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Abstract

The paper considers joint maximum likelihood (ML) and semiparametric (SP)
estimation of copula parameters in a bivariate t-copula. Analytical expressions
for the asymptotic covariance matrix involving integrals over special functions
are derived, which can be evaluated numerically. These direct evaluations of
the Fisher information matrix are compared to Hessian evaluations based on nu-
merical differentiation in a simulation study showing a satisfactory performance
of the computationally less demanding Hessian evaluations. Individual asymp-
totic confidence intervals for the t-copula parameters and the corresponding tail
dependence coefficient are derived. For two financial datasets these confidence
intervals are calculated using both direct evaluation of the Fisher information
and numerical evaluation of the Hessian matrix. These confidence intervals are
compared to parametric and nonparametric BCA bootstrap intervals based on
ML and SP estimation, respectively, showing a preference for asymptotic confi-
dence intervals based on numerical Hessian evaluations.

Classification codes and Keywords: C13, C14, C16, Fisher information, bivariate t-
copula, Hessian, maximum likelihood, semiparametric estimation, efficiency.

1



1 Introduction

A popular approach for modelling multivariate dependence, which was proposed by
Sklar (1959), is based on copulas. A copula is a distribution function of a random vector
in Rd whose margins are uniformly distributed. Estimation of the joint distribution in
both bivariate and multivariate cases is of fundamental importance in statistical data
analysis, in particular in areas such as risk management (see for example Embrechts
et al. (2002), Embrechts et al. (2003), McNeil et al. (2005)). An often used model in
applications is the Gaussian copula model, which is historically the most established
due to its simplicity (see for example Joe (1997)). However, recent studies indicate
that in many situations occurring in practice the Gaussian model does not provide
one with adequate fit of the data because of its inability to capture the dependence
in extreme values, so-called tail-dependence, which is often observed in financial data
(see for example Embrechts et al. (2003), Lindskog (2000), McNeil et al. (2005)). A
possibility to overcome this deficiency is to use a more flexible class of copulas such as
t-copulas which are simple for estimation and calibration. However, while properties of
traditional estimation methods in the multivariate normal case are well established, no
analytical expression the asymptotic covariance of the maximum likelihood estimates
(MLE) of both t-copula parameters are known to the authors.

The purpose of this paper is to derive an analytical expression for the Fisher infor-
mation matrix of bivariate t-copula in terms of integrals of special functions, and to
examine whether the Hessian evaluation using numerical differentiation is an appropri-
ate substitute for the Fisher information in small samples. Besides ML estimates we
also investigate semiparametric estimates. In the semiparametric framework the asso-
ciation parameter ρ is estimated nonparametricaly using Kendal’s τ and the resulting
estimate is denoted as ρ̂SP . The corresponding degrees of freedom (df) parameter max-
imizes the profile likelihood for given ρ̂SP . Further we compare the results obtained
from the theoretical evaluation of the Fisher information matrix and its inverse to their
numerical approximation provided by the Hessian evaluation. A quasi-Newton algo-
rithm for solving nonlinear optimization problems with upper and lower bounds on the
variables developed in Byrd et al. (1995) is used to obtain the MLE and approximate
numerically the Hessian matrix resulting from the likelihood optimization. We show
that the SP estimates are slightly less efficient than MLE’s. The implementation of our
methods is illustrated on two financial datasets which exhibit high tail dependence. We
estimate correlation and the df parameter together with the tail dependence coefficient
and construct confidence intervals based on six different estimation methods. Interval
estimates for the MLE of the df parameter, association and tail dependence coefficient
are constructed using the asymptotic distribution arising from the central limit theo-
rem, nonparametric and parametric bootstrap (see Efron and Tibshirani (1993)). For
the SP estimates bootstrapping is used for the construction of confidence intervals.

The paper is organized as follows. In Section 2 we give the basic properties of
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t-copulas including tail dependence. Section 3 is devoted to the theoretical derivation
of the Fisher information matrix for bivariate t-copula needed for interval estimates of
the t-copula parameters. In Section 4 the asymptotic variance of the MLE of the tail
dependence coefficient is derived and the corresponding interval estimates are given.
Section 5 contains a simulation study which determines the efficiency of the MLE’s
compared to SP estimates as well as evaluates the precision of the asymptotic variance
and correlation estimates of the MLE’s. Section 6 contains two applications involving
financial data and Section 7 gives conclusions and outlines suggestions for further
analysis.

2 The t-copula

The t-copula has attracted much attention due to its flexibility in modeling the depen-
dence of extreme values, particularly in the framework of financial markets and risk
analysis. In this section we outline some basic facts about the multivariate t-copula.
For further details we refer the reader to Demarta and McNeil (2005), Embrechts et al.
(2003) and Kotz and Nadarajah (2004).

The d-dimensional t-copula with ν degrees of freedom and association matrix Σ is
the probability distribution on [0, 1]d whose distribution function is given by

Cν,Σ(u) =

∫ t−1
ν (u1)

−∞
. . .

∫ t−1
ν (ud)

−∞

Γ
(

ν+d
2

)

Γ
(

ν
2

) √
(πν)d|Σ|

(
1 +

x
′
Σ−1x

ν

)− ν+d
2

dx, (1)

where tν(·) is the distribution function of a univariate t-distribution with ν degrees of
freedom. The probability density function corresponding to (1) equals to

cν,Σ(u) =
dtν,Σ(t−1

ν (u1), . . . , t
−1
ν (ud))∏d

i=1 dt(t−1
ν (ui), ν)

, u ∈ [0, 1]d, (2)

where dtν,Σ(·) and dt(·, ·) are the densities of multivariate and univariate t-distribution,
respectively.

Since the semiparametric method that we employ in our simulation study and ap-
plications involves estimation of Kendal’s τ , we outline the basic properties of this
commonly used measure of dependence between two random variables. For more de-
tails the reader is referred to Embrechts et al. (2002), Kruskal (1958) and Schweizer
and Wolff (1981). Consider a random vector (U1, . . . , Ud) whose distribution function
coincides with (1). The Kendal’s τ rank correlation for a pair of random variables
(Ui, Uj), 1 ≤ i < j ≤ n, denoted as τij, can be obtained from association matrix
Σ = (ρij)1≤i,j≤d using the relationship (see for example McNeil et al. (2005))

τij =
2

π
arcsin ρij. (3)
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Note (3) holds more general for bivariate distributions. The corresponding tail depen-
dence coefficient λij for the bivariate t-copula (see for example Joe (1997), Chapter 2
for general definition) equals to

λij = λ(ρij, ν) = 2tν+1

(
−√ν + 1

√
1− ρij

1 + ρij

)
(4)

Many extensions of the multivariate t-copula concept are developed in order to allow
for more heterogeneity in modeling dependent observations. These include skewed t-
copulas (see Kotz and Nadarajah (2004)), grouped t-, t-extreme value and t-lower tail
copula (Demarta and McNeil (2005)), pair copula constructions applied to bivariate
t-copulas (see Aas et al. (2007)), and many others.

Estimation of t-copula parameters is usually performed using ML where the likeli-
hood is maximized with respect to Σ and ν jointly, or the method of moments based
on non-parametric estimation of Kendal’s τ , relationship (3) and additional likelihood
maximization over the remaining parameter ν. In the following we refer to the second
method as semiparametric (SP) method. The SP method has been proposed in Lind-
skog (2000) and Lindskog et al. (2003) and it guarantees no positive definiteness of the
estimator Σ̂SP of the correlation matrix Σ, but it results in estimates close to the full
MLE as demonstrated in Mashal and Zeevi (2002). Though both methods are widely
implemented in practice, theoretical properties of the estimates obtained seem to be
uncovered in the literature. In the next section we derive the expression for the Fisher
information matrix and elaborate on properties of the MLE in the bivariate t-copula
case.

3 Interval estimates for bivariate t-copula parame-

ters

In this section we derive expressions for the entries of the Fisher information matrix
in terms of integrals of special functions, describe how we evaluate them and provide
illustrations of their functional shape. We restrict our attention to the bivariate case,
although generalizations to higher dimensions are possible.

The density of the bivariate t-copula with parameters ρ ∈ (−1, 1) and ν > 0 is
given by

c(u1, u2) =
1

2π
√

1− ρ2

1

dt(x1, ν)dt(x2, ν)

(
1 +

x2
1 + x2

2 − 2ρx1x2

ν(1− ρ2)

)− ν+2
2

, (5)

where

dt(x, ν) =
Γ(ν+1

2
)

Γ(ν
2
)
√

πν

(
1 +

x2

ν

)− ν+1
2
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is the density of univariate t-distribution with ν degrees of freedom. Here

x1 := t−1
ν (u1), u1 ∈ (0, 1),

x2 := t−1
ν (u2), u2 ∈ (0, 1),

with t−1
ν (·) being the quantile function of univariate t-distribution with ν degrees of

freedom.
The logarithm of the t-copula density equals

l(u1, u2) = log c(u1, u2) = − log(2π)− 1

2
log(1− ρ2)

−
[
log Γ

(
ν + 1

2

)
− 1

2
log ν − 1

2
log π − log Γ

(ν

2

)
− ν + 1

2
log

(
1 +

x2
1

ν

)]

−
[
log Γ

(
ν + 1

2

)
− 1

2
log ν − 1

2
log π − log Γ

(ν

2

)
− ν + 1

2
log

(
1 +

x2
2

ν

)]

− ν + 2

2
log

(
1 +

x2
1 + x2

2 − 2ρx1x2

ν(1− ρ2)

)

= − log 2− 2 log Γ

(
ν + 1

2

)
+ 2 log Γ

(ν

2

)
+

ν + 1

2
log(1− ρ2)− ν − 2

2
log ν

+
ν + 1

2

[
log(ν + x2

1) + log(ν + x2
2)

]− ν + 2

2
log

[
ν(1− ρ2) + x2

1 + x2
2 − 2ρx1x2

]
.

Therefore

∂l

∂ρ
(u1, u2) = −(ν + 1)

ρ

1− ρ2
+ (ν + 2)

νρ + x1x2

ν(1− ρ2) + x2
1 + x2

2 − 2ρx1x2

. (6)

If we denote

M(ν, ρ, x1, x2) :=
1

ν(1− ρ2) + x2
1 + x2

2 − 2ρx1x2

, (7)

then

∂2l

∂ρ2
(u1, u2) = −(ν + 1)

1 + ρ2

(1− ρ2)2
+

(ν + 2)ν

M(ν, ρ, x1, x2)
+ 2(ν + 2)

(νρ + x1x2)
2

M(ν, ρ, x1, x2)2
,

and

Iρρ :=

∫ 1

0

∫ 1

0

∂2l

∂ρ2
(u1, u2)c(u1, u2)du1du2 (8)

=− (ν + 1)
1 + ρ2

1− ρ2
+

∫

R

∫

R

(ν + 2)ν

2π
√

1− ρ2

[M(ν, ρ, x1, x2))]
− ν+4

2

[ν(1− ρ2)]−(ν+2)/2
dx1dx2

+

∫

R

∫

R

ν + 2

π
√

1− ρ2

1

[ν(1− ρ2)]−(ν+2)/2
(νρ + x1x2)

2 [M(ν, ρ, x1, x2))]
− ν+6

2 dx1dx2.
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In order to obtain partial derivatives of l(u1, u2) with respect to ν we first calculate
the derivative of xi = t−1

ν (ui), i = 1, 2. Namely, we have that

∂xi

∂ν
(u1, u2) = −

∂
∂ν

tν(xi)

dt(xi, ν)
, i = 1, 2

where

tν(x) =

{
1− 1

2
I ν

ν+x2
(ν

2
, 1

2
), x ≥ 0,

1
2
I ν

ν+x2
(ν

2
, 1

2
), x < 0,

(9)

with

I ν
ν+x2

(
ν

2
,
1

2

)
=

∫ ν
ν+x2

0 tν/2−1(1− t)−1/2dt

B(ν
2
, 1

2
)

being the regularized β-function (see for example Abramowitz and Stegun (1992),
Chapter 6 or Gradshteyn and Ryzhik (1980), Chapter 6). Therefore, for x ≥ 0 we
have that

∂

∂ν
tν(x) =− 1

2

∂

∂ν
I ν

ν+x2

(
ν

2
,
1

2

)

=− 1

2

1

B(ν
2
, 1

2
)

[(
1

x2 + ν

) ν+1
2

ν
ν
2
−1x +

∫ ν
ν+x2

0

tν/2−1(1− t)−1/2 log tdt

]

+
1

4
I ν

ν+x2

(
ν

2
,
1

2

)[
ψ

(ν

2

)
− ψ

(
ν

2
+

1

2

)]
, (10)

where ψ(·) is the digamma function. Analogously, the derivative for x < 0 can be
obtained from (9). Therefore it follows that

∂xi

∂ν
(u1, u2) =

1

2dt(xi, ν)

1

B(ν
2
, 1

2
)

[(
1

x2
i + ν

) ν+1
2

ν
ν
2
−1xi +

∫ ν

ν+x2
i

0

tν/2−1(1− t)−1/2 log tdt

]

− 1

4dt(xi, ν)
I ν

ν+x2

(
ν

2
,
1

2

) [
ψ

(ν

2

)
− ψ

(
ν

2
+

1

2

)]
, ui ≥ 1/2, i = 1, 2.

(11)

Differentiating (6) with respect to ν we obtain

∂2l

∂ρ∂ν
(u1, u2) =− ρ

1− ρ2
+

νρ + x1x2

M(ν, ρ, x1, x2)
+ (ν + 2)

[
ρ + x1

∂x2

∂ν
+ x2

∂x1

∂ν

M(ν, ρ, x1, x2)

− (νρ + x1x2)
−2νρ + 2x1(

∂x1

∂ν
− ρ∂x2

∂ν
) + 2x2(

∂x2

∂ν
− ρ∂x1

∂ν
)

M(ν, ρ, x1, x2)2

]
. (12)
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Thus

Iρν :=

∫ 1

0

∫ 1

0

∂2l

∂ρ∂ν
(u1, u2)c(u1, u2)du1du2, (13)

can be determined using ∂2l
∂ρ∂ν

(u1, u2) and ∂xi

∂ν
(u1, u2) as given in (12) and (11), respec-

tively.
Finally,

Iνν :=

∫ 1

0

∫ 1

0

(
∂l

∂ν
(u1, u2)

)2

c(u1, u2)du1du2 (14)

where

∂l

∂ν
(u1, u2) =− ψ

(
ν + 1

2

)
+ ψ

(ν

2

)
+

1

2
log(1− ρ2)− ν + 2

2ν
− 1

2
log ν (15)

+ (ν + 1)

[
x1

∂x1

∂ν

ν + x2
1

+
x2

∂x2

∂ν

ν + x2
2

]
(16)

− ν + 2

2

1− ρ2 + 2x1
∂x1

∂ν
+ 2x2

∂x2

∂ν
− 2ρ(x1

∂x2

∂ν
+ x2

∂x1

∂ν
)

M(ν, ρ, x1, x2)
(17)

and ∂xi

∂ν
(u1, u2) is given in (11).

Integration in (8), (13) and (14) is not possible in analytical form. We have used
the symbolic software Mathematica to approximate the integrals in (8), (13) and (14).
We allow ρ and ν to vary over intervals [−0.95, 0.95] and [2.1, 10], respectively. From
general properties of the MLE (see for example Lehmann and Casella (1998), Chapter
6) we have that MLE (ρ̂n, ν̂n)

′
of (ρ0, ν0)

′
based on n observations (u1

1, u
1
2), . . . , (u

n
1 , u

n
2 )

from bivariate t-copula satisfies

√
n

[
(ρ̂n, ν̂n)

′ − (ρ0, ν0)
′
]

D→ N2(0, Σ(ρ0, ν0)), n →∞, (18)

where

Σ(ρ0, ν0) :=

(
σ2

ρ0ρ0
σρ0ν0

σρ0ν0 σ2
ν0ν0

)
=

(
Iρ0ρ0 Iρ0ν0

Iρ0ν0 Iν0ν0

)−1

(19)

is the inverse of the Fisher information matrix. Further N2(µ, Σ) denotes the bivari-
ate normal distribution with mean vector µ and covariance matrix Σ. The shape of
σ2

ρ0ρ0
, σρ0ν0 , σ

2
ν0ν0

is given in Figures 1, 2 and 3, respectively. The 100(1−α)% confidence
intervals for parameters ρ and ν are (ρ̂n − z1−α/2σ̂ρ̂nρ̂n/

√
n, ρ̂n + z1−α/2σ̂ρ̂nρ̂n/

√
n) and

(ν̂n − z1−α/2σ̂ν̂nν̂n/
√

n, ρ̂n + z1−α/2σ̂ν̂nν̂n/
√

n) respectively, where z1−α is the (1− α)100
% quantile of the standard normal distribution. Here are σ̂ρ̂nρ̂n and σ̂ν̂nν̂n are suitable
estimates of the variances σρ0ρ0 and σν0ν0 , respectively.
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Figure 1: The shape of σ2
ρ0ρ0

as ρ0 and ν0 vary.
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Figure 2: The shape of r(ρ0ν0) = σρ0ν0/(σρ0ρ0σν0ν0) as ρ0 and ν0 vary.
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Figure 3: The shape of σ2
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as ρ0 and ν0 vary.
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4 Interval estimates for the tail dependence coeffi-

cient

In this section we derive the asymptotic distribution of the MLE for the tail dependence
coefficient λ in the bivariate t-copula case and construct the corresponding interval
estimate.

As noted in Section 2, for the bivariate t-copula the tail dependence coefficient λ
can be expressed in terms of parameters ρ and ν, namely

λ = λ(ρ, ν) = 2tν+1

(
−√ν + 1

√
1− ρ

1 + ρ

)
. (20)

For details regarding the derivation of (20), the reader is referred to Demarta and
McNeil (2005). The MLE of the true tail dependence coefficient λ0 = λ(ρ0, ν0) is
λ̂n = λ(ρ̂n, ν̂n), and its asymptotical properties follow from general point estimation
theory (see for example Lehmann and Casella (1998), Chapter 3). Namely,

√
n(λ̂n − λ0)

D→ N (0, σ2
λ0

), n →∞, (21)

where

σ2
λ0

:=

(
∂λ

∂ρ
(ρ0, ν0)

)2

σ2
ρ0ρ0

+ 2

(
∂λ

∂ρ
(ρ0, ν0)

)(
∂λ

∂ν
(ρ0, ν0)

)
σρ0ν0 +

(
∂λ

∂ν
(ρ0, ν0)

)2

σ2
ν0ν0

.

(22)
From (20) we have that

∂λ

∂ρ
(ρ, ν) = 2dt

(
−√ν + 1

√
1− ρ

1 + ρ
, ν + 1

)√
ν + 1

√
1 + ρ

1− ρ

1

(1 + ρ)2
(23)

∂λ

∂ν
(ρ, ν) =dt

(
−√ν + 1

√
1− ρ

1 + ρ
, ν + 1

)
1√

ν + 1

√
1− ρ

1 + ρ

+2
∂

∂ν
tν+1

(
−√ν + 1

√
1− ρ

1 + ρ

)
, (24)

where ∂
∂ν

tν(·) is as in (10). The (1 − α)100 % confidence interval for λ has the form
(λn − z1−ασ̂λ̂n

/
√

n, λn + z1−ασ̂λ̂n
/
√

n), where σ̂λ̂n
is a suitable estimate of σλ0 .

5 Simulation study

In this section we present the results of a simulation study which compares the asymp-
totic covariance matrix of (ρ̂ML, ν̂ML) obtained from a bilinear interpolation of nu-
merically evaluated integrals in (8), (13) and (14) and its counterpart determined by
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Hessian evaluation using numerical differentiation at (ρ̂ML, ν̂ML). A quasi-Newton al-
gorithm of Byrd et al. (1995) for solving nonlinear optimization problems with upper
and lower bounds on the variables is used to obtain MLE’s. We obtain the approx-
imation of the Hessian matrix using the R routine optim. Furthermore, we confirm
the phenomenon already observed in Mashal and Zeevi (2002) that estimates obtained
using ML method are very close to the SP estimates.

In order to compare the finite sample properties we simulate 200 times a dataset
consisting of n independent realizations from a bivariate t-copula distribution with pa-
rameters ρ = 0, 0.5, 0.7 and ν = 3 and 5, respectively. For n = 500, 1500, 4500 and each
i = 1, . . . , 200 we obtain the ML estimate (ρ̂

(i)
ML, ν̂

(i)
ML) and SP estimate (ρ̂

(i)
SP , ν̂

(i)
SP ) of

(ρ, ν). Moreover, the tail dependence coefficient estimates λ̂
(i)
ML and λ̂

(i)
SP are calculated

using the relationship (20).
In order to present results of our simulation we introduce the following notation.

Let θ0 be the true parameter value, and θ̂(i), i = 1, . . . , 200 be the estimate of θ0 from
the ith simulation step. We define the overall estimate

θ̂ :=
200∑
i=1

θ̂(i)/200,

its empirical standard deviation

s(θ̂) :=
1√
200

√∑200
i=1(θ̂

(i) − θ̂)2

199
,

the estimated bias

B̂ias(θ̂) := θ̂ − θ0,

the estimated mean squared error

M̂SE(θ̂) :=

∑200
i=1(θ̂

(i) − θ0)
2

200
,

and the estimated efficiency of estimate θ̂2 with respect to estimate θ̂1 as

Êff(θ̂1, θ̂2) =
M̂SE(θ̂1)

M̂SE(θ̂2)
.

In Tables 1 and 2 we report the overall estimate, its empirical standard deviation
and bias for θ̂ being ρ̂SP , ρ̂ML, ν̂SP , ν̂ML, λ̂SP , λ̂ML, respectively. Additionally, we give
the efficiency Êff(ρ̂SP , ρ̂ML)(Êff(ν̂SP , ν̂ML) and Êff(λ̂SP , λ̂ML)) of ρ̂ML with respect to
ρ̂SP (of ν̂ML with respect to ν̂SP and λ̂ML with respect to λ̂SP ). Efficiency greater
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than 1 indicates that ML estimate performs better than SP estimate. The MLE are
slightly more efficient in general, but computational simplicity of SP method can be
seen as a big advantage especially in the case of very large datasets. The performance
of ML method is slightly worse when ν = 5 in comparison to ν = 3. We notice that
as correlation coefficient ρ increases, the ML becomes more efficient in comparison to
SP. In particular, we observe that the MLE of ρ is up to 50% more efficient than the
corresponding SP estimate. There is little gain in efficiency for the MLE of ν and λ
compared to the SP estimate of ν.

In Tables 3 and 4 the estimated variance of ρ̂ML, ν̂ML and λ̂ML as well as the
estimated correlation between ρ̂ML and ν̂ML based on asymptotic theory and direct
numerical Hessian evaluation are compared. In the first column of the tables we give
the true asymptotic standard deviations as well as the correlation for the finite sample
size n defined by (19)

σn(ρ0) :=
[Σ(ρ0, ν0)]

1/2
11√

n

σn(ν0) :=
[Σ(ρ0, ν0)]

1/2
22√

n

r(ρ0, ν0) :=
[Σ(ρ0, ν0)]

1/2
12

[Σ(ρ0, ν0)]
1/2
11 [Σ(ρ0, ν0)]

1/2
22

,

where [Σ(ρ0, ν0)]ij denotes the (ij)th element of the matrix Σ(ρ0, ν0) defined in (19).
Note that the finite sample asymptotic approximation to the correlation coefficient of
(ρ̂n, n̂un) is independent of the sample size. The finite sample asymptotic standard
deviation of the tail dependence coefficient λ̂n denoted by σn(λ0), is defined using the
relationship (22).

Furthermore, for each i = 1, . . . , 200 the corresponding standard deviations using
interpolation (I) and numerical Hessian (H) evaluation are defined as

σ
(i)
I,n(ρ̂) :=

[ΣI(ρ̂
(i)
ML, ν̂

(i)
ML)]

1/2
11√

n
, σ

(i)
H,n(ρ̂) :=

[ΣH(ρ̂
(i)
ML, ν̂

(i)
ML)]

1/2
11√

n

σ
(i)
I,n(ν̂) :=

[ΣI(ρ̂
(i)
ML, ν̂

(i)
ML)]

1/2
22√

n
, σ

(i)
H,n(ν̂) :=

[ΣH(ρ̂
(i)
ML, ν̂

(i)
ML)]

1/2
22√

n

as well as the corresponding correlation coefficients

r
(i)
I (ρ̂, ν̂) :=

[ΣI(ρ̂
(i)
ML, ν̂

(i)
ML)]12

[ΣI(ρ̂
(i)
ML, ν̂

(i)
ML)]

1/2
11 [ΣI(ρ̂

(i)
ML, ν̂

(i)
ML)]

1/2
22

,

r
(i)
H (ρ̂, ν̂) :=

[ΣH(ρ̂
(i)
ML, ν̂

(i)
ML)]12

[ΣH(ρ̂
(i)
ML, ν̂

(i)
ML)]

1/2
11 [ΣH(ρ̂

(i)
ML, ν̂

(i)
ML)]

1/2
22
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are obtained from numerical interpolation of the theoretical asymptotic covariance
matrix (ΣI) and direct Hessian evaluation (ΣH). Analogously, σ

(i)
I,n(λ̂) and σ

(i)
H,n(λ̂) are

defined using the relationship (22). The comparison of the two methods is performed
using the true finite sample asymptotic value, its estimate and estimated standard
errors for both methods. We notice that the numerical interpolation gives slightly more
stable estimates since its estimated standard error is uniformly below the corresponding
estimated standard error of the Hessian method. However, both evaluation methods
give nearly unbiased estimates over all simulation setups. Thus the Hessian evaluation
based on numerical differentiation is as precise as the numerical interpolation of the
asymptotic covariance matrix.

6 Applications

In this section we illustrate the performance of our estimation methods for two financial
datasets which display heavy tail dependence. We focus especially on interval estimates
for the tail dependence coefficient λ. For the SP estimation method bootstrapping (see
for example Efron and Tibshirani (1993)) is required to evaluate the precision of the
estimates and constructing confidence intervals.

In particular, we are interested in comparing the performance of six different vari-
ance estimation methods for ρ, ν and λ estimates, respectively. The first two methods
are based on the asymptotic theory for MLEs, as before one uses interpolation of the
Fisher information (MLE.TH) and the other one uses the numerical evaluation of the
Hessian matrix (MLE.HESS). The next two methods use parametric and nonparamet-
ric bootstrap based on ML estimation. They are denoted by MLE.PB and MLE.NPB,
respectively. The final two methods correspond also to parametric and nonparametric
bootstrap, but this time based on the SP estimation method for (ρ, ν). We abreviate
these final methods by SP.PB and SP.NPB, respectively. We consider the MLE.TH as
benchmark estimation method ignoring the estimation error of the parameters. The
performance of the remaining five methods are evaluated against this benchmark. Since
ρ and ν are jointly estimated we also derive estimated correlations between ρ and ν
estimates for all six methods. Finally, we also present 95% confidence intervals for the
tail dependence coefficient λ for all six estimation methods. For the bootstrap methods
we use BCA confidence intervals (see Efron and Tibshirani (1993)).

6.1 Euro swap rates

The data contains three time-series of daily Euro swap rates for 2, 3 and 10 year
maturity over a time period from December 7, 1988 to May, 21, 2001. We investigate
the dependence between the swap rates for 2 and 3, and 2 and 10 years maturity,
respectively. Since the daily observations exhibit high serial correlation, we fit an
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ARMA(1, 1)-GARCH(1, 1) model and use the standardized residuals for our analysis.
The standardized residuals are transformed using their empirical distribution function
to uniform marginals and a bivariate t-copula model is fitted to the transformed data.
When the copula is fitted to the transformed swap rates for 2 year and 3 year maturity
we obtain ρ̂SP = 0.938, ν̂SP = 2.827, λ̂SP = 0.745, ρ̂MLE = 0.937, ν̂MLE = 2.758 and
λ̂MLE = 0.745, while the coresponding estimates for the transformed swap rates for 2
and 10 years maturity swap rates are ρ̂SP = 0.785, ν̂SP = 5.162, λ̂SP = 0.421, ρ̂MLE =
0.780, ν̂MLE = 5.054 and λ̂MLE = 0.420.

We see that SP and ML estimates are close as expected from the simulation study.
Further we see as expected stronger correlation and high tail dependence between
swap rates with close maturities. To evaluate the precision of the different estimation
methods we estimate standard errors of ρ, ν and λ estimates as well as the correlation
between ρ and ν estimates for the different estimation methods. The results for the 2
and 3 year maturity swap rates are presented in Table 5, while the ones for 2 and 10
years are presented in Table 6. For the bootstrap methods we used 500 bootstrap repli-
cations. Comparing MLE.HESS to the benchmark MLE.TH we see that MLE.HESS
performs well with regard to the evaluation of precision of ν̂ML and ρ̂ML for both swap
rate datasets, while the correlation between ν̂ML and ρ̂ML is underestimated implying
also slight underestimation of the variability of λ̂ML. The bootstrap methods MLE.PB
and MLE.NPB perform reasonable compared to the benchmark with regard to vari-
ability of ν̂ML and ρ̂ML, but less so with regard to r̂(ρ̂ML, ν̂ML) and σ̂(λ̂ML). Especially,
MLE.NPB underestimates the correlation between ν̂ML and ρ̂ML. For the bootstrap
methods based on SP estimation of the variability of ρ̂SP and ν̂SP is larger than the
corresponding one for ρ̂ML and ν̂ML, which is indicative of the higher efficiency of the
ML over the SP estimates. The estimated correlation between ρ̂SP and ν̂SP are quite
far away from the corresponding benchmark values. Overall the nonparametric boot-
strap methods are quite variable with regard to assess the correlation between ρ and
ν estimates.

Next we present 95% confidence intervals for ρ, ν and λ for all estimation methods.
The individual interval estimate of ρ and ν is influenced by the bias of the estimate and
the estimated standard error for the estimate. For the confidence interval of λ the cor-
relation between ρ and ν has an additional influence. For ρ, the methods MLE.HESS,
MLE.PB and MLE.NPB give similar confidence intervals as the benchmark MLE.TH
method for both swap rate datasets. For ν only MLE.HESS is close to the benchmark
for both swap rate datasets. For λ the comparisons are not that simple. This is to
be expected since the estimation methods are quite variable in their assessment of the
correlation between the ρ and ν estimates. Overall MLE.HESS provides good agree-
ment with benchmark intervals for ρ and ν, while the methods based on SP estimates
are less satisfactory.
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6.2 Hong Kong spot and futures prices

In this section we analyze the daily stock returns from the spot and futures market
of Hong Kong. The spot price indices (Hang Seng Price Index of Hong Kong) and
the corresponding futures price indices (Hang Seng Futures Exchange Index of Hong
Kong) are collected from January 1, 1998 to June, 10, 2005. The procedure described
in Section 6.1 is applied to the daily log-returns. Table 7 contains estimated standard
errors for ρ, ν and λ estimates as well as the estimated correlation between ρ and ν
estimates for the different estimation methods. The conclusion from this analysis is
similar to that obtained for the swap rates. Namely, nonparametric bootstrap when
combined with SP estimation has poor performance. The SP estimation results in wider
individual interval estimates for ρ and ν, while ML estimation combined with both
parametric and nonparametric bootstrapping results in confidence intervals close to
those one can expect from the theory. The confidence intervals for the tail dependence
coefficient obtained from nonparametric bootstrap using MLE are the closest to those
obtained using asymptotic result in (18) with the exact Fisher information matrix
interpolated at the ML estimate. Notice that this phenomenon is clearly visible from
Table 7.

7 Summary and conclusions

This paper considers ML and the popular semiparametric approach to estimate bivari-
ate t-copula parameters and their asymptotic variances. We use a simulation study to
illustrate that the MLE is slightly more efficient than semiparametric estimate based on
Kendal’s τ and its relationship to correlation coefficient ρ in the t-copula framework.
We theoretically derive the Fisher information matrix and estimate the asymptotic
variance of ρ̂ML and ν̂ML using direct numerical integration or Hessian evaluation using
numerical differentiation. The procedure based on integration is shown to be slightly
more stable. We further apply both approaches to two financial datasets where in
addition to ρ and ν the tail-dependence coefficient λ is also estimated. We construct
individual confidence intervals for the three parameters of interest using our asymp-
totic results, parametric and non-parametric bootstrap. It is shown that using the
numerical evaluation of the Hessian matrix to assess the variability of the MLE for λ
is preferable over bootstrapping the corresponding semiparametric estimate of λ.

Suggestions for further research on issues addressed in this paper are varied. First,
extensions to higher dimensions are to be examined. Secondly, the properties of esti-
mators in the pair-copula construction case (see Aas et al. (2007)) are to be established
and compared to the results obtained in a Bayesian framework (see Min and Czado
(2008) and Dalla Valle (2007)). Moreover, models with parametric rather than uniform
margins are to be considered. Here we plan to investigate theoretically properties of
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Figure 4: 95% individual confidence intervals for ρ, ν and λ (ρ̂SP = 0.938, ν̂SP =
2.827, λ̂SP = 0.745, ρ̂MLE = 0.937, ν̂MLE = 2.758, λ̂MLE = 0.745) for swap rates with 2
and 3 years maturity.
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estimators obtained from simultaneous estimation of both marginal and copula param-
eters. Finally, applications to various multivariate datasets are to be discussed.

References

Aas, K., C. Czado, A. Frigessi, and H. Bakken (2007). Pair-copula construc-
tions of multiple dependence. To appear in Insurance Math. Econom. DOI
10.1016/j.insmatheco.2007.02.001 .

Abramowitz, M. and I. Stegun (Eds.) (1992). Handbook of mathematical functions
with formulas, graphs, and mathematical tables. New York: Dover Publications Inc.
Reprint of the 1972 edition.

Byrd, R. H., P. Lu, J. Nocedal, and C. Y. Zhu (1995). A limited memory algorithm
for bound constrained optimization. SIAM J. Sci. Comput. 16 (5), 1190–1208.

Dalla Valle, L. (2007). Bayesian copulae distributions, with application to operational
risk management. To appear in Methodol. Comput. Appl. Probab..

Demarta, S. and A. J. McNeil (2005). The t-copula and related copulas. Internat.
Statist. Rev. 73 (1), 111–129.

Efron, B. and R. J. Tibshirani (1993). An introduction to the bootstrap, Volume 57 of
Monographs on Statistics and Applied Probability. New York: Chapman and Hall.

Embrechts, P., F. Lindskog, and A. J. McNeil (2003). Modelling dependence with cop-
ulas and applications to risk management. In Handbook of heavy tailed distributions
in finance. Amsterdam: Elsevier/North-Holland.

Embrechts, P., A. J. McNeil, and D. Straumann (2002). Correlation and dependence
in risk management: properties and pitfalls. In Risk management: value at risk and
beyond (Cambridge, 1998), pp. 176–223. Cambridge: Cambridge Univ. Press.

Gradshteyn, I. S. and I. M. Ryzhik (1980). Table of integrals, series, and products.
New York: Academic Press [Harcourt Brace Jovanovich Publishers].

Joe, H. (1997). Multivariate models and dependence concepts, Volume 73 of Monographs
on Statistics and Applied Probability. London: Chapman & Hall.

Kotz, S. and S. Nadarajah (2004). Multivariate t distributions and their applications.
Cambridge: Cambridge University Press.

Kruskal, W. H. (1958). Ordinal measures of association. J. Amer. Statist. Assoc. 53,
814–861.

20



Lehmann, E. L. and G. Casella (1998). Theory of point estimation (Second ed.).
Springer Texts in Statistics. New York: Springer-Verlag.

Lindskog, F. (2000). Modelling dependence with copulas. RiskLab Report, ETH Zürich.
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n ρ0 σn(ρ0) σI,n(ρ̂) s(σI,n(ρ̂)) σH,n(ρ̂) s(σH,n(ρ̂))
0 5.292 5.254 0.006 5.263 0.014

500 0.5 3.899 3.896 0.019 3.905 0.021
0.7 2.613 2.631 0.018 2.626 0.019

0 3.055 3.046 0.002 3.051 0.004
1500 0.5 2.251 2.257 0.006 2.259 0.007

0.7 1.509 1.519 0.006 1.516 0.006
0 1.764 1.761 0.001 1.763 0.001

4500 0.5 1.300 1.299 0.002 1.300 0.002
0.7 0.871 0.872 0.002 0.870 0.002

n ρ0 σn(ν0) σI,n(ν̂) s(σI,n(ν̂)) σH,n(ν̂) s(σH,n(ν̂))
0 0.521 0.587 0.015 0.586 0.015

500 0.5 0.555 0.616 0.017 0.625 0.019
0.7 0.585 0.652 0.019 0.663 0.024

0 0.301 0.313 0.004 0.310 0.004
1500 0.5 0.320 0.333 0.005 0.332 0.005

0.7 0.338 0.354 0.005 0.352 0.006
0 0.174 0.178 0.001 0.177 0.001

4500 0.5 0.185 0.190 0.001 0.188 0.002
0.7 0.195 0.200 0.002 0.199 0.002

n ρ0 r(ρ0, ν0) rI(ρ̂, ν̂) s(rI) rH(ρ̂, ν̂) s(rH)
0 0.000 −0.002 0.003 −0.006 0.005

500 0.5 0.315 0.306 0.002 0.309 0.004
0.7 0.419 0.410 0.002 0.413 0.004

0 0.000 −0.002 0.001 −0.003 0.003
1500 0.5 0.315 0.311 0.001 0.311 0.003

0.7 0.419 0.416 0.001 0.415 0.002
0 0.000 −0.000 0.001 0.001 0.001

4500 0.5 0.315 0.313 0.001 0.315 0.001
0.7 0.419 0.418 0.001 0.419 0.001

n ρ0 σn(λ0) σI,n(λ̂) s(σI,n(λ̂)) σH,n(λ̂) s(σH,n(λ̂))
0 0.016 0.016 0.0022 0.016 0.0024

500 0.5 0.033 0.033 0.0032 0.033 0.0043
0.7 0.036 0.037 0.0046 0.037 0.0064

0 0.009 0.009 0.0007 0.009 0.0008
1500 0.5 0.019 0.019 0.0011 0.019 0.0014

0.7 0.021 0.021 0.0016 0.021 0.0019
0 0.005 0.005 0.0002 0.005 0.0002

4500 0.5 0.011 0.011 0.0003 0.011 0.0004
0.7 0.012 0.012 0.0005 0.012 0.0005

Table 3: True finite sample asymptotic variances and correlation as well as their es-
timates and their estimated standard errors based on interpolation (I) and numerical
Hessian evaluation (H) for ν = 3 and ρ = 0, 0.5, 0.7, respectively.
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n ρ0 σn(ρ0) σI,n(ρ̂) s(σI,n(ρ̂)) σH,n(ρ̂) s(σH,n(ρ̂))

0 5.073 5.049 0.007 5.064 0.014
500 0.5 3.618 3.634 0.019 3.645 0.022

0.7 2.353 2.375 0.016 2.377 0.018
0 2.929 2.920 0.003 2.926 0.005

1500 0.5 2.089 2.095 0.006 2.100 0.007
0.7 1.359 1.368 0.006 1.368 0.006

0 1.691 1.688 0.001 1.690 0.002
4500 0.5 1.206 1.207 0.002 1.208 0.002

0.7 0.784 0.787 0.002 0.786 0.002

n ρ0 σn(ν0) σI,n(ν̂) s(σI,n(ν̂)) σH,n(ν̂) s(σH,n(ν̂))
0 1.354 1.574 0.065 1.519 0.055

500 0.5 1.361 1.524 0.052 1.566 0.055
0.7 1.373 1.481 0.043 1.623 0.058

0 0.782 0.840 0.022 0.833 0.020
1500 0.5 0.786 0.839 0.020 0.856 0.022

0.7 0.793 0.824 0.016 0.864 0.022
0 0.451 0.463 0.006 0.464 0.006

4500 0.5 0.454 0.465 0.006 0.469 0.006
0.7 0.458 0.466 0.005 0.472 0.006

n ρ0 r(ρ0, ν0) rI(ρ̂, ν̂) s(rI) rH(ρ̂, ν̂) s(rH)
0 0.000 −0.001 0.002 −0.006 0.005

500 0.5 0.250 0.246 0.002 0.250 0.004
0.7 0.324 0.311 0.005 0.324 0.005

0 0.000 −0.002 0.001 −0.002 0.003
1500 0.5 0.250 0.246 0.001 0.251 0.003

0.7 0.324 0.316 0.003 0.323 0.003
0 0.000 −0.000 0.001 −0.001 0.002

4500 0.5 0.250 0.249 0.001 0.252 0.002
0.7 0.324 0.323 0.002 0.325 0.002

n ρ0 σn(λ0) σI,n(λ̂) s(σI,n(λ̂)) σH,n(λ̂) s(σH,n(λ̂))
0 0.013 0.013 0.0029 0.013 0.0031

500 0.5 0.041 0.041 0.0053 0.042 0.0067
0.7 0.050 0.049 0.0066 0.053 0.0121

0 0.007 0.007 0.0010 0.007 0.0011
1500 0.5 0.024 0.024 0.0021 0.024 0.0027

0.7 0.029 0.029 0.0025 0.030 0.0045
0 0.004 0.004 0.0004 0.004 0.0004

4500 0.5 0.014 0.014 0.0007 0.014 0.0008
0.7 0.017 0.017 0.0010 0.017 0.0013

Table 4: True finite sample asymptotic variances and correlation as well as their es-
timates and their estimated standard errors based on interpolation (I) and numerical
Hessian evaluation (H) for ν = 5 and ρ = 0, 0.5, 0.7, respectively.

25



Method σ̂(ρ̂) σ̂(ν̂) r̂(ρ̂, ν̂) σ̂(λ̂)
SP.NPB 0.0030 0.2628 0.4847 0.0084

SP.PB 0.0029 0.2355 0.6259 0.0068
MLE.NPB 0.0025 0.2412 0.3696 0.0084

MLE.PB 0.0024 0.2241 0.5795 0.0067
MLE.HESS 0.0025 0.2392 0.5063 0.0082

MLE.TH 0.0026 0.2282 0.5530 0.0092

Table 5: Estimated standard errors for ρ, ν and λ estimates as well as estimated cor-
relation between ρ and ν estimates using different estimation methods for swap rates
of 2 and 3 years maturity.

Method σ̂(ρ̂) σ̂(ν̂) r̂(ρ̂, ν̂) σ̂(λ̂)
SP.NPB 0.0082 0.6014 0.2120 0.0235

SP.PB 0.0082 0.5998 0.4020 0.0221
MLE.NPB 0.0071 0.5743 0.0645 0.0238

MLE.PB 0.0068 0.5970 0.3780 0.0222
MLE.HESS 0.0069 0.5481 0.2582 0.0187

MLE.TH 0.0071 0.5702 0.3503 0.0206

Table 6: Estimated standard errors for ρ, ν and λ estimates as well as estimated cor-
relation between ρ and ν estimates using different estimation methods for swap rates
of 2 and 10 years maturity.

Method σ̂(ρ̂) σ̂(ν̂) r̂(ρ̂, ν̂) σ̂(λ̂)
SP.NPB 0.0031 0.7034 0.5396 0.0151

SP.PB 0.0028 0.6585 0.5237 0.0144
MLE.NPB 0.0022 0.6799 0.4451 0.0155

MLE.PB 0.0022 0.6424 0.4320 0.0150
MLE.HESS 0.0021 0.5452 0.4231 0.0130

MLE.TH 0.0021 0.5847 0.4323 0.0164

Table 7: Estimated standard errors for ρ, ν and λ estimates as well as estimated cor-
relation between ρ and ν estimates using different estimation methods for Hong Kong
spot-future returns.
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