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Abstract

The discrete time ARCH/GARCH model of Engle and Bollarslev has been enor-
mously influential and successful in the modelling of financial data. Recently, Kliippelberg,
Lindner, and Maller (2004) introduced the so-called “COGARCH” model as a continuous-
time analogue to the GARCH model. Many aspects of the COGARCH have been investi-
gated, including various of its theoretical properties, its relations to other continuous-time
models, and the estimation of the parameters in it. We review some of these results in the
present paper, and go on to apply the COGARCH to 5-minute data on the S&P500 in-
dex, in order to illustrate its ability to analyse stochastic volatility in very high-frequency,
irregularly spaced, financial data.

Keywords: COGARCH; Continuous-time Models; Estimation; High-Frequency Data; Max-
imum Likelihood; Stochastic Volatility;

1 Introduction

1.1 Modelling Market Volatility and the Risk-Return Tradeoff

Understanding the volatility of a market is critical to our understanding of Finance. The re-
turns of an equity market as a whole — where the market’s returns may be proxied, for example,
by the returns on an index such as the S&P500 index — are frequently modelled as a function
of investors’ expectations of the market’s volatility (see, for example, Merton 1973, 1980;
French, Schwert, and Stambaugh, 1987; Abel, 1988; Barsky, 1989). Ang, Hodrick, Xing, and
Zhang (2006) present evidence that the volatility of the market is a candidate for inclusion
as an additional factor augmenting standard multi-factor models of the cross-section of stock
returns (Fama and French, 1993; Carhart, 1997). In arguing that total risk is priced, Ang et
al. (2006) present a considerable challenge to paradigms which argue that only diversifiable,
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or systematic, risk is required to capture the cross-section of expected equity returns (Sharpe,
1964).

Nevertheless, while the theorized relationship of the risk of a market to its return has attracted
considerable attention, empirical support for the relationship has been mixed and disappoint-
ing. To quantify such a relationship, the market’s volatility must be estimated, in some way,
from the market’s returns. Analyses such as those of Ang et al. and Durand, Lim and Zumwalt
(2007) take an indirect route by using a proxy for expected volatility — the Chicago Board of
Options Exchange Volatility Index (the VIX) — which is exogenous to the market. Although
the use of a proxy is one way of dealing with the issue, still the question of estimating risk
directly from returns is appealing, and conditional volatility models represent a natural choice
with which to model it.>

Hsieh (1991) represents an early attempt to model the S&P500 using high-frequency data
(Hsieh uses 15 minute rather than 5 minute observation intervals), and finds support for an
EGARCH (4,4) model. Later, Anderson, Benzoni and Lund (2002), and Eraker, Johannes and
Polson (2003), used models admitting stochastic volatility together with jumps both in returns
and in volatility, for the S&P500. Lundblad (2007) estimates daily and monthly volatility of
returns on the US market using data stretching from the early 1800s to the 1990s (but the
S&P500 index was not available over such a long period). While he finds some evidence of a
relationship between volatility and return, he is agnostic as to which of the models he uses —
GARCH (1,1), TARCH (1,1), QGARCH (1,1) or EGARCH (1,1) — best fits the data.

In the present paper we will also model the volatility of the US market using the S&P500 index
to represent the returns of the market. The S&P500 index is perhaps the most widely followed
measure of the US equities market, being made up of 500 of the largest stocks in the market
(representing around three quarters of all US equities).® We are not concerned, however, with
running a “horse race” to find a best model. Rather, we demonstrate the applicability of a
certain continuous-time GARCH model (the “COGARCH” model of Kliippelberg, Lindner
and Maller (2004)) for modelling the time-varying volatility of the S&P500. Maller, Miiller
and Szimayer (2008) have recently shown how to apply this kind of methodology to describe
the volatility of the Australian stock market, using it to analyse ten years of daily data, mostly
equally spaced in time, for the ASX200 index. This analysis does not, however, demonstrate
the full potential applicability of the COGARCH. Rather than using daily data, the analy-
sis in the present paper will use very high-frequency observations — observations taken at
five-minute intervals — to better approximate the underlying continuous-time framework the
methodology is designed to capture. The use of COGARCH enables the analysis of irregularly
spaced data without recourse to approximations involving missing-values estimation, and, in
high-frequency data such as that studied in this chapter, irregular spacing — due to weekends,
holidays and breaks between market closing and opening times — is a dominant feature of the
data.

SWe note that such models have recently attracted some criticism (Ghysels, Santa-Clara and Valkanov, 2005;
Durham, 2007).
See www.indices.standardandpoors.com for further information on the index.



1.2 ARCH/GARCH and COGARCH Modelling

The ARCH/GARCH model paradigm introduced by Engle (1995) [15] and Bollerslev et al.
(1995) [7] has been enormously influential and successful in capturing some of the most im-
portant empirical features of financial data, and is, therefore, widely used in finance research
and applications. Empirical studies commonly show that volatility changes randomly in time,
has distributions with heavy or semi-heavy tails, and clusters on high levels. These stylized
features are well modelled by the GARCH family as has been shown in many studies. For a
recent discussion concerning the GARCH(1,1) process, see Mikosch and Stérica (2000) [28].

Up till quite recently, stochastic volatility models have been investigated mostly in discrete
time, but with modern easy access to voluminous quantities of very high-frequency data, a
demand for continuous-time models which allow, for instance, for a more natural analysis
of possibly irregularly spaced data, has arisen. A first attempt to create a continuous-time
GARCH model dates back to Nelson (1990) [31], who, by taking a limit of a discrete time
GARCH process, derived a bivariate diffusion driven by two independent Brownian motions.
By contrast, the discrete time GARCH model incorporates only one source of uncertainty.
Consequently, Nelson’s continuous time limit process does not possess the feedback mech-
anism whereby a large innovation in the mean process produces a burst of higher volatility,
which is a distinctive feature of the discrete time GARCH process. Moreover, the diffusion
limit no longer has the heavy tailed distribution of returns needed for realistic modelling of
returns in high-frequency financial data.

To overcome these problems, Kliippelberg, Lindner and Maller (2004) [25] suggested an ex-
tension of the GARCH concept to continuous-time processes. Their COGARCH (continuous-
time GARCH) model is based on a single background driving (continuous-time) Lévy process,
which preserves the essential features of discrete time GARCH processes, and is amenable to
further analysis, possessing useful Markovian and stationarity properties.

The aim of this paper is to illustrate the advantages of using the continuous time COGARCH
model for the analysis of very high frequency, unequally spaced, financial data. We proceed
by summarising, in the following section, the currently available literature on the COGARCH,
taking a detailed look at the model definition, and also outlining briefly the pseudo-maximum-
likelihood method we will use to fit the model to data. Section 3 gives an illustrative data anal-
ysis, applying the COGARCH model to high-frequency data from the S&P500 stock market
index, over the years 1998 to 2007. The model proves to be remarkably stable and informa-
tive. We discuss some extensions of the model, and other issues, in Section 4, and conclude
with Section 5.

2 COGARCH: A Summary of the Current Literature

Since its introduction in 2004, many aspects of the COGARCH model have been studied. One
field of research covered Markovian and stationarity properties, as well as extremal behaviour



of the model, and its relations to other models. Model extensions, such as a COGARCH(p,q),
and a multivariate COGARCH model, have been developed. Regarding data analysis, so far a
couple of different approaches have been suggested for estimation of parameters.

In this section we summarize the literature on these topics, and briefly sketch the ideas.
Throughout, by “COGARCH” we will usually mean the COGARCH(1,1) model, as intro-
duced in Section 2.1, because this is the most widely applied version. Since there exists, anal-
ogously to the GARCH(1,1) and GARCH(p,q) models, a generalization to COGARCH(p,q),
we will always point this out by adding the complexity tupel (p,q), when referring to this kind
of model extension.

2.1 The COGARCH Model and its Theoretical Properties

We first recall the definition of the COGARCH process as introduced in Kliippelberg, Lindner,
and Maller (2004) [25]. On a filtered probability space (§2, F, P, (F:):>0) satisfying the “usual
hypothesis” (see Protter (2005) [32], p. 3), one is given a background driving Lévy process
L = (L(t))t>0. See Applebaum (2004) [4], Bertoin (1996) [6], and Sato (1999) [33] for
detailed results concerning Lévy processes. Throughout it is assumed that EL(1) = 0 and
EL*(1) = 1.

Given parameters (3,7, ¢), with § > 0,7 > 0, ¢ > 0, and a square integrable random variable
(rv) (0), independent of L, the COGARCH variance process o? = (02(t));>o is defined as
the almost surely unique solution of the stochastic differential equation

do?(t) = Bdt — no?(t—)dt + @o*(t—)d[L, L](t), t > 0, 2.1)

where [L, L] is the bracket process (quadratic variation) of L (Protter (2005) [32], p. 66). Then
one defines the integrated COGARCH process G = (G(t)):>o in terms of L and o as

Glt) /0 Co(s0)dL(s), 30, 2.2)

As has been shown in Kliippelberg et. al. (2004) [25], Corollary 3.1, the bivariate process
(o(t), G(t))s>0 is Markovian. Moreover, under a certain integrability condition, and for the
right choice of 02(0), the process o2(t) is strictly stationary (Kliippelberg et. al. 2004 [25],
Thm. 3.2). As a consequence, GG has stationary increments. Furthermore, [25] also provides
explicit expressions for the moments and autocorrelation functions of the variance process o>
and for the increments G (t) := G(t + r) — G(t) of G. These can be used to estimate the
COGARCH parameters by the method of moments, cf. Section 2.3.

Fasen, Kliippelberg, and Lindner (2005) [17] show that the COGARCH model, in general,
exhibits regularly varying (heavy) tails, volatility jumps upwards, and clusters on high lev-
els. More precisely, it can be shown that both the tail of the distribution of the stationary
volatility and the tail of the distribution of G(¢) are Pareto-like under weak assumptions (cf.
Kliippelberg, Lindner, and Maller (2006) [26]). For more details on the theoretical properties
of G and o2, we refer to [25], [17] and [26].



2.2 The Relation between GARCH and COGARCH

The discrete time GARCH(1,1) model is specified by the mean and variance equations

Y, =018
and
2 _ 2 2 2
o; =a+bo;_gi  +co;_q,
forv=1,2,...,n, with 03 given, and a, b, ¢, as parameters. The ¢; are i.i.d. random variables

with mean 0 and unit variance. By writing a discretised version of (2.2) in the form
Gi— Gio1 =015,

where we replace the increment dL(t) with one of an i.i.d. sequence ¢4, . . ., ,,, and, similarly,
a discretised version of (2.1) in the form

02 = BAt; + po? 22 + (1 — n)o At

we can see a direct analogy between the discrete and continuous time models. In fact, taking
At; = 1 in the continuous time equations (corresponding to equally spaced data), we see that
the models differ only by a non-essential alteration in parameterisation.

More generally, in the continuous time model, we do not need to assume equally spaced data.
We can proceed as follows. Starting with a finite interval [0, 7], T > 0, take deterministic
sequences (N, ),>1 with lim,, ., N,, = co and 0 = to(n) < t1(n) < ... < ty,(n) =T, and,
foreachn = 1,2, ..., divide [0, 7] into N,, subintervals of length At;(n) := t;(n) — t;_1(n),
fori = 1,2,..., N,. Define, for each n = 1,2, ..., a discrete time process (G, )i=1.. N,
satisfying

Gin=Gi_in+0is1nV/AL(N)Eiy, i =1,2,..., Ny, (2.3)

where Gy, = G(0) = 0, and the variance azn follows the recursion

07, = BAL(n) + (14 eAti(n)el,) e M2 | i =1,2,..., N,. (2.4)

1—1n

Here the innovations (&;,);—1,..n,, 7 = 1,2, ..., are constructed using a “first jump” approx-
imation to the Lévy process developed by Szimayer and Maller (2007) [37], which divides a
compact interval into an increasing number of subintervals and for each subinterval takes the
first jump exceeding a certain threshold. Finally, embed the discrete time processes G ,, and
o2, into continuous-time versions G, and o2 defined by

Gn(t) =Gy, and o2(t) :=07,, whent€ [t;_1(n),t;(n)), 0<t<T, (2.5)

n ,Mm?

with G,,(0) = 0. The processes GG,, and o,, are in D[0, T, the space of cadlag real-valued
stochastic processes on [0, 7).

Assume At(n) := max;—__n, At;(n) — 0asn — oco. As one main result of their pa-
per, Maller et. al. (2008) [29] showed then that the discretised, piecewise constant processes
(Gp,02),>1 defined by (2.5) converge in distribution as n — oo to the continuous time pro-
cesses (G, 0?) defined by (2.1) and (2.2). Further, this result was used by Maller et. al. (2008)
[29] to develop a pseudo maximum likelihood estimation procedure for the parameters in the
COGARCH. We sketch this method in Subsection 2.3.



2.3 Estimation Procedures

Haug et. al. (2007) [22] suggested moment estimators for the parameters of the COGARCH
process based on equally spaced observations. Using the fact that the increments of the CO-
GARCH process are strongly mixing with exponential rate, they showed that the resulting
estimators are consistent and asymptotically normal. The paper by Miiller (2007) [30] shows
that it is also possible to use Bayesian methods to estimate the COGARCH model. At the
time of writing, this method is, however, restricted to the case where COGARCH is driven by
a compound Poisson process. More generally, Maller et. al. (2008) [29] describe a straightfor-
ward and intuitive pseudo maximum likelihood (PML) method based on the GARCH approxi-
mation to COGARCH. This estimation procedure is well adapted for the analysis of unequally
spaced data, as we will illustrate in the next section. By applying it, we can easily account also
for a transformation to a business time rather than calendar time scale. The general strategy is
as follows.

Suppose we are given observations G(t;), 0 =ty < t; < ... < ty = T, on the integrated
COGARCH as defined and parameterised in (2.1) and (2.2), assumed to be in its stationary
regime. The {¢;} are assumed fixed (non-random) time points; set At; := ¢; — ¢; 1. Let
Y, = G(t;)) — G(ti-1), i = 1,..., N, denote the observed returns. We wish to estimate the
parameters (3,7, ¢). From (2.2) we can write

vi- | o(s-)dL(s),

and, because o is Markovian (Kliippelberg et. al. (2004) [25], Thm. 3.2), Y; is condition-
ally independent of Y; 1,Y; o, ..., given the natural filtration of the Lévy process L, with
conditional expectation 0, and a conditional variance given by Eq. (3.2) of [29]. To ensure
stationarity, we take Eo2(0) = 3/(n — ), with n > ¢.

We can then apply the PML method, as in [29], assuming at first that the Y; are conditionally
N(0, p?), and using recursive conditioning and a GARCH-type recursion for the variance
process to write a pseudo-log-likelihood function for Y7, Y5, ..., Yy. Taking as starting value
for 0%(0) the stationary value 3/(n — ¢), one can maximise the function £y in Eq. (3.3) of
[29] to get PMLE:s of (3,7, ¢).

3 Data Analysis

In this section we illustrate how to apply the COGARCH model to some market data. After
a brief description of the raw data on the S&P500 index, we discuss data cleaning and pre-
processing. Then we report on results of fitting the COGARCH model, using the PML method
described in Section 2.3, after rescaling calendar time to a business time scale.



3.1 Description of Raw Data

Intra-day data on the value of the S&P500 index was obtained from the TAQTIC database
maintained by the Securities Industry Research Centre of Asia-Pacific (SIRCA). Based on
this tick-by-tick index data, we compute and analyse 5-minutes log-returns from the index,
separately for the years 1998 to 2007. Table 3.1 reports, for each year, the number of trading
days and the total number of observations, i.e. the number of log-returns. On average, we have
around 19169 log-returns per year. However, even for years with the same number of trading
days, the values can differ quite significantly. The first reason is that on a couple of trading
days each year the NYSE opens later or closes earlier for annual memorials and holidays. For
example, in Table 3.1 Christmas Eve, as long as it does not coincide with Saturday or Sunday,
is counted as a full trading day, although the NYSE closes at 1 pm on December 24. The
second reason for irregularities are special events. Here we just note, as an example, one of
many which occurred within our time frame since 1998: on September 11, 2002, the NYSE
did not open until 11 am due to the memorial events commemorating the one-year anniversary
of the attack on the World Trade Center. However, in Table 3.1 this day is again counted
as a full trading day. For a complete list of trading hours exceptions at NYSE since 1885
see www.nyse.com/pdfs/closings.pdf. The third reason is that each year a few observations
are missing, usually since some data is obviously erroneous, and has to be removed from
the data set. However, taking advantage of our continuous-time approach, we will not use
interpolation to fill in the missing values, but instead take the time difference to the previous
available observation into account.

3.2 Data Cleaning: Local Trends and Local Volatility Weights

Before applying the COGARCH model to the data, one has to think carefully about which
features of the data are to be captured by the COGARCH, and which are not. The COGARCH
is mainly designed to describe the behaviour of the volatility in the data. Moreover, since
we assume the COGARCH parameters (3, 77, and ¢ to be constant over time, we must check
first whether the data indeed shows a stationary volatility pattern over the whole time frame.
In our data, this is definitely not the case. See, for instance, the 2002 returns (c.f. Figure 1,
first and second row). Therefore we first pre-process the data by estimating local trends and

year trading days observations year trading days observations
1998 245 18934 2003 251 19260
1999 250 19359 2004 249 19373
2000 251 19311 2005 252 19617
2001 245 18468 2006 251 19460
2002 251 19028 2007 251 19458

Table 1: Number of trading days at NYSE and number of log-returns based on 5-minute index
data from the S&P500, for years 1998 to 2007.



local volatility weights. This procedure is necessary since we have around 20000 observations
per year, so that we cannot expect the COGARCH parameters to be constant over the whole
time frame. On the other hand, we must be careful not to destroy the volatility structure
which we want to describe by the COGARCH model. Therefore we aim at a standardization
procedure which uses trends and volatility weights over longer periods such as one month,
which corresponds to around 1600 observations in our setup.

In the following we denote the observed log-returns by y;, ¢ = 1,...,T, whereas D denotes
the number of trading days in the year under consideration (e.g., in 2002 we have 7' = 19028
and D = 251). Next we have to introduce a few functions, to be able to cover all aspects of
the data within our subsequent formulas. First, letd : {1,...,7} — {1,..., D}, i — d(i),
denote a function which returns the trading day for observation i, A : {1,...,D} — N,
d — A(d), denote a function which returns the number of available observations on trading
day d,and N : {1,...,D} — N, d — N(d), a function which returns the number of missing
observations on trading day d. On a regular trading day we usually have A(d) = 78 and

index in 2002 index in 2005
= W -
o o
8 8
0 5000 10000 15000 0 5000 10000 15000 20000
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Figure 1: 5 minutely observations from S&P500 index data: log-returns, local trends, local
volatility weights, and detrended and reweighted log-returns for years 2002 and 2005.



N(d) = 0, since we take 5 minute data between 9:30 am and 4:00 pm. Note that /N (-) can also
be 0, when the NYSE opened later or closed earlier, since N(-) counts only missing values
when trading really took place at that time. Although only very few observations are missing
overall (less than 0.5%), we introduce, to act very precisely, the function 7 : {1,..., T} —
N, i +— I(i), which returns the number of 5-minute intervals elapsed before observation i.
Usually /(i) = 1, and if, e.g. one observation is missing, /(i) = 2, and so on. Later, we will
also need the more precise functions I : {1,..., T} — N, i — [(i), for k € {9,10,...,15},
which specify how many 5-minute intervals durlng trading hour £ elapsed before observation
1. E.g., if we have an observation at 9:55 am and the value at 10:00 am was deleted, so that the
next observation ¢ is from 10:05 am, we have (i) = 2, Iy(i) = I10(i) = 1, and I;(i) = 0 for
kE=11,...,15.

We now assume that the log-returns follow the model
Y :md(z) "’Ud(i)l'i, 1= 1,...,T,

where mg(;) represents a local trend, vq(;y a local volatility weight, and the x; are detrended and
locally reweighted log-returns. This approach takes irregularities of the stock prices and index
data into account, which cannot be captured by the COGARCH model. Both local trends and
volatility weights are assumed to be constant over trading days, and are estimated as follows.
Using a fixed M € N, the local trends mg(;) are estimated as moving averages over 2M + 1
trading days:

M) = [ZﬁﬁZEﬁM(A(d) } Z > oy, M<d(i)<D-M.

d=d(i)—M {jld(j)=d}

For the cases d(i) < M and d(i) > D — M we can again employ this formula by using data
from the previous and following year, respectively, or else we can shrink the time frame of
estimation. Note that the addition A(d) + N(d) makes sense, since log-returns are additive.

Similarly, the volatility weights are estimated, for some V' € N, by computing preliminary
weights

T = [0 (Ad) + N (@] SN ek Vedi<p-v,

d=d(i)—=V {jl|d(j)=d}

and then by reweighting these according to

T ~
5 Zj:l lyj — md(j)’/@z(j) o
d(i) = T ~ d(q)
Zj:l Y5 — Mag)|

This implies that for 7; := (y; — Mag))/Tawy We have S 7] = 27, |yi — M), so that
the magnitude of the values is preserved.

In our analysis, we set M = V = 10, so that we use a time frame of 21 trading days to
determine the local trend and volatility weight. This seems to be a reasonable choice since
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we usually get larger standard errors for the COGARCH parameter estimates for very large
or very small values of M and V. In Figure 1, as an example, the third and fourth rows
show the estimated local trends and estimated local volatility weights for the years 2002 and
2005. The fifth row shows the detrended and reweighted log-returns. Note that, for each row,
the left figure for 2002 has the same scale as the right figure for 2005. We chose the years
2002 and 2005 for illustration since they apparently show quite different patterns; however,
the cleaning and pre-processing procedure is the same for all years. We emphasize once more
that both mg(;) and vg(;) depend only on the d(i), so that all observations of the same day are
reweighted by the same weight. This way we do not lose information about the dependence
of the volatility on the exact trading time during the day. This dependence is accounted for in
the following subsection.

3.3 Accounting for Trading Time by Transformation of Time

To take the possible impact of trading time on the volatility into account, we first conducted
a standard regression analysis for the squared log-returns to check for explanatory variables
having an influence on the volatility. We used indicator variables for the month January, for all
weekdays from Monday to Friday, and for all trading hours (9, 10, 11, ..., 15). For reasons of
identifiability we had to remove one weekday and one trading hour (we chose Friday and hour
15), so that this sums up to a collection of 11 variables. The four most significant indicators
always turned out to be hours 9, 12, 13, and 10, in this order. All these had p—values of less
than 1%.

An easy way to account for these explanatory variables within the COGARCH context is
to apply the COGARCH to a fictive business time axis. That means that we do not insert
the explanatory variables into the COGARCH model itself, but use the PML method both
to rescale the physical time axis and to estimate the COGARCH parameters, simultaneously.
The idea is to replace At; in Equations (2.3) and (2.4) by

ATZ' = Atzj(l) —+ hg[g(l) —+ thIIO(i) + hlgllg(i) + hm[m(i),

where hg, h1g, hi12, and hy3 are unknown parameters. Since we account for missing values
within the functions I and I}, respectively, At; does not depend on ¢ in our setup and serves
just as the basic time unit. To get estimates nearly on an annual basis, we choose At; as
1/(>01(j)),since > I(j) =T+>  N(d) = > A(d)+ N(d). However, since the time axis is
transformed during the estimation procedure, values such as the exact annualized volatilities
in each year have to be computed separately after the estimation procedure.

Of particular interest are the quantities fr := (hx + At;)/At; for k = 9,10, 12,13. These
report the factors by which the basic time unit has to be rescaled during a certain trading hour
to get business time.

10



3.4 Results and Interpretation

Table 2 reports the PML estimates together with their corresponding standard errors. We first
note that our estimates satisfy the stationarity condition > ¢. Moreover, the estimates for n
and ¢ are very similar for all 10 years, with values around 0.20 and 0.10, respectively. Such
stability is very reassuring as to the applicability of the model. As a consequence, the parame-
ter 3 directly reflects the long-run volatility in each year, since the mean of the COGARCH
variance equation can be expressed as 3/(n — ), with 7 — ¢ almost constant in our case. For
example, from the plots in Figure 1 one can immediately see that in 2002 the overall mean
volatility was much higher than in 2005. This conjecture is now confirmed by the estimates of
(3, which are around 0.0039 in 2002 and only 0.0007 in 2005.

Table 3 contains the factors which have to applied to the physical time axis to get business time.
For example, the value 5.3057 of the estimate for fo in 1998 means that during this year usiness
time was running at around 5.3 times faster than physical time between 9:30am and 10:00am,
which reflects the high activity in the market after the opening of the exchange. Between 10am
and 11am the activity decreased, but is still higher than on average. In general, during lunch
time, between 12pm an 2pm, business time runs slower than physical time, usually the activity
is only 50% to 70% of the average observed between 11am and 12pm as well as after 2pm.

4 Discussion

4.1 Extensions: COGARCH(p,q), ECOGARCH, Multivariate Models

There exist a couple of model extensions to the COGARCH model which we briefly mention
in this section. For more details we refer to the corresponding papers.

Motivated by the generalization of the GARCH(1,1) to the GARCH(p,q) model, Brockwell,
Chadraa, and Lindner [8] introduced the COGARCH(p,q) model. Here the volatility follows
a CARMA (continuous-time ARMA) process, which is again driven by a Lévy process. As in
the discrete-time case, this model displays a broader range of autocorrelation structures than
those of the COGARCH(1,1) process.

Haug and Czado [20] introduce an exponential continuous time GARCH (ECOGARCH) pro-
cess as analogue to the EGARCH(p,q) models. They investigate stationarity and moments
and show an instantaneous leverage effect for the ECOGARCH(p,p) model. In a subsequent
paper, Czado and Haug (2008) [11] derive a quasi-maximum likelihood estimation procedure
for the ECOGARCH(1,1) model, in the case when it is driven by a compound Poisson process,
assuming normally distributed jumps.

In Stelzer (2008a) [35] multivariate COGARCH(1,1) processes are introduced constituting a
dynamical extension of normal mixture models and covering again such features as depen-
dence of returns (but without autocorrelation), jumps, heavy tailed distributions, etc. As in
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the univariate case, the model has only one source of randomness, a single multivariate Lévy
process. The time-varying covariance matrix is modelled as a stochastic process in the class
of positive semi-definite matrices. The paper analyses the probabilistic properties and gives a
sufficient condition for the existence of a stationary distribution for the stochastic covariance
matrix process, and criteria ensuring the finiteness of moments.

As for the univariate COGARCH, the multivariate COGARCH can be extended to a multi-
variate ECOGARCH model, as is done in Haug and Stelzer (2008) [21].

Analoguously to the papers by Szimayer and Maller (2007) [37] and Maller et. al. (2008) [29],
Stelzer (2008b) [36] generalises the first jump approximation of a pure jump Lévy process,
which converges to the Lévy process in the Skorokhod topology in probability, to a multivari-
ate setting and an infinite time horizon. Applying this result to multivariate ECOGARCH(1,1)
processes, he shows that there exists a sequence of piecewise constant processes determined
by multivariate EGARCH(1,1) processes in discrete time which converge in probability in the
Skorokhod topology to the continuous-time process.

4.2 Other Theory

We pointed out in Section 2.2 the striking similarity between the theoretical formulations
of the discrete-time GARCH and the COGARCH volatility equations. In relation to this,
Kallsen and Vesenmayer (2008) [24] derive the infinitesimal generator of the bivariate Markov
process representation of the COGARCH model and show that any COGARCH process can
be represented as the limit in law of a sequence of GARCH(1,1) processes. The result of
Maller, Miiller, and Szimayer (2008) [29] is even stronger. They approximate the COGARCH
with an embedded sequence of discrete time GARCH(1,1) models which converges to the
continuous-time model in a strong sense (in probability, in the Skorokhod metric), as the
discrete approximating grid grows finer. Whereas the diffusion limit in law established by
Nelson (1990) [31] occurs from GARCH by aggregating its innovations, the COGARCH limit
arising in Kallsen and Vesenmayer (2008) [24] and Maller et. al. (2008) [29] both occur when
the innovations are randomly thinned. We sketched briefly the basic idea of the Maller et. al.
(2008) [29] approximation in Section 2.3.

The question arises also, as to how strong this similiarity may be from a statistical point of
view, and how this similarity might be measured mathematically. A sophisticated approach
to measuring the similarity between two statistical models is Le Cam’s framework of sta-
tistical equivalence. As was shown by Wang (2002) [38], the diffusion limit in law of the
GARCH(1,1) established by Nelson (1990) [31] is not statistically equivalent to the approx-
imating series of GARCH models. A recent paper by Buchmann and Miiller (2008) inves-
tigates in detail the possibility of statistical equivalence between the GARCH and the CO-
GARCH models. They show that, if the corresponding volatilities of the COGARCH process
are unobservable, the limit experiment is again not equivalent to GARCH in “deficiency”. If,
however, in addition, full information about the volatility processes is available, then the lim-
iting COGARCH experiment is in fact equivalent to the approximating sequence of GARCH
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models.

5 Summary and Conclusion

In Section 2 we summarised the literature on the theoretical properties of the COGARCH, on
estimation procedures, and on some model extensions which have been proposed. In Section
3 we used the COGARCH model to analyse high-frequency data on the S&P500.

We emphasize once more that the COGARCH model incorporates the most important stylized
features of financial data. Since it is a continuous-time model, it provides great flexibility
in modeling different aspects of the data. While we are accustomed to seeing financial time-
series at relatively low, or coarser, frequencies — such as the closing value of the index reported
in nightly news broadcasts — it is relatively easy to forget that such values are merely one point
on the high-frequency activity function. High-frequency data readily lends itself to analysis
within a continuous time framework. Further, the COGARCH methodology demonstrated
in this chapter is also appropriate to model the discontinuities which are a natural, but often
ignored, feature of the data; as we have noted, discontinuities arise from breaks such as hol-
idays but also the important break between the market’s close and its opening the following
morning.

However, we must be careful only to apply the COGARCH model to a stationary time series.
This may require pre-processing the data as we did in Section 3.2, before the COGARCH
model can be used. The PML method which we employed for fitting the COGARCH to the
S&P500 data is applicable in general to irregularly spaced data. In this way we can very
easily deal with missing data, or transform to another time scale, as needed to reflect some
special properties of the data. In our case, we were able to account for the dependence of
market activity on trading time. We have chosen to focus on modeling the volatility of the
S&P500 due to its importance as a widely followed measure of the market. Its component
stocks are large and liquid and, as a consequence, it is reasonable to believe that the behavior
of the S&P500 will not be greatly affected by nonsynchronous trading, or nontrading, of its
constituent securities. Nonetheless, the premises of COGARCH suggest that it appropriately
accounts for such microstructure issues. Analysis of COGARCH in microstructure research
for stocks where discontinuities arise due to non-trading offers interesting and potentially
insightful research opportunities.

Although many aspects of the COGARCH have already been investigated, it remains an area
of active research. We have demonstrated its implementation and applicability to an important
financial time series. While we have used high-frequency data to demonstrate the potential of
COGARCH, we do not wish to suggest that its only application is in microstructure research.
We are confident that that the technique will become an important, and well-known tool, for
research in financial economics.
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B n @
1998 0.00215457 (0.00009185) 0.2035 (0.0099) 0.1002 (0.0075)
1999 0.00212128 (0.00007431) 0.2022 (0.0040) 0.1028 (0.0023)
2000 0.00312924 (0.00015303) 0.2032 (0.0052) 0.1019 (0.0032)
2001 0.00224318 (0.00010266) 0.1988 (0.0047) 0.1035 (0.0019)
2002 0.00385930 (0.00013885) 0.2067 (0.0068) 0.0918 (0.0054)
2003 0.00152757 (0.00011513) 0.2011 (0.0112) 0.1024 (0.0051)
2004 0.00076915 (0.00002222) 0.1979 (0.0037) 0.1048 (0.0025)
2005 0.00071658 (0.00002205) 0.2018 (0.0046) 0.1027 (0.0038)
2006 0.00069020 (0.00002447) 0.2039 (0.0054) 0.1009 (0.0049)
2007 0.00145146 (0.00008295) 0.2017 (0.0071) 0.0999 (0.0053)
hg - 10* hig - 10 hig - 10% hys - 10%
1998  2.2616 (0.1230) 0.1225 (0.0194) -0.2587 (0.0081)  -0.2320 (0.0090)
1999  2.0057 (0.1038) 0.2080 (0.0213) -0.2534 (0.0077) -0.2290 (0.0085)
2000 1.9162 (0.1035) 0.2232 (0.0219) -0.2420 (0.0082) -0.1957 (0.0096)
2001  2.7368 (0.1571)  0.5309 (0.0349) -0.2257 (0.0096) -0.1637 (0.0113)
2002  2.7753 (0.1317)  0.4186 (0.0267) -0.1412 (0.0106) -0.1381 (0.0107)
2003  3.0822 (0.1526) 0.5732 (0.0329) -0.1694 (0.0103) -0.1970 (0.0096)
2004  2.5946 (0.1318) 0.2317 (0.0223)  -0.2085 (0.0091)  -0.1944 (0.0095)
2005  1.8003 (0.0988) 0.1923 (0.0198) -0.1979 (0.0088) -0.1504 (0.0106)
2006  2.1767 (0.1170)  0.2547 (0.0228) -0.1667 (0.0103) -0.1346 (0.0112)
2007  2.6795 (0.1377)  0.1301 (0.0193) -0.1965 (0.0093) -0.1766 (0.0099)

Table 2: PML estimates and corresponding approximated standard errors of the parameters
B, n, ¢, ho, hig, his, and hy3. For notational convenience, the estimates and standard errors
of hg, hig, h12, h13 have been multiplied by 10000.

o fio fi2 i3
1998 5.3057 1.2332 0.5076 0.5583
1999 4.8966 1.4040 0.5077 0.5551
2000 4.7377 1.4353 0.5280 0.6183
2001 6.2005 2.0089 0.5712 0.6889
2002 6.4119 1.8164 0.7246 0.7307
2003 6.9899 2.1140 0.6709 0.6172
2004 6.0300 1.4491 0.5958 0.6231
2005 4.5319 1.3772 0.6117 0.7049
2006 5.2458 1.4967 0.6748 0.7374
2007 6.2170 1.2533 0.6174 0.6561

Table 3: Factors that have to be applied to get from physical to business time scale, for trading
hours 9, 10, 12, and 13, respectively.
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