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Summary. We discuss tools for the evaluation of probabilistic forecasts and the critique of

statistical models for ordered discrete data. Our proposals include a non-randomized version

of the probability integral transform, marginal calibration diagrams and proper scoring rules,

such as the predictive deviance. In case studies, we critique count regression models for

patent data, and assess the predictive performance of Bayesian age-period-cohort models for

larynx cancer counts in Germany.

Key words: Calibration; Forecast verification; Model diagnostics; Predictive deviance;

Probability integral transform; Proper scoring rule; Ranked probability score.

1. Introduction

One of the major purposes of statistical analysis is to make predictions, and to provide

suitable measures of the uncertainty associated with them. Hence, forecasts ought to be
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probabilistic in nature, taking the form of probability distributions over future quantities

and events (Dawid, 1984).

Here, we consider the evaluation of probabilistic forecasts, or predictive distributions,

for count data, as they occur in a wide range of epidemiological, ecological, environmental,

climatological, demographic and economic applications (Christensen and Waagepetersen,

2002; Gotway and Wolfinger, 2003; McCabe and Martin, 2005; Elsner and Jagger, 2006;

Frühwirth-Schnatter and Wagner, 2006; Nelson and Leroux, 2006). Our focus is on the low

count situation in which continuum approximations fail; however, our results apply to high

counts and rates as well, as they occur routinely in epidemiological projections (Knorr-Held

and Rainer, 2001; Clements, Armstrong and Moolgavkar, 2005). To this date, statistical

methods for the assessment of predictive performance have been studied primarily from

biomedical, meteorological and economic perspectives (Pepe, 2003; Jolliffe and Stephenson,

2003; Clements, 2005), focusing on predictions of dichotomous events or real-valued continu-

ous variables. Here, we consider the hybrid case of count data, in which methods developed

for either type of situation continue to be relevant but require technical adaption.

Gneiting, Balabdaoui and Raftery (2007) contend that the goal of probabilistic fore-

casting is to maximize the sharpness of the predictive distributions subject to calibration.

Calibration refers to the statistical consistency between the probabilistic forecasts and the

observations, and is a joint property of the predictive distributions and the events or values

that materialize. Sharpness refers to the concentration of the predictive distributions, and

is a property of the forecasts only.

In Section 2 we introduce tools for calibration and sharpness checks, among them a

non-randomized version of the probability integral transform (PIT) that is tailored to count

data, and the marginal calibration diagram. Section 3 discusses the use of scoring rules

as omnibus performance measures. We stress the importance of propriety (Gneiting and

Raftery, 2007), note examples, relate to classical measures of predictive performance, and
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identify the predictive deviance as a variant of the proper logarithmic score. Section 4 turns

to a cross-validation study, in which we apply these tools to critique count regression models

for pharmaceutical and biomedical patents. The epidemiological case study in Section 5

evaluates the predictive performance of Bayesian age-period-cohort models for larynx cancer

counts in Germany. We consider a recent suggestion by Baker and Bray (2005), according

to which the inclusion of all age groups in the analysis, as opposed to older age groups only,

leads to improved predictions. The paper closes with a discussion in Section 6.

For count data, a probabilistic forecast is a predictive probability distribution, P , on

the set of the nonnegative integers. We denote its probability mass function by (pk)
∞
k=0 and

the respective cumulative distribution function (CDF) by (Pk)
∞
k=0. Generalizations of our

proposed methodology to probabilistic forecasts for any type of ordered discrete data, as

opposed to count data, are straightforward and given in an appendix. The tools are simple

yet powerful, and they apply generally to problems of forecast evaluation, model criticism

and model diagnosis.

2. Calibration and sharpness

As noted, probabilistic forecasts strive to maximize the sharpness of the predictive distri-

butions subject to calibration. Calibration refers to the statistical consistency between the

probabilistic forecasts and the observations, and its assessment requires frequentist thinking

(Rubin, 1984). Gneiting et al. (2007) distinguish various modes of calibration and propose

tools for the assessment of calibration and sharpness for probabilistic forecasts of continuous

variables. Here, we adapt their proposals to the case of count data.

2.1 Probability integral transform

Dawid (1984) proposed the use of the probability integral transform (PIT) for calibration

checks. This is simply the value that the predictive cumulative distribution function attains

at the value that materializes. If the observation is drawn from the predictive distribution
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— an ideal and desirable situation — and the predictive distribution is continuous, the PIT

has a standard uniform distribution. Calibration then is checked empirically, by plotting

the empirical CDF of a set of PIT values and comparing to the identity function, or by

plotting the histogram of the PIT values and checking for uniformity (Diebold, Gunther

and Tay, 1998; Gneiting et al., 2007). The PIT histogram is typically used informally

as a diagnostic tool; formal tests can also be employed though they require care in their

interpretation (Hamill, 2001; Jolliffe, 2007). Deviations from uniformity hint at reasons

for forecast failures and model deficiencies. U-shaped histograms indicate underdispersed

predictive distributions, hump or inverse-U shaped histograms point at overdispersion, and

skewed histograms occur when central tendencies are biased.

In the case of count data, the predictive distribution is discrete. Here, the PIT is no longer

uniform under the hypothesis of an ideal forecast, for which the observed count is a random

draw from the predictive distribution. To remedy this, several authors have suggested a

randomized PIT. Specifically, if P is the predictive distribution, x ∼ P is a random count

and v is standard uniform and independent of x, then

u = Px−1 + v(Px − Px−1), x ≥ 1, (1)

u = vP0, x = 0, (2)

is standard uniform (Smith, 1985, pp. 286–287; Frühwirth-Schnatter, 1996, p. 297; Liesenfeld,

Nolte and Pohlmeier, 2006, pp. 819–820). For time series data one typically considers one-

step (or k-step) ahead predictions, based on a time series model fitted on past and current

data, and checks for the independence of the randomized PIT, in addition to checks for

uniformity.

Here we propose a non-randomized yet uniform version of the PIT histogram. To this

end, we replace the randomized PIT value in (1) and (2) by its conditional cumulative
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distribution function given the observed count x, that is, by

F (u) =


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0, u ≤ Px−1,

(u− Px−1)/(Px − Px−1), Px−1 ≤ u ≤ Px,

1, u ≥ Px,

(3)

if x ≥ 1, and

F (u) =








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



u/P0, u ≤ P0,

1, u ≥ P0,
(4)

if x = 0, similarly to the discrete grade transformation in relative distribution methodologies

for the social sciences (Handcock and Morris, 1999, p. 180). Calibration can then be assessed

by aggregating over the predictions and comparing the mean PIT,

F̄ (u) =
1

n

n
∑

i=1

F (i)(u), 0 ≤ u ≤ 1, (5)

where F (i) is based on the predictive distribution P (i) and the observed count x(i), to the

distribution function of the standard uniform law, that is, the identity function.

We prefer to perform this comparison by plotting a non-randomized PIT histogram,

which can be interpreted diagnostically in the ways described above. Specifically, we pick

the number of bins, J , compute fj = F̄ ( j
J
) − F̄ ( j−1

J
) for equally spaced bins j = 1, . . . , J ,

plot a histogram with height fj for bin j, and check for uniformity. Under the hypothesis

of calibration, that is, if x(i) ∼ P (i) for all forecast cases i = 1, . . . , n, it is straightforward

to verify that F̄ (u) has expectation u, so that we expect uniformity. Typically, J = 10 or

J = 20 are good choices for the number of bins in the PIT histogram.

It is important to note that uniformity of the PIT histogram is a strong requirement,

being equivalent to all prediction intervals showing nominal coverage. In particular, the

sometimes practice of tabulating empirical coverage for selected prediction intervals can be
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interpreted as a special case of the use of the PIT histogram. Consider the prediction interval

with lower and upper probability limits α and β. The nominal coverage is β − α. Using

randomization, we find the empirical coverage as the frequency of randomized PIT values

that fall into the interval [α, β]. We prefer to use the non-randomized approach, in which the

empirical coverage is computed as the difference F̄ (β) − F̄ (α) of the mean non-randomized

PIT (5) at the probability limits α and β. Of course, this difference is the expected value of

the empirical coverage computed on the basis of the randomized PIT, when the expectation

is taken with respect to the randomization.

2.2 Marginal calibration diagram

We now consider what Gneiting et al. (2007) refer to as marginal calibration. The idea is

straightforward: If each observed count is a random draw from the respective probabilistic

forecast, and if we aggregate over the individual predictive distributions, we expect the

resulting mixture distribution and the histogram of the observed counts to be statistically

compatible. A marginal calibration diagram illustrates the predicted probability mass for

specific x values or intervals (xa, xb], when averaged over the predictive distributions, along

with the respective empirical frequency of count observations. Major discrepancies hint at

reasons for forecast failures and model deficiencies. An example of this type of diagnostic

tool is shown in Figure 4 below.

2.3 Sharpness

Sharpness refers to the concentration of the predictive distributions. In the context of

prediction intervals, this can be rephrased simply: The shorter the intervals, the sharper, and

the sharper the better, subject to calibration. Prediction intervals for continuous predictive

distributions are uniquely defined, and Gneiting et al. (2007) suggest to tabulate their ave-

rage width, or to plot sharpness diagrams as a diagnostic tool. Sharpness continues to be

critical for count data; however, we have found these tools to be less useful for discrete
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predictive distributions, for the ambiguities in specifying prediction intervals. Our preferred

way of addressing sharpness is indirectly, via proper scoring rules; see below.

2.4 Simulation study

We consider the negative binomial distribution NB(λ, a) with mean λ ≥ 0 and dispersion

parameter a ≥ 0, hence variance λ(1 + aλ). If a = 0, this is simply the Poisson distribu-

tion P(λ). We sample 200 counts from an NB(5, 1
2
) distribution, and consider probabilistic

forecasters whose predictive distribution is NB(5, 0) = P(5), NB(5, 1
2
) and NB(5, 1). Fig-

ure 1 shows non-randomized PIT histograms with J = 10 equally spaced bins for these

three cases. The PIT histograms are U-shaped, uniform and inversely U-shaped, indicating

underdispersed, well-calibrated and overdispersed predictive distributions, respectively.

3. Scoring rules

Scoring rules provide summary measures in the evaluation of probabilistic forecasts, by

assigning a numerical score based on the predictive distribution and on the event or value

that materializes. We take scoring rules to be negatively oriented penalties that a forecaster

wishes to minimize. Specifically, if the forecaster quotes the predictive distribution P and

the count x materializes, the penalty is s(P, x). We write s(P,Q) for the expected value of

s(P, · ) under Q. In practice, scores are reported as averages over suitable sets of probabilistic

forecasts, and we use upper case to denote a mean score; say

S =
1

n

n
∑

i=1

s(P (i), x(i)),

where P (i) and x(i) refer to the ith predictive distribution and the ith observed count, re-

spectively. In particular, Table 1 below shows mean scores.
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3.1 Propriety

Suppose, then, that the forecaster’s best judgement is the predictive distribution Q. The

forecaster has no incentive to predict any P 6= Q, and is encouraged to quote her true belief,

P = Q, if

s(Q,Q) ≤ s(P,Q) (6)

with equality if and only if P = Q. A scoring rule with this property is said to be strictly

proper. If s(Q,Q) ≤ s(P,Q) for all P and Q, the scoring rule is said to be proper. Propriety

is an essential property of a scoring rule that encourages honest and coherent predictions

(Bröcker and Smith, 2007; Gneiting and Raftery, 2007). Strict propriety ensures that both

calibration and sharpness are being addressed.

A scoring rule s for count data is regular if s(P, x) is finite, except possibly that s(P, x) =

∞ if px = 0. Let P denotes the class of probability measures on the set of the nonnegative

integers. The Savage representation theorem (Savage, 1971; Gneiting and Raftery, 2007)

states that a regular scoring rule S for count data is proper if and only if

s(P, x) = h(P ) −
∞
∑

k=0

h′k(P )pk + h′x(P )

where h : P →
�

is a concave function and h′(P ) is a subgradient of h at the point P , for all

P ∈ P. The statement holds with proper replaced by strictly proper, and concave replaced

by strictly concave.

Phrased slightly differently, a regular scoring rule s is proper if and only if the expected

score function h(P ) = s(P, P ) is concave on P, and the sequence (s(P, k))∞k=0 is a subgradient

of h at the point P , for all P ∈ P. The expected score function allows for an interpretation

as a generalized entropy function (Gneiting and Raftery, 2007).

8



3.2 Examples of proper scoring rules

The logarithmic score is defined as

logs(P, x) = − log px. (7)

This is the only proper scoring rule that depends on the predictive distribution P only

through the probability mass px at the observed count (Good, 1952). The associated ex-

pected score or generalized entropy function is the classical Shannon entropy.

There is a close relationship between the logarithmic score and the predictive deviance,

defined as

dev(P, x) = −2 log px + 2 log fx,

where fx is “some fully specified standardizing term that is a function of the data alone”

(Spiegelhalter, Best, Carlin and van der Linde, 2002, p. 587). If the predictive distribution

is a member of a one-parameter exponential family, such as the binomial or Poisson, the

standardizing term is routinely taken to be the saturated deviance (McCullagh and Nelder,

1989, pp. 33-34; Knorr-Held and Rainer, 2001, p. 114; Spiegelhalter et al., 2002, p. 606;

Clements et al., 2005, p. 581). However, when the predictive distributions come from possibly

distinct parametric or non-parametric families, it is vital that the standardizing terms in the

deviance are common (Spiegelhalter et al., 2002, p. 634). We contend that the choice is

rather arbitrary and propose for simplicity that the standardizing term is taken to be zero

(Gschlößl and Czado, 200x, sect. 6.3), which corresponds to the use of the logarithmic score.

Let ‖p‖2 =
∑∞

k=0 p
2
k, which can frequently be computed analytically, as shown in Ap-

pendix A for the Poisson and negative binomial distributions. The quadratic score or Brier

score and the spherical score are then defined as

qs(P, x) = −2px + ‖p‖2 (8)
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and

sphs(P, x) = −
px

‖p‖
, (9)

respectively. Wecker (1989) proposed the use of the quadratic score in the assessment of

time series predictions of counts.

The ranked probability score (Epstein, 1969) was originally introduced for ranked cate-

gorical data. It is easily adapted to count data, by defining

rps(P, x) =
∞
∑

k=0

{Pk − 1(x ≤ k)}2 . (10)

Equation (14) in Gneiting and Raftery (2007) implies an alternative representation expressed

in terms of expectations, which we now assume to be finite, namely

rps(P, x) = EP |X − x| −
1

2
EP |X −X ′|,

where X andX ′ are independent copies of a random variable with distribution P . The ranked

probability score generalizes the absolute error, to which it reduces if P is a point forecast.

Hence, it provides a direct way of comparing point forecasts and predictive distributions.

The scores introduced in this section are strictly proper, except that the ranked probability

score requires Q to have finite first moment for strict inequality in (6) to hold.

There is no automatic choice of a proper scoring rule to be used in any given situation,

unless there is a unique and clearly defined underlying decision problem. However, in many

types of situations probabilistic forecasts have multiple simultaneous uses, and it may be

appropriate to use a variety of diagnostic tools and scores, to take advantage of their differing

emphasis and strengths. For instance, there is a distinct difference between the ranked

probability score and the other scores discussed in this section, in that the former blows up

score differentials between competing forecasters in case predicted and/or observed counts
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are unusually high. Hence, a few, or even a single high count case can dominate and obscure

differences in the mean score. We will see an example of this in Section 5 below. This type

of behavior might be desirable, if the high count cases are the crucial ones, or might be

undesirable, depending on the application at hand.

3.3 Classical measures of predictive performance

We now discuss traditional summary measures of predictive performance. For simplicity,

we assume hereinafter that all moments considered are finite. Suppose first that µ ∈
�

is

point forecast and the count x materializes. Typically, one uses the absolute error, ae(µ, x) =

|x − µ|, or the squared error, se(µ, x) = (x − µ)2, as a measure of predictive performance,

averaging, again, over suitable sets of forecasts, to obtain the mean absolute error and mean

squared error, respectively. Of course, these measures apply to probabilistic forecasts as well.

For example, we can define the squared error score,

ses(P, x) = (x− µP )2 , (11)

where µP is the mean of the predictive distribution P . Viewed as a scoring rule for proba-

bilistic forecasts, this score is proper, but not strictly proper.

We now turn to studentized errors. It has frequently been argued that the squared

Pearson residual or normalized squared error score,

nses(P, x) =
(

x− µP

σP

)2

, (12)

where µP and σ2
P denote the mean and the variance of P , ought be approximately one

when averaged over the predictions (Carroll and Cressie, 1997, p. 52; Liesenfeld et al., 2006,

pp. 811, 818). Gotway and Wolfinger (2003, p. 1423) call the mean normalized squared error

score the average empirical-to-model variability ratio, arguing also that it should be close to
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one. One way of justifying this is by noting that the function

f(µP , σ
2
P ) = (nses(P,Q) − 1)2

has a minimum at µP = µQ and σ2
P = σ2

Q. The normalized squared error score and its

expectation nses(P,Q) when P is the predictive distribution and x ∼ Q realizes, depend

on P only through the first two moments, so the function f is well-defined. Still, we follow

Frühwirth-Schnatter (1996, p. 297) in arguing that the PIT histogram is a more informative

and more robust tool for unmasking dispersion errors.

The scores in this section depend on the predictive distribution P only through the first

two moments. Dawid and Sebastiani (1999) provide a comprehensive study of proper scoring

rules for which this property holds. A particularly appealing example is the scoring rule

dss(P, x) =
(

x− µP

σP

)2

+ 2 log σP , (13)

to which we refer as the Dawid-Sebastiani score. It was proposed by Gneiting and Raftery

(2007) as a proper alternative to the improper predictive model choice criterion of Gelfand

and Ghosh (1998).

3.4 Simulation study

We now return to the simulation study in Section 2.4. We sample 200 counts from

an NB(5, 1
2
) distribution, and suppose that the predictive distribution is NB(5, 0) = P(5),

NB(5, 1
2
) and NB(5, 1), respectively. For each probabilistic forecast and each of six scoring

rules (logarithmic, quadratic, spherical, ranked probability, Dawid-Sebastiani and normalized

squared error scores), Figure 2 summarizes the scores for the 200 individual forecasts. The

first five scoring rules, which are proper, show the lowest scores for the NB(5, 1
2
) forecast,

which is correctly identified as superior. A similar statement holds for the normalized squared
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error score, which is closest to its target value one for this forecast. The respective mean

normalized squared error scores are 3.84, 1.10 and 0.64, thereby supporting the dispersion

assessments that the PIT histograms in Figure 1 make more powerfully. Of course, the

predictive mean, and therefore the mean squared error, is the same for all three forecasts.

4. Case study: Model critique for count regression

Count data often show substantial extra variation or overdispersion relative to a Poisson

regression model (Dean and Lawless, 1989; Winkelmann, 2005). Various alternatives have

been suggested to accommodate this, such as negative binomial and mixed Poisson models

(Lawless, 1987). In this section, we investigate whether the non-randomized PIT histogram,

the marginal calibration diagram and proper scoring rules are effective tools for model crit-

icism (O’Hagan, 2003) in this context. We adopt a leave-one-out cross-validation approach,

in which the prediction for each observation is based on a count regression model fitted on

the remaining data only.

We study the relationship of the number of patent applications to research and develop-

ment (R&D) spending and sales using data from 1976 for 70 pharmaceutical and biomedical

companies (Hall, Cummins, Laderman and Mundy, 1988). This data set was also studied

by Wang, Cockburn and Puterman (1998), who used a mixed Poisson regression approach

to address the overdispersion that is commonly observed in patent counts (Hausman, Hall

and Griliches, 1984; Czado, Erhardt and Min, 2006). Here we take a simpler approach and

compare Poisson regression to negative binomial regression, using the specification

log λ = β0 + β1
R&D

sales
+ β2 (R&D)1/5

for the predictive mean λ. Figure 3 shows non-randomized PIT histograms based on the

leave-one-out predictive distributions, using Poisson and negative binomial count regression
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models fitted with the R functions glm() and glm.nb() (Venables and Ripley, 1997, Section

7.4). The PIT histogram for the Poisson case indicates under-dispersion of the Poisson

regression model. The histogram for the negative binomial case does not show any lack

of model fit. Figure 4 shows a marginal calibration diagram, as introduced in Section 2.2.

We see that the predicted frequencies for the negative binomial regression are closer to the

observed ones, when compared to the Poisson regression.

Figure 5 uses boxplots to display scores for the two competing methods. The five proper

scores all prefer the negative binomial over the Poisson regression model. Superficially,

the same appears to be true for the normalized squared error score. However, the mean

normalized squared error can blow up under outliers, which is the case here. Outliers beyond

the range of the boxplot lead to mean normalized squared error scores of 12.5 and 91.6 for

the Poisson and negative binomial case, respectively. This is in stark contrast to the PIT

histograms in Figure 3 and the boxplots in Figure 5, and provides an example of potentially

misleading inferences that non-robust performance measures may suggest.

In conclusion, our diagnostic tools all point at the superiority of the negative binomial

regression model. The non-randomized PIT histogram and the marginal calibration diagram

furthermore allow us to diagnose the reason for this critique, in that the Poisson model is

strongly underdispersed.

5. Case study: Predicting cancer incidence

Bayesian age-period-cohort models are used increasingly to project cancer incidence and

mortality rates. Data from younger age groups (typically age < 30 years) for which rates are

low are often excluded from the analysis. However, a recent empirical comparison (Baker

and Bray, 2005) based on data from Hungary suggests that age-specific predictions based on

full data are more accurate. A natural question arises here in how to quantify the quality of

the predictive distributions.
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Baker and Bray (2005, p. 799) predict mortality rates, using what they call the sum of

squared standardized residuals to assess the quality of the forecasts. From personal commu-

nication with the authors, the standardization is not based on the predictive variance, so the

aforementioned residuals are not the squared Pearson residuals in (12). Instead, Baker and

Bray (2005) use the traditional standard error of a rate estimate for standardization and

argue, in discussing their Table 1, that smaller values of this quantity correspond to more

accurate predictions. Clements et al. (2006) question the assessment in Baker and Bray

(2005) and suggest the use of the predictive deviance, originally proposed by Knorr-Held

and Rainer (2001). They argue that “the Bayesian age-period-cohort model suffers from

very wide credible intervals”, but do not relate the width of the intervals to properties of

calibration, and do not specifically recommend the use of proper scoring rules.

In this section, we use scoring rules to investigate whether the conclusion drawn by Baker

and Bray (2005) applies to larynx cancer data from Germany, 1952–2002. Our assessment

is based on counts rather than rates. We fit four different predictive models depending on

whether or not data from age groups < 30 years have been included in the analysis, and

whether or not the model allows for overdispersion, as shown in Table 1.

Let nij be the number of persons at risk in age group i and year j. We assume that

the respective number of deaths Xij is binomially distributed with parameters nij and πij.

A Poisson model would be a nearly identical choice. Following Besag, Green, Higdon and

Mengersen (1995) and Knorr-Held and Rainer (2001), we decompose the logarithmic odds

ηij = log{πij/(1−πij)} additively, into an overall level µ, age effects θi, period effects ϕj and

cohort effects ψk, namely

ηij = µ+ θi + ϕj + ψk.

Note that there is a problem in defining cohorts because age groups (in 5-year steps) and

periods (in 1-year steps) are not on the same grid. We follow Fienberg and Mason (1979)
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and Knorr-Held and Rainer (2001) and use the cohort index k = 5 · (I − i) + j, where I is

the number of age groups.

Typically, parametric time trends for age, period and cohort effects are too restrictive.

On the other hand, period and cohort effects as factors cause instability of the maximum

likelihood estimates, possibly resulting in a saw-tooth pattern, as noted first by Holford

(1983). Also, it is not obvious how to use maximum likelihood estimates for prediction.

Osmond (1985) suggested to compute unknown period and cohort effects for future periods

by linear regression applied to a subjectively chosen number of the most recent estimates on

each scale. One criticism of this method is that it is arbitrary in the choice of the number of

past values to use. In a recent comparative study, Bray (2002, pp. 161–162) concludes that

“empirical projections based on the method of Osmond (1985) are poor.”

Here we use non-parametric smoothing priors within a hierarchical Bayesian framework,

for which model-based extrapolation of period and cohort effects for future periods is straight-

forward (Besag et al., 1995). This choice has the additional advantage that adjustments for

overdispersion are easy to make. Inference and prediction based on Markov chain Monte

Carlo techniques is done as described in Knorr-Held and Rainer (2001).

Observed and fitted/predicted numbers of deaths from larynx cancer per 100,000 males

are displayed in Figure 6. We show posterior means and 90% pointwise prediction intervals

based on Model 4, which does not adjust for overdispersion and includes data only from age

group 30–34 onward. For better comparison, incidence rates per 100,000 men are shown.

The subsequent analysis is based on counts.

To assess the predictive performance of the different models, we predict mortality counts

for the five years 1998–2002. For all different models, we consider predictions in the 12

age groups with age > 30 years. Table 1 shows mean scores, averaged over all 12 · 5 = 60

projections. Interestingly, the scores do not agree. One set of scores (logarithmic, quadratic,

spherical, Dawid-Sebastiani and normalized squared error scores) points to Model 1 as the
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best, which includes data from the very young age groups and adjusts for overdispersion.

The other set of scores (ranked probability and squared error scores) prefers Model 4.

The disagreement can be explained as follows. The scores in the first set are roughly

independent of the size of the counts in the different age groups. This is most obvious for

the normalized squared error score, but approximately also true for the other scores. In

contrast, the ranked probability and squared error scores are highly dependent on the size

of the counts. Hence the results in the mid age groups, where the counts are highest and

Model 4 is more competitive, dominate the mean score.

These results might support Baker and Bray’s (2005) contention that age-specific pre-

dictions based on full data yield sharper predictive distributions, and more accurate point

forecasts for the younger age groups that benefit from the strong cohort effect that is present

here, particularly for the younger birth cohorts. Of course, these findings are tentative, being

based on 60 dependent predictions only, and further experiments are called for.

6. Discussion

We have introduced a toolbox for the assessment of the predictive performance of probabilis-

tic forecasts for count data, which includes a non-randomized probability integral transform

(PIT) histogram, the marginal calibration diagram and proper scoring rules. Simplicity,

generality and interpretability are attractive features of these tools; they apply both in para-

metric and non-parametric settings and do not require models to be nested, nor be related in

any way. Typically, they are used diagnostically, to identify model deficiencies and facilitate

model comparison and model selection. Formal inference is often feasible (Clements, 2005;

Jolliffe, 2007), but may not be the goal.

The toolbox applies to two apparently distinct, yet closely related tasks. One is the

evaluation of probabilistic forecasts that take the form of predictive distributions for future

counts. Here, the PIT histogram and the marginal calibration diagram are employed di-
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agnostically, and proper scoring rules allow us to rank competing forecasters. The other

task is the critique of statistical models (O’Hagan, 2003); frequently, models can be fitted in

cross-validation mode, and can be assessed based on the quality of the ensuing probabilistic

forecasts. We have demonstrated the use of these tools in case studies in both types of

situations. It is our belief that they can provide similar guidance in a very wide range of

applied statistical problems for ordered discrete data.
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Appendix A

Computation of ‖p‖2

Let ‖p‖2 =
∑∞

k=0 p
2
k. For the Poisson distribution with parameter λ, we find that ‖p‖2 =

e−2λI0(λ) where I0 is a modified Bessel function (Abramowitz and Stegun, 1970, p. 374). For

the negative binomial distribution with mean λ and dispersion parameter a ≥ 0, we have

‖p‖2 = (1 + 2aλ)−1/a L−1/a

(

1 +
2a2λ2

1 + 2aλ

)

,

where L is a Legendre function of the first kind (Abramowitz and Stegun, 1970, p. 332).

Appendix B

Probabilistic forecasts of ordered discrete data

The tools proposed in this paper generalize easily to probabilistic forecasts for arbitrary

ordered discrete data, which are not necessarily counts. Without loss of generality, we

consider the prediction of a quantity x that can attain a countable number of real numbers

(xk)
∞
k=−∞, where xk−1 < xk < xk+1 for all k. Let P be a probabilistic forecast for this

quantity. We denote the probability mass function and cumulative distribution function for

the predictive distribution P by (pk)
∞
k=∞ and (Pk)

∞
k=−∞, respectively. Note that hereinafter

the index k ≥ 0 corresponds to xk, which in general is not an integer. If the quantity can

only attain a finite number of values, we have pk = 0 for all but finitely many indices k. In

the case of count data, we have xk = k for k ≥ 0 and pk = 0 for k < 0.

The probability integral transform (PIT) generalizes easily to this situation. We first
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consider its randomized version. If x = xk obtains, we put

u = Pk−1 + v(Pk − Pk−1) (B.1)

where v is standard uniform and independent of x, which reduces to (1) and (2) in the case

of count data. Grammig and Kehrle (2007) apply this device to assess probabilistic forecasts

of a discrete economic variable. Similar tools have been used to assess the calibration of

probabilistic quantitative precipitation forecasts, which typically take the form of a mixture

of a point mass at zero and a predictive density on the positive half-axis (Krzysztofowicz

and Sigrest, 1999; Sloughter, Raftery, Gneiting and Fraley, 2007).

To generalize the non-randomized PIT, we proceed as follows. If x = xk realizes, we put

F (u) =































0, u ≤ Pk−1,

(u− Pk−1)/(Pk − Pk−1), Pk−1 ≤ u ≤ Pk,

1, u ≥ Pk,

(B.2)

which reduces to (3) and (4) in the case of count data. Again, we aggregate as in (5) and

check the PIT histogram for uniformity.

The marginal calibration diagram does not require any adjustments, nor do the scoring

rules, with the obvious exceptions that ‖p‖2 =
∑∞

k=−∞ p2
k and that the ranked probability

score (10) is now computed as

rps(P, x) =
∞
∑

k=−∞

{Pk − 1(x ≤ xk)}
2 . (B.3)
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Table 1

Four predictive models for larynx cancer counts in Germany, 1998–2002, and the respective

mean scores. The best value in each column is shown in bold face.

Model age disp LogS QS SphS RPS DSS SES NSES

1 + + 4.27 −0.041 −0.153 14.0 6.74 852.9 1.66

2 + – 4.35 −0.040 −0.152 12.9 6.89 684.4 2.05

3 – + 4.29 −0.040 −0.152 14.2 6.78 870.0 1.69

4 – – 4.35 −0.039 −0.151 12.2 6.90 564.8 2.12
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Figure 1. Non-randomized PIT histograms for probabilistic forecasts for a sample of 200
counts from a negative binomial distribution NB(λ, a) with mean λ = 5, dispersion parameter
a = 1

2
and variance λ(1 + aλ). The predictive distribution is negative binomial with mean

λ = 5 and dispersion parameter a = 0, a = 1
2

and a = 1 (from left to right). The PIT
histograms are U-shaped, uniform and inversely U-shaped, indicating underdispersed, well-
calibrated and overdispersed predictive distributions, respectively.
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Figure 2. Boxplots for various scores in the situation of Figure 1.
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Figure 3. Non-randomized PIT histograms for patent data count regressions.
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Figure 5. Boxplots for various scores for patent data count regressions.
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Figure 6. Observed (×) and fitted/predicted number of deaths from larynx cancer per
100,000 males in Germany in age groups 50–54, 55–59, . . . , 85–, based on Model 4.
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