.31 For each ϑ ∈ Θ, let (Yn(ϑ))n>1 be a sequence of random variables. If Yn(ϑ)
p−→ Y∞(ϑ)

uniformly in ϑ, the sequence (ϑn)n>1 of random elements of Θ converges in probability to some ϑ∞,
and the mapping ϑ 7→ Y∞(ϑ) is almost surely continuous at ϑ∞, then Yn(ϑn)

p−→ Y∞(ϑ∞).

Proof For any ε > 0, it holds that

P (‖Yn(ϑn)−Y∞(ϑ∞)‖ 6 ε) >P
(
‖Yn(ϑn)−Y∞(ϑn)‖ 6

ε

2
and ‖Y∞(ϑn)−Y∞(ϑ∞)‖ 6

ε

2

)
>P
(
‖Yn(ϑn)−Y∞(ϑn)‖ 6

ε

2

)
+ P

(
‖Y∞(ϑn)−Y∞(ϑ∞)‖ 6

ε

2

)
− 1

→1.

The first probability in the last line converges to one as n tends to infinity by the assumption
of uniform convergence of Yn to Y∞, the second because Y∞ is almost surely continuous at
ϑ∞ and ϑn

p−→ ϑ∞. �

We can now give the proof of the asymptotic properties of GMM estimators with noisy data.
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Proof (of Theorem 4.28) The proof consists of four steps. In the first step we show that
N1/2mN,h(ϑ0) is asymptotically normally distributed with mean zero and covariance matrix
Ω0, that mN,h(ϑ), GN,h(ϑ) and ΩN,h(ϑ) converge uniformly in probability to Eg (X1, ϑ), G(ϑ)

and Ω(ϑ), respectively, and that N QN,h(ϑ0) is bounded in probability. The second step
consists in showing that any estimator ϑ̃

N,h that approximately minimizes the criterion
function QN,h in the sense that mN,h(ϑ̃

N,h
)

p−→ 0, converges in probability to ϑ0. In step 3
we prove that stochastic boundedness of N QN,h(ϑ̃

N,h
) implies the stochastic boundedness

of N1/2(ϑ̃
N,h − ϑ0). We will see that steps 2 and 3 imply the consistency of ˆ̂ϑN,h for any

sequence of weighting matrices WN,h. In the last step the mean-value theorem is applied to
the first-order condition for ˆ̂ϑN,h to prove the asymptotic normality of N1/2( ˆ̂ϑN,h − ϑ0).

Step 1 In order to prove that N1/2mN,h(ϑ0) is asymptotically normally distributed, we
observe that

N1/2mN,h(ϑ0) =
1

N1/2

N

∑
n=1

g(Xn, ϑ0) +
1

N1/2

N

∑
n=1

[
g
(

Xn + ε
(h)
n , ϑ0

)
− g(Xn, ϑ0)

]
.

The first term in this expression is asymptotically normal by the Lindeberg–Lévy Central
Limit Theorem (Klenke, 2008, Theorem 15.37) since the summands g(Xn, ϑ0) are i. i. d. with
finite variance. It therefore suffices to show that the second term converges to zero in
probability as N → ∞ if h = hN satisfies N1/2β(hN)→ 0. For convenience, we introduce the
notation Y(h)

n = g(X1 + ε
(h)
1 , ϑ0)− g(X1, ϑ0); by the linearity of expectation and assumption

vii), it follows that

E

∥∥∥∥∥N−1/2
N

∑
n=1

Y(h)
n

∥∥∥∥∥ 6 N−1/2
N

∑
n=1

E

∥∥∥Y(h)
n

∥∥∥ 6 CN1/2β(h), for some C > 0. (4.6.9)

This proves that N−1/2 ∑N
n=1 Y(hN)

n converges in L1, and hence in probability, to zero, thereby
showing the asymptotic normality of N1/2mN,h(ϑ0), that is

Ω−1/2
0 N1/2mN,h(ϑ0) C UN,h

d−→ U ∼ N (0q, 1q), as N → ∞, h→ 0, N1/2β(h)→ 0.
(4.6.10)

We now turn to the uniform convergence in probability of mN,h(ϑ), GN,h(ϑ) and ΩN,h(ϑ):
point-wise convergence of mN,h(ϑ) to Eg (X1, ϑ) follows from the observation that

mN,h(ϑ) =
1
N

N

∑
n=1

g (Xn, ϑ) +
1
N

N

∑
n=1

[
g
(

Xn + ε
(h)
n , ϑ

)
− g (Xn, ϑ)

]
.

As a sample average the first term converges to Eg (X1, ϑ) as N → ∞ by the law of large
numbers (Klenke, 2008, Theorem 5.16). As in Eq. (4.6.9) one sees that the second term
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converges in L1 and therefore in probability to zero, as N → ∞ and h→ 0. Analogously,

GN,h(ϑ) =
1
N

N

∑
n=1
∇ϑ g (Xn, ϑ) +

1
N

N

∑
n=1

[
∇ϑ g

(
Xn + ε

(h)
n , ϑ

)
−∇ϑ g (Xn, ϑ)

]
.

converges point-wise in probability to G(ϑ) = −E∇g (X1, ϑ) by assumption ix). Finally,

ΩN,h(ϑ) =
1
N

N

∑
n=1

g (Xn, ϑ) g (Xn, ϑ)T +
1
N

N

∑
n=1

Y(h)
n

(
Y(h)

n

)T

+
1
N

N

∑
n=1

g (Xn, ϑ)
(

Y(h)
n

)T
+

1
N

N

∑
n=1

Y(h)
n g (Xn, ϑ)T,

where we have again used the notation Y(h)
n = g

(
Xn + ε

(h)
n , ϑ

)
− g (Xn, ϑ). The first term in

this expression for ΩN,h(ϑ) converges to Ω(ϑ) = Eg (X1, ϑ) g (X1, ϑ)T by the law of large
numbers, the second term converges to zero in L1 and in probability due to assumption viii).
An application of the Cauchy–Schwarz inequality to the third term shows that

E

∥∥∥∥∥ 1
N

N

∑
n=1

g (Xn, ϑ)
(

Y(h)
n

)T
∥∥∥∥∥ 6 1

N

N

∑
n=1

E

∥∥∥∥g (Xn, ϑ)
(

Y(h)
n

)T
∥∥∥∥

6 sup
n

E

∥∥∥∥g (Xn, ϑ)
(

Y(h)
n

)T
∥∥∥∥

6 sup
n

E ‖g (Xn, ϑ)‖
∥∥∥Y(h)

n

∥∥∥
6

√
E ‖g (X1, ϑ)‖2

√
sup

n
E

∥∥∥Y(h)
n

∥∥∥2
.

The first factor is finite by assumption iv), the second one converges to zero as h → 0
by assumption viii). By assumptions ii) and vi), the limiting functions ϑ 7→ Eg (X1, ϑ),
ϑ 7→ G(ϑ) and ϑ 7→ Ω(ϑ) are continuous and dominated, and since the domain Θ is
compact by assumption i), we can apply Lemma 4.30 to conclude that the convergence is
uniform in ϑ. Taking into consideration the assumed convergence in probability of WN,h

(assumption v)) as well as Eq. (4.6.10), Lemma 4.29 implies that N QN,h(ϑ0) is bounded in
probability.

Step 2 In this step the consistency of any estimator ϑ̃
N,h satisfying QN,h(ϑ̃

N,h
)

p−→ 0 is
proved. In the first step we have established the uniform convergence in probability of
mN,h(ϑ) to Eg (X1, ϑ). In conjunction with assumption v) this implies that the sequence
supϑ∈Θ

∣∣∣QN,h(ϑ)− ‖Eg (X1, ϑ)‖2
W

∣∣∣ converges to zero in probability. To establish consistency

of ϑ̃
N,h, we shall show that, for any neighbourhood U of ϑ0 and every ε > 0, there exists an

Nε(U) and an hε(U) such that P
(

ϑ̃
N,h ∈ U

)
> 1− ε for all N > Nε(U) and h < hε(U). For
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given U, we define δ(U) B infϑ∈Θ\U ‖Eg (X1, ϑ)‖W which is strictly positive by assumptions
i) to iii). Choosing Nε(U) and hε(U) such that

P
(

QN,h(ϑ̃
N,h

) 6 δ(U)/2
)
>1− ε/2,

P

(
sup
ϑ∈Θ
|QN,h(ϑ)− ‖Eg (X1, ϑ)‖W | 6 δ(U)/2

)
>1− ε/2,

for all N > Nε(U) and h 6 hε(U), it follows that

P
(

ϑ̃
N,h ∈ U

)
>P
(∥∥∥Eg(X1, ϑ̃

N,h
)
∥∥∥

W
6 δ(U)

)
>P

(
QN,h(ϑ̃

N,h
) 6

δ(U)

2
and sup

ϑ∈Θ
|QN,h(ϑ)− ‖Eg (X1, ϑ)‖W | 6

δ(U)

2

)
>1− ε,

where in the last line we used the relation P(A ∩ B) > P(A) + P(B)− 1.

Step 3 This step is devoted to the implication that if N QN,h(ϑ̃
N,h

) is bounded in probability,
then the sequence N1/2(ϑ̃

N,h − ϑ0) is bounded in probability as well. The assumption
N QN,h(ϑ̃

N,h
) = Op(1) implies that QN,h(ϑ̃

N,h
)

p−→ 0 and therefore, by the previous step, that

ϑ̃
N,h p−→ ϑ0. By the mean-value theorem, there exist parameter values ϑ∗i ∈ Θ, i = 1, . . . , r, of

the form ϑ∗i = ϑ0 + ci(ϑ̃
N,h − ϑ0), 0 6 ci 6 1, such that we can write

N1/2mN,h(ϑ̃
N,h

) =N1/2mN,h(ϑ0) +∇ϑmN,h(ϑ
∗)N1/2(ϑ̃

N,h − ϑ0)

=Ω1/2
0 UN,h − GN,h(ϑ

∗)N1/2(ϑ̃
N,h − ϑ0), (4.6.11)

where GN,h(ϑ
∗) denotes the matrix whose ith row coincides with the ith row of G(ϑ∗i ), and

UN,h is defined in Eq. (4.6.10). By applying the triangle inequality of the norm ‖·‖WN,h
to the

vector
GN,h(ϑ

∗)N1/2(ϑ̃
N,h − ϑ0) = Ω1/2

0 UN,h − N1/2mN,h(ϑ̃
N,h

)

one obtains that∥∥∥GN,h(ϑ
∗)N1/2(ϑ̃

N,h − ϑ0)
∥∥∥2

WN,h
6 2

∥∥∥Ω1/2
0 UN,h

∥∥∥2

WN,h
+ 2N QN,h(ϑ̃

N,h
).

Since UN,h converges in distribution to a standard normal and WN,h converges in proba-
bility, the first term on the right hand side of the last display converges in distribution by
Lemma 4.29 and is in particular bounded in probability. By our hypothesis, N QN,h(ϑ̃

N,h
) is
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bounded in probability, and so it follows that∥∥∥GN,h(ϑ
∗)N1/2(ϑ̃

N,h − ϑ0)
∥∥∥

WN,h
= Op(1). (4.6.12)

It follows from the uniform convergence in probability of GN,h(ϑ) to G(ϑ), the fact that
ϑ∗i

p−→ ϑ0, and Lemma 4.31 applied to the rows of GN,h that

GN,h(ϑ
∗)TWN,hGN,h(ϑ

∗)
p−→ GT

0 WG0;

this in turn implies together with Eq. (4.6.12) that N1/2(ϑ̃
N,h − ϑ0) is bounded in probability.

Step 4 In this last step we prove that the estimator ˆ̂ϑN,h = argminϑ∈Θ QN,h(ϑ) is asymp-
totically normally distributed. The definition of ˆ̂ϑN,h implies that QN,h(

ˆ̂ϑN,h) 6 QN,h(ϑ0).
We have shown in the first step that N QN,h(ϑ0) is bounded in probability and hence so
is N QN,h(

ˆ̂ϑN,h). This implies by step 2 that ˆ̂ϑN,h is consistent and that N1/2( ˆ̂ϑN,h − ϑ0) is
bounded in probability. Since ˆ̂ϑN,h is an extremal point of QN,h we obtain by setting the
derivative equal to zero that GN,h(

ˆ̂ϑN,h)TWN,hN1/2mN,h(
ˆ̂ϑN,h) = 0. By combining the Taylor

expansion (4.6.11) with this first-order condition it follows that

0 = GN,h(
ˆ̂ϑN,h)TWN,hΩ1/2

0 UN,h − GN,h(
ˆ̂ϑN,h)TWN,hGN,h(ϑ

∗)N1/2( ˆ̂ϑN,h − ϑ0).

As before one sees that GN,h(
ˆ̂ϑN,h)TWN,hGN,h(ϑ

∗) converges in probability to the non-singular
limit GT

0 WG0, which means that the vector

N1/2( ˆ̂ϑN,h − ϑ0) =
[

GN,h(
ˆ̂ϑN,h)TWN,hGN,h(ϑ

∗)
]−1

GN,h(
ˆ̂ϑN,h)TWN,hΩ1/2

0 UN,h

exists with probability approaching one. Since[
GN,h(

ˆ̂ϑN,h)TWN,hGN,h(ϑ
∗)
]−1

GN,h(
ˆ̂ϑN,h)TWN,h

p−→
[

GT
0 WG0

]−1
GT

0 W,

it follows from Lemma 4.29 that

N1/2( ˆ̂ϑN,h − ϑ0)
d−→
[

GT
0 WG0

]−1
GT

0 WΩ1/2
0 U,

the limit on the right being a normally distributed random vector with covariance matrix
Σ =

[
GT

0 WG0
]−1 GT

0 WΩ0WG0
[
GT

0 WG0
]−1. If the dimension r of the parameter space Θ

is equal to the dimension q of the moment vector and the matrix G0 is thus square or if

W = Ω−1
0 , it follows that Σ =

[
GT

0 Ω−1
0 G0

]−1
. �
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Remark 4.32 It seems possible to extend most aspects of the asymptotic theory of the
generalized method of moments beyond the Central Limit Theorem 4.27 to deal, for example,
with non-compact parameter spaces and applications to hypothesis testing based on a
disturbed sample as in Theorem 6.2. We choose not to pursue these possibilities further at
the present stage.

In view of Lemma 4.31, assumption v) of Theorem 4.28 is satisfied if we choose WN,h =

WN,h(ϑ̄
N,h

), where ϑ̄
N,h is a consistent estimator of ϑ0, and the functions ϑ 7→ WN,h(ϑ)

converge uniformly in probability to ϑ 7→ W(ϑ). In this way one can construct a sequence
WN,h of weighting matrices converging in probability to Ω−1

0 . For this two-stage GMM
estimation procedure one has the following optimality result.

Corollary 4.33 Let ϑ̃
N,h be the estimate of ϑ obtained from maximizing the W-norm of mN,h(ϑ)

for any fixed q× q positive definite matrix W and let ˆ̂ϑN,h be the estimate obtained from using the
random weighting matrix

W̃N,h = ΩN,h(ϑ̃
N,h

)−1 =

[
1
N

N

∑
n=1

g
(

Xn + ε
(h)
n , ϑ̃

N,h
)T

g
(

Xn + ε
(h)
n , ϑ̃

N,h
)]−1

. (4.6.13)

Under the conditions of Theorem 4.28, the estimator ˆ̂ϑN,h is consistent and asymptotically normally
distributed. In the partial order induced by positive semidefiniteness, the asymptotic covariance

matrix of the limiting normal distribution,
[

GT
0 Ω−1

0 G0

]−1
, is smaller than or equal to the covariance

matrix obtained from every other sequence of weighting matrices WN,h.

Proof It has been shown in the proof of Theorem 4.28 that the preliminary estimator ϑ̃
N,h

is consistent and that the sequence of functions ϑ 7→ ΩN,h(ϑ) converges uniformly in
probability to the function ϑ 7→ Ω(ϑ). It then follows from Lemma 4.31 that the sequence
W̃N,h of weighting matrices converges in probability to Ω−1

0 , and from Theorem 4.28 that
ˆ̂ϑN,h is asymptotically normal with asymptotic covariance matrix[

GT
0 Ω−1

0 G0

]−1
GT

0 Ω−1
0 Ω0Ω−1

0 G0

[
GT

0 Ω−1
0 G0

]−1
=
[

GT
0 Ω−1

0 G0

]−1
.

To show that this is smaller than or equal to the asymptotic covariance matrix of an estimator
obtained from using a sequence of weighting matrices that converges in probability to the
positive definite matrix W, we must show that the matrix

∆ =
[

GT
0 WG0

]−1
GT

0 WΩ0WG0

[
GT

0 WG0

]−1
−
[

GT
0 Ω−1

0 G0

]−1
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is positive semidefinite. To see this, it is enough to note that ∆ can be written as

∆ =

[
Ω1/2

0 WG0

(
GT

0 WG0

)−1
]T [

1r −Ω−1/2
0 G0

(
GT

0 Ω−1
0 G0

)−1
GT

0 Ω−1/2
0

]
×
[

Ω1/2
0 WG0

(
GT

0 WG0

)−1
]

.

Since the factor in the middle is idempotent and therefore positive semidefinite, and since
semidefiniteness is preserved under conjugation, the matrix ∆ is positive semidefinite. �

We can now state and prove our main result about the asymptotic properties of the general-
ized method of moments estimation of the driving Lévy process of a multivariate CARMA
process from discrete observations. This method can be used to select a suitable driving
process from within a parametric family of Lévy processes as part of specifying a CARMA
model for an observed time series. We assume that Θ is a parameter space and that (Lϑ)ϑ∈Θ

is a family of Lévy processes. The process Y is an Lϑ0-driven multivariate CARMA(p,q) pro-
cess given by a state space representation of the form (4.3.10), and we assume that h-spaced
observations Y(0), Y(h), . . . , Y(N + (p− q− 1)h) of Y are available on the discrete time grid
(0, h, . . . , N + (p− q− 1)h). Based on these observed values, a set of N approximate unit

increments ∆̂L
(h)
n , n = 1, . . . , N, of the driving process is computed using Eq. (4.5.37). For

each integer N and each sampling frequency h−1 ∈N, a generalized method of moments
estimator is defined as in Eq. (4.6.6) by

ˆ̂ϑN,h = argminϑ∈Θ

∥∥∥∥∥ 1
N

N

∑
n=1

g
(

∆̂L
(h)
n , ϑ

)∥∥∥∥∥
WN,h

, (4.6.14)

where g : Rm × Θ → Rq is a moment function, and WN,h ∈ Mq(R) is a positive definite
weighting matrix. The following theorem asserts that the sequence ( ˆ̂ϑN,hN )N of estimators is
consistent and asymptotically normally distributed if hN is chosen such that NhN converges
to zero.

Theorem 4.34 (GMM with ∆̂L
(h)
n ) Assume that Θ ⊂ Rr is a parameter space, that (Lϑ)ϑ∈Θ

is a parametric family of m-dimensional Lévy processes, and that Y is an Lϑ0-driven multivariate
CARMA process satisfying Assumptions A1 and A2. Denote by ˆ̂ϑN,h the generalized method of
moments estimator defined in Eq. (4.6.14). Assume that, for some integer k, the functions fϑ : x 7→
g(x, ϑ) possess a bounded kth derivative, that E ‖Lϑ0(1)‖

2k is finite, and that the partial derivatives
of the functions fϑ satisfy

E ‖∂i1 · . . . · ∂iκ fϑ (Lϑ0(1))‖
2k < ∞, 1 6 i1, . . . , iκ 6 m, 1 6 κ 6 k− 1, ϑ ∈ Θ. (4.6.15)

Further assume that, for each x ∈ Rm, the function ϑ 7→ g(x, ϑ) is differentiable, that, for some



154 4. Estimation of the driving Lévy process of MCARMA processes

integer l, the functions hϑ : x 7→ ∇ϑ g(x, ϑ) have a bounded lth derivative, and that the partial
derivatives of hϑ satisfy

E ‖∂i1 · . . . · ∂iλ
hϑ (Lϑ0(1))‖

l < ∞, 1 6 i1, . . . , iλ 6 m, 1 6 λ 6 l − 1, ϑ ∈ Θ. (4.6.16)

If, in addition, assumptions i) to vi) of Theorem 4.27 are satisfied with X1 replaced by Lϑ0(1), and if
h = hN is chosen dependent on N such that NhN converges to zero as N tends to infinity, then the
estimator ˆ̂ϑN,hN is consistent and asymptotically normally distributed with asymptotic covariance
matrix given in Eq. (4.6.5).

Proof It suffices to check conditions vii) to ix) of Theorem 4.28. All three conditions follow
by assumptions (4.6.15) and (4.6.16) from Lemma 4.26, which also shows that the function β

in vii) can be taken as β : h 7→ h1/2. Consequently, the assumption that N1/2β(hN) converges
to zero from Theorem 4.28 simplifies to the requirement that NhN converges to zero, and
the result follows. �

4.7. Simulation study

In this section we illustrate the estimation procedure developed in this chapter using the
example of a univariate CARMA(3,1) process Y driven by a Gamma process. A similar
example was considered in (Brockwell et al., 2011) as a model for the realized volatility
of DM/$ exchange rates. Gamma processes are a family of univariate infinite activity
pure-jump Lévy subordinators (Γb,a(t))t∈R

, which are parametrized by two positive real
numbers a and b (see, e. g., Applebaum, 2004, Example1.3.22). Their moment generating
function is given by

u 7→ EeΓb,a(t)u = (1− bu)−at , a, b > 0,

and the unit increments Γb,a(n)− Γb,a(n− 1) follow a Gamma distribution with scale param-
eter b and shape parameter a. This distribution has density

fb,a(x) =
1

Γ(a)b
(x/b)a−1 e−x/b,

mean ab, and cumulative distribution function

Fb,a(x) =
∫ x

0
fb,a(ξ)dξ =

Γ (a; x/b)
Γ(a)

, (4.7.1)

where Γ(·) and Γ(·; ·) denote the complete and the lower incomplete gamma function,
respectively. In contrast to the example studied in Brockwell et al. (2011), we chose to
simulate a model of order (3, 1) in order to demonstrate the feasibility of approximating the
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derivatives DνY which appear in Eq. (4.5.37). The dynamics of the CARMA process used in
the simulations are determined by the polynomials

P(z) =z3 + 2z2 +
3
2

z +
1
2

, and Q(z) = 1 + z,

corresponding to autoregressive roots λ1 = −1 and λ2,3 = −1 ± i. The process Y is
simulated by applying an Euler scheme with step size 5× 10−4 to the state space model (cf.
Theorem 4.6)

dX(t) =

 0 1 0
0 0 1
− 1

2 − 3
2 −2

X(t)dt +

 0
0
1

dΓ2,1(t), (4.7.2a)

Y(t) =
[

1 1
]

X(t). (4.7.2b)

The initial value X(0) is set to zero. Another possibility would be to sample X(0) from the
marginal distribution of the stationary solution of Eq. (4.7.2), but since the effect of the choice
of X(0) decays at an exponential rate, this does not make a substantial difference. A typical
realization of the resulting CARMA process Y on the time interval [0, 200] is depicted in
Fig. 4.1b. In the case of finite variation Lévy processes, there is a path-wise correspondence
between a CARMA process and the driving Lévy process. Since this applies in particular to
Gamma processes, it is possible to show in Fig. 4.1a the path of the driving process which
generated the shown realization of Y. Such a juxtaposition is useful in that it allows to see
how big jumps in the driving process can cause spikes in the resulting CARMA process.
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(a) Γ2,1-process
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(b) Γ2,1-driven CARMA(3,1) process

Figure 4.1.: Typical realization of a Γ2,1-process and the corresponding CARMA(3,1) process with
dynamics given by Eq. (4.7.2)

The first step in the implementation of our estimation procedure is to approximate
the increments ∆Γn of the driving Gamma process from discrete-time observations of the
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CARMA process Y. For the value h = 0.01 of the sampling interval, Fig. 4.2 compares the

true increments with the approximations ∆̂Γ
(h)
n obtained from Eq. (4.5.37) both directly and

in terms of their cumulative distribution functions. We see that the approximations ∆̂Γ
(h)
n

are very good for each individual increment and that therefore the empirical distribution
function of the reconstructed increments closely follows the CDF (4.7.1) of the Gamma
distribution, even if the observation period is rather short.
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(a) Bar chart of the increments of driving Γ2,1-pro-
cess. White bars represent the true increments,
black bars indicate the values of the estimates.
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(b) Cumulative distribution function of the incre-
ments of the driving Γ2,1-process. The dashed
line shows the true CDF given by Eq. (4.7.1), the
solid line represents the empirical distribution
function of the estimates.

Figure 4.2.: Comparison of the true increments of a Gamma process with parameters (b, a) = (2, 1)
to the estimates of the increments computed via Eq. (4.5.37) from discrete observa-
tions of the Γ2,1-driven CARMA(3,1) process defined by Eq. (4.7.2) on the time grid
(0, 0.01, 0.02, . . . , 30)

In the next step we used the approximate increments ∆̂Γ
(h)
n and a standard numerical

optimization routine to compute the maximum likelihood estimator

(
b̂N,(h), âN,(h)

)
= argmax(a,b)∈R+×R+

N

∏
n=1

fb,a

(
∆̂Γ

(h)
n

)
, (4.7.3)

or, equivalently,

(
b̂N,(h), âN,(h)

)
= argmin(a,b)∈R+×R+

∥∥∥∥∥ N

∑
n=1
∇(b,a) log fb,a

(
∆̂Γ

(h)
n

)∥∥∥∥∥ .

In this form, the maximum likelihood estimator falls into the class of generalized moments
estimators. From the explicit form of the function g = ∇(b,a) log fb,a, it is easy to check
that the assumptions of Theorem 4.34 are satisfied. Since in the present case, and for
maximum likelihood estimators in general, the dimension of the moment vector is equal to
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the dimension of the parameter space, the choice of the weighting matrices WN,h is irrelevant
and the estimator is always best in the sense of Corollary 4.33.

With the goal of confirming the assertions of Theorem 4.34 we first focused on consistency
and investigated the effect of finite sampling frequencies. Figure 4.3 visualizes the empirical
means and marginal standard deviations of the maximum likelihood estimator (4.7.3)
obtained from 500 independent realizations of the CARMA process Y from Eq. (4.7.2)
simulated over the time horizon [0, 200] and sampled at instants (0, h, 2h, . . . , N) for different
values of h. The picture suggests that the estimator

(
b̂N,(h), âN,(h)

)
is biased for positive

values of h, even as N tends to infinity, but that it is consistent as h tends to zero. This is
in agreement with Theorem 4.34 and reflects the intuition that discrete sampling entails a
loss of information compared with a genuinely continuous-time observation of a stochastic
process.
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Figure 4.3.: Empirical means (×) and standard deviations of the estimators
(

b̂200,(h), â200,(h)
)

based
on 500 independent observations of the MCARMA process (4.7.2) on the time grid
(0, h, 2h, . . . , 200) for h ∈ {0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005}. The dashed lines indicate
the true parameter value (b, a) = (2, 1).
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Finally, we conducted another Monte Carlo simulation with the goal of confirming the
asymptotic normality of the maximum likelihood estimator (4.7.3). Figure 4.4 compares
the empirical distribution of the estimator

(
b̂200,(0.001), â200,(0.001)

)
to the asymptotic normal

distribution asserted by the Central Limit Theorem 4.34. The dots indicate the values of the
estimates obtained from 500 independent realizations of the CARMA process (4.7.2). The
dashed and solid straight lines show the empirical mean (1.9772, 1.0217) of the estimates
and the true values (2, 1) of the parameter (b, a), respectively, which are in good agreement.
The dashed and solid ellipses represent the empirical autocovariance matrix

Σ̂ =

(
4.70 −1.45
−1.45 0.78

)
× 10−2

of the estimates and the scaled asymptotic covariance matrix

Σ/200 ≈
(

5.11 −1.55
−1.55 0.78

)
× 10−2,

respectively. Their closeness, which is also reflected by the similarity of the two ellipses
in Fig. 4.4, means that, even for finite observation periods and sampling frequencies, the
matrix Σ/N is a good approximation of the true covariance of the estimator

(
b̂N,(h), âN,(h)

)
,

and it can thus be used for the construction of confidence regions. For the present example,
the inverse of the asymptotic covariance matrix Σ, given by Eq. (4.6.5), can be computed
explicitly as

Σ−1 =−E
[
∇2

(b,a) log fb,a (Γb,a(1))
]
(b,a)=(2,1)

=

(
a/b2 1/b
1/b ψ1(a)

)∣∣∣∣∣
(b,a)=(2,1)

=

(
1/4 1/2
1/2 π2/6

)
,

where ψ1 denotes the trigamma function, that is the second derivative of the logarithm of
the gamma function. Figure 4.4 also compares histograms of b̂200,(0.001) and â200,(0.001) to
the densities of the marginals of the bivariate Gaussian distribution with mean (2, 1) and
covariance matrix Σ/200. The agreement is very good, in accordance with the Central Limit
Theorem 4.34.
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Figure 4.4.: Comparison of the empirical distribution of the estimator
(

b̂200,(0.001), â200,(0.001)
)

based
on 500 realizations of the Γ2,1-driven CARMA(3,1) process given by Eq. (4.7.2) to the
asymptotic distribution implied by the Central Limit Theorem 4.34
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5. Eigenvalue Distribution of Large Sample
Covariance Matrices of Linear Processes

5.1. Introduction and main result

A typical object of interest for many statistical applications is the sample covariance matrix
(n− 1)−1XXT of a data matrix X = (Xi,t)it, i = 1, . . . , p, t = 1, . . . , n. The matrix X can be
seen as a sample of size n of p-dimensional data vectors. For fixed p, one can show, as n
tends to infinity, that under certain assumptions, such as ergodicity of the data-generating
process, the eigenvalues of the sample covariance matrix converge to the eigenvalues of the
true underlying covariance matrix (Anderson, 2003). However, the assumption that p� n
may not be justified if one has to deal with high-dimensional data sets; often, it is more
suitable to assume that the dimension p is of the same order as the sample size n, that is
p = pn tends to infinity in such a way that

lim
n→∞

n
p
C y ∈ (0, ∞). (5.1.1)

For a symmetric p× p matrix A with eigenvalues λ1, . . . , λp, we denote by

FA =
1
p

p

∑
i=1

δλi

the spectral distribution of A, where δx denotes the Dirac measure located at x. This
means that pFA(B) is the number of eigenvalues of A that lie in the set B. From now on
we will call p−1XXT the sample covariance matrix. Because of Eq. (5.1.1) this change of
normalization can be reversed by a simple transformation of the limiting spectral distribution.
For notational convenience, we suppress the explicit dependence of the occurring matrices
on n and p where this does not cause ambiguity.

It was Marchenko and Pastur (1967) who first looked at the case where the entries {Xi,t}
are i. i. d. random variables with finite second moments EX2

11 = 1. They showed that
the empirical spectral distribution (ESD) Fp−1XXT

of p−1XXT converges, as n → ∞, to a
non-random distribution function F̂, called limiting spectral distribution (LSD), given by

F̂(dx) =
1

2πx

√
(x+ − x)(x− x−)I{x−6x6x+}dx, (5.1.2)

163
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and point mass F̂({0}) = 1− y if y < 1, where x± = (1± √y)2. Here and in the following,
convergence of the ESD means almost sure convergence as a random element of the space of
probability measures on R equipped with the weak topology. In particular, as a consequence
of the Marchenko–Pastur result, the eigenvalues of the sample covariance matrix of a matrix
with independent entries do not converge to the eigenvalues of the true covariance matrix,
which is the identity matrix and therefore only has eigenvalue one. This leads to the failure
of statistics that rely on the eigenvalues of p−1XXT which have been derived under the
assumption that p is fixed, and random matrix theory is a tool to correct these statistics,
see, e. g., the introduction of Johnstone (2001). In cases where the true covariance matrix is
not the identity matrix, which means that the data are either dependent or have different
variances, the limiting spectral distribution F̂ can in general only be characterized in terms
of a non-linear equation for its Stieltjes transform mF̂, which is defined by

mF̂(z) =
∫ F̂(dλ)

λ− z
∀z ∈ C+ B {z = u + iv ∈ C : Im z = v > 0}.

Conversely, the distribution F̂ can be obtained from its Stieltjes transform mF̂ via the Stieltjes–
Perron inversion formula (Bai and Silverstein, 2010, Theorem B.8), which states that

F̂([a, b]) =
1
π

lim
ε→0+

∫ b

a
Im mF̂(x + iε)dx. (5.1.3)

for all continuity points a < b of F̂. For a comprehensive account of random matrix theory
we refer to Anderson, Guionnet and Zeitouni (2010); Bai and Silverstein (2010); Mehta (2004)
and the references therein.

Our aim will be to obtain a Marchenko–Pastur type result in the case where there is
dependence within the rows. More precisely, for i = 1, . . . , p, the ith row of X is given by a
linear process of the form

(Xi,t)t=1,...,n =

(
∞

∑
j=0

cjZi,t−j

)
t=1,...,n

, cj ∈ R.

Here (Zi,t)it is an array of independent random variables satisfying

EZi,t = 0, EZ2
i,t = 1, and σ4 B sup

i,t
EZ4

i,t < ∞, (5.1.4)

and, for each ε > 0,

1
pn

p

∑
i=1

n

∑
j=1

E
(

Z2
i,t I{Z2

i,t>εn}

)
→ 0, as n→ ∞. (5.1.5)
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Clearly, the Lindeberg-type condition (5.1.5) is satisfied if all {Zi,t} are identically distributed.

The novelty of our result is that we allow for dependence within the rows, and that the
equation for mF̂ is given in terms of the spectral density

f (ω) = ∑
h∈Z

γ(h)e−ihω, ω ∈ [0, 2π],

only, which is the Fourier transform of the autocovariance function

γ(h) =
∞

∑
j=0

cjcj+|h|, h ∈ Z,

of the underlying linear processes Xi. Potential applications arise in contexts where data
is not independent in time such that the Marchenko–Pastur law is not a good approxi-
mation. This includes areas like wireless communications (Tulino and Verdu, 2004) and
mathematical finance (Plerou, Gopikrishnan, Rosenow, Amaral, Guhr and Stanley, 2002;
Potters, Bouchaud and Laloux, 2005). Note that a similar question is also discussed in Bai
and Zhou (2008). However, they have a different proof for the existence of the limiting
spectral distribution, which relies on a moment condition to be verified. Furthermore they
additionally assume that the {Zi,t} are identically distributed so that the processes within
the rows are independent copies of each other. More importantly, their results do not yield
concrete formulæ except in the AR(1) case and are therefore not directly applicable. In the
context of free probability theory, the limiting spectral distribution of sample covariance
matrices of Gaussian autoregressive moving average processes is investigated in Burda,
Jarosz, Nowak and Snarska (2010).

We now present the main result of this article.

Theorem 5.1 (Limiting spectral distribution) For each i = 1, . . . , p, let Xi,t = ∑∞
j=0 cjZi,t−j,

t ∈ Z, be a linear stochastic process with continuously differentiable spectral density f . Assume
that

i) the array (Zi,t)it satisfies conditions (5.1.4) and (5.1.5),

ii) there exist positive constants C and δ such that |cj| 6 C(j + 1)−1−δ, for all j > 0,

iii) for almost all λ ∈ R, f (ω) = λ for at most finitely many ω ∈ [0, 2π], and

iv) f ′(ω) , 0 for almost every ω.

Then the empirical spectral distribution Fp−1XXT
of p−1XXT converges, as n tends to infinity,

almost surely to a non-random probability distribution function F̂ with bounded support. Moreover,
there exist positive numbers λ−, λ+ such that the Stieltjes transform z 7→ mF̂(z) of F̂ is the unique
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mapping C+ → C+ satisfying

1
mF̂(z)

= −z +
y

2π

∫ λ+

λ−

λ

1 + λmF̂(z)
∑

ω∈[0,2π]: f (ω)=λ

1
| f ′(ω)|dλ. (5.1.6)

The assumptions of the theorem are met, for instance, if (Xi,t)t is an ARMA or fractionally
integrated ARMA process; see Section 5.3 for details.

Theorem 5.1, as it stands, does not contain the classical Marchenko–Pastur law as a special
case. For if the entries Xi,t of the matrix X are i. i. d., the corresponding spectral density f is
identically equal to the variance of X1,1, and thus condition iv) is not satisfied. We therefore
also present a version of Theorem 5.1 that holds if the rows of the matrix X have a piecewise
constant spectral density.

Theorem 5.2 (Limiting spectral distribution) For each i = 1, . . . , p, let Xi,t = ∑∞
j=0 cjZi,t−j,

t ∈ Z, be a linear stochastic process with spectral density f of the form

f : [0, 2π]→ R+, ω 7→
k

∑
j=1

αj IAj(ω), k ∈N, (5.1.7)

for some positive real numbers αj and a measurable partition A1 ∪ · · · ∪ Ak of the interval [0, 2π].
If conditions i) and ii) of Theorem 5.1 hold, then the empirical spectral distribution Fp−1XXT

of
p−1XXT converges, as n → ∞, almost surely to a non-random probability distribution function F̂
with bounded support. Moreover, the Stieltjes transform z 7→ mF̂(z) of F̂ is the unique mapping
C+ → C+ that satisfies

1
mF̂(z)

= −z +
y

2π

k

∑
j=1

|Aj|αj

1 + αjmF̂(z)
, (5.1.8)

where |Aj| denotes the Lebesgue measure of the set Aj. In particular, if the entries of X are i. i. d.
with unit variance, one recovers the limiting spectral distribution (5.1.2) of the Marchenko–Pastur
law.

Remark 5.3 In applications one often has Xi,t = µ + ∑∞
j=0 cjZi,t−j with non-zero mean µ , 0.

Denote by xt ∈ Rp the tth column of X, and define the empirical mean x = p−1 ∑n
t=1 xt.

Then one rather considers p−1 ∑n
t=1(xt − x)(xt − x)T instead of p−1XXT. However, by Bai

and Silverstein (2010, Theorem A.44), these two matrices have the same LSD, and thus
Theorems 5.1 and 5.2 remain valid in this case.

Remark 5.4 The proofs of Theorems 5.1 and 5.2 can easily be generalized to cover non-causal
processes, where Xi,t = ∑∞

j=−∞ cjZi,t−j is given as a two-sided moving average. For this
case one obtains the same results, except that the autocovariance function is now given by

∑∞
j=−∞ cjcj+|h|.
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Remark 5.5 If one considers a matrix X with independent linear processes in the columns
instead of the rows, one gets the same formulæ as in Theorems 5.1 and 5.2, except that y
is replaced by y−1. This is due to the fact that XTX and XXT have the same non-trivial
eigenvalues.

Remark 5.6 If the assumption that the entries of the matrix X have finite second moments
is dropped, the asymptotic behaviour of the eigenvalues of the sample covariance matrix
p−1XX changes drastically, even in the i. i. d. case. For an introduction to the spectral
analysis of heavy-tailed random matrices we refer the reader to Auffinger, Ben Arous and
Péché (2009); Belinschi, Dembo and Guionnet (2009); Ben Arous and Guionnet (2008), and
the references therein.

Remark 5.7 An interesting open problem is to describe the limiting distribution of the largest
eigenvalue of the sample covariance matrix p−1XX if the rows of X consist of independent
linear processes. It is expected to find a variant of the Tracy–Widom distribution, which
describes the largest eigenvalue in the classical random matrix ensembles with i. i. d. entries
(Tracy and Widom, 1994, 1996), but also occurs in a variety of seemingly unrelated stochastic
growth models (Borodin, Ferrari, Prähofer and Sasamoto, 2007; Prähofer and Spohn, 2000).

Outline of the chapter In Section 5.2 we proceed with the proofs of Theorems 5.1 and 5.2.
Thereafter we present some interesting examples in Section 5.3.

Notation We write E and Var for the expected value and the variance, respectively, of a
random variable. The symbol tr S denotes the trace of a quadratic matrix S. The ESD of a
matrix sequence S = Sn is denoted by FS, and their weak limit, provided that it exists, by F̂S.
The notation I{E} is used for the indicator of an expression E , which, by definition, equals
one if E is true, and zero otherwise.

5.2. Proofs

In this section we present a proof of Theorems 5.1 and 5.2. It turns out to be difficult to deal
with infinite-order moving average processes directly, and we therefore first prove a variant
of these theorems for the truncated processes X̃i,t = ∑n

j=0 cjZi,t−j. We also define the matrix
X̃ = (X̃i,t)it, i = 1, . . . , p, t = 1, . . . , n.

Proposition 5.8 Under the assumptions of Theorem 5.1 (Theorem 5.2), the empirical spectral dis-
tribution Fp−1X̃X̃

T
of the sample covariance matrix of the truncated process X̃ converges, as n tends

to infinity, to a deterministic distribution with bounded support. Its Stieltjes transform is uniquely
determined by Eq. (5.1.6) (Eq. (5.1.8)).
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Proof The proof starts with the observation that one can write X̃ = ZH, where Z = (Zi,t)it,
i = 1, . . . , p, t = 1− n, . . . , n, and

H =



cn 0 · · · 0
cn−1 cn

...
. . .

c1 cn

c0 c1 · · · cn−1

c0
...

. . .
...

0 · · · 0 c0


∈ R2n×n. (5.2.1)

In particular, X̃X̃
T
= ZHHTZT. In order to prove convergence of the empirical spectral

distribution Fp−1X̃X̃
T

and obtain a characterization of the limiting distribution, it suffices, by
Pan (2010, Theorem 1), to prove that the spectral distribution FHHT

of HHT converges to a
non-trivial limiting distribution. This will be done in Lemma 5.9, where the LSD of HHT is
shown to be given by F̂HHT

= 1
2 δ0 +

1
2 F̂Γ; the distribution F̂Γ is computed in Lemma 5.10 if

we impose the assumptions of Theorem 5.1, respectively in Lemma 5.11 if we impose the
assumptions of Theorem 5.2. Inserting that expression for F̂HHT

into equation (1.2) of Pan

(2010) shows that the ESD Fp−1X̃X̃
T

converges, as n → ∞, almost surely to a deterministic
distribution, which is uniquely determined by the requirement that its Stieltjes transform
z 7→ m(z) satisfies

1
m(z)

= −z + 2y
∫ λ+

λ−

λ

1 + λm(z)
dF̂HHT

= −z + y
∫ λ+

λ−

λ

1 + λm(z)
dF̂Γ. (5.2.2)

Using the explicit formulæ for the LSD F̂Γ computed in Lemmata 5.10 and 5.11, one obtains
Eqs. (5.1.6) and (5.1.8). Uniqueness of a mapping m : C+ → C+ solving Eq. (5.2.2) was
shown in Bai and Silverstein (2010, p. 88). We complete the proof by arguing that the
LSD of p−1X̃X̃

T
has bounded support. For this it is enough, by Bai and Silverstein (2010,

Theorem 6.3), to show that the spectral norm of HHT is bounded in n, which is also done in
Lemma 5.9. �

Lemma 5.9 Let H = (cn−i+j I{06n−i+j6n})ij be the matrix appearing in Eq. (5.2.1) and assume that
there exist positive constants C, δ such that |cj| 6 C(j + 1)−1−δ (assumption ii) of Theorem 5.1).
Then the spectral norm of the matrix HHT is bounded in n. If, moreover, the spectral distribution
of Γ = (γ(i− j))ij converges weakly to some limiting distribution F̂Γ, then the spectral distribution
FHHT

converges weakly, as n→ ∞, to 1
2 δ0 +

1
2 F̂Γ.
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Proof We first introduce the notationH B HHT ∈ R2n×2n as well as the block decomposition

H =

[
H11 H12

HT
12 H22

]
, Hij ∈ Rn×n.

We prove the second part of the lemma first. There are several ways to show that the spectral
distributions of two sequences of matrices converge to the same limit. In our case, it is
convenient to use Bai and Silverstein (2010, Corollary A.41), which states that two sequences
An and Bn, either of whose empirical spectral distribution converges, have the same limiting
spectral distribution if n−1 tr(An − Bn)(An − Bn)T converges to zero as n → ∞. We shall
employ this result twice: first to show that the LSDs of H = HHT and H̃ B diag(0,H22)

agree, and then to prove equality of the LSDs of the matrices H22 and Γ. Let

∆H = n−1 tr(H− H̃)(H− H̃)T; (5.2.3)

a direct calculation shows that ∆H = n−1 [trH11HT
11 + 2 trH12HT

12

]
and we will consider

each of the two terms in turn. From the definition of H it follows that the (i, j)th entry of
H is given by Hij = ∑n

k=1 cn−i+kcn−j+k I{max (i,j)−n6k6min (i,j)}. The trace of the square of the
upper left block of H therefore satisfies

trH11HT
11 =

n

∑
i,j=1

{
Hij
}2

=
n

∑
i,j=1

[
min (i,j)

∑
k=1

cn−i+kcn−j+k

]2

6
n

∑
i,j,k,l=1

|ci+k−1||cj+k−1||ci+l−1||cj+l−1|

6C4
n+1

∑
i,j,k,l=2

i−1−δ j−1−δl−1−δk−1−δ

< [Cζ(1 + δ)]4 < ∞,

where ζ(z) denotes the Riemann zeta function. As a consequence, the limit of n−1 trH11HT
11,

as n tends to infinity, is zero. Similarly, we obtain for the trace of the square of the off-
diagonal block of H

trH12HT
12 =

n

∑
i=1

2n

∑
j=n+1

{
Hij
}2

=
n

∑
i=1

n+i

∑
j=n+1

[
i

∑
k=j−n

cn−i+kcn−j+k

]2

6
n

∑
i=1

n

∑
j=1

n−i+1

∑
k=j

n−i+1

∑
l=j

ci+k−1ck−jci+l−1cl−j

6
n

∑
i=1

n

∑
j=1

n

∑
r=0

n

∑
s=0
|ci+r+j−1||cr||cs+j−1||cs|
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6C4
n+1

∑
i,j,r,s=1

i−1−δr−1−δs−1−δ j−1−δ

< [Cζ(1 + δ)]4 < ∞,

which shows that the limit of n−1 trH12HT
12, as n→ ∞, is zero. It thus follows that ∆H, as

defined in Eq. (5.2.3), converges to zero as n→ ∞, and, therefore, that the LSDs of H and
H̃ = diag(0,H22) coincide. The latter is clearly given by FH̃ = 1

2 δ0 +
1
2 FH22 , and we show

next that the LSD of H22 agrees with the LSD of Γ = (γ(i− j))ij. As before, it suffices to
show, by (Bai and Silverstein, 2010, Corollary A.41), that ∆Γ = n−1 tr(H22 − Γ)(H22 − Γ)T

converges to zero as n → ∞. It follows from the definitions of the matrices H and Γ that
n∆Γ is given by

n∆Γ =
n

∑
i,j=1

 n

∑
k=max (i,j)

ck−ick−j −
∞

∑
k=1

ck−1ck+|i−j|−1

2

=
n

∑
i,j=1

 n

∑
k=max (i,j)

ck−ick−j −
∞

∑
k=max (i,j)

ck−ick−j

2

=
n

∑
i,j=1

∞

∑
k,l=1

ck+i−1ck+j−1cl+i−1cl+j−1

6C4
n+1

∑
i,j=2

∞

∑
k,l=2

i−1−δ j−1−δk−1−δl−1−δ < [Cζ(1 + δ)]4 < ∞.

Consequently, the sequence ∆Γ converges to zero as n goes to infinity, and it follows that
F̂H = 1

2 δ0 +
1
2 F̂Γ.

In order to show that the spectral norm ofH = HHT is bounded in n, we use Gerschgorin’s
circle theorem (Gerschgorin, 1931, Theorem 2), which states that every eigenvalue of H lies
in at least one of the balls B(Hii, Ri) with centre Hii and radius Ri, i = 1, . . . , 2n, where the
radii Ri are defined as Ri = ∑j,i

∣∣Hij
∣∣. We first note that the centres Hii satisfy

Hii =
min{i,n}

∑
k=max{1,i−n}

c2
n−i+k 6

n

∑
k=0

c2
k 6 [Cζ(2 + 2δ)]2 < ∞.

To obtain a uniform bound for the radii Ri, we first assume that i = 1, . . . , n. Then

|Ri| 6
n

∑
j=1

min{i,j}

∑
k=1

|cn−i+k||cn−j+k|+
2n

∑
j=n+1

i

∑
k=j−n

|cn−i+k||cn−j+k|

6
n

∑
j,k=1
|cn−i+k||cj+k−1|+

2n−i

∑
j=n+1−i

n−j

∑
k=0
|ck+j||ck| 6 2 [Cζ(1 + δ)]2 < ∞.
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Similarly we find that, for i = n + 1, . . . , 2n,

|Ri| 6
n

∑
j=1

j

∑
k=i−n

|cn−i+k||cn−j+k|+
2n

∑
j=n+1

n

∑
k=max{i,j}−n

|cn−i+k||cn−j+k|

6
i−1

∑
j=i−n

n+1−j

∑
k=0
|ck+j||ck|+

2n

∑
j=n+1

n−max{i,j}

∑
k=0

|ck||ck+|j−i||

6 3 [Cζ(1 + δ)]2 < ∞

is bounded, which completes the proof. �

In the following two lemmata, we argue that the distribution F̂Γ exists and we prove explicit
formulæ for it in the case that the assumptions of Theorem 5.1 or Theorem 5.2 are satisfied.

Lemma 5.10 Let (cj)j be a sequence of real numbers, γ : h 7→ ∑∞
j=0 cjcj+|h| and f : ω 7→

∑h∈Z γ(h)e−ihω. Under the assumptions of Theorem 5.1 it holds that the spectral distribution
FΓ of Γ = (γ(i − j))ij converges weakly, as n → ∞, to an absolutely continuous distribution F̂Γ

with bounded support and density

g : (λ−, λ+)→ R+, λ 7→ 1
2π ∑

ω: f (ω)=λ

1
| f ′(ω)| . (5.2.4)

Proof We first note that under assumption ii) of Theorem 5.1 the autocovariance function γ

is absolutely summable because

∞

∑
h=0
|γ(h)| 6

∞

∑
h=0

∞

∑
j=0
|cj||cj+h| 6 C2

∞

∑
h,j=1

h−1−δ j−1−δ < [Cζ(1 + δ]2 < ∞.

Szegő’s first convergence theorem, which can be found in Grenander and Szegő (1984) or
Gray (2006, Corollary 4.1), then implies that F̂Γ exists, and that the cumulative distribution
function of the eigenvalues of the Toeplitz matrix Γ associated with the sequence h 7→ γ(h)
is given by

G(λ) B
1

2π

∫ 2π

0
I{ f (ω)6λ}dω =

1
2π

Leb({ω ∈ [0, 2π] : f (ω) 6 λ}) (5.2.5)

for all λ such that the level sets {ω ∈ [0, 2π] : f (ω) = λ} have Lebesgue measure zero. By
assumption iii) of Theorem 5.1, Eq. (5.2.5) holds for almost all λ. In order to prove that the
LSD F̂Γ is absolutely continuous with respect to the Lebesgue measure, it suffices to prove
that the cumulative distribution function G is differentiable almost everywhere. Clearly, for
∆λ > 0,

G(λ + ∆λ)− G(λ) =
1

2π
Leb({ω ∈ [0, 2π] : λ < f (ω) 6 λ + ∆λ}).
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Due to assumption iv) of Theorem 5.1, the set of all λ ∈ R such that the set {ω :∈ [0, 2π] :
f (ω) = λ and f ′(ω) = 0} is non-empty is a Lebesgue null-set. Hence, it is enough to
consider only λ for which this set is empty. Let f−1(λ) = {ω : f (ω) = λ} be the pre-image
of λ, which is a finite set by assumption iii). The Implicit Function Theorem then asserts that,
for every ω ∈ f−1(λ), there exists an open interval Iω around ω such that f restricted to Iω is
invertible. It is no restriction to assume that these Iω are disjoint. By choosing ∆λ sufficiently
small it can be ensured that the interval [λ, ∆λ] is contained in

⋂
ω∈ f−1(λ) f (Iω), and from

the continuity of f it follows that outside of
⋃

ω∈ f−1(λ) Iω, the values of f are bounded away
from λ, so that

lim
∆λ→0

1
∆λ

[G(λ + ∆λ)− G(λ)]

=
1

2π
lim

∆λ→0

1
∆λ

Leb

 ⋃
ω∈ f−1(λ)

{ω′ ∈ Iω : λ < f (ω′) 6 λ + ∆λ}


=

1
2π ∑

ω∈ f−1(λ)

lim
∆λ→0

1
∆λ

Leb
(
{ω′ ∈ Iω : λ < f (ω′) 6 λ + ∆λ}

)
.

In order to further simplify this expression, we denote the local inverse functions by
f−1
ω : f (Iω) → [0, 2π]. Observing that the Lebesgue measure of an interval is given by its

length and that the derivatives of f−1
ω are given by the inverses of the derivative of f , it

follows that

lim
∆λ→0

1
∆λ

[G(λ + ∆λ)− G(λ)]

=
1

2π ∑
ω∈ f−1(λ)

lim
∆λ→0

1
∆λ

∣∣∣ f−1
ω (λ + ∆λ)− f−1

ω (λ)
∣∣∣

=
1

2π ∑
ω∈ f−1(λ)

∣∣∣∣ d
dλ

f−1
ω (λ)

∣∣∣∣
=

1
2π ∑

ω∈ f−1(λ)

1
| f ′(ω)| .

This shows that the function G is differentiable Lebesgue-almost everywhere with derivative
given by

g : λ 7→ 1
2π ∑

ω∈ f−1(λ)

1
| f ′(ω)| .

It remains to argue that the support of the limiting spectral distribution F̂Γ is bounded. The
absolute summability of the autocovariance function γ(·) implies boundedness of its Fourier
transform f . The claim then follows from Eq. (5.2.5), which shows that the support of g is
equal to the range of f . �
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Lemma 5.11 Let f : ω 7→ ∑k
j=1 αj IAj(ω) be the piecewise constant spectral density of the linear

process Xt = ∑∞
j=0 cjZt−j, t ∈ R, and denote the corresponding autocovariance function by γ :

h 7→ ∑∞
j=0 cjcj+|h|. Under the assumptions of Theorem 5.2 it holds that the spectral distribution

FΓ of the Toeplitz matrix Γ = (γ(i− j))ij converges weakly, as n → ∞, to the distribution F̂Γ =

(2π)−1 ∑k
j=1 |Aj|δαj .

Proof Without loss of generality we may assume that the numbers α1 < . . . < αk are sorted
in increasing order. As in the proof of Lemma 5.10 one sees that the limiting spectral
distribution F̂Γ exists, and that F̂Γ(−∞, λ) is given by

G(λ) B
1

2π
Leb({ω ∈ [0, 2π] : f (ω) 6 λ}), ∀λ ∈ [0, 2π]\

k⋃
j=1

{αj}.

The particular structure of f thus implies that G(λ) = (2π)−1 ∑kλ
j=1 |Aj|, where kλ is the

largest integer such that αkλ
6 λ or zero if no such integer exists. Since G must be right-

continuous, this formula holds for all λ in the interval [0, 2π]. It is easy to see that the
function G is the cumulative distribution function of the discrete measure (2π)−1 ∑k

j=1 |Aj|δαj ,
which completes the proof. �

We can now complete the proofs of our main theorems.

Proof (of Theorems 5.1 and 5.2) It is only left to show that the truncation performed in

Proposition 5.8 does not alter the LSD, that is that the difference of Fp−1XXT
and Fp−1X̃X̃

T

converges to zero almost surely. Again, by Bai and Silverstein (2010, Corollary A.42), this
means that we need to show that

1
p2 tr(XXT + X̃X̃

T
)︸                       ︷︷                       ︸

=I

1
p2 tr((X − X̃)(X − X̃)T)︸                                ︷︷                                ︸

=II

(5.2.6)

converges to zero. To this end we show that I has a limit and that II converges to zero, both
almost surely. By the definition of X and X̃ we have

II =
1
p2

p

∑
i=1

n

∑
t=1

∞

∑
k=n+1

∞

∑
m=n+1

ckcmZi,t−kZi,t−m.

We shall first prove that the variances of II are summable. For this purpose we need
the following two estimates which are implied by the Cauchy–Schwarz inequality, the
assumption that σ4 = supi,t EZ4

i,t < ∞, and the assumed absolute summability of the
coefficients (cj)j:

E

p

∑
i=1

n

∑
t=1

∞

∑
k,m=1

|ckcmZi,t−kZi,t−m| 6 pn

(
∞

∑
k=1
|ck|
)2

< ∞, (5.2.7a)
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E

p

∑
i,i′=1=1

n

∑
t,t′=1

∞

∑
k,k′,m,m′=1

|ckcmck′cm′Zi,t−kZi,t−mZi′,t′−k′Zi′,t′−m′ |.

6(np)2σ4

(
∞

∑
k=1
|ck|
)4

< ∞. (5.2.7b)

Therefore we can, by Fubini’s theorem, interchange expectation and summation to bound
the variance

Var(II) 6
1
p4

p

∑
i,i′=1

n

∑
t,t′=1

∞

∑
k,k′

m,m′=n+1

ckcmck′cm′E(Zi,t−kZi,t−mZi′,t′−k′Zi′,t′−m′).

Considering separately the terms where either i = i′, or else i , i′, we can write

Var(II) 6
1
p4

p

∑
i,i′=1
i,i′

n

∑
t,t′=1

∞

∑
k,k′

m,m′=n+1

ckcmck′cm′E(Zi,t−kZi,t−mZi′,t′−k′Zi′,t′−m′)

+
1
p4

p

∑
i=1

n

∑
t,t′=1

∞

∑
k,k′

m,m′=n+1

ckcmck′cm′E(Zi,t−kZi,t−mZi,t′−k′Zi,t′−m′).

For the expectation in the first sum not to be zero, k must equal m and k′ must equal m′, in
which case its value is unity. The expectation in the second term can always be bounded by
σ4 so that we obtain

Var(II) 6
p2 − p

p4 n2

(
∞

∑
k=n+1

c2
k

)2

+ σ4
pn2

p4

(
∞

∑
k=n+1

ck

)4

.

Due to Eq. (5.1.1) and assumption ii) that the coefficients (ck) decay at least polynomially as
k−1−δ, there exists a constant K such that the right hand side is bounded by Kn−1−4δ, which
implies that

∞

∑
n=1

Var (II) 6 K
∞

∑
n=1

n−1−4δ < ∞,

and therefore, by the Borel–Cantelli lemma, that II converges to a constant almost surely.To
show that this constant is zero, it suffices to show that the expectation of II converges to
zero. Since EZi,t = 0, and the {Zi,t} are independent, one sees, using Eq. (5.2.7a), that

E(II) = np−1
∞

∑
k=n+1

c2
k ,

which converges to zero because the coefficients {ck} are square-summable.

We now consider factor I of expression (5.2.6). With the definition ∆X = XXT − X̃X̃
T

we
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obtain that
I =

1
p2 tr(∆X)︸        ︷︷        ︸

=Ia

+2
1
p2 tr(X̃X̃

T
)︸           ︷︷           ︸

=Ib

. (5.2.8)

Because of

(XXT)ii =
n

∑
t=1

X2
i,t =

n

∑
t=1

∞

∑
k=0

∞

∑
m=0

ckcmZi,t−kZi,t−m,

and, similarly,

(X̃X̃
T
)ii =

n

∑
t=1

n

∑
k=0

n

∑
m=0

ckcmZi,t−kZi,t−m,

we have that

tr(∆X) =
p

∑
i=1

[
(XXT)ii − (X̃X̃

T
)ii

]
=

p

∑
i=1

n

∑
t=1

∞

∑
k=n+1

∞

∑
m=n+1

ckcmZi,t−kZi,t−m︸                                             ︷︷                                             ︸
=II→0 a.s.

+2
p

∑
i=1

n

∑
t=1

∞

∑
k=n+1

n

∑
m=1

ckcmZi,t−kZi,t−m. (5.2.9)

Equation (5.2.7b) allows us to apply Fubini’s theorem to compute the variance of the second
term in Eq. (5.2.9) as

4
p4

p

∑
i,i′=1

n

∑
t,t′=1

∞

∑
k,k′=n+1

n

∑
m,m′=1

ckcmck′cm′E(Zi,t−kZi,t−mZi′,t′−k′Zi′,t′−m′),

which is, by the same reasoning as we did for II, bounded by

4σ4
p
p4 n2

(
∞

∑
k=n+1

ck

)2( n

∑
m=1

cm

)2

6 Kn−1−2δ,

for some positive constant K. Clearly, this is summable in n. Having, by Eq. (5.2.7a), expected
value zero, the second term of Eq. (5.2.9), and therefore also tr(∆X), both converge to zero
almost surely. Thus, we only have to look at the contribution of Ib in expression (5.2.8). From

Proposition 5.8 we know that Fp−1X̃X̃
T

converges almost surely weakly to some non-random
distribution F̂ with bounded support. Hence, denoting by λ1, . . . , λp the eigenvalues of

p−1X̃X̃
T

,

Ib =
1
p

tr
(

1
p

X̃X̃
T
)
=

1
p

p

∑
i=1

λi =
∫

λdF
1
p X̃X̃

T

→
∫

λdF̂ < ∞

almost surely. It follows that, in Eq. (5.2.6), factor I is bounded and factor II converges to
zero, and so the proof of Theorems 5.1 and 5.2 is complete. �
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5.3. Illustrative examples

For several classes of widely employed linear processes, Theorem 5.1 can be used to obtain
an explicit description of the limiting spectral distribution. In this section we consider the
class of (fractionally integrated) autoregressive moving average (ARMA) processes. The
distributions we obtain in the case of AR(1) and MA(1) processes can be interpreted as
one-parameter deformations of the classical Marchenko–Pastur law.
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Figure 5.1.: Limiting spectral densities λ 7→ p(λ) of p−1XXT for the MA(1) process Xt = Zt + ϑZt−1
for different values of ϑ and y = n/p
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Figure 5.2.: Limiting spectral densities λ 7→ p(λ) of p−1XXT for the AR(1) process Xt = ϕXt−1 + Zt
for different values of ϕ and y = n/p

5.3.1. Autoregressive moving average processes

Given polynomials a : z 7→ 1 + a1z + . . . apzp and b : z 7→ 1 + b1z + . . . + bqzq, an ARMA(p,q)
process X with autoregressive polynomial a and moving average polynomial b is defined as
the stationary solution to the stochastic difference equation

Xt + a1Xt−1 + . . . + apXt−p = Zt + b1Zt−1 + . . . + bqZt−q, t ∈ Z.
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If the zeros of a lie outside the closed unit disk, it is well known that X has an infinite-order
moving average representation Xt = ∑∞

j=0 cjZt−j, where {cj} are the coefficients in the power
series expansion of b(z)/a(z) around zero. It is also known (Brockwell and Davis, 1991,
§13.2) that there exist positive constants ρ < 1 and K such that |cj| 6 Kρj, so that assumption
ii) of Theorem 5.1 is satisfied. While the autocovariance function of an ARMA process does
not in general have a simple closed form, its Fourier transform, i. e. the spectral density of
the ARMA process X, is given by

f (ω) =

∣∣∣∣∣b
(
eiω)

a (eiω)

∣∣∣∣∣
2

, ω ∈ [0, 2π]. (5.3.1)

Since f is rational, assumptions iii) and iv) of Theorem 5.1 are satisfied as well. In order to
compute the LSD of Γ, it is necessary, by Lemma 5.10, to find the roots of a trigonometric
polynomial of possibly high degree, which can be done numerically.

We now consider the special case of the ARMA(1,1) process Xt = ϕXt−1 + Zt + ϑZt−1,
|ϕ| < 1, for which one can obtain explicit results. By Eq. (5.3.1), the spectral density of X is
given by

f (ω) =
1 + ϑ2 + 2ϑ cos ω

1 + ϕ2 − 2ϕ cos ω
, ω ∈ [0, 2π].

Equation (5.2.4) implies that the LSD of the autocovariance matrix Γ has a density g given by

g(λ) =
1

2π ∑
ω∈[0,2π]: f (ω)=λ

1
| f ′(ω)|

=
1

π(ϑ + ϕλ)
√
[(1 + ϑ)2 − λ(1− ϕ)2] [λ(1 + ϕ)2 − (1− ϑ)2]

I(λ−,λ+)(λ),

where

λ− = min (λ−, λ+), λ+ = max (λ−, λ+), λ± =
(1± ϑ)2

(1∓ ϕ)2 .

By Theorem 5.1, the Stieltjes transform z 7→ mz of the limiting spectral distribution of
p−1XXT is the unique mapping m : C+ → C+ satisfying the equation

1
mz

=− z + y
∫ λ+

λ−

λg(λ)
1 + λmz

dλ

=− z +
ϑy

ϑmz − ϕ
(5.3.2)

− (ϑ + ϕ)(1 + ϑϕ)y
(ϑmz − ϕ)

√
[(1− ϕ)2 + mz(1 + ϑ)2] [(1 + ϕ)2 + mz(1− ϑ)2]

.

This is a quartic equation in mz ≡ m(z), which can be solved explicitly. An application of the
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Stieltjes inversion formula (5.1.3) then yields the limiting spectral distribution of p−1XXT.

If one sets ϕ = 0, one obtains an MA(1) process; plots of the densities obtained in this case
for different values of y and ϑ are displayed in Fig. 5.1. Similarly, the case ϑ = 0 corresponds
to an AR(1) process; see Fig. 5.2 for a graphical representation of the densities one obtains
for different values of y and ϕ in this case. For the special case ϕ = 1/2, ϑ = 1, Fig. 5.3
compares the histogram of the eigenvalues of p−1XXT with the limiting spectral distribution
obtained from Theorem 5.1 for different values of y.
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Figure 5.3.: Histograms of the eigenvalues and limiting spectral densities λ 7→ p(λ) of p−1XXT for
the ARMA(1,1) process Xt =

1
2 Xt−1 + Zt + Zt−1 for different values of y = n/p, p = 1000

Equation (5.3.2) for the Stieltjes transform of the limiting spectral distribution of the sample
covariance matrix of an ARMA(1,1) process should be compared to Bai and Zhou (2008, Eq.
(2.10)), where the analogous result is obtained for an autoregressive process of order one.
They use the notation c = lim p/n and consider the spectral distribution of n−1XXT instead
of p−1XXT as we do. If one observes that this difference in the normalization amounts to a
linear transformation of the corresponding Stieltjes transform, one obtains their result as a
special case of Eq. (5.3.2).

5.3.2. Fractionally integrated ARMA processes

In many practical situations, data exhibit long-range dependence, which can be modelled
by long-memory processes. Denote by B the backshift operator and define, for d > −1, the
(fractional) difference operator by

∇d = (1− B)d =
∞

∑
j=0

j

∏
k=1

k− 1− d
k

Bj, Bj Xt = Xt−j.

A process (Xt)t is called a fractionally integrated ARMA(p,d,q) processes with p, q ∈ N

and d ∈ (−1/2, 1/2) if (∇dXt)t is an ARMA(p,q) process. These processes have a polyno-
mially decaying autocorrelation function and therefore exhibit long-range-dependence, cf.
Brockwell and Davis (1991, Theorem 13.2.2) and Granger and Joyeux (1980); Hosking (1981).
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We assume that d < 0, and that the zeros of the autoregressive polynomial a of (∇dXt)t lie
outside the closed unit disk. Then it follows that X has an infinite order moving average
representation Xt = ∑∞

j=0 cjZt−j, where the (cj)j have, in contrast to our previous examples,
not an exponential decay, but satisfy K1(j + 1)d−1 6 cj 6 K2(j + 1)d−1 for some K1, K2 > 0.
Therefore, if d < 0, one can apply Theorem 5.1 to obtain the limiting spectral distribution of
the sample covariance matrix of a FICARMA(p,q,d) process using that the spectral density
of (Xt)t is given by

f (ω) =

∣∣∣∣∣b
(
eiω)

a (eiω)

∣∣∣∣∣
2 ∣∣1− e−iω∣∣−2d

, ω ∈ [0, 2π].





6. Limiting Spectral Distribution of a New
Random Matrix Model with Dependence
across Rows and Columns

6.1. Introduction

Random matrix theory studies the properties of large random matrices A = (Ai,j)ij ∈ Kp×n,
where K is usually either R or C, but can also denote a different field. In this chapter, the
entries Aij are supposed to be real random variables unless specified differently. Commonly,
the focus is on asymptotic properties of such matrices as their dimensions tend to infinity.
One particularly interesting object of study is the asymptotic distribution of the singular
values. Since the squared singular values of A are the eigenvalues of AAT, this is often
done by investigating the eigenvalues of AAT, which is called a sample covariance matrix.
The spectral characteristics of a p× p matrix S are conveniently studied via the empirical
spectral distribution of S, which is defined as

FS =
1
p

p

∑
i=1

δλi , (6.1.1)

where {λ1, . . . , λp} are the eigenvalues of S, and δx denotes the Dirac measure located at
x. For some set B ⊂ R, the figure FS(B) is the number of eigenvalues of S that lie in B.
The measure FS is considered a random element of the space of probability distributions
equipped with the weak topology, and we are interested in its limit as both n and p tend to
infinity such that the ratio p/n converges to a finite positive limit y.

The first result of this kind can be found in the remarkable paper Marchenko and Pastur
(1967). They showed that Fp−1 AAT

converges to a non-random limiting spectral distribution
F̂p−1 AAT

if all Aij are independent, identically distributed, centred random variables with
finite fourth moment. Interestingly, the Lebesgue density of F̂p−1 AAT

is given by an explicit
formula which only involves the ratio y and the common variance of Aij and is therefore
universal with respect to the distribution of the entries of A. Subsequently (Wachter, 1978;
Yin, 1986), the same result has been obtained under the weaker moment condition that
the entries Aij have finite variance. The requirement that the entries of A be identically
distributed has later been relaxed to a Lindeberg-type condition, cf. Eq. (6.2.3). For more

181
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details and a comprehensive treatment of random matrix theory we refer the reader to the
text books Anderson et al. (2010); Bai and Silverstein (2010); Mehta (2004).

Recent research has focused on the question to what extent the assumption of inde-
pendence of the entries of A can be relaxed without compromising the validity of the
Marchenko–Pastur law. In Aubrun (2006) it was shown that for random matrices A whose
rows are independent Rn-valued random variables uniformly distributed on the unit ball of
lq(Rn), q > 1, the empirical spectral distribution Fp−1 AAT

still converges to the law obtained
in the i. i. d. case. The Marchenko–Pastur law is, however, not stable with respect to more
substantial deviations from the independence assumptions. A very useful tool to characterize
the limiting spectral distribution in random matrix models with dependent entries is the
Stieltjes transform, which, for some measure µ on R, is defined as the map

sµ : C+ → C+, sµ(z) =
∫

R

µ(dt)
t− z

.

A particular, very successful random matrix model exhibiting dependencies within the rows
was investigated already in Marchenko and Pastur (1967) and later in greater generality
in Pan (2010); Silverstein and Bai (1995): they modelled dependent data via a linear trans-
formation of independent random variables, which led to the study of the eigenvalues of
random matrices of the form AHAT, where the entries of A are independent, and H is a
positive semidefinite population covariance matrix whose spectral distribution converges
to a non-random limit F̂H. They found that the Stieltjes transform of the limiting spectral
distribution of p−1AHAT can be uniquely characterized as the solution of a certain integral
equation involving only F̂H and the ratio y = lim p/n. Another approach, which has been
suggested in Bai and Zhou (2008) and further pursued in Chapter 5, is to model the rows of
A independently as stationary linear processes with independent innovations. This structure
is particularly interesting because the class of linear processes includes many practically rel-
evant time series models, such as (fractionally integrated) ARMA processes, as special cases.
The main result of Chapter 5 shows that for this model the limiting spectral distribution
depends only on y and the second-order properties of the underlying linear process in form
of its autocovariance function.

All results for independent rows with dependent row entries also hold with minor
modifications for the case where A has independent columns with dependent column
entries. This is due to the fact that AAT and AT A have the same non-zero eigenvalues.

In contrast to what has been said so far, there are only few results dealing with random
matrix models where the entries are dependent across rows and columns. The case where A
is the result of a two-dimensional linear filter applied to an array of independent complex
Gaussian random variables is considered in Hachem et al. (2005). They use the fact that
A can be transformed to a random matrix with uncorrelated, non-identically distributed
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entries. Because of the assumption of Gaussianity, the entries are in fact independent, and
so an earlier result by the same authors (Hachem, Loubaton and Najim, 2006) can be used to
obtain the asymptotic distribution of the eigenvalues of p−1AA∗. In the context of operator-
valued free probability theory, Rashidi Far, Oraby, Bryc and Speicher (2008) succeeded
in characterizing the limiting spectral distribution of block Wishart matrices through a
quadratic matrix equation for the corresponding operator-valued Stieltjes transform.

A parallel line of research focused on the spectral statistics of large symmetric or Hermitian
square matrices with dependent entries, thus extending Wigner’s seminal result for the i. i. d.
case (Wigner, 1958). Models studied in this context include random Toeplitz, Hankel and
circulant matrices (Bose, Subhra Hazra and Saha, 2009; Bryc, Dembo and Jiang, 2006; Meckes,
2007, and references therein), as well as approaches allowing for more general dependency
structures (Anderson and Zeitouni, 2008; Hofmann-Credner and Stolz, 2008).

Chapter 5 dealt with sample covariance matrices of high-dimensional stochastic processes,
the components of which are modelled by independent infinite-order moving average
processes with identical second-order characteristics. In practice, it is often not possible
to observe all components of such a high-dimensional process, and the sample covariance
matrix can then not be computed. To solve this problem when only one component is
observed, it seems reasonable to partition one long observation record of that observed
component of length pn into p segments of length n, and to treat the different segments as if
they were records of the unobserved components. We show that this approach is valid and
leads to the correct asymptotic eigenvalue distribution of the sample covariance matrix if
the components of the underlying process are modelled as independent moving averages.

We are thus led to investigate a model of random matrices X whose entries are dependent
across both rows and columns, and which is not covered by the results mentioned above.
The entries of the random matrix under consideration are defined in terms of a single linear
stochastic process, see Section 6.2 for a precise definition. Without assuming Gaussianity
we prove almost sure convergence of the empirical spectral distribution of p−1XXT to
a deterministic limiting measure and characterize the latter via an integral equation for
its Stieltjes transform, which only depends on the asymptotic aspect ratio of the matrix
and the second-order properties of the underlying linear process. Our result extends the
class of random matrix models for which the limiting spectral distribution can be identified
explicitly by a new, theoretically appealing model. It thus contributes to laying the ground for
further research into more general random matrix models with dependent, non-identically
distributed entries.

Outline of the chapter In Section 6.2 we give a precise definition of the random matrix
model we investigate and state the main result about its limiting spectral distribution. The
proof of the main theorem as well as some auxiliary results are presented in Section 6.3.
Finally, in Section 6.4, we indicate how our result could be obtained in an alternative way



184 6. LSD of a new random matrix model with dependence across rows and columns

from a similar random matrix model with independent rows.

Notation Throughout, we use E and Var to denote the expected value and variance,
respectively, of a random variable. Where convenient, we also write µ1,X and µ2,X for the
first and second moment, respectively, of a random variable X. The symbol 1m, m a natural
number, stands for the m×m identity matrix. For the trace of a quadratic matrix S we write
tr S. For sequences of matrices (Sn)n we will suppress the dependence on n where this does
not cause ambiguity; the sequence of associated spectral distributions, see Eq. (6.1.1), is
denoted by FS, and for their weak limit, provided that it exists, we write F̂S. It will also be
convenient to use asymptotic Landau notation: for two sequences of real numbers (an)n,
(bn)n, we write an = O(bn) to indicate that there exists a constant C, which is independent
of n, such that an 6 Cbn for all n. We denote by Z the set of integers, and by N, R, and C

the sets of natural, real, and complex numbers, respectively. Im z stands for the imaginary
part of a complex number z, and C+ is defined as {z ∈ C : Im z > 0}. The indicator of an
expression E is denoted by I{E} and defined to be one if E is true, and zero otherwise.

6.2. A new random matrix model

For a sequence (Zt)t∈Z of independent real random variables and real-valued coefficients
(cj)j∈N∪{0}, the linear process X = (Xt)t∈Z is defined by Xt = ∑∞

j=0 cjZt−j. Based upon this
process the p× n matrix X is defined as

X = (X i,t)it = (X(i−1)n+t)it =


X1 . . . Xn

Xn+1 . . . X2n
...

...
X(p−1)n+1 . . . Xpn

 ∈ Rp×n. (6.2.1)

The interesting feature about this matrix X is that its entries are dependent across both
rows and columns. Moreover, in contrast to the models considered in Bai and Zhou
(2008); Hachem et al. (2006) and Chapter 5, not all entries far away from each other are
asymptotically independent. For example, the correlation between the entries X i,n and
X i+1,1, i = 1, . . . , p− 1, does not depend on n. This makes the matrix X a fascinating object
to study. We will investigate the asymptotic distribution of the eigenvalues of p−1XXT as
both p and n tend to infinity such that their ratio p/n converges to a finite, positive limit y.
We assume that the sequence (Zt)t satisfies

EZt = 0, EZ2
t = 1, and σ4 B sup

t
EZ4

t < ∞, (6.2.2)



6.2. A new random matrix model 185

and that the following Lindeberg-type condition is satisfied: for each ε > 0,

1
pn

pn

∑
t=1

E
(

Z2
t I{Z2

t >εn}

)
→ 0, as n→ ∞. (6.2.3)

Clearly, condition (6.2.3) is satisfied if all {Zt} are identically distributed, but that is not
necessary. As it turns out, the limiting spectral distribution of p−1XXT depends only on y
and the second-order structure of the underlying linear process X, which we now recall: the
autocovariance function γ : Z→ R of X is defined by

γ(h) = EX0Xh = EX0X−h =
∞

∑
j=0

cjcj+|h|, h ∈ Z;

the spectral density f : [0, 2π]→ R of X is the Fourier transform of this function, namely

f (ω) = ∑
h∈Z

γ(h)e−ihω, ω ∈ [0, 2π].

The following is the main result of this chapter.

Theorem 6.1 (Limiting Spectral Distribution) Let Xt = ∑∞
j=0 cjZt−j, t ∈ Z, be a linear sto-

chastic processes with continuously differentiable spectral density f , and let the matrix X ∈ Rp×n

be given by Eq. (6.2.1). Assume that

i) the sequence (Zt)t satisfies conditions (6.2.2) and (6.2.3),

ii) there exist a positive constants C, δ such that |cj| 6 C(j + 1)−1−δ for all j ∈N∪ {0},

iii) for almost all λ ∈ R, f (ω) = λ for at most finitely many ω ∈ [0, 2π], and

iv) f ′(ω) , 0 for almost every ω.

Then, as both n and p tend to infinity such that the ratio p/n converges to a finite positive limit y,
the empirical spectral distribution of p−1XXT converges almost surely to a non-random probability
distribution function F̂ with bounded support. Moreover, there exist positive numbers λ−, λ+ such
that the Stieltjes transform z 7→ sF̂(z) of F̂ is the unique mapping C+ → C+ satisfying

1
sF̂(z)

= −z +
y

2π

∫ λ+

λ−

λ

1 + λsF̂(z)
∑

ω∈[0,2π]: f (ω)=λ

1
| f ′(ω)|dλ. (6.2.4)

Remark 6.2 The assumption that the coefficients (cj)j decay at least polynomially is not
very restrictive. In particular, it allows for the process X to be an ARMA or fractionally
integrated ARMA process, which are known to exhibit long-range dependence (Granger and
Joyeux, 1980; Hosking, 1981). In the latter case, the entries of the matrix X are long-range
dependent as well. The proof of Theorem 6.1 also shows that the weaker assumption that
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the sequence (|cj|)j be bounded by a monotone, summable sequence is sufficient for the
empirical spectral distribution Fp−1XXT

to converge in probability to a non-random limit
with Stieltjes transform satisfying Eq. (6.2.4).

Remark 6.3 It is possible to generalize the proof of Theorem 6.1 so that the result also
holds for non-causal processes, where Xt = ∑∞

j=−∞ cjZt−j. The required changes are merely
notational, the only difference in the result is that the autocovariance function is then given
by ∑∞

j=−∞ cjcj+|h|.

Remark 6.4 The result in Theorem 6.1 is the same as the one obtained in Chapter 5 for a
random matrix model in which the rows of X are modelled as independent linear processes.

Remark 6.5 We conjecture that the same result also holds if the matrix X is defined as

X =


X1 . . . Xn

X2n . . . Xn+1
...

...
X(p−1)n+1 . . . Xpn

 .

The current proof cannot, however, be easily adapted to show this.

Remark 6.6 Condition iv) of Theorem 6.1 excludes a constant spectral density f , which
corresponds to the classical situation of independent entries in the matrix X. The Marchenko–
Pastur law is therefore not a special case of Theorem 6.1. It is, however, easy to formulate a
variant of our main theorem for linear processes with a piecewise constant spectral density
analogously to Theorem 5.2, from which one can recover the classical result. In fact, using
Szegő’s limit theory about the LSD of Toeplitz matrices (see Szegő (1920, Theorem XVIII)
for the original result or, e. g., Böttcher and Silbermann (1999, Sections 5.4 and 5.5) for a
modern treatment), it is possible to show that conditions i) and ii) are sufficient for the
Stieltjes transform sF̂ to be characterized by the equation

1
sF̂(z)

= −z + y
∫ 2π

0

f (ω)

1 + f (ω)sF̂(z)
dω. (6.2.5)

Theorem 6.1 provides a characterization not of the limiting spectral distribution F̂ itself, but
rather of its Stieltjes transform mF̂. The LSD F̂ can be obtained from mF̂ via the well-known
inversion formula (Theorem B.8 Bai and Silverstein, 2010),

F̂([a, b]) = lim
ε→0+

∫ b

a
Im sF̂(x + εi)dx,
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which holds for all continuity points 0 < a < b of F̂. In general, the analytic determination of
this distribution is not feasible, but numerical approximations can be used (see, e. g., Abate,
Choudhury and Whitt, 2000).

6.3. Proof of Theorem 6.1

The general strategy in the proof of Theorem 6.1 is to show that the limiting spectral
distribution of p−1XXT is stable under certain modifications of the matrix X. Finally, this
will imply that F̂p−1XXT

exists and is equal to the limiting spectral distribution of the random
matrix model studied in Chapter 5. To this end we will repeatedly use the following lemma
which presents sufficient conditions for the limiting spectral distributions of two sequences
of matrices to be equal.

Lemma 6.7 Let A1,n, A2,n be sequences of p× n matrices, where p = pn depends on n such that
pn → ∞, as n→ ∞. Assume that the spectral distribution Fp−1 A1,n AT

1,n converges almost surely to a
deterministic limit F̂p−1 A1,n AT

1,n , as n tends to infinity. If there exists a positive number ε such that

i) p−4E
[
tr (A1,n − A2,n) (A1,n − A2,n)

T
]2

= O(n−1−ε),

ii) p−2E tr Ai,n AT
i,n = O(1), i = 1, 2, and

iii) p−4 Var tr Ai,n AT
i,n = O(n−1−ε), i = 1, 2,

then the spectral distribution of p−1A2,n AT
2,n is convergent almost surely with the same limiting

spectral distribution, i. e. Fp−1 A2,n AT
2,n converges weakly to F̂p−1 A1,n AT

1,n .

Proof The first condition implies via Chebyshev’s inequality and the Borel–Cantelli lemma
that the expression p−2 tr (A1,n − A2,n) (A1,n − A2,n)

T converges to zero almost surely. Sim-
ilarly, it follows from ii) and iii) that p−2 tr Ai,n AT

i,n is bounded almost surely for i = 1, 2.
These two facts together then entail almost sure convergence to zero of the product
p−4 tr

(
A1,n AT

1,n + A2,n AT
2,n

)
tr (A1,n − A2,n) (A1,n − A2,n)

T. By Bai and Silverstein (2010,
Corollary A.42), this is a sufficient condition for the assertion of the lemma. �

The following notation will be used throughout the rest of this section: with the constants C
and δ from assumption ii) of Theorem 6.1 we define cj B C(j + 1)−1−δ, such that |cj| 6 cj for
all j. Without further reference we will repeatedly use the fact that j 7→ cj is monotone, that

∑∞
j=1 cα

j is finite for every α > 1, and that ∑∞
j=n cα

j = O(n1−α(1+δ)).
Since it is difficult to deal with infinite-order moving-averages processes directly, it

is convenient to truncate the entries of the matrix X by defining X̃t = ∑n
j=0 cjZt−j and

X̃ = (X̃(i−1)n+t)it. The next proposition shows that this first modification to X does not alter
the limiting spectral distribution of p−1XXT.
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Proposition 6.8 If the empirical spectral distribution of p−1X̃X̃
T

converges to a limit, then the
empirical spectral distribution of p−1XXT converges to the same limit.

Proof The proof of the proposition proceeds in two steps in which we verify conditions i)
to iii) of the trace criterion, Lemma 6.7, respectively.

Step 1 The definitions of X and X̃ imply that

∆X,X̃ B
1
p2 tr

(
X − X̃

) (
X − X̃

)T
=

1
p2

p

∑
i=1

n

∑
t=1

[
X it − X̃ it

]2

=
1
p2

p

∑
i=1

n

∑
t=1

∞

∑
k,k′=n+1

Z(i−1)n+t−kZ(i−1)n+t−k′ckck′ .

We shall show that the second moment of ∆X,X̃ is of order at most n−2−2δ. Since

∞

∑
k,k′

m,m′=n+1

E

∣∣∣Z(i−1)n+t−kZ(i−1)n+t−k′Z(i′−1)n+t′−mZ(i′−1)n+t′−m′

∣∣∣ |ck||ck′ ||cm||cm′ |

6σ4

[
∞

∑
k=0
|ck|
]4

< ∞, (6.3.1)

we can apply Fubini’s theorem to interchange expectation and summation to obtain

µ2,∆X,X̃
BE∆2

X,X̃ (6.3.2)

=
1
p4

p,n

∑
i,i′
t,t′=1

∞

∑
k,k′

m,m′=n+1

E
[

Z(i−1)n+t−kZ(i−1)n+t−k′Z(i′−1)n+t′−mZ(i′−1)n+t′−m′
]

ckck′cmcm′ .

Since the {Zt} are assumed to be independent, the expectation in that sum is non-zero only
if all four Z are the same or else one can match the indices in two pairs. In the latter case we
distinguish three cases according to whether the first Z is paired with the second, third, or
last factor. This leads to the additive decomposition

µ2,∆X,X̃
= µ2,∆X,X̃

+ µ2,∆X,X̃
+ µ2,∆X,X̃

+ µ2,∆X,X̃
, (6.3.3)

where the ideograms indicate which of the four factors are equal. For the contribution from
all four Z being equal it holds that

k = k′, m = m′, and (i− 1)n + t− k = (i′ − 1)n + t′ −m,
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so that

µ2,∆X,X̃
=

σ4

p4

p

∑
i,i′

n

∑
t,t′=1

∞

∑
m=max{n+1,n+1−(i−i′)n−(t−t′)}

c2
(i−i′)n+(t−t′)+mc2

m.

If we introduce the new summation variables δi B i− i′ and δt B t− t′, we obtain

µ2,∆X,X̃
=

σ4

p4

p−1

∑
δi=1−p

(p− |δi|)︸        ︷︷        ︸
6p

n−1

∑
δt=1−n

(n− |δt|)︸        ︷︷        ︸
6n

∞

∑
m=max{n+1,n+1−δin−δt}

c2
m+δin+δt

c2
m.

If δi is positive, then δin + δt is positive as well; the fact that |cj| is bounded by cj and the
monotonicity of j 7→ cj imply that c2

m+δin+δt
6 c(δi−1)ncδt+n so that the contribution from

δi > 1 can be estimated as

µ ,+
2,∆X,X̃

6
σ4n
p3︸︷︷︸

=O(n−2)

p−1

∑
δi=1

c(δi−1)n︸          ︷︷          ︸
=O(n−1−δ)

2n−1

∑
δt=1

cδt︸    ︷︷    ︸
=O(1)

∞

∑
m=n+1

c2
m︸       ︷︷       ︸

=O(n−1−2δ)

= O(n−4−3δ). (6.3.4)

An analogous argument shows that the contribution from δi 6 −1, denoted by µ ,−
2,∆X,X̃

, is of

the same order of magnitude. The contribution to µ2,∆X,X̃
from δi = 0 is given by

µ ,∅
2,∆X,X̃

=
σ4n
p3

n−1

∑
δt=1−n

∞

∑
m=max{n+1,n+1−δt}

c2
mc2

m+δt

6
σ4n
p3︸︷︷︸

=O(n−2)

2
n−1

∑
δt=1

c2
δ︸   ︷︷   ︸

=O(1)

∞

∑
m=n+1

c2
m︸       ︷︷       ︸

=O(n−1−2δ)

+
∞

∑
m=n+1

c4
m︸       ︷︷       ︸

=O(n−3−4δ)

 = O(n−3−2δ). (6.3.5)

By combining the displays (6.3.4) and (6.3.5) it follows that µ2,∆X,X̃
= O(n−3−2δ). The second

term in Eq. (6.3.3) corresponds to k = k′, m = m′ and (i− 1)n + t− k , (i′ − 1)n + t′ −m.
The restriction that not all four factors be equal is taken into account by subtracting µ2,∆X,X̃

;
consequently,

µ2,∆X,X̃
=

1
p4

p

∑
i,i′=1

n

∑
t,t′=1︸            ︷︷            ︸

=O(1)

∞

∑
k,m=n+1

c2
kc2

m︸            ︷︷            ︸
=O(n−2−4δ)

−µ2,∆X,X̃
= O(n−2−4δ).
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It remains to analyse µ2,∆X,X̃
which, by symmetry, is equal to µ2,∆X,X̃

. If the first factor is
paired with the third, the condition for non-vanishment becomes

(i− 1)n + t− k = (i′− 1)n + t′−m, (i− 1)n + t− k′ = (i′− 1)n + t′−m′, k , k′, m , m′,

or, equivalently,

k = m + (i− i′)n + t− t′, k′ = m′ + (i− i′)n + t− t′, m , m′.

Again introducing the new summation variables δi B i− i′ and δt B t− t′, we obtain that

µ2,∆X,X̃
=

1
p4

p−1

∑
δi=1−p

(p− |δi|)︸        ︷︷        ︸
6p

n−1

∑
δt=1−n

(n− |δt|)︸        ︷︷        ︸
6n

∞

∑
m,m′=max{n+1,n+1−δin−δt}

cmcm′cm+δin+δt cm′+δin+δt

− µ2,∆X,X̃
.

As in the analysis of µ2,∆X,X̃
we obtain the contribution from δi , 0 as

∣∣∣µ ,+
2,∆X,X̃

∣∣∣ = ∣∣∣µ ,−
2,∆X,X̃

∣∣∣ 6 n
p3︸︷︷︸

=O(n−2)

p−1

∑
δi=1

c(δi−1)n︸          ︷︷          ︸
=O(n−1−δ)

2n−1

∑
δt=1

cδt︸    ︷︷    ︸
=O(1)

∞

∑
m,m′=n+1

cmcm′︸               ︷︷               ︸
=O(n−2δ)

+µ2,∆X,X̃
= O(n−3−2δ).

(6.3.6)
Finally, for the contribution from δi = 0, we find that

∣∣∣µ ,∅
2,∆X,X̃

∣∣∣ 6 n
p3

n−1

∑
δt=1−n

∞

∑
m,m′=max{n+1,n+1−δt}

|cmcm′cm+δt cm′+δt |+ µ2,∆X,X̃

6
n
p3︸︷︷︸

=O(n−2)

2
n−1

∑
δt=1

c2
δt︸   ︷︷   ︸

=O(1)

∞

∑
m,n′=n+1

cmcm′︸              ︷︷              ︸
=O(n−2δ)

+
∞

∑
m,n′=n+1

c2
mc2

m′︸              ︷︷              ︸
=O(n−2−4δ)

+ µ2,∆

=O(n−2−2δ). (6.3.7)

The last two displays (6.3.6) and (6.3.7) imply that

µ2,∆X,X̃
= µ ,−

2,∆X,X̃
+ µ ,∅

2,∆X,X̃
+ µ ,+

2,∆X,X̃
= O(n−2−2δ).

Thus, µ2,∆X,X̃
= O(n−2−2δ), as claimed.
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Step 2 Next we verify assumptions ii) and iii) of Lemma 6.7, which means that we show
that both

ΣX B
1
p2 tr XXT and ΣX̃ B

1
p2 tr X̃X̃

T

have bounded first moment and variances of order n−1−ε, for some ε > 0; in fact, ε will turn
out to be one. For ΣX we obtain

µ1,ΣX B EΣX =
1
p2

p

∑
i=1

n

∑
t=1

EX2
it =

1
p2

p

∑
i=1

n

∑
t=1

EX2
(i−1)n+t

=
1
p2

p

∑
i=1

n

∑
t=1

∞

∑
k,k′=0

E
[

Z(i−1)n+t−kZ(i−1)n+t−k′
]

ckck′ =
n
p

∞

∑
k=0

c2
k ,

where the change of the order of expectation and summation is valid by Fubini’s theorem
and the observation that, by the Cauchy–Schwarz inequality,

∞

∑
k,k′=0

E

∣∣∣Z(i−1)n+t−kZ(i−1)n+t−k′

∣∣∣ |ck||ck′ | 6
(

∑
k
|ck|
)2

< ∞.

The first moment µ1,ΣX converges, as n tends to infinity, to y γ(0), and is, in particular,
bounded. Using Eq. (6.3.1) and Fubini’s theorem, the second moment of ΣX becomes

µ2,ΣX BEΣ2
X

=
1
p4

p

∑
i,i′=1

n

∑
t,t′=1

∞

∑
k,k′

m,m′=0

E
[

Z(i−1)n+t−kZ(i−1)n+t−k′Z(i′−1)n+t′−mZ(i′−1)n+t′−m′
]

ckck′cmcm′ .

This sum coincides with the expression analysed in Eq. (6.3.2), except that here the k, k′, m
and m′ sums start at zero and not at n + 1. A straightforward adaptation of the arguments
there show that

µ2,ΣX =
n2

p2

(
∞

∑
k=0

c2
k

)2

+ O(n−2),

and, consequently, that Var ΣX = µ2,ΣX − (µ1,ΣX )
2 = O(n−2). Analogous computations show

that EΣX̃ is bounded, and that Var ΣX̃ = O(n−2). Thus, conditions ii) and iii) of Lemma 6.7
are verified, and the proof of the proposition is complete. �

Due to the previous Proposition 6.8 the problem of determining the limiting spectral
distribution of the sample covariance matrix p−1XXT has been reduced to computing the
LSD of the matrix p−1X̃X̃

T
, where now, for fixed n, the matrix X̃ depends on only finitely

many of the noise variables Zt. The fact that the entries of X̃ are in fact finite-order moving-
average processes and therefore linearly dependent on the Zt allows for the matrix X̃ to
be written as a linear transformation of the i. i. d. matrix Z B (Z(i−2)n+t)i=1,...,p+1,t=1,...,n. We
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emphasize that Z — in contrast to X and X̃ — is a (p + 1)× n matrix; this is necessary
because the entries in the first row of X̃ depend on noise variables with negative indices, up
to and including Z1−n. In order to formulate the transformation that maps Z to X̃ concisely
in the next lemma, we define the matrices

Km =

(
0 0

1m−1 0

)
∈ Rm×m, m ∈N, (6.3.8)

and the polynomials

χn(z) = c0 + c1z + . . . + cnzn, (6.3.9a)

χ̄n(z) = znχ (1/z) = cn + cn−1z + . . . + c0zn. (6.3.9b)

Lemma 6.9 With X̃, Z, Km and χn, χ̄n defined as before, it holds that

X̃ =
[

0 1p 1p 0
] ( Z 0

0 Z

)[
χn
(
KT

n
)

χ̄n (Kn)

]
. (6.3.10)

Proof Let sN : RN → RN be the right-shift operator which is defined by sN(v1, . . . , vN) =

(0, v1, . . . , vN−1) and, for positive integers r, s, denote by vecr,s : Rr×s → Rrs the bijective
linear operator that transforms a matrix into a vector by horizontally concatenating its
subsequent rows, starting with the first one. The operator Sr,s : Rr×s → Rr×s is then defined
as Sr,s = vec−1

r,s ◦srs ◦ vecr,s. This operator shifts all entries of a matrix to the right except for
the entries in the last column, which are shifted down and moved into the first column. For
k = 1, 2, . . ., the operator Sk

r,s is defined as the k-fold composition of Sr,s. In the following we

write S B Sp+1,n. With this notation it is clear that X̃ =
[

0 1p

]
χn(S)Z. In order to obtain

Eq. (6.3.10), we observe that the action of S can be written in terms of matrix multiplications
as

SZ = Kp+1ZE + ZKT
n ,

where the entries of E ∈ Rn×n are all zero except for a one in the lower left corner. Using
the fact that E(KT

n )
mE is zero for every non-negative integer m, it follows by induction that

Sk, k = 1, . . . , n, acts like

SkZ =Z(KT
n )

k
+ Kp+1Z

k

∑
i=1

(KT
n )

k−i
E(KT

n )
i−1

=Z(KT
n )

k
+ Kp+1ZKn−k

n

=
[

1p+1 Kp+1

] ( Z 0
0 Z

)[
(KT

n )
k

Kn−k
n

]
.
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This implies that

X̃ =
[

0 1p

]
χn(S)Z

=
[

0 1p

] n

∑
k=0

ckSkZ

=
[

0 1p

] [
1p+1 Kp+1

] ( Z 0
0 Z

)
n

∑
k=0

ck

[
(KT

n )
k

Kn−k
n

]

=
[

0 1p 1p 0
] ( Z 0

0 Z

)[
χn
(
KT

n
)

χ̄n (Kn)

]
,

and completes the proof. �

While the last lemma gives quite an explicit description of the relation between Z and X̃, it is
impractical for directly determining the limiting spectral distribution of p−1X̃X̃

T
. The reason

is that Z appears twice in the central block-diagonal matrix and is moreover multiplied by
some deterministic matrices from both the left and the right. The LSD of the product of three
random matrices has been computed in the literature (Zhang, 2006), but this result is not
applicable in our situation due to the appearance of the random block matrix in Eq. (6.3.10).
Sample covariance matrices derived from random block matrices have been considered in
Rashidi Far et al. (2008). However, they only treat the Gaussian case and, more importantly,
do not cover the case of a non-trivial population covariance matrix. We are thus not aware
of any result allowing to derive the LSD of p−1X̃X̃

T
directly from Lemma 6.9.

The next proposition allows us to circumvent this problem. It is shown that, at least
asymptotically and at the cost of slightly changing the size of the involved matrices, one can
simplify the structure of X̃ so that Z appears only once and is multiplied by a deterministic
matrix only from the right.

Proposition 6.10 Let X̃, Z, Kn and χn, χ̄n be given as before and define the matrix

X̂ B Z
[

0 1n 1n 0
] [ χn+1(KT

n+1)

χ̄n+1(Kn+1)

]
∈ R(p+1)×(n+1). (6.3.11)

If the empirical spectral distribution of p−1X̂X̂
T

converges to a limit, then the empirical spectral
distribution of p−1X̃X̃

T
converges to the same limit.

Proof In order to be able to compare the limiting spectral distributions of p−1X̃X̃
T

and
p−1X̂X̂T in spite of their dimensions being different, we introduce the matrix

X =

[
0 0
0 X̃

]
∈ R(p+1)×(n+1). (6.3.12)
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Clearly, Fp−1XXT
= 1

p+1 δ0 +
p

p+1 Fp−1X̃X̃
T
, which implies equality of the limiting spectral

distributions, i. e. F̂p−1XXT
= F̂p−1X̃X̃

T
, provided that either of the two, and hence both, exists.

It is therefore sufficient to show that the LSDs of p−1X̂X̂
T

and p−1XXT are identical; this
will be done by verifying the three conditions of Lemma 6.7. We first observe that, by
definition, the (i, j)th entry of X̂ is given by

X̂ ij =
j−1

∑
k=1

Z(i−2)n+kcj−k−1 +
n

∑
k=j

Z(i−2)n+kcj−k+n+1, (6.3.13)

whereas the (i, j)th entry of X has the form

X ij =

0, if i = 1 or j = 1,

∑
j−1
k=1 Z(i−2)n+kcj−k−1 + ∑n

k=j−1 Z(i−3)n+kcj−k+n−1, else.
(6.3.14)

The remainder of the proof will be divided into two parts. In the first part we check the
validity of assumption i) for the difference X̂ − X, whereas in the second one we consider
the terms tr X̂X̂

T
and tr XXT, which appear in conditions ii) and iii).

Step 1 Using the definitions of X̂, Eq. (6.3.11), and of X, Eq. (6.3.12), it follows that

∆X̂,X B
1
p2 tr

(
X̂ − X

) (
X̂ − X

)T

=
1
p2

p+1

∑
i=1

n+1

∑
j=1

[
X̂ ij − X ij

]2

6
2
p2

p+1

∑
i=2

n+1

∑
j=2

[
n

∑
k,k′=j

Z(i−2)n+kZ(i−2)n+k′cj−k+n+1cj−k′+n+1

+
n

∑
k,k′=j−1

Z(i−3)n+kZ(i−3)n+k′cj−k+n−1cj−k′+n−1

]

+
1
p2

p+1

∑
i=1

n

∑
k,k′=1

Z(i−2)n+kZ(i−2)n+k′cn−k+2cn−k′+2

+
2
p2

n+1

∑
j=2

j−1

∑
k,k′=1

Z−n+kZ−n+k′cj−k−1cj−k′−1

+
2
p2

n+1

∑
j=2

n

∑
k,k′=j

Z−n+kZ−n+k′cj−k+n+1cj−k′+n+1

C ∆(1)
X̂,X

+ ∆(2)
X̂,X

+ ∆(3)
X̂,X

+ ∆(4)
X̂,X

+ ∆(5)
X̂,X

, (6.3.15)
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where the elementary inequality (a + b)2 6 2a2 + 2b2 was used twice. In order to show that
the L2-norm of expression (6.3.15) is summable, we consider each term in turn. For the
second moment of the first term of Eq. (6.3.15) we obtain

µ
2,∆(1)

X̂,X

BE
(

∆(1)
X̂,X

)2

=
4
p4

p+1

∑
i,i′=2

n+1

∑
j,j′=2

n−j+1

∑
k,k′=1

n−j′+1

∑
m,m′=1

E
[

Z(i−1)n−k+1Z(i−1)n−k′+1Z(i′−1)n−m+1Z(i′−1)n−m′+1

]
×

cj+kcj+k′cj′+mcj′+m′ .

As before, we consider all configurations where above expectation is not zero. The expecta-
tion equals σ4 if i = i′ and k, k′, m, m′ are equal, hence

µ
2,∆(1)

X̂,X

6
4σ4

p4

p+1

∑
i=2

n

∑
k=1

(
n+1

∑
j=2

c2
j+k

)2

6
4σ4

p3

n

∑
k=1

c2
k

(
n+1

∑
j=2

cj

)2

= O(n−3).

The expectation is one if the four Z can be collected in two non-equal pairs. The first term
equals the second and the third equals the fourth if k = k′ and m = m′, which implies that

µ
2,∆(1)

X̂,X

=
4
p4

p+1

∑
i,i′=2

n+1

∑
j,j′=2

n−j+1

∑
k=1

n−j′+1

∑
m=1

c2
j+kc2

j′+m − µ
2,∆(1)

X̂,X

=
4
p2

(
n+1

∑
j=2

n−j+1

∑
k=1

c2
j+k

)2

− µ
2,∆(1)

X̂,X

=O(n−2).

Likewise, the contribution from pairing the first factor with the third, and the second with
the fourth, can be estimated as∣∣∣∣µ2,∆(1)

X̂,X

∣∣∣∣ 6 4
p4

p+1

∑
i′=2

n+1

∑
j,j′=2

n

∑
k,k′=1

|cj+kcj+k′cj′+kcj′+k′ |+ µ
2,∆(1)

X̂,X

6
4
p3

(
n+1

∑
j=1

cj

)4

+ µ
2,∆(1)

X̂,X

= O(n−3).

Obviously, the configuration µ
2,∆(1)

X̂,X

can be handled the same way as µ
2,∆(1)

X̂,X

above. Thus, we

have shown that the second moment of ∆(1)
X̂,X

, the first term in Eq. (6.3.15), is of order n−2.
This can be shown for the second term in Eq. (6.3.15) in the same way. We now consider the
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third term in Eq. (6.3.15), whose second moment is

µ
2,∆(3)

X̂,X

BE
(

∆(3)
X̂,X

)2

=
1
p4

p+1

∑
i,i′=1

n

∑
k,k′

m,m′=1

E
[

Z(i−2)n+kZ(i−2)n+k′Z(i′−2)n+mZ(i′−2)n+m′
]
×

cn−k+2cn−k′+2cn−m+2cn−m′+2.

Distinguishing the same cases as before, we have

µ
2,∆(3)

X̂,X

= σ4
p + 1

p4

n

∑
k=1

c4
n−k+2 = O(n−3),

and thus

µ
2,∆(3)

X̂,X

=
(p + 1)2

p4

(
n

∑
k=1

c2
n−k+2

)2

− µ
2,∆(3)

X̂,X

= O(n−2),

as well as

µ
2,∆(3)

X̂,X

= µ
2,∆(3)

X̂,X

= O(n−3).

Thus, the second moment of the third term in Eq. (6.3.15) is of order n−2; repeating the
foregoing arguments, it can be seen that the second moments of ∆(4)

X̂,X
and ∆(5)

X̂,X
, the two last

terms in Eq. (6.3.15), are of order O(n−2) as well, so that we have shown that

1
p4 E

[
tr
(

X̂ − X
) (

X̂ − X
)T
]2

= E
(

∆X̂,X

)2
6 5

5

∑
i=1

µ
2,∆(i)

X̂,X

= O(n−2).

Step 2 In this step we shall prove that both

ΣX̂ B
1
p2 tr X̂X̂

T
and ΣX B

1
p2 tr XXT

have bounded first moments, and that their variances are summable sequences in n, i. e. we
check conditions ii) and iii) of Lemma 6.7. Since tr XXT is equal to tr X̃X̃

T
, the claim about

ΣX has already been shown in the second step of the proof of Proposition 6.8. For the first
term one finds, by Eq. (6.3.13), that

ΣX̂ =
1
p2

p+1

∑
i=1

n+1

∑
j=1

(
j−1

∑
k=1

Z(i−2)n+kcj−k−1 +
n

∑
k=j

Z(i−2)n+kcj−k+n+1

)2
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6
2
p2

p+1

∑
i=1

n+1

∑
j=1

j−1

∑
k,k′=1

Z(i−2)n+kcj−k−1Z(i−2)n+k′cj−k′−1

+
2
p2

p+1

∑
i=1

n+1

∑
j=1

n

∑
k,k′=j

Z(i−2)n+kcj−k+n+1Z(i−2)n+k′cj−k′+n+1 C Σ(1)
X̂

+ Σ(2)
X̂

.

Clearly, the first two moments of Σ(1)
X̂

are given by

µ
1,Σ(1)

X̂

BEΣ(1)
X̂

=
2
p2

p+1

∑
i=1

n+1

∑
j=1

j−1

∑
k,k′=1

E
[

Z(i−2)n+kZ(i−2)n+k′
]

cj−k−1cj−k′−1 =
2(p + 1)

p2

n+1

∑
j=1

j−1

∑
k=1

c2
k−1

and

µ
2,Σ(1)

X̂

BE
(

Σ(1)
X̂

)2
=

4
p4

p+1

∑
i,i′=1

n+1

∑
j,j′=1

j−1

∑
k,k′=1

j′−1

∑
m,m′=1

E(Z(i−2)n+kZ(i−2)n+k′Z(i′−2)n+mZ(i′−2)n+m′)×

cj−k−1cj−k′−1cj′−m−1cj′−m′−1.

We separately consider the case that all four factors are equal, and the three possible pairings
of the four Z. If all four Z are equal, it must hold that i = i′, k = k′ = m = m′, which results
in a contribution

µ
2,Σ(1)

X̂

=
4σ4

p4

p+1

∑
i=1

n+1

∑
j,j′=1

min{j,j′}−1

∑
k=1

c2
j−k−1c2

j′−k−1

6
4σ4(p + 1)

p4

n+1

∑
j,j′=1

cj−min{j,j′}cj′−min{j,j′}

min{j,j′}−1

∑
k=1

c2
k−1

6
4σ4(p + 1)

p4

n+1

∑
j,j′=1

c0c|j−j′|

n

∑
k=1

c2
k−1.

Introducing the new summation variable δj B j− j′, we find that

µ
2,Σ(1)

X̂

6
4σ4(p + 1)(n + 1)

p4 c0

c0 + 2
n

∑
δj=1

cδj

 n

∑
k=1

c2
k−1 = O(n−2). (6.3.16)

The first factor being paired with the second, and the third with the fourth, means that
k = k′, m = m′ and m , (i− i′)n + k, so that the contribution of this configuration is given
by

µ
2,Σ(1)

X̂

=
4
p4

p+1

∑
i,i′=1

n+1

∑
j,j′=1

j−1

∑
k=1

j′−1

∑
m=1

c2
j−k−1c2

j′−m−1 − µ
2,Σ(1)

X̂

=

(
µ

1,Σ(1)
X̂

)2

+ O(n−2). (6.3.17)
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For the pairing one has the constraint i = i′, k = m, k′ = m′, k , k′, and the corresponding
contribution is

µ
2,Σ(1)

X̂

=
4
p4

p+1

∑
i=1

n+1

∑
j,j′=1

min{j,j′}−1

∑
k,k′=1

cj−k−1cj−k′−1cj′−k−1cj′−k′−1 − µ
2,Σ(1)

X̂

6
4(p + 1)

p4

n+1

∑
j,j′=1

cj−min{j,j′}cj′−min{j,j′}

min{j,j′}−1

∑
k,k′=1

ck−1ck′−1 + O(n−2)

6
4(p + 1)(n + 1)

p4 c0

c0 + 2
n

∑
δj=1

cδj

 n

∑
k,k′=1

ck−1ck′−1 + O(n−2) = O(n−2). (6.3.18)

Renaming the summation indices shows that µ
2,Σ(1)

X̂

is equal to µ
2,Σ(1)

X̂

. Combining this

observation with the displays (6.3.16) to (6.3.18), it follows that

Var Σ(1)
X̂

= µ
2,Σ(1)

X̂

−
(

µ
1,Σ(1)

X̂

)2

= O(n−2),

and since a very similar reasoning can be applied to Σ(2)
X̂

, we conclude that

1
p4 Var tr X̂X̂

T
6 2 Var Σ(1)

X̂
+ 2 Var Σ(2)

X̂
= O(n−2). �

The intention behind Proposition 6.10 was to bring us into a situation where we can apply
results about the limiting spectral distribution of matrices of the form ZHZT, where Z is
an i. i. d. matrix and H is a positive-semidefinite population covariance matrix. Expressions
for the Stieltjes transform of the LSD of such matrices in terms of the LSD of H have been
obtained in Marchenko and Pastur (1967); Silverstein and Bai (1995), and in the most general
form in Pan (2010). The next lemma shows that in the current context the population
covariance matrix H has the same LSD as the autocovariance matrix Γ of the process X,
which is defined by

Γ = (γ(i− j))ij, γ(h) =
∞

∑
j=0

cjcj+|h|, h ∈ Z. (6.3.19)

Lemma 6.11 Let Kn and χn, χ̄n be defined by Eqs. (6.3.8) and (6.3.9). The limiting spectral
distribution of ΩΩT, where

Ω =
[

0 1n 1n 0
] [ χn+1

(
KT

n+1

)
χ̄n+1 (Kn+1)

]
∈ Rn×n+1, (6.3.20)

exists and is the same as the limiting spectral distribution of Γ, defined in Eq. (6.3.19).
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Proof The proof proceeds via a two-stage comparison argument. First, we define an
approximate matrix square root Tn of the autocovariance matrix Γ and show that the spectral
distribution FTnTT

n converges to F̂Γ, which exists by Lemma 5.10. In the second step we use
the trace criterion to prove that F̂ΩΩT

exists and is equal to F̂TnTT
n .

Step 1 We define the matrix T = Tn ∈ Rn×n by Tij = cj−i−1 I{j>i+1}. By a variant of
the trace criterion (Bai and Silverstein, 2010, Corollary A.41), it suffices to show that
n−1 tr

[
(Γ− TTT)2] converges to zero. By the definition of T we have

(
TTT

)
ij
=

n+1

∑
k=max {i,j}+1

ck−i−1ck−j−1 =
n−max {i,j}

∑
k=0

ckck+|j−i|,

which identifies T as a truncated square root of Γ. Hence

1
n

tr
[
(Γ− TTT)2

]
=

1
n

n

∑
i,j=1

 ∞

∑
k=n−max {i,j}+1

ckck+|j−i|

2

=
1
n

n

∑
i=1

n

∑
j=1

(
∞

∑
k=1

ck+j−1ck+i−1

)2

6
1
n

n

∑
i=1

ci−1

n

∑
j=1

cj−1

∞

∑
k=1

ck

∞

∑
k′=1

ck′ = O(n−1),

which completes the first step.

Step 2 As can be seen easily, the matrix Ω is, except for one missing row, a circulant matrix
whose entries are given by

Ωij = cn+j−i mod (n+1) = cj−i−1 mod (n+1), i = 1, . . . , n, j = 1, . . . , n + 1.

By Lemma 6.7 it is sufficient to show that the expression n−1 tr(TTT + ΩΩT) converges to a
finite limit, and that n−1 tr

[
(Ω− T)(Ω− T)T] converges to zero. By the definition of T and

Ω we have that

1
n

tr
[
(Ω− T)(Ω− T)T

]
=

1
n

n

∑
j=1

n

∑
i=j

c2
j−i+n (6.3.21)

=
1
n

n

∑
j=1

n−j+1

∑
i=1

c2
j+i 6

1
n

n

∑
j=1

cj

n

∑
i=1

ci = O(n−1).
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Furthermore, we obtain that

1
n

tr(TTT) =
1
n

n

∑
i=1

n−i

∑
k=0

c2
k 6

∞

∑
k=0

c2
k < ∞.

Thus, by Eq. (6.3.21), one has

1
n

tr(ΩΩT) =
1
n

n

∑
i=1

n+1

∑
j=1

cj−i−1 mod (n+1)

=
1
n

n+1

∑
j=1

n

∑
i=j

c2
j−i+n +

1
n

n+1

∑
j=1

j−1

∑
i=1

c2
j−i−1

6O(n−1) +
n + 1

n

n

∑
s=1

c2
s−1 < ∞.

This completes the second step and thereby the proof of the lemma. �

We are now ready to prove our main result.

Proof (of Theorem 6.1) According to Eq. (6.3.11), the matrix X̂X̂
T

is of the form ZΩΩTZT,
where Ω is given by Eq. (6.3.20). Using Pan (2010, Theorem 1) and the fact that, by
Lemma 6.11, the limiting spectral distribution of ΩΩT exists, it follows that the limiting

spectral distribution F̂p−1X̂X̂
T

exists. Therefore, the combination of Propositions 6.8 and 6.10
shows that the limiting spectral distribution of p−1XXT also exists and is the same as that of
p−1X̂X̂

T
.

Moreover, it was shown in Lemma 6.11 that the limiting spectral distributions F̂ΩΩT

and F̂Γ are the same, and so Pan (2010, equation (1.2)) implies that the Stieltjes transform
z 7→ sF̂p−1XXT (z) of F̂p−1XXT

is the unique mapping from C+ to C+ which solves

1
sF̂p−1XXT (z)

= −z + y
∫

R

λ

1 + λsF̂p−1XXT (z)
F̂Γ(dλ), (6.3.22)

where y = lim p/n. Under the assumptions of Theorem 6.1 it was shown in Lemma 5.10
that F̂Γ is an absolutely continuous distribution with bounded support and density

g : (λ−, λ+)→ R+, λ 7→ 1
2π ∑

ω: f (ω)=λ

1
| f ′(ω)| ,

where f : [0, 2π]→ R is the Fourier transform of the sequence (γ(h))h∈Z. Inserting the last
expression into Eq. (6.3.22) completes the proof of the theorem. �
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6.4. Sketch of an alternative proof of Theorem 6.1

In this section we indicate how Theorem 6.1 could be proved alternatively using the methods
employed in Chapter 5. We denote by X̃(α) the matrix which is defined as in Eq. (6.2.1) but
with the linear process being truncated at bnαc with 0 < α < 1, i. e.

X̃(α) =

(
bnαc

∑
j=0

cjZ(i−1)n+t−j

)
it

.

If 1 − α is sufficiently small, then an adaptation of the proof of Proposition 6.8 to this
setting shows that p−1XXT and p−1X̃(α)X̃

T
(α) have the same limiting spectral distribution

almost surely. The next step is to partition X̃(α) into two blocks of dimensions p× bnαc
and p × (n − bnαc), respectively. If we denote these two blocks by X̃

1
(α) and X̃

2
(α), i. e.

X̃(α) =
[

X̃
1
(α) X̃

2
(α)

]
, then clearly X̃(α)X̃

T
(α) = X̃

1
(α)

(
X̃

1
(α)

)T
+ X̃

2
(α)

(
X̃

2
(α)

)T
, and an application

of Bai and Silverstein (2010, Theorem A.43) yields that

sup
λ∈R>0

∣∣∣∣∣Fp−1XXT
([0, λ])− Fp−1X̃

2
(α)

(
X̃

2
(α)

)T

([0, λ])

∣∣∣∣∣ 61
p

rank
(

X̃
1
(α)

(
X̃

1
(α)

)T
)

6
1
p

min (bnαc, p)

=O
(

p−1nα
)
→ 0.

It therefore suffices to derive the limiting spectral distribution of p−1X̃
2
(α)

(
X̃

2
(α)

)T
. Since

the matrix X̃
2
(α) has independent rows, this could be done by a careful adaptation of the

arguments given in Chapter 5. We chose, however, to provide a self-contained proof, which
also provides intermediate results of independent interest like Proposition 6.10, and we
therefore omit the lengthy details of this alternative proof.
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First-Passage Percolation on the
Ladder Graph





7. On the Markov Transition Kernels for
First-Passage Percolation on the Ladder

7.1. Introduction

The subject of first-passage percolation, introduced in Hammersley and Welsh (1965), is the
study of shortest paths in random graphs and their geometric properties. Let G = (V, E) be
a graph with vertex set V and unoriented edges E ⊂ V2, and assume that there is a weight
function w : E → R+. For vertices u, v ∈ V, a path joining u and v in G is a sequence of
vertices pu→v = {u = p0, p1, . . . , pn−1, pn = v} such that (pν, pν+1) ∈ E for 0 6 ν < n. The
weight w(pu→v) of such a path is defined as the sum of the weights of the comprising edges,
i. e. w(pu→v) B ∑n−1

ν=0 w((pν, pν+1)). The first-passage time between the vertices u and v is
denoted by dG(u, v) and defined as dG(u, v) B inf {w(p), p a path joining u and v in G}.

First-passage percolation can be considered a model for the spread of a fluid through
a random porous medium; it differs from ordinary percolation theory in that it puts
special emphasis on the dynamical aspect of how long it takes for certain points in the
medium to be reached by the fluid. Important applications include the spread of infectious
diseases (Altmann, 1993) and the analysis of electrical networks (Grimmett and Kesten, 1984).
Recently, there has also been an increased interest in first-passage percolation on graphs
where not only the edge-weights, but the edge-structure itself is random. These models,
including the Gilbert and Erdős-Rényi random graph, were investigated in Bhamidi, van der
Hofstad and Hooghiemstra (2010); Sood, Redner and ben Avraham (2005); van der Hofstad,
Hooghiemstra and Van Mieghem (2001); they were found to be a useful approximation to
the internet as well as telecommunication networks.

Usually, however, the underlying graph is taken to be Zd, d > 2, and the edge weights are
independent random variables with some common distribution P, see, e. g., Kesten (1986);
Smythe and Wierman (1978) and references therein. Interesting mathematical questions
arising in this context include asymptotic properties of the sets Bt B {u ∈ Zd : dZd(0, u) 6 t}
(Kesten, 1987; Seppäläinen, 1998), the existence and properties of geodesics (Licea and
Newman, 1996), and the limiting behaviour of dZd((0, 0), (n, 0))/n (Kesten, 1993). The latter
expression is known to converge, under weak assumptions on P, to a deterministic constant,
called the first-passage percolation rate. The computation of this constant has proved to be a
very difficult problem and has not yet been accomplished even for the simplest choices of P
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(Graham, Grötschel and Lovász, 1995, p. 1937). An exception to this is the case when the
underlying graph G is essentially one-dimensional (Flaxman, Gamarnik and Sorkin, 2006;
Renlund, 2010; Schlemm, 2009).

In this chapter we consider the first-passage percolation problem on the ladder G, a
particular essentially one-dimensional graph, for which the first-passage percolation rate
is known (Renlund, 2010; Schlemm, 2009). We extend the existing results about the almost
sure convergence of dG((0, 0), (n, 0))/n, as n→ ∞, by providing a Central Limit Theorem
as well as giving a complete description of the n-step transition kernels of a closely related
Markov chain. Our results can be used to explicitly compute the asymptotic variance in the
Central Limit Theorem. They are also the basis for the quantitative analysis of any other
statistic related to first-passage percolation in this model. In particular, knowledge of the
higher-order transition kernels is the starting point for the computation of the distribution of
the rungs which are part of the shortest path. The ladder model is worth studying because
it is one of the very few situations where a complete explicit description of the finite-time
behaviour of the first-passage percolation times can be given.

Outline of the chapter The structure of the chapter is as follows: In Section 7.2 we describe
the model and state our results; Section 7.3, which contains the proofs, is divided in three
subsections. The first is devoted to the Central Limit Theorem, the second presents some
explicit evaluations of infinite sums which are needed in Section 7.3.3, where the main
theorem about the transition kernels is proven. We conclude the chapter with a brief
discussion of the techniques that we used to arrive at the results which are presented in the
following.

Notation We use the notation δp,q for the Kronecker symbol and Θp,q as well as Θ̃p,q for
versions of the discretized Heaviside step function, precisely

δp,q B

1, if p = q,

0, else,
Θp,q B

1, if p > q,

0, else,
Θ̃p,q B

1, if p 6 q,

0, else.

The symbol (k)! stands for k!(k + 1)!. We denote by R the real numbers and by Z the
integers. A superscript + (−) indicates restriction to the positive (negative) elements of a
set. The symbol γ stands for the Euler–Mascheroni constant, P denotes probability, and E

expectation.

7.2. First-passage percolation on the ladder

In this chapter we further investigate a first-passage percolation model which has been
considered before in Renlund (2010) and also in Schlemm (2009). We denote by Gn = (Vn, En),
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Xn

Yn

Zn

H0,0L H1,0L H2,0L Hn-1,0L Hn,0L

H0,1L H1,1L H2,1L Hn-1,1L Hn,1L

Figure 7.1.: The ladder graph Gn. The edge weights Xν, Yν, Zν are independent exponential random
variables.

n ∈N, the graph with vertex set Vn = {0, . . . , n} × {0, 1} and edges En = Xn ∪Yn ∪Zn ⊂
V2

n , where

Xn = {((i, 0), (i + 1, 0)) : 0 6 i < n},
Yn = {((i, 1), (i + 1, 1)) : 0 6 i < n},
Zn = {((i, 0), (i, 1)) : 0 6 i 6 n}.

The edge weights are independent exponentially distributed random variables which are
labelled in the obvious way Xi, Yi and Zi, see also Fig. 7.1 for a graphical representation of
the graph Gn. By time-scaling, it is no restriction to assume that the edge weights have mean
one. Recently, Renlund (2011) investigated a model in which the mean of the vertical edges
is different from the mean of the horizontal edges, but here we will restrict attention to the
case that all edge weights have the same exponential distribution. We further denote by ln

the length of the shortest path from (0, 0) to (n, 0) in the graph Gn, by l′n the length of the
shortest path from (0, 0) to (n, 1), and by ∆n the difference between the two, i. e. ∆n = l′n − ln.
It has been shown in Schlemm (2009) and also, by a different method, in Renlund (2010)
that limn→∞ ln/n almost surely exists and is equal to the constant χ = 3

2 −
J1(2)

2 J2(2)
, where Jν

are Bessel functions of the first kind, see Definition 7.4 or Abramowitz and Stegun (1992,
Chap. 9) for a comprehensive review of Bessel functions. This constant is called the first-
passage percolation rate for our model. The method employed in Schlemm (2009) to obtain
this result built on Flaxman et al. (2006) and consisted in showing that there exists an
ergodic R× (R+)

×3-valued Markov chain M = (Mn)n>0 with stationary distribution π̃ and
a function f : R× (R+)

×3 → R such that

χ = E f (M∞) =
∫

R×(R+)×3
f (m)π̃(dm).
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ΡnHrL

Figure 7.2.: Densities ρn of the random variables ∆n for n = 1, . . . , 8, showing convergence towards
the stationary distribution π(dr)

Explicitly,

Mn = (∆n, Xn+1, Yn+1, Zn+1) and f : (r, x, y, z) 7→ min{r + y + z, x}.

Throughout we write m = (r, x, y, z) for some element of the state space R × (R+)
×3.

Figure 7.2 displays the densities ρn : R→ R+ of the random variables ∆n for n = 1, . . . , 8; the
picture confirms that the Markov chain ∆ = (∆n)n>0 converges to a stationary distribution,
which is given in Eq. (7.2.5).

In order to better understand the first-passage percolation problem on the ladder, it is
important to know the higher-order transition kernels

K̃n :
(

R×
(
R+
)×3
)
×
(

R×
(
R+
)×3
)
→ R+

of the Markov chain M. They completely determine the dynamics of the model and are
defined by

K̃n(m′, m)dm = P
(

Mn ∈ dm|M0 = m′
)

, m, m′ ∈ R×
(
R+
)×3 . (7.2.1)

The first result shows that it is sufficient to control the transition kernels Kn : R×R→ R+



7.2. First-passage percolation on the ladder 209

of the Markov chain ∆, which are analogously defined by

Kn(r′, r)dr = P
(
∆n ∈ dr|∆0 = r′

)
, r, r′ ∈ R. (7.2.2)

For convenience, we define K0(r′, r) B δr′(r), the Dirac distribution.

Proposition 7.1 For any integer n > 1, denote by K̃n the n-step transition kernel of M defined in
Eq. (7.2.1). Then

K̃n (m′, m
)
= e−(x+y+z)Kn−1 (min{r′ + y′, x′ + z′} −min{r′ + y′ + z′, x′}, r

)
. (7.2.3)

Moreover, the stationary distribution π̃ of M is given by

π̃(dm) = e−(x+y+z)d3(x, y, z)π(dr), (7.2.4)

where
π(dr) =

1
2 J2(2)

e−
3
2 |r| J1

(
2e−

1
2 |r|
)

dr (7.2.5)

is the stationary distribution of ∆.

Next, we state a Central Limit Theorem for first-passage percolation times on the ladder
which has been implicit in Schlemm (2009) and which was the motivation for the present
work. In Ahlberg (2009); Chatterjee and Dey (2009) a Central Limit Theorem has been
obtained for first-passage times on fairly general one-dimensional graphs by a different
method. The question of how to compute the asymptotic variance was, however, not
addressed there. We denote by f̄ the mean-corrected function f − χ.

Theorem 7.2 (Central Limit Theorem for ln) For any integer n > 0, let ln denote the first-
passage time between (0, 0) and (n, 0) in the ladder graph Gn. Then there exists a positive constant
σ2 such that

ln − nχ√
n

d−→ N (0, σ2), (7.2.6)

where N (0, σ2) is a normally distributed random variable with mean zero and variance σ2, and d−→
denotes convergence in distribution. Moreover,

σ2 =
∫

R×(R+)×3
f̄ (m)2π̃(dm) + 2

∞

∑
n=1

∫
R×(R+)×3

f̄ (m)Pn f̄ (m)π̃(dm), (7.2.7)

where
Pn f̄ (m) = E

[
f̄ (Mn)|M0 = m

]
=
∫

R×(R+)×3
f̄ (m′)K̃n(m, m′)dm′. (7.2.8)

Equation (7.2.7) shows that in order to evaluate the asymptotic variance of the first-passage
times, one must know the transition kernels K̃n. In the next theorem we therefore explicitly
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describe the structure of the transition kernels Kn and, thus, by Proposition 7.1, the structure
of K̃n. To state the formulæ in a compact way, we define the five functions

S1(z) =
z− 2 J2(2

√
z)

z
, (7.2.9a)

S2(z) =
2(z− 1) + 2 J0(2

√
z)

z
, (7.2.9b)

G(z) =− z3

4

[
5− 4γ + 2π

Y2(2
√

z)
J2(2
√

z)
− 2 log z

]
, (7.2.9c)

α(z) =
z4

4
√

z J2(2
√

z)
[√

z J0(2
√

z) + (z− 1) J1(2
√

z)
] , (7.2.9d)

and

H(z) =
z2

2(1− z)
[
3z− 3 + 2π Y0(2

√
z) + J0(2

√
z) (5− 4γ− 2 log z)

]
. (7.2.9e)

The Bessel functions Jν and Yν are defined in Definition 7.4 and treated comprehensively in
Abramowitz and Stegun (1992).

Theorem 7.3 (Transition kernels) The transition kernels Kn, n > 1, defined in Eq. (7.2.2), satisfy
Kn(r′, r) = Kn(−r′,−r). For r > 0, the values Kn(r′, r) are given by

Kn(r′, r) =


∑n

p,q=0 an
p,qepr′−(q+2)r, r′ 6 0,

(−1)n−1er′−(n+1)r

(n−1)! + ∑n−2
p=0

(−1)nr′e−p(r′−r)−nr

(p)!(n−p−2)! + ∑n
p,q=0 bn

p,qe−pr′−(q+2)r, 0 < r′ 6 r,
(−1)n−1e−(n−1)r′−r

(n−1)! + ∑n−2
p=0

(−1)nre−p(r′−r)−nr

(p)!(n−p−2)! + ∑n
p,q=0 cn

p,qe−pr′−(q+2)r, r′ > r,
(7.2.10)

where the coefficients an
p,q, bn

p,q, and cn
p,q are determined by their generating functions:

i) the generating functions Ap,q(z) = ∑∞
n=1 an

p,qzn, p, q > 0, are given by

A1,q(z) =
(−z)q

(q)! α(z), (7.2.11a)

Ap,q(z) =
2(−z)p−1

(p)! A1,q(z), p > 2, (7.2.11b)

A0,q(z) =
S2(z)
1− z

A1,q(z); (7.2.11c)

ii) the generating functions Bp,q(z) = ∑∞
n=1 bn

p,qzn, p, q > 0, are given by

B1,q(z) =
(−z)q

(q)! G(z)−A1,q(z), (7.2.12a)
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q
0 1 2 3

p

0 115
96 − 17

36
1

24 0

1 11
36 − 1

36
1

12 − 1
144

2 − 11
108

1
12 − 1

72 0

3 1
72

1
144 0 0

4 − 1
1440 0 0 0

(a) Values of a4
p,q

q
0 1 2 3

721
432 − 13

12
1
12 0

− 241
540

17
48

1
36 0

3
16

1
36 0 0

1
216 0 0 0
0 0 0 0

(b) Values of b4
p,q

q
0 1 2 3

721
432 − 13

12
5
18 0

− 241
540

17
48

1
36 0

− 1
144

1
36 0 0

1
216 0 0 0
0 0 0 0

(c) Values of c4
p,q

Table 7.1.: Coefficients of the four-step transition kernel K4, as given in Eq. (7.2.10)

Bp,q(z) =
2(−z)p−1

(p)! B1,q(z) +
(−z)p+q+2

(p)!(q)!

p

∑
k=2

2k + 1
k(k + 1)

, p > 2, (7.2.12b)

B0,q(z) =
S2(z)
1− z

B1,q(z) +
(−z)q

(q)! H(z); (7.2.12c)

iii) the generating functions Cp,q(z) = ∑∞
n=1 cn

p,qzn, p, q > 0, are given by

C0,q(z) = dqzq+2 + B0,q(z)−
(−z)q+2

(q)! , (7.2.13a)

C1,q(z) =

[
S1(z) +

z S2(z)
2(1− z)

]
A1,q(z)−

z
2

C0,q(z), (7.2.13b)

Cp,q(z) =
2(−z)p−1

(p)! C1,q(z), p > 2, (7.2.13c)

and the numbers dq are determined by their generating function D(z) = ∑∞
q=0 dqzq, which is

given by

D(z) =
1
z
[√

z J1(2
√

z) (2γ + log z)− π
√

z Y1(2
√

z)− 1
]

. (7.2.14)

By the properties of generating functions, the coefficients an
p,q, bn

p,q, and cn
p,q are determined

by the derivatives of the functions z 7→ Ap,q(z), z 7→ Bp,q(z), and z 7→ Cp,q(z), evaluated at
zero. These derivatives are routinely calculated to any order with the help of computer
algebra systems such as Mathematica®. Table 7.1 exemplifies Theorem 7.3 by reporting
the non-zero values of the coefficients an

p,q, bn
p,q, cn

p,q in the case n = 4. Using the results of
Theorem 7.3, the expression (7.2.7) for the asymptotic variance σ2 can be evaluated explicitly
in terms of certain integrals of hypergeometric functions; the computations, however, are
quite involved and the final result rather lengthy, so we decided not to include them here.
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7.3. Proofs

7.3.1. Proofs of Lemma 7.1 and Theorem 7.2

In this section we present the proofs of the relation between the Markov chains M and ∆,
and of the Central Limit Theorem.

Proof (of Proposition 7.1) Since

∆n =l′n − ln

=min{l′n−1 + Yn, ln−1 + Xn + Zn} −min{l′n−1 + Yn + Zn, ln−1 + Xn}
=min{∆n−1 + Yn−1, Xn−1 + Zn−1} −min{∆n−1 + Yn+1 + Zn−1, Xn−1},

it follows at once that M0 being equal to some m′ = (r′, x′, y′, z′) implies that ∆1 =

min{r′ + y′, x′ + z′} −min{r′ + y′ + z′, x′}; thus, the Markov property of ∆ together with
the independence of the edge weights implies that, for any integer n > 1, the conditional
probability P (Mn ∈ dm|M0 = m′) is given by

e−(x+y+z)d3(x, y, z)P
(
∆n ∈ dr|∆1 = min{r′ + y′, x′ + z′} −min{r′ + y′ + z′, x′}

)
.

The homogeneity of the Markov chain ∆ then implies Eq. (7.2.10) because, for n = 1, we
clearly have

P
(

M1 ∈ dm|M0 = m′
)
= e−(x+y+z)δmin{r′+y′,x′+z′}−min{r′+y′+z′,x′}(r)dm.

Equation (7.2.4) about the stationary distribution of M is a direct consequence of the fact
that the edge weights Xn+1, Yn+1 ,Zn+1 are independent of ∆n, and expression (7.2.5) was
derived in Schlemm (2009, Proposition 5.5). �

Next, we prove the Central Limit Theorem and the formula for the asymptotic variance σ2.

Proof (of Theorem 7.2) We apply the general result Chen (1999, Theorem 4.3) for functionals
of ergodic Markov chains on general state spaces. We first note that the second moment of f
with respect to π̃ is finite. In fact it can be shown that

∫
R×(R+)×3

f (m)2π̃(m) =
2 J1(2)− 3 J0(2) + 2F3 ({1, 1}, {2, 2, 2};−1)− 1

J2(2)
,

where the Bessel functions Jν and the hypergeometric function 2F3 are introduced in detail
below in Definitions 7.4 and 7.5. It then suffices to prove that the Markov chain M is
uniformly ergodic, which is equivalent to showing that the Markov chain ∆ is uniformly
ergodic. We use the drift criterion Aldous, Lovász and Winkler (1997, Theorem B), which
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asserts that if there is a sufficiently strong drift towards the centre of the state space of a
Markov chain, it is uniformly ergodic. Using the Lyapunov function V(r) = 1− e−|r| as well
as the explicit formula

K(r′, r) =

e−|r|, if r′ < r < 0∨ r′ > r > 0,

e−|r
′−2r|, else,

(7.3.1)

for the one step transition kernel of ∆ (Schlemm, 2009, Proposition 5.1), we obtain

ψ(r) B P1V(r) B Erψ(∆1) =1−Ere−|∆1|

=1−
∫

R
e−|ρ|K(r, ρ)dρ =

1
6

[
3− 2e−|r| + e−2|r|

]
.

It is easy to check that

ψ(r) 6 V(r)− 1
10

, |r| > 1, and sup
|r|61

ψ(r) 6 sup
r∈R

ψ(r) =
1
2
< ∞.

Since the interval [−1, 1] is compact and has positive invariant measure, it is a small set
(Nummelin and Tuominen, 1982, Remark 2.7), and it follows that ∆ is uniformly ergodic,
which completes the proof. �

7.3.2. Summation formulæ

In this section we derive some summation formulæ which we will use in the proofs in
Section 7.3.3. Some of them are well known, others can be checked with computer algebra
systems such as Mathematica, a few (Formulæ 8, 9, 11 and 12) seem to be new. The sums
will be evaluated explicitly in terms of Bessel and generalized hypergeometric functions,
which we now define.

Definition 7.4 (Bessel function) Let λ be a real number in R\Z−. The Bessel function of the
first kind of order λ, denoted by Jλ, is defined by the series representation

Jλ(x) =
∞

∑
k=0

(−1)k

Γ(k) Γ(k + λ + 1)

( x
2

)2k+λ
. (7.3.2)

For any integer ν, the Bessel function of the second kind of order ν, denoted by Yν, is defined as

Yν(x) = lim
λ→ν

Jλ(x) cos λπ − J−λ(x)
sin λπ

. (7.3.3)

It is well known (Wolfram Research, Inc., 2010, Formula 03.01.17.0002.01) that Bessel functions
satisfy the recurrence equation Jν(x) = 2(ν−1)

x Jν−1(x) − Jν−2(x) , which we use without
further mentioning to simplify various expressions.
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Definition 7.5 (Generalized hypergeometric function) For two non-negative integers p 6 q
and sets of complex numbers a = {a1, . . . , ap} and b = {b1, . . . , bq}, bj < Z−, the generalized
hypergeometric function of order (p, q) with coefficients a, b, denoted by pFq (a, b; ·), is defined
by the series representation

pFq (a, b; x) =
∞

∑
k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

xk

k!
, (7.3.4)

where (z)k denotes the rising factorial defined by (z)k = Γ(z + k)/ Γ(z).

In particular, we will encounter the regularized confluent hypergeometric functions 0F̃1,
which are defined by 0F̃1 ({}, {b};−z) = 1

Γ(b) 0F1 ({}, {b};−z); in the next lemma we relate
their derivative with respect to b to certain sums involving the harmonic numbers Hk B

∑k
n=1 1/n.

Lemma 7.6 Denote by 0F̃1 the regularized version of the hypergeometric function 0F1. It then holds
that

i) for every positive integer ν,

d
db 0F̃1 ({}, {b};−z)

∣∣∣∣
b=ν

= γz
1−ν

2 Jν−1
(
2
√

z
)
−

∞

∑
k=0

(−z)k

k!(k + ν− 1)!
Hk+ν−1, (7.3.5a)

ii) for every positive integer ν,

d
db 0F̃1 ({}, {b};−z)

∣∣∣∣
b=−ν

=(−1)ν−1γz
ν+1

2 Jν+1
(
2
√

z
)
−

∞

∑
k=0

(−z)k+ν+1

k!(k + ν + 1)!
Hk

+ (−1)ν
ν

∑
k=0

zk(ν− k)!
k!

. (7.3.5b)

Proof For part i), we differentiate the series representation (7.3.4) term by term. Using the
definition of the Digamma function z as the logarithmic derivative of the Gamma function
Γ as well as the relation z(k) = −γ + Hk−1, k ∈N (Wolfram Research, Inc., 2010, Formula
06.14.27.0003.01), we get

d
db

1
Γ(k + b)

∣∣∣∣
b=ν

= −z(k + ν)

Γ(k + ν)
=

γ−Hk+ν−1

(k + ν− 1)!
,

and, thus,

d
db 0F̃1 ({}, {b};−z)

∣∣∣∣
b=ν

= γ
∞

∑
k=0

(−z)k

k!(k + ν− 1)!
−

∞

∑
k=0

(−z)k

k!(k + ν− 1)!
Hk+ν−1,
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which concludes the proof of the first part of the lemma. Part ii) is shown in a com-
pletely analogous way, using the relation limµ→−m z(µ)/ Γ(µ) = (−1)m+1m!, for every
non-negative integer m, which follows from the fact (Wolfram Research, Inc., 2010, Formula
06.05.04.0004.01) that the Gamma function has a simple pole at −m with residue (−1)m/m!.�

Formula 1
∞

∑
k=1

(−z)k

k!(k + 2)!
=

2 J2(2
√

z)− z
2z

= −1
2

S1(z).

Proof Immediate from Definition 7.4 of Bessel functions. �

Formula 2
∞

∑
k=1

(−z)k

(k + 1)!2
=

1− z− J0(2
√

z)
z

= −1
2

S2(z).

Proof This is also clear from Definition 7.4 of Bessel functions. �

Formula 3

S3(z) =
∞

∑
n=q+2

(−z)n−q

(n− q− 2)!(n− q)2 = 1− J2
(
2
√

z
)
−
√

z J1
(
2
√

z
)

.

Proof Shifting the index of summation n by q + 2 we obtain

S3(z) =
∞

∑
n=0

(−z)n+2

n!(n + 1)!(n + 2)2 =
∞

∑
n=0

(−z)n+2
[

1
(n + 1)!(n + 2)!

− 1
(n + 2)!2

]
=

∞

∑
n=0

(−z)n+1

(n)! + z−
∞

∑
n=0

(−z)n

n!2
+ 1− z

=1− J2
(
2
√

z
)
−
√

z J1
(
2
√

z
)

by Definition 7.4 of Bessel functions. �

Formula 4

Σ1(ζz) =
∞

∑
q=0

q−2

∑
k=0

(−ζz)q

(k)!(q− k− 2)!(k + 2)2 =
J1
(
2
√

ζz
)

√
ζz

S3(ζz).

Proof By Fubini’s theorem, we can interchange the order of summation and then shift the
summation index q by k + 2 to obtain

Σ1(ζz) =
∞

∑
k=0

(−ζz)k+2

(k)!(k + 2)2

∞

∑
q=0

(−ζz)q

(q)! .
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By Eq. (7.3.2), the second sum equals J1
(
2
√

ζz
)

/
√

ζz, and so the claim follows with
Formula 3. �

Formula 5

Σ2(ζz) =
∞

∑
q=0

q−2

∑
k=1

2(−ζz)q

k!(k + 2)!(q− k− 2)! =
[
2 J2

(
2
√

ζz
)
− ζz

] √
ζz J1

(
2
√

ζz
)

.

Proof We can interchange the order of summation and shift the index q by k + 2 to obtain
that

Σ2(ζz) =
∞

∑
k=1

2(−ζz)k+2

k!(k + 2)!

∞

∑
q=0

(−ζz)q

(q)! .

The first factor equals 2ζz J2
(
2
√

ζz
)
− (ζz)2 and the second factor equals J1

(
2
√

ζz
)

/
√

ζz,
both by Eq. (7.3.2), and so the claim follows. �

Formula 6

T1(ζz) =
∞

∑
q=0

(−ζz)q

(q)! =
J1
(
2
√

ζz
)

√
ζz

.

Proof The proof is clear from Eq. (7.3.2). �

Formula 7

T2(ζz) =
∞

∑
q=0

(−ζz)q+1q
(q + 1)!2

= 1− J0

(
2
√

ζz
)
−
√

ζz J1

(
2
√

ζz
)

.

Proof This follows from the decomposition q
(q+1)!2 = 1

(q)! − 1
(q+1)!2 and Eq. (7.3.2). �

Formula 8

U1(z) =
∞

∑
k=1

(−z)k+2

k!(k + 2)!

k

∑
l=2

2l + 1
l(l + 1)

=
3z2

4
− z− 2− πz Y2

(
2
√

z
)
+

√
z

2
J1
(
2
√

z
)
[4γ− 3 + 2 log z]

+ J0
(
2
√

z
) [

1 +
5z
2
− 2γz− z log z

]
.

Proof First we note that

k

∑
l=2

2l + 1
l(l + 1)

=
k

∑
l=2

[
1
l
+

1
l + 1

]
= 2 Hk−

5k + 3
2(k + 1)

, (7.3.6)
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where Hk denotes the kth harmonic number. The first contribution to U1(z) can therefore be
computed as

1
2

∞

∑
k=1

(5k + 3)(−z)k

k!(k + 2)!(k + 1)
=− 1

z
− 3

4
− 1

z

∞

∑
k=0

(−z)k

(k)! +
5
2

∞

∑
k=0

(−z)k

k!(k + 2)!

=
1

4z3/2

[
4 J1

(
2
√

z
)
+ 10

√
z J2
(
2
√

z
)
− 3z3/2 − 4

√
z
]

.

The other contribution to U1(z) is, with the help of Lemma 7.6, ii), obtained as

2
∞

∑
k=1

(−z)k

k!(k + 2)!
Hk =

2
z2

[
γz J2

(
2
√

z
)
− z− 1− d

db 0F̃1 ({}, {b};−z)
∣∣∣∣
b=−1

]
.

By known properties of the regularized confluent hypergeometric function (see Wolfram
Research, Inc., 2010, Formula 07.18.20.0015.01),

d
db 0F̃1 ({}, {b};−z)

∣∣∣∣
b=−1

=
πz Y2

(
2
√

z
)
−
√

z J1
(
2
√

z
)
[2 + log z] + J0

(
2
√

z
)
[z log z− 1]

2
,

and the result follows upon combining the last four displayed equations. �

Formula 9

Υ1(ζz) =
∞

∑
q=0

q−2

∑
k=1

(−ζz)q

(q− k− 2)!k!(k + 2)!

k

∑
l=2

2l + 1
l(l + 1)

=
J1
(
2
√

ζz
)

√
ζz

U1(ζz).

Proof Interchanging the order of the first two summations and shifting the index q by k + 2,
we find that

Υ1(ζz) =
∞

∑
k=1

(−ζz)k+2

k!(k + 2)!

∞

∑
q=0

(−ζz)q

(q)!

k

∑
l=2

2l + 1
l(l + 1)

.

As before, the sum in the middle equals J1
(
2
√

ζz
)

/
√

ζz, and so the claim follows with
Formula 8. �

Formula 10

S4(z) =
∞

∑
n=q+2

(−z)n−q

(n− q− 2)!(n− q− 1)2 = z2
2F3 ({1, 1}, {2, 2, 2};−z) .

Proof After shifting the index n by q + 2, the proof follows immediately from the definition
of the hypergeometric function, given in Eq. (7.3.4). �
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Formula 11

U2(z) =
∞

∑
k=1

(−z)k+2

(k + 1)!2
k

∑
l=2

2l + 1
l(l + 1)

=
z
2
[
3z− 5 + 2π Y0

(
2
√

z
)
− 2z2F3 ({1, 1}, {2, 2, 2},−z) + J0

(
2
√

z
)
[5− 4γ− 2 log z]

]
.

Proof The proof is analogous to that of Formula 8. Using Eq. (7.3.6), the first contribution
to U2(z) is

1
2

∞

∑
k=1

(5k + 3)(−z)k+2

(k + 1)!2(k + 1)
=

5− 3z
2z

− 5
2z

∞

∑
k=0

(−z)k

k!2
−

∞

∑
k=0

(−z)k

(k + 1)!2(k + 1)2

=
1
2z
[
5− 3z− 5 J0

(
2
√

z
)
− 2z2F3 ({1, 1}, {2, 2, 2};−z)

]
, (7.3.7)

where we used Eqs. (7.3.2) and (7.3.4). For the remaining part, we first use Lemma 7.6, i)
and the identity J1

(
2
√

z
)

/
√

z− J2
(
2
√

z
)
= J0

(
2
√

z
)

to compute

∞

∑
k=1

(−z)k

(k + 1)!2
Hk+2

=
∞

∑
k=1

(−z)k

(k + 1)!(k + 2)!
Hk+2 +

∞

∑
k=1

(−z)k

k!(k + 2)!
Hk+2

=− 3
2
+

1
z
− 1

z

[
∞

∑
k=0

(−z)k

(k)! Hk+1 − z
∞

∑
k=0

(−z)k

k!(k + 2)!
Hk+2

]

=− 3
2
+

1
z
− γ

z
J0
(
2
√

z
)
+

1
z

[
d
db 0F̃1 ({}, {b};−z)

∣∣∣∣
b=2
− z

d
db 0F̃1 ({}, {b};−z)

∣∣∣∣
b=3

]
.

It then follows from the explicit characterization of d
db 0F̃1 ({}, {b};−z)

∣∣∣
b=−ν

, ν ∈N (Wolfram
Research, Inc., 2010, Formula 07.18.20.0013.01), that

∞

∑
k=1

(−z)k

(k + 1)!2
Hk+2 =

√
z
[
2− 3z + π Y0

(
2
√

z
)]
− 2 J1

(
2
√

z
)
−
√

z J0
(
2
√

z
)
[2γ + log z]

2z3/2 .

Using this, we obtain

∞

∑
k=1

(−z)k

(k + 1)!2
Hk =

∞

∑
k=1

(−z)k

(k + 1)!2
Hk+2 −

∞

∑
k=1

(−z)k

(k + 1)!2(k + 2)
−

∞

∑
k=1

(−z)k

(k + 1)!2(k + 1)

=

√
z
[
2− 3z + π Y0

(
2
√

z
)]
− 2 J1

(
2
√

z
)
−
√

z J0
(
2
√

z
)
[2γ + log z]

4z3/2

+

[
1
4
− 1

2z
+

J1
(
2
√

z
)

2z3/2

]
+

1
2
− 1

2 2F3 ({1, 1}, {2, 2, 2};−z) . (7.3.8)

Combining Eqs. (7.3.7) and (7.3.8) completes the proof. �
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Formula 12

Υ2(ζz) =
∞

∑
q=0

q−1

∑
k=1

(−ζz)q

(q− k− 1)!(k + 1)!2
k

∑
l=2

2l + 1
l(l + 1)

= −
J1
(
2
√

ζz
)

(ζz)3/2 U2(ζz).

Proof Interchanging the order of the first two summations and shifting the index q by k + 1,
we find that

Υ2(ζz) =
∞

∑
k=1

(−ζz)k+2

(k + 1)!2
∞

∑
q=0

(−ζz)q−1

(q)!

k

∑
l=2

2l + 1
l(l + 1)

.

By Eq. (7.3.2), the middle sum is equal to − J1
(
2
√

ζz
)

/(ζz)3/2, and so the result follows
readily from Formula 11. �

Formula 13

Σ3(ζz) =
∞

∑
q=0

q−1

∑
k=1

2(−ζz)q

(q− k− 1)!(k + 1)!2
=

2
[
ζz− 1 + J0

(
2
√

ζz
)]

J1
(
2
√

ζz
)

√
ζz

.

Proof The proof is the same as that of Formula 5, and so we omit it. �

Formula 14

Σ4(ζz) =
∞

∑
q=0

q−1

∑
k=0

(−ζz)q

(k)!(q− k− 1)!(k + 1)2 = −
√

ζz J1

(
2
√

ζz
)

2F3 ({1, 1}, {2, 2, 2};−ζz) .

Proof Using Fubini’s theorem, we obtain

Σ4(ζz) =
∞

∑
k=0

(−ζz)k

(k)!(k + 1)2

∞

∑
q=k+1

(−ζz)q−k

(q− k− 1)! .

The first factor is equal to 2F3 ({1, 1}, {2, 2, 2};−ζz) by definition (7.3.4), and the second
factor equals −

√
ζz J1

(
2
√

ζz
)

by Eq. (7.3.2). �

Having evaluated these sums we now turn to relations between them which we will also
need, and which are proved by writing out the relevant expressions and straightforward
computations. The first one only involves the five functions from Eqs. (7.2.9) which appear
in the statement of Theorem 7.3.

Lemma 7.7 For almost every complex number z with respect to the Lebesgue measure on the com-
plex plane,[

S2(z)
2(1− z)

+
1
z

]
G(z) +

[
S1(z)

z
+

S2(z)
1− z

+
1
z

]
α(z) +

H(z)
2

+
3z2

4
= 0. (7.3.9)
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Lemma 7.8 For almost every complex number z with respect to the Lebesgue measure on the com-
plex plane,

U1(z) + S3(z) +

[
S1(z)− 1

z

]
G(z) =

3
4

z2 − z− 1. (7.3.10)

7.3.3. Proof of Theorem 7.3

In this section we prove the main result, Theorem 7.3. First, however, we take a closer look
at the coefficients an

p,q, bn
p,q, and cn

p,q which are defined implicitly through the generating
functions (7.2.11) to (7.2.13).

Lemma 7.9 For any integers p, q > 0, the following hold:

a1
p,q = δp,1δq,0, b1

p,q = 0, c1
p,q = 0. (7.3.11)

Proof This follows from evaluating the derivatives of the generating functions Ap,q, Bp,q,
and Cp,q at zero. �

Next we derive some useful relations between the coefficients an
p,q, bn

p,q, and cn
p,q. These

will be the main ingredient in our inductive proof of Theorem 7.3. The general strategy in
proving the equality of two sequences (sn)n>1 and (s̃n)n>1 will be to compute their generating
functions ∑n>1 snzn and ∑n>1 s̃nzn, and to show that they coincide for every z. The validity of
this approach follows from the well-known bijection between sequences of real numbers and
generating functions, see, e. g., Wilf (2006) for an introductory treatment. We will constantly
be making use of the convolution property of generating functions. By this we mean the
simple fact that if (sn)n>1 is a real sequence with generating function S(z), and (tn)n>1 is
another such sequence with generating function T(z), then the sequence of partial sums
(∑n−1

ν=1 tn−νsν)n>1 has generating function S(z)T(z). We also encounter generating functions
of sequences indexed by q instead of n. In this case we denote the formal variable by ζ

instead of z, and sums are understood to be indexed from zero to infinity.

Lemma 7.10 For all integers n > 1 and q > 0, the coefficients defined by the generating functions
given in Theorem 7.3 satisfy the relation

q−2

∑
k=0

bn
k,q−k−2

k + 2
−

q−2

∑
k=0

cn
k,q−k−2

k + 2
= δq,n

[
(−1)n(n− 1)

n!2
−

n−2

∑
k=0

(−1)n

(k)!(n− k− 2)!(k + 2)2

]
. (7.3.12)

Proof These equations are true for all n > 1 if and only if the corresponding generating
functions coincide. Multiplying both sides by zn, summing over n, and using the recursive
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definitions of the generating functions as well as the fact that, by Formulæ 1 and 2,

∞

∑
k=1

(−z)k

k!(k + 2)!
= −1

2
S1(z),

∞

∑
k=1

(−z)k

(k + 1)!2
= −1

2
S2(z),

we find that the claim of the lemma is equivalent to

0 =
q−2

∑
k=1

(−z)q

k!(k + 2)!(q− k− 2)!

k

∑
l=1

2l + 1
l(l + 1)

+
1
2

Θq,2

[
(−z)q

(q− 2)! − zqdq−2

]

+
zq

2

q−2

∑
k=1

2(−1)k−1

k!(k + 2)!
dq−k−2 −Θq,1

[
(−z)q(q− 1)

q!2
−

q−2

∑
k=0

(−z)q

(k)!(q− k− 2)!(k + 2)2

]

+
5
4

z3
q−2

∑
k=1

2(−z)q−3

k!(k + 2)!(q− k− 2)! ,

where we have used Lemma 7.7 to simplify the coefficient of the last sum. To show this
equality for all non-negative integers q, we compare the q-generating functions and must
then show that

0 =Υ1(ζz) +
(ζz)2

2

[
T1(ζz) +

(
(S1(ζz)− 1

)
D(ζz)

]
− T2(ζz) + Σ1(ζz) +

5
4

Σ2(ζz), (7.3.13)

where closed-form expressions for

Σ1(ζz) B
∞

∑
q=0

q−2

∑
k=0

(−ζz)q

(k)!(q− k− 2)!(k + 2)2 ,

Σ2(ζz) B
∞

∑
q=0

q−2

∑
k=1

2(−ζz)q

k!(k + 2)!(q− k− 2)! ,

T1(ζz) B
∞

∑
q=0

(−ζz)q

(q)! ,

T2(ζz) B
∞

∑
q=0

(−ζz)q+1q
(q + 1)!2

,

and

Υ1(ζz) B
∞

∑
q=0

q−2

∑
k=1

(−ζz)q

(q− k− 2)!k!(k + 2)!

k

∑
l=2

2l + 1
l(l + 1)

are derived in Formulæ 4 to 7 and 9. Using these closed-form formulæ, Eq. (7.3.13) is seen
to be identically true by simple algebra. �

Lemma 7.11 For all integers p, q > 0, the sequences of coefficients defined by the generating func-
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tions given in Theorem 7.3 satisfy the recursion

an+1
p,q =δp,0

n

∑
k=0

an
k,q

k + 1
−Θp,1

an
p−1,q

p(p + 1)
+ δp,1

[
Θ̃q,n−2

(−1)n

(n− q− 2)!(q)!(n− q)2

+δq,n−1
(−1)n−1

(n− 1)! − δq,n

[
n−2

∑
k=0

(−1)n

(k)!(n− k− 2)!(k + 2)2 +
(−1)n−1n

(n− 1)!(n + 1)!

]

+
n

∑
k=0

bn
k,q

k + 2
−

q−2

∑
k=0

bn
k,q−k−2

k + 2
+

q−2

∑
k=0

cn
k,q−k−2

k + 2

]
, n > 1. (7.3.14)

Proof Applying Lemma 7.10 and computing the generating functions of both sides of the
asserted equality, we find that the claim of the lemma is equivalent to

Ap,q(z)
z

=δp,0
S2(z)

z(1− z)
A1,q(z)−Θp,1

Ap−1,q(z)
p(p + 1)

(7.3.15)

+ δp,1
(−z)q

(q)!

[[
S2(z)

2(1− z)
+

S1(z)
z

]
[G(z)− α(z)] +

H(z)
2

+ S3(z) + U1(z) + z + 1

]
,

where explicit expressions for

S3(z) B
∞

∑
n=q+2

(−z)n−q

(n− q− 2)!(n− q)2 and U1(z) B
∞

∑
k=1

(−z)k+2

k!(k + 2)!

k

∑
l=2

2l + 1
l(l + 1)

are derived in Formulæ 3 and 8. For p = 0 and p > 1, Eq. (7.3.15) follows immediately from
the defining equations (7.2.11b) and (7.2.11c). For p = 1, the claim follows from combining
Lemmata 7.7 and 7.8. �

Lemma 7.12 For all integers p, q > 0, the sequences of coefficients defined by the generating func-
tions given in Theorem 7.3 satisfy the recursion

bn+1
p,q =δp,1

n

∑
k=0

an
k,q

k + 2
+ δp,0

[
δq,n−1

(−1)n−1

(n− 1)! + Θ̃q.n−2
(−1)n

(n− q− 2)!(q)!(n− q− 1)2

+
n

∑
k=0

bn
k,q

k + 1

]
−Θp,1

[
bn

p−1,q

p(p + 1)
+ δq,n−p−1

(−1)n(2p + 1)
(p)!(n− p− 1)! p(p + 1)

]
, (7.3.16)

for all integers n > 1.

Proof We proceed as in the proof of Lemma 7.11 and show the equality for every n by
showing equality of the corresponding generating functions. We find that the claim is
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equivalent to

Bp,q(z)
z

=δp,1

[
S1(z)

z
+

S2(z)
2(1− z)

]
A1,q(z) + δp,0

(−z)q+1

(q)!

[
S4(z) + U2(z) + z

+
S2(z)

z(1− z)
[G(z)− α(z)] + H(z)

]

−Θp.1

[
Bp−1,q(z)
p(p + 1)

+
(−z)p+q+1(2p + 1)
(p)!(q)! p(p + 1)

]
, (7.3.17)

where the functions

S4(z) B
∞

∑
n=q+2

(−z)n−q

(n− q− 2)!(n− q− 1)2 and U2(z) B
∞

∑
k=1

(−z)k+2

(k + 1)!2
k

∑
l=2

2l + 1
l(l + 1)

are evaluated in Formulæ 10 and 11. For p = 0, Eq. (7.3.17) follows from the observation
that

H(z) = z
[
S4(z) + U2(z) + z + H(z)

]
.

Next we observe that Eq. (7.2.12b) implies that

Bp,q(z) +
z Bp−1,q(z)
p(p + 1)

=
(−z)p+q+2

(p)!(q)!

p

∑
k=2

2k + 1
k(k + 1)

− (−z)p+q+2

(p)!(q)!

p−1

∑
k=2

2k + 1
k(k + 1)

=
(−z)p+q+2

(p)!(q)!
2p + 1

p(p + 1)
,

and, thus, Eq. (7.3.17) also holds for p > 1. Finally, for p = 1, we need to show that

B1,q(z)
z

=

[
S1(z)

z
+

S2(z)
2(1− z)

]
A1,q(z)−

B0,q(z)
2
− 3(−z)q+1

4(q)! ,

which, after using the defining equations (7.2.11) and (7.2.12) several times, amounts to
showing that[

S2(z)
2(1− z)

+
1
z

]
G(z) +

[
S1(z)

z
+

S2(z)
1− z

+
1
z

]
α(z) +

H(z)
2

+
3z2

4
= 0,

which is exactly what Lemma 7.7 asserts. �

Lemma 7.13 For all integers p, q > 0, the sequences of coefficients defined by the generating func-
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tions given in Theorem 7.3 satisfy the recursion

cn+1
p,q =δp,1

n

∑
k=0

an
k,q

k + 2
−Θp,1

cn
p−1,q

p(p + 1)
+ δp,0

[
Θ̃q,n−2

(−1)n

(n− q− 2)!(q)!(n− q− 1)2

+δq,n−1

(
n−2

∑
k=0

(−1)n

(k)!(n− k− 2)!(k + 1)2 −
(−1)n−1

n!2

)

+
n

∑
k=0

bn
k,q

k + 1
−

q−1

∑
k=0

bn
k,q−k−1

k + 1
+

q−1

∑
k=0

cn
k,q−k−1

k + 1

]
, n > 1. (7.3.18)

Proof The proof follows along the same lines as the previous proofs. Equating the generating
functions of both sides and using Lemma 7.7, we need to show that

Cp,q(z)
z

=δp,1

[
S1(z)

z
+

S2(z)
2(1− z)

]
A1,q(z)−Θp,1

Cp−1,q(z)
p(p + 1)

+ δp,0

[
(−z)q

(q)!

(
S2(z)

z(1− z)
(G(z)− α(z)) + H(z) + S4(z) + U2(z) +

z
q + 1

)

+
5z
4

q−1

∑
k=1

2(−z)q

(q− k− 1)!(k + 1)!2
−

q−1

∑
k=0

(−z)q+1

(k)!(q− k− 1)!(k + 1)2

−
q−1

∑
k=1

(−z)q+1

(q− k− 1)!(k + 1)!2
k

∑
l=2

2l + 1
l(l + 1)

− zq+1

2

q−1

∑
k=1

2(−1)k−1

(k + 1)!2
dq−k−1

+Θq,1

(
zq+1dq−1 −

(−z)q+1

(q− 1)!

)]
. (7.3.19)

For p > 1, Eq. (7.3.19) is immediately clear from Eqs. (7.2.13b) and (7.2.13c). For p = 0, we
show that the q-generating functions coincide. Doing this, we find, after some algebra, that
Eq. (7.3.18) is equivalent to

0 =

[
z− 1

z
H(z) + S4(z) + z + U2(z)− ζz2

]
T1(ζz) + z

[
1− S2(z)

2

]

+

[
ζz2

(
1− S2(ζz)

2

)
− z

]
D(ζz) +

5z
4

Σ3(ζz) + z
[
Σ4(ζz) + Υ2(ζz)

]
, (7.3.20)

where the functions

Σ3(ζz) =
∞

∑
q=0

q−1

∑
k=1

2(−ζz)q

(q− k− 1)!(k + 1)!2
,

Σ4(ζz) =
∞

∑
q=0

q−1

∑
k=0

(−ζz)q

(k)!(q− k− 1)!(k + 1)2 ,
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and

Υ2(ζz) =
∞

∑
q=0

q−1

∑
k=1

(−ζz)q

(q− k− 1)!(k + 1)!2
k

∑
l=2

2l + 1
l(l + 1)

are given in Formulæ 12 to 14. Since all functions occurring in Eq. (7.3.20) are explicitly
known, the result follows from basic algebra. �

We can now prove our main theorem.

Proof (of Theorem 7.3) The Chapman–Kolmogorov equation implies the recursion

Kn(r′, r) =
∫

R
K(r′, s)Kn−1(s, r)ds, r, r′ ∈ R, n > 1, (7.3.21)

where K is the one-step transition kernel of ∆ given in Eq. (7.3.1) From this we can first
prove the asserted symmetry Kn(r′, r) = Kn(−r′,−r) by induction on n. For n = 1, this is
clearly true, so assuming that it holds for some n > 0, we conclude that Kn+1(r′, r) is equal to∫

R
K(r′, s)Kn(s, r)ds =

∫
R

K(−r′,−s)Kn(−s,−r)ds

=
∫

R
K(−r′, s)Kn(s,−r)ds = Kn+1(−r′,−r).

In the next step we prove Eq. (7.2.10), also by induction on n. For n = 1, the claim is true by
Lemma 7.9. We now assume that Eq. (7.2.10) holds for some n > 1. It then follows that, for
r > 0,

Kn+1(r′, r) =
∫

R
K(r′, s)Kn(s, r)ds

=
∫ 0

−∞
K(r′, s)Kn(s, r)ds +

∫ r

0
K(r′, s)Kn(s, r)ds +

∫ ∞

r
K(r′, s)Kn(s, r)ds

=
n

∑
p,q=0

an
p,qe−(q+2)r

∫ 0

−∞
K(r′, s)epsds +

(−1)n−1e−(n+1)r

(n− 1)!

∫ r

0
K(r′, s)esds

+
n−1

∑
p=0

(−1)ne−(n−p)r

(p)!(n− p− 2)!

∫ r

0
K(r′, s)se−psds

+
n

∑
p,q=0

bn
p,qe−(q+2)r

∫ r

0
K(r′, s)e−psds +

(−1)n−1e−r

(n− 1)!

∫ ∞

r
K(r′, s)e−(n−1)sds

+
n−1

∑
p=0

(−1)ne−(n−p)rr
(p)!(n− p− 2)!

∫ ∞

r
K(r′, s)e−psds

+
n

∑
p,q=0

cn
p,qe−(q+2)r

∫ ∞

r
K(r′, s)e−psds.
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The five types of integrals occurring in this expression are easily evaluated to give, for p > 0,

∫ 0

−∞
K(r′, s)epsds =

 1
p+1 −

e(p+1)r′

(p+1)(p+2) , r′ 6 0,
e−r′

p+2 , r′ > 0,

∫ r

0
K(r′, s)esds =


er′ − er′−r, r′ 6 0,

1− er′−r + r′, 0 < r′ 6 r,

r, r′ > r,

∫ r

0
K(r′, s)se−psds =


− er′−(p+2)rr

p+2 + er′−er′−(p+2)r

(p+2)2 , r′ 6 0,
1

(p+1)2 − e−(p+1)r′ (2p+3)
(p+1)2(p+2)2 − e−(p+1)r′ r′

(p+1)(p+2) −
er′−(p+2)r

(p+2)2 − er′−(p+2)rr
p+2 , 0 < r′ 6 r,

− e−(p+1)rr
p+1 + 1−e−(p+1)r

(p+1)2 , r′ > r,

∫ r

0
K(r′, s)e−psds =


er′−er′−(p+2)r

p+2 , r′ 6 0,
1

p+1 −
er′−(p+2)r

p+2 − e−(p+1)r′

(p+1)(p+2) , 0 < r′ 6 r,
1−e−(p+1)r

p+1 , r′ > r,

and

∫ ∞

r
K(r′, s)e−psds =

 er′−(p+2)r

p+2 , r′ 6 r,
e−(p+1)r

p+1 −
e−(p+1)r′

(p+1)(p+2) , r′ > r.

This implies that, for r′ 6 0, the function Kn+1 is given by

Kn+1(r′, r) =
n

∑
p,q=0

ãn+1
p,q epr′−(q+2)r, (7.3.22)

where

ãn+1
p,q =δp,0

n

∑
k=0

an
k,q

k + 1
−Θp,1

an
p−1,q

p(p + 1)
+ δp,1

[
δq,n−1

(−1)n−1

(n− 1)! − δq,n
(−1)n−1

(n− 1)!

+Θ̃q,n−2
(−1)n

(n− q− 2)!(q)!(n− q)2

−δq,n

n−2

∑
k=0

(−1)n

(k)!(n− k− 2)!(p + 2)2

+
n

∑
k=0

bn
k,q

k + 2
−

q−2

∑
k=0

bn
k,q−k−2

k + 2
+

q−2

∑
k=0

cn
k,q−k−2

k + 2
+ δq,n

(−1)n−1

(n− 1)!(n + 1)

]
, (7.3.23)

By Lemma 7.11, ãn+1
p,q is equal to an+1

p,q . Similarly, for 0 < r′ 6 r, the function Kn+1 takes the
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form

Kn+1(r′, r) =
n

∑
q=0

βn+1
q er′−(q+2)r +

n−1

∑
p=0

(−1)n+1r′e−p(r′−r)−(n+1)r

(p)!(n− p− 1)!

+
n+1

∑
p=0

n+1

∑
q=0

b̃n+1
p,q e−pr′−(q+2)r, (7.3.24)

where

βn+1
q =δq,n

[
(−1)n−1

(n− 1)!(n + 1)
− (−1)n−1

(n− 1)! −
n−2

∑
k=0

(−1)n

(k)!(n− k− 2)!(k + 2)2

]

−
q−2

∑
k=0

bn
k,q−k−2

k + 2
+

q−2

∑
k=0

cn
k,q−k−2

k + 2

and

b̃n+1
p,q =δp,1

n

∑
k=0

an
k,q

k + 2
−Θp,1δq,n−p−1

(−1)n(2p + 1)
(p− 1)!(n− p− 1)! p2(p + 1)2

+ δp,0

[
δq,n−1

(−1)n−1

(n− 1)! + Θ̃q,n−2
(−1)n

(n− q− 2)!(q)!(n− q− 1)2 +
n

∑
k=0

bn
k,q

k + 1

]
. (7.3.25)

Lemma 7.10 implies that βn+1
q = δq,n

(−1)n

(n)! and, by Lemma 7.12, b̃n+1
p,q is equal to bn+1

p,q . Finally,
for r′ > r, the function Kn+1 becomes

Kn+1(r′, r) =
(−1)ne−nr′−r

(n)! +
n−1

∑
p=0

(−1)n+1re−p(r′−r)−(n+1)r

(p)!(n− p− 1)! +
n+1

∑
p=0

n+1

∑
q=0

c̃n+1
p,q e−pr′−(q+2)r,

(7.3.26)
where

c̃n+1
p,q =δp,1

n

∑
k=0

an
k,q

k + 2
−Θp,1

cn
p−1,q

p(p + 1)
+ δp,0

[
Θ̃q,n−2

(−1)n

(n− q− 2)!(q)!(n− q− 1)2

+δq,n−1

n−2

∑
k=0

(−1)n

(k)!(n− k− 2)!(k + 1)2 +
n

∑
k=0

bn
k,q

k + 1
−

q−1

∑
k=0

bn
k,q−k−1

k + 1

−δq.n−1
(−1)n−1

n!2
+

q−1

∑
k=0

cn
k,q−k−1

k + 1

]
. (7.3.27)

In Lemma 7.13 it was shown that c̃n+1
p,q equals cn+1

p,q . Combining Eqs. (7.3.22), (7.3.24)
and (7.3.26) proves the theorem because it follows that, for r > 0, the values Kn+1(r′, r)
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are given by
∑n

p,q=0 an+1
p,q epr′−(q+2)r, r′ 6 0,

(−1)ner′−(n+2)r

(n)! + ∑n−1
p=0

(−1)n+1r′e−p(r′−r)−(n+1)r

(p)!(n−p−1)! + ∑n+1
p=0 ∑n+1

q=0 bn+1
p,q e−pr′−(q+2)r, 0 < r′ 6 r,

(−1)ne−nr′−r

(n)! + ∑n−1
p=0

(−1)n+1re−p(r′−r)−(n+1)r

(p)!(n−p−1)! + ∑n+1
p=0 ∑n+1

q=0 cn+1
p,q e−pr′−(q+2)r, r′ > r.

�

7.4. Discussion

The way in which Theorem 7.3 was proved gives little insight into how one arrives at the
expressions (7.2.11) to (7.2.13) for the generating functions Ap,q, Bp,q, and Cp,q in the first
place. It appears pertinent to briefly comment on how we derived these formulæ. The first
step was to compute the kernels Kn for low values of n from the Chapman–Kolmogorov
equation (7.3.21), and to observe that they have the form asserted in Theorem 7.3. In the next
step we guessed the expression for the part of Kn(r′, r) not involving the coefficients an

p,q,
bn

p,q, and cn
p,q, so that the problem was reduced to solving the recurrence equations (7.3.23),

(7.3.25) and (7.3.27). Assuming the validity of Lemma 7.10, it turns out that the first two
of these recurrence equation can be relatively easily solved first for G(z), which is, up to
the factor (−z)q/(q)!, the generating function of (an

1,q + bn
1,q)n>1, then for Ap,q, and finally for

Bp,q. The third recursion for (cn
p,q) was simplified by the empirical observation that

q−1

∑
k=0

bn
k,q−k−1

k + 1
−

q−1

∑
k=0

cn
k,q−k−1

k + 1
= δq,n+1

[
(−1)n−1

n!2
+

q−1

∑
k=0

(−1)q

(k)!(q− k− 1)!(k + 1)2 − dq

]

for some real numbers dq, q > 0, and then solved for Cp,q. The educated guesses made in the
course of this derivation are justified ex posteriori by the proofs presented in this chapter.

Our original motivation was to derive an explicit expression for the asymptotic variance
(7.2.7). For this purpose, knowledge of the generating function of the coefficients of the
n-step transition kernel, as opposed to knowledge of the coefficients themselves, is sufficient.
In order to evaluate the infinite sum appearing in Eq. (7.2.7), one is primarily interested
in sums of the form ∑n>1 an

p,q, which is equal to Ap,q(1), provided this number is finite.
Carrying out the computations, however, turns out to be quite subtle, and the results will be
reported elsewhere.

It is natural to ask whether the results presented in this chapter can be extended to the first-
passage percolation problem on N× {0, 1, . . . , k}, k > 2. Conceptually, our approach carries
over to this setting only if one considers semi-directed percolation in which the horizontal
edges may be traversed in only one direction; the combinatorics involved in computing
the one-step transition kernel of the Markov chain ∆ as well as the explicit iteration of the
Chapman–Kolmogorov equation (7.3.21), however, soon become unmanageable for larger
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values of k. For the undirected first-passage percolation problem, there is the possibility that
the shortest path {(0, 0) = p0, p1, . . . , pN−1, pN = (n, 0)}, pi = (xi, yi), between (0, 0) and
(n, 0) backtraces, by which we mean that there exist indices 0 6 i < j 6 N such that xj < xi.
The possible occurrence of such configurations prevents an extension of our recursive method
to broader graphs in the undirected setting. One might also wonder if similar results can
be obtained for more general class of edge-weight distributions P. It is easy to see that the
Markov property of ∆ does not depend on the choice of P, and an analysis of our proofs
shows that the validity of the Central Limit Theorem 7.2 as well as expression (7.2.7) for the
asymptotic variance is not affected by choosing a different edge-weight distribution either,
provided one can prove that the stationary distribution π̃ and the one-step kernel K satisfy
the moment and mixing conditions used in the proof of Theorem 7.2. It is however, very
difficult, to evaluate the formula for the n-step transition kernel explicitly, if P is not the
exponential distribution, although our approach via generating functions remains likewise
applicable.
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General Notation

Symbols involving letters in alphabetical order:

B(·) Borel σ-algebra
C complex numbers
Cov covariance
δi,j Kronecker symbol
δx Dirac measure
e Euler number
E expectation
im image of a matrix
Im imaginary part
i imaginary unit
I{E} indicator of the expression E
IA(·) indicator function of the set A; IA(x) = I{x∈A}
K[X] polynomial expressions in X over K

K{X} rational expressions in X over K

ker kernel of a matrix
Lp(·) Lebesgue space
Mm,n(·) m× n matrices
Mn(·) n× n matrices
N natural numbers
O(·) of the same order, that is an = O(bn), if ∃C > 0 such that |an| 6 Cbn for all n.
o(·) of smaller order, that is an = o(bn), if limn→∞ an/bn = 0.
P(·) probability
rank rank of a matrix
Re real part
R real numbers
R+ non-negative real numbers
Sn(·) symmetric n× n matrices
S+

n (·) positive semidefinite n× n matrices
S++

n (·) positive definite n× n matrices
σ(·) spectrum of a matrix
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(·)T transpose of a matrix
Var variance
vec vectorization operator
Z integers
Z− negative integers

Other symbols in alphabetical order of their meaning:

[·, ·] closed interval
d−→ convergence in distribution
p−→ convergence in probability
∼ distributed as
d
= equality in distribution
〈·, ·〉 Euclidean inner product
1n n× n identity matrix
⊗ Kronecker product
‖ · ‖ norm
(·, ·) open interval
0m,n m× n zero matrix
0n n× n zero matrix
0n zero vector in Rn



Abbreviations

ARMA autoregressive moving average
a. s. almost surely
CARMA continuous-time autoregressive moving average
cf. confer
CLT Central Limit Theorem
e. g. for example
ESD empirical spectral distribution
Eq. equation
et al. et alii
i. e. that is
i. i. d. independent and identically distributed
LSD limiting spectral distribution
RMT random matrix theory
QML quasi maximum likelihood
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