
 1

First Order Approximations to Operational Risk − Dependence 

and Consequences 

Klaus Böcker1  and Claudia Klüppelberg 2 
 

May 20, 2008 

 

 

                                                                     Abstract 

We investigate the problem of modelling and measuring multidimensional operational risk. 

Based on the very popular univariate loss distribution approach, we suggest an “invariance 

principle” which should be satisfied by any multidimensional operational risk model, and 

which is naturally fulfilled by our modelling technique based on the new concept of Pareto 

Lévy copulas. Our approach allows for a fully dynamic modelling of operational risk at any 

future point in time. We exploit the fact that operational loss data are typically heavy-tailed, 

and, therefore, we intensively discuss the concept of multivariate regular variation, which is 

considered as a very useful tool for various multivariate heavy-tailed phenomena. Moreover, 

for important examples of the Pareto Lévy copulas and appropriate severity distributions we 

derive first order approximations for multivariate operational Value-at-Risk.  
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1. Introduction:  

Three years ago, in Böcker and Klüppelberg (2005), we argued that operational risk could be a 

“long-term killer”, and at this time maybe the most spectacular example for a bank failure 

caused by operational risk losses was Barings Bank after the rogue trader Nick Leeson had 

been hiding loss-making positions in financial derivatives. In the meanwhile other examples 

achieved doubtful fame, most recently Société Générale's loss of EUR 4.9 billion due to trader 

fraud and Bear Stearns near-death since it was not able to price its mortgage portfolios. Such 

examples clearly show the increased importance of a sound and reliable operational risk 

management, which consists of risk identification, monitoring and reporting, risk mitigation, 

risk controlling, and last but not least risk quantification. Needless to say, such catastrophic 

losses as mentioned above would have never been prevented just my measuring an operational 

Value-at-Risk (OpVaR). Often risk mitigation is primarily a matter of highly effective 

management and control processes. In the case of Société Générale, for instance, the question 

is how Jerome Kerviel was able to hide his massive speculative positions to the Dow Jones 

Eurostoxx 50 just by offsetting them with fictitious trades into the banking system.  

Having said this, let us briefly − not only for a motivation to read this article − consider 

the question regarding the relevance of operational risk modelling. Maybe the simplest answer 

would be a reference to the regulatory requirements. Indeed, with the new framework of Basel 

II, the quantification of operational risk has become a conditio sine qua non for every financial 

institution. In this respect, the main intention for the so-called advanced measurement 

approaches (AMA) is to calculate a capital charge as a buffer against potential operational risk 

losses.  

Another reason for building models, besides of making predictions, is that models can 

help us to gain a deeper understanding of a subject matter. This is one of our intentions in 
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writing this article. We present a relatively simple model with only a few parameters, which 

allows us to gain interesting insight into the general behaviour of multivariate operational risk. 

Furthermore, our approach is appealing from a purely model-theoretic point of view because, 

as we will show in more detail below, it essentially is a straightforward generalization of the 

very popular loss distribution approach (LDA) to any dimension. The key feature of the one-

dimensional, standard LDA model is splitting up the total loss amount over a certain time 

period into a frequency component, i.e. the number of losses, and a severity component, i.e. 

the individual loss amounts. In doing so, we assume the total aggregate operational loss of a 

bank up to a time horizon 0≥t  to be represented by a compound Poisson process ( )
0

+

≥t t
X , 

which can be represented as  

                                                            
1

, 0.
+

+ +

=

= ∆ ≥∑
tN

t i
i

X X t                          ( )1.1  

Let us denote the distribution function of +
tX by ( ) ( )· ·+ += ≤t tG P X . As risk measure we use 

total OpVaR up to time t  at confidence levelκ , which is defined as the quantile  

       ( ) ( ) ( ){ } ( )infO : , 0,1pVaR+ +← +κ = κ = ∈ ≥ κ κ∈t t tG z G z ,            ( )1.2  

for κ  near 1, e.g. 0.999 for regulatory purposes or, in the context of a bank's internal 

economic capital, even higher such as 0.9995.  

Now, it is undoubted among experts and statistically justified by Moscadelli (2004) 

that operational loss data are heavy-tailed, and therefore we concentrate on Pareto-like severity 

distributions. In general, a severity distribution function F is said to be regularly varying with 

index −α  for ( )0 −αα > ∈F R , if  

( )
( )t

lim , 0.−α

→∞
= >

F xt
x x

F t
 



 4

For such heavy tailed losses − and actually also for the more general class with 

subexponential distribution functions − it is now well-known and a consequence of Theorem 

1.3.9 of Embrechts et. al (1997) (see Böcker and Klüppelberg (2005), Böcker and Sprittulla 

(2006)) that OpVaR at high confidence levels can be approximated by  

( ) ( )t
1: ~ 1Op ,VaR 1+ +← +←

+

− κ⎛ ⎞κ = κ − κ ↑⎜ ⎟
⎝ ⎠

G F
λ

            ( )1.3  

with 1
+ +⎡ ⎤= ⎣ ⎦E Nλ . 

 

 

Figure 1 about here 

 

 

Figure 1: Quality of approximation for a compound Poisson model with Pareto loss 

distribution.  

Usually, however, total operational risk is not modelled by ( )1.1  directly, instead, 

operational risk is classified in different loss types and business lines. For instance, Basel II 

distinguishes 7 loss types and 8 business lines, yielding a matrix of 56 operational risk cells. 

Then, for each cell 1, ,= …i d  operational loss is modelled by a compound Poisson process 

model 0( ) ≥
i
t tX , and the bank's total aggregate operational loss is given as the sum  

1 2
t , 0+ = + + + ≥d

t t tX X X X t . 

The core problem of multivariate operational risk modelling here is, how to account for the 

dependence structure between the marginal processes. Several proposals have been made, see 

e.g. Frachot et al. (2004), Powojowski et al. (2002), or Chavez-Demoulin et al. (2005) just to 
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mention a few. In general, however, all these approaches lead to a total aggregate loss 

process ( )t 0

+

≥t
X , which is not compound Poisson anymore and, thus, does not fit into the 

framework of ( )1.1 . More generally, it is reasonable to demand that ( )
0≥

+
t t

X  does not depend 

on the design of the cell matrix, i.e whether the bank is using 56 or 20 cells within its 

operational risk model should in principal (i.e. abstracting from statistical estimation and data 

issues) not affect the bank's total OpVaR. In other words, a natural requirement of a 

multivariate operational risk model is that it is invariant under a re-design of the cell matrix 

and, thus, also under possible business re-organizations. Hence, we demand that every model 

should be closed with respect to the compound Poisson property, i.e. every additive 

composition of different cells must again constitute a univariate compound Poisson process 

with severity distribution function ( )·i+ jF  and frequency parameter i+ jλ  for :  ≠i j  

:+ = ∈i j i+ j
t t tX X X compound Poisson processes .                        ( )1.4  

The invariance principle formulated in ( )1.4  holds true, whenever the vector of all cell 

processes ( )1

0
,...,

≥

d
t t t

X X  constitutes a d -dimensional compound Poisson process. The 

dependence structure between the marginal processes is then described by a so-called Lévy 

copula, or, as we will do in this article, by means of a Pareto Lévy copula. 

 

2. From Pareto copulas to Pareto Lévy copulas 

Marginal transformations have been utilised in various fields. Certainly the most prominent in 

the financial area is the victory march of the copula, invoking marginal transformations 

resulting in a multivariate distribution function with uniform marginals. Whereas it is certainly 
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convenient to automize certain procedures such as the normalisation to uniform marginals, this 

transformation is not always the best possible choice.  

So, it was pointed out e.g. by Klüppelberg and Resnick (2008) that, when asymptotic 

limit distributions and heavy tail behaviour of data is to be investigated, a transformation to 

standardised Pareto distributed marginals is much more natural than the transformation to 

uniform marginals. The analog technique, however applied to the Lévy measure, will prove to 

be useful also for our purpose, namely the examination of multivariate operational risk. Before 

we do this in some detail, let us briefly recap some of the arguments given in Klüppelberg and 

Resnick (2008).   

    Let ( )1,...,=Χ Χ Χ d  be a random vector in d with distribution function F and one-

dimensional marginal distribution functions ( ) ( )⋅ = ≤ ⋅i
iF Ρ Χ  and assume throughout that 

they are continuous. Define for ∈d  

                                                                            ( )2.1  

with ( ) ( )1⋅ = − ⋅i iF F . Note that P i  is standard Pareto distributed; i.e., for 1,...,=i d holds  

( ) 1−> =P iP x x , 1≥x . 

 

Definition 2.1. Suppose X   has d.f. F  with continuous marginals. Define P as in (2.1). Then 

we call the distribution C  of  P  a Pareto copula. 

Analogously to the standard distributional copula, the Pareto copula can be used to 

describe the dependence structure between different random variables. 

Here, we do not use distributional copulas directly to model the dependence structure 

between the cells' aggregate loss processes 0( ) ≥
i
t tX . One reason is that, as described in the 



 7

introduction, we are looking for a natural extension of the single cell LDA model, i.e. we 

require that also 0( ) ≥
+
t tX  is compound Poisson. This can be achieved by exploiting the fact that 

a compound Poisson process is a specific Lévy process, which allows us to invoke some Lévy 

structure analysis to derive OpVaR results.  Our approach is similar to Böcker and 

Klüppelberg (2006, 2008), where we used standard Lévy copulas to derive analytic 

approximations for OpVaR. In this article, however, we use a transformation similar to ( )2.1 , 

which leads us to the concept of  Pareto Lévy copulas. 

For a Lévy process the jump behaviour is governed by the so-called Lévy measureΠ , 

which has a very intuitive interpretation, in particular in the context of operational risk. The 

Lévy measure of a single operational risk cell measures the expected number of losses per unit 

time with a loss amount in a pre-specified interval. Moreover, for our compound Poisson 

model, the Lévy measure Π i  of the cell process iX  is completely determined by the 

frequency parameter 0λ >i  and the distribution function of the cell's severity, namely  

[ ]( ) ( ) ( )0, :Π = λ ∆ ≤ = λi
i i i ix P X x F x  for [ )0, .∈ ∞x  Since here we are mainly interested in 

large operational losses, it is convenient to introduce the concept of a tail measure, sometimes 

also referred to as tail integral. A one-dimensional tail measure is simply the expected number 

of losses per unit time that are above a given threshold, which is in the case of a compound 

Poisson model given by: 

  ( ) [ )( ) ( ) ( ): ,Π = Π ∞ = λ ∆ > = λi
i ii i ix x P X x F x ,  [ )0,∈ ∞x     ( )2.2  

In particular, there is only a finite number of jumps per unit time, i.e. ( )
0

lim
↓
Π = λi ix

x . 

Analogously, for a multivariate Lévy process the multivariate Lévy measure controls 

the jump behaviour (per unit time) of all univariate components and contains all information of 
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dependence between the components. Hence, in this framework, dependence modelling 

between different operational risk cells is reduced to choosing appropriate multivariate Lévy 

measures. Since jumps are created by positive loss severities, the Lévy measure Π  is 

concentrated on the punctured positive cone in dR (the value 0  is taken out since Lévy 

measures can have a singularity in 0 ) 

[ ] { }: ,=E 0 0∞ . 

Now, similarly to the fact that a multivariate distribution can be built from marginal 

distributions via a distributional (Pareto) copula, a multivariate tail measure (see also Böcker 

and Klüppelberg (2006), Definition 2.1) 

  ( ) ( ) [ ) [ )( )1 1,..., , ,Π = Π = Π ∞ × × ∞d dx x x x...x , ∈Ex ,     ( )2.3   

can be constructed from the marginal tail measures ( )2.2  by means of a Pareto Lévy copula. 

The marginal tail measures are found from ( )2.3  as expected by 

( ) ( )0,..., ,...,0Π = Πi ix x ,  [ )0,∈ ∞x . 

 

Definition 2.2. Let ( ) ≥t t 0
X  be a Lévy process with Lévy measure Γ  that has standard 1-stable 

one-dimensional marginals. Then we call Γ  a Pareto Lévy measure and the associated tail 

measure  

( ) [ ) [ )( ) ( )1 1
ˆ, ... , : ,...,Γ = Γ ∞ × × ∞ =x d dx x C x x ,  ∈Ex , 

is referred to as Pareto Lévy copula C . 

We now can transform the marginal Lévy measures of a Lévy process analogously to 

( )2.1 , yielding standard 1-stable marginal Lévy processes with Lévy measures ( ) 1−Γ =i x x  

for 0>x . Note that the transformed 1-stable Lévy processes are NOT compound Poisson 
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anymore (even though they may have been before the transformation), instead they are of 

infinite variation and have an infinite number of small jumps per unit time expressed by 

( )i0lim ↓ Γ = ∞x x . For definitions and references of stable Lévy processes see Cont and 

Tankov (2004). 

 

Lemma 2.3. Let ( ) ≥
X t t 0

 be a spectrally positive Lévy process (i.e. a Lévy process admitting 

only positive jumps) with Lévy measure Π on E  and continuous marginal tail 

measures 1,...,Π Πd . Then    

( ) [ ] [ ]( ) ( ) ( )1
1 1

1 1ˆ, , ,...,
⎛ ⎞

Π = Π ∞ ×⋅⋅ ⋅× ∞ = ⎜ ⎟⎜ ⎟Π Π⎝ ⎠
x d

d d

x x C
x x

,     ∈x E , 

and Ĉ  is a Pareto Lévy copula. 

Proof. Note that for all ∈x E , 

( ) ( ) ( )1 1
1

1 1ˆ ,...,
←←⎛ ⎞⎛ ⎞⎛ ⎞

⎜ ⎟= Π ⎜ ⎟⎜ ⎟⎜ ⎟Π Π⎝ ⎠ ⎝ ⎠⎝ ⎠
d d

d

C x ,...,x x x , 

this implies for the one-dimensional marginal tail measures 

                                   ( ) ( )1 1ˆ 0,..., 0
←

⎛ ⎞
= Π =⎜ ⎟Π⎝ ⎠

i
i

C x,..., x
x

,     [ )0,∈ ∞x                   � 

The following is Sklar's Theorem for spectrally positive Lévy processes in the context 

of Lévy Pareto copulas. The proof is similar to the one of Theorem 5.6 of Cont and Tankov 

(2004). 

 

Theorem 2.4 (Sklar's Theorem for Pareto Lévy copulas) 
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Let Π  be the tail measure of a d -dimensional spectrally positive Lévy process with marginal 

tail measures 1,...,Π Πd . Then there exists a Pareto Lévy copula [ ]ˆ 0,→ ∞C :E  such that for 

all 1,..., ∈dx x E  

                          ( ) ( ) ( )1
1 1

1 1ˆ,..., ,...,
⎛ ⎞

Π = ⎜ ⎟⎜ ⎟Π Π⎝ ⎠
d

d d

x x C
x x

.            ( )2.4  

If the marginal tail measures are continuous on [ ]0,∞ , then Ĉ  is unique. Otherwise, it is unique 

on
1

1 1Ran Ran
⎛ ⎞⎛ ⎞

× ⋅ ⋅ ⋅× ⎜ ⎟⎜ ⎟Π Π⎝ ⎠ ⎝ ⎠d

. Conversely, if Ĉ  is a Pareto Lévy-copula and 1,...,Π Πd  are 

marginal tail measures, then Π  defined in ( )2.4  is a joint tail measure with 

marginals 1,...,Π Πd . 

So-called Lévy copulas, as introduced in Cont and Tankov (2004) and also used in 

Böcker and Klüppelberg (2006, 2008), have one-dimensional marginal Lebesgue measures. As 

a consequence thereof, they do not have an interpretation as the Lévy measure of a one-

dimensional Lévy process, because a Lévy measure is, for instance, finite on [ )1,∞ .  

From the construction above it is also clear that, if ( )1 d, ,…C x x is a Lévy copula, then 

the associated Pareto Lévy copula Ĉ  can be constructed by 1 d 1
ˆ ( , , ) (1 / , ,1 / )… = … dC x x C x x . 

Hence, the following examples follow immediately from those given in Böcker and 

Klüppelberg (2006): 

 

Example 2.5.  [Independence Pareto Lévy-copula]. 

Let ( )1, ,= …X d
t t tX X , 0≥t , be a spectrally positive Lévy process with marginal tail 

measures 1, ,Π … Πd . The components of  ( ) 0≥t t
X  are independent if and only if 
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( ) ( )Π = Π∑
d

i i
i=1

A A  ( )∈A EB , 

where ( ){ }: 0,...,0, ,0,...,0= ∈ ∈iA x x A , x  stands at the i -th component, and ( )B E  

denotes the Borel sets of E . This implies for the tail measure of  ( ) 0≥t t
X  

{ } { }2 1... 0 ...1 01 1( , , ) ( ) ( )= = = = = =Π … = Π + + Π
d d -1x dx x xd dx x x I Ix , 

giving a Pareto Lévy copula of 

( ) { } { }2 1

1 1
1 ... 0 ... 0

ˆ .− −
⊥ = = = = = == + ⋅ ⋅ ⋅ +

d d -1dx x x xC x I x Ix  

The resulting Lévy process with Pareto Lévy copula ⊥C is a standard 1-stable process with 

independent components. 

 

Example 2.6. [Complete (positive) dependence Pareto Lévy copula]. 

Let ( )1,...,=X d
t t tX X , 0≥t , be a spectrally positive Lévy process with Lévy measure Π , 

which is concentrated on an increasing subset of E . Then 

( ) ( ) ( )( )1
1min ,..., .Π = Π Πd

dx xx  

The corresponding Lévy copula is given by 

( ) ( )1 1
1

ˆ min ,..., .− −= dC x xx  

Example 2.7. [Archimedian Pareto Lévy copula]. 

Let [ ] [ ]: 0, 0,∞ → ∞φ   be strictly decreasing with ( )0 = ∞φ   and ( ) 0.∞ =φ Assume that ←φ   

has derivatives up to order d with ( ) ( )1 0
←

− >
k

k
k

d t
dt
φ

 for 1,...,=k d . Then the following is a 

Pareto Lévy copula 

( ) ( ) ( )( )1 1
1

ˆ ... .← − −= + + dC x xx φ φ φ  
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Example 2.8. [Clayton Pareto Lévy copula]. 

Take ( ) −=φ θt t for 0θ > . Then the Archimedian Pareto Lévy copula 

( ) ( ) 1/

1
ˆ ...

−θ θ= + +
θ

dC x xxθ  

is called Clayton Pareto Lévy copula. Note that ( ) ( )ˆ ˆlim →∞ =θ θC Cx x and 

( ) ( )0
ˆ ˆlim → ⊥=θ θC Cx x ; i.e., this model covers the whole range of dependence. 

 

3. Understanding the dependence structure 

Recall our multivariate operational risk model, in which total aggregate loss is modelled by a 

compound Poisson process with representation ( )1.1 , where ( )
0

+

≥t t
N   is the Poisson process 

counting the total number of losses and 1 ,..., +
+ +∆ ∆

tN
X X denote all severities in the time interval 

( ]0, t . In this model losses can occur either in one of the component processes or result from 

multiple simultaneous losses in different components. In the latter situation, +∆ iX  is the sum 

of all losses, which happen at the same time. 

Based on a decomposition of the marginal Lévy measures, one can show (see e.g.  

Böcker and Klüppelberg (2008), Section 3) that the component processes can be decomposed 

into compound Poisson processes of single jumps and joint jumps. For 2d =  the cell's loss 

processes have the representation (the time parameter t   is dropped for simplicity): 

1X  =   1 1
⊥ +X X   =  

1

1 1

1 1

⊥

⊥
= =

∆ + ∆∑ ∑
NN

k l
k l

X X                         ( )3.1  

           2X   =   2 1
⊥ +X X   =     

2

2 2

1 1

⊥

⊥
= =

∆ + ∆∑ ∑
NN

m l
m l

X X  
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where 1X  and 2X describe the aggregate losses of cell 1 and 2, respectively, that are generated 

by “common shocks”, and 1
⊥X and 2

⊥X are independent loss processes. Note that apart from 

1X  and 2X  all compound Poisson processes on the right-hand side of ( )3.1  are mutually 

independent. 

If we compare the left-hand and right-hand representation we can identify the 

parameters of the processes on the right-hand side. The parameters on the left-hand side are 

1, 2 0>λ λ  for the frequencies of the Poisson processes, which count the number of losses, and 

the severity distribution functions 1 2F ,F ; for details we refer to Böcker and Klüppelberg 

(2008). 

 

 

Figure 2 about here 

 

 

Figure 2: Decomposition of the domain of the tail measure ( )+Π z for 6=z  into a 

simultaneous loss part ( )Π z (grey) and independent parts ( )1⊥Π z  (solid black line) and           

( )2⊥Π z  (dashed black line). 

The frequency of simultaneous losses can be calculated from the bivariate tail measure 

( )1 2Π x ,x  as the limit of arbitrarily small, simultaneous losses; i.e. 

( ) ( ) ( ) ( ) ( )
1 2

1 1
1 2 1 2 2 1 1 2, 0 0 0

ˆlim , , lim lim 0,min ,− −

↓ ↓ ↓
Π = = Π = Π = ∈⎡ ⎤⎣ ⎦x x x x

x x C x xλ λ λ λ λ . 

Consequently, the frequency of independent losses must be 
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( )1 1 10
lim⊥ ⊥↓

= Π =λ λ -λ
x

x  and   2 2⊥ −λ = λ λ . 

By comparison of the Lévy measures we obtain further for the distribution functions of the 

independent losses 

( )1 1⊥F x   = ( ) ( )( )( )1 11
1 1 1 1 1 2

1 1

1 ˆ ,
− −

⊥ ⊥

−F x C F xλ λ λ
λ λ

 

   ( )2 2⊥F x   = ( ) ( )( )( )112
2 2 1 2 2 2

2 2

1 ˆ ,
−−

⊥ ⊥

−
λ λ λ
λ λ

F x C F x . 

And, finally, the joint distribution functions of coincident losses and their marginals are given 

by 

                  ( )1 2,F x x    =   ( )1 2
1 2,> >P X x X x    =   ( )( ) ( )( )( )1 1

1 1 1 2 2 2
1 ˆ ,

− −
λ λ

λ
C F x F x       ( )3.2  

                ( )1 1F x        =   ( )
2

1 20
lim
↓x

F x ,x    =   ( )( )( )1 1
1 1 1 2

1 ˆ ,
− −λ λ

λ
C F x  

       ( )2 2F x       =    ( )
1

1 20
lim
↓x

F x ,x    =   ( )( )( )11
1 2 2 2

1 ˆ ,
−−λ λ

λ
C F x . 

Summarising our results, we can say that the Pareto Lévy copula approach is equivalent to a 

split of the cells' compound Poisson processes into completely dependent and independent 

parts. All parameters of these subprocesses can be derived from the Pareto Lévy copula, which 

we have shown here for the distribution functions and frequencies of the dependent and 

independent parts. Moreover, we would like to mention that the simultaneous loss distributions 

( )1 ·F  and ( )2 ·F  are not independent, instead they are linked by a distributional copula, which 

can be derived from ( )3.2 , see again Böcker and Klüppelberg (2008) for more details. 
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4. Approximating total OpVaR 

In our model, OpVaR encompassing all risk cells is given by ( )1.2 , which can asymptotically 

be approximated by ( )1.2 . Needless to say, the parameters +F  and +λ , which describe the 

bank's total OpVaR at aggregated level, depend on the dependence structure between different 

risk cells and thus on the Pareto Lévy copula. We now investigate various dependence 

scenarios, for which first order approximations like ( )1.3  are available. Our results yield 

valuable insight into the nature of multivariate operational risk. 

 

One dominating cell severity 

Although the first scenario is rather simple by assuming that high-severity losses mainly occur 

in one single risk cell, it is yet relevant in many practical situations. Note that the assumptions 

in the following result are very weak, no process structure is needed here. 

 

Theorem 4.1 (Böcker and Klüppelberg (2006), Theorem 3.4, Corollary 3.5) 

For fixed 0t >  let i
tX  for 1,...,=i d  have compound Poisson distributions. Assume that 

1 −α∈F R for 0α > . Let > αρ   and suppose that ( )⎡ ⎤∆ < ∞⎢ ⎥⎣ ⎦
ρiE X  for 2i = ,...,d . Then, 

regardless of the dependence structure between 1 d
t tX ,...,X , 

( )+
t >P X x      ∼   ( )1 1 ,∆ >tEN P X x    →∞x , 

( )VaR+ κt     ∼   ( )1
1 1

11 OpVaR← ⎛ ⎞− κ
− = κ⎜ ⎟

⎝ ⎠
t

t

F
EN

,   1κ ↑ . 

This is a quite important result. It means that total operational risk measured at high 

confidence levels is dominated by the stand-alone OpVaR of that cell, where losses have 
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Pareto tails that are heavier than losses of other cells. Note that the assumptions of this 

theorem are also satisfied if the loss severity distribution is a mixture distribution, in which 

only the tail is explicitly assumed to be Pareto-like, whereas the body is modelled by any 

arbitrary distribution class. We have elaborated this in more detail in Böcker and Klüppelberg 

(2008), Section 5. 

 

Multivariate compound Poisson model with completely dependent cells 

Complete dependence for Lévy processes means that all cell processes jump together, i.e.  

losses always occur at the same time, necessarily implying that all frequencies must be equal, 

i.e. 1 d···λ := λ = = λ . It also implies that the mass of the multivariate Lévy measure Π  is 

concentrated on 

( ) ( ) ( ){ } ( ) ( ) ( ){ }1 1 1 1 1 1: :∈ Π = = Π = ∈ = =d d d d d dx ,...,x x ··· x x ,...,x F x ··· F xE E  

Let iF  be strictly increasing and continuous such that ( )1−
iF q  exists for all [0,1)∈q . Then 

        ( )+Π z  = 1
1

({( , , ) : })
=

Π … ∈ ≥∑
d

d i
i

x x x zE  

   = ( ) ( )( )1
1 1 1 1 1

2

({ 0, })−Π ∈ ∞ + ≥∑
d

i
i=

x : x F F x z , 0>z . 

This representation yields the following result. 

 

Theorem 4.2 (Böcker and Klüppelberg (2006), Theorem 3.6) 

Consider a multivariate compound Poisson process ( )1, , , 0= … ≥d
t t tX X tX , with completely 

dependent cell processes  and strictly increasing and continuous severity distributions iF . Then 

( )
0

+

≥t t
X is compound Poisson process with parameters 
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+ =λ λ   and   ( ) ( )( )1
1

+ −=F z F H z ,  0>z , 

where 1
2 1( ) : ( ( ))−= +∑ d

i= iH z z F F z . If −
+

α∈F R  for (0, )α∈ ∞ , then 

( ) ( )
1

OpVaR OpV~ ,aR+

=

κ κ∑
d

i
t t

i

1κ ↑ , 

Where ( )OpVaR ·i
t  denotes the stand alone OpVaR of cell i . 

 

Corollary 4.3. Assume that the conditions of Theorem 4.2 hold and that 1 −α∈F R  for 

(0, )α∈ ∞  and  

( )
( ) [ )

1
x
lim c 0,
→∞

= ∈ ∞i
i

F x
F x

. 

Assume further that c 0≠i  for 1, ,= … ≤i b d and c 0=i  for 1, ,= + …i b d . Then 

( ) ( )1/ 1
t

1

~OpVa VaRR Op+ α

=

κ κ∑
b

i t
i

c , 1κ ↑  

Note how the result of Theorem 4.2 resembles the proposals of the Basel Committee 

on Banking Supervision (2006), in which a bank's total capital charge for operational risk 

measured as OpVaR at confidence level of 99.9 % is usually the sum of the risk capital 

charges attributed to the different risk type/business line cells. Hence, following our model, 

regulators implicitly assume that losses in different categories always occur simultaneously. 

 

Multivariate compound Poisson model with independent cells 

The other extreme case we want to consider is independence between different cells. For a 

general Lévy process independence means that not two cell processes ever jump together. 

Consequently, the mass of the Lévy measure is concentrated on the axes, cf. Example 2.5 , so 

that we have 
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1 1( ) ( ) ( )+Π = Π + + Πd dz z z  0.≥z  

 

Theorem 4.4. Assume that ( )1, , , 0= … ≥X d
t t tX X t , has independent cell processes. Then 

( )
0

+

≥t t
X is a compound Poisson process with parameters 

1
+ = + +λ λ λd    and   1 1

1( ) ( ) ( )+
+= + +⎡ ⎤⎣ ⎦d dF z F z F zλ λ
λ

,   0.≥z  

If 1 −α∈F R  for (0, )α∈ ∞  and for all 2, ,= …i d ,  

i
x

1

(x)lim [0, )
(x)→∞

= ∈ ∞i
F c
F

, 

then 

( ) 1
1 2 2

1~ 1OpVaR
( )

+ ← ⎛ ⎞− κ
κ −⎜ ⎟+ + +⎝ ⎠

t
d d

F
c c tλ λ λ

,     1κ ↑ .            ( )4.1  

If we compare ( )4.1  to the formula for the single-cell OpVaR ( )1.3 , we see that 

multivariate OpVaR in the case of independent cells can be expressed by the stand-alone 

OpVaR of the first cell with adjusted frequency parameter 1 2 2: c= + + +λ λ λ λd dc . Actually, 

we will see in the next section that this is possible for much more general dependence 

structures, namely those belonging to the class of multivariate regular variation. 

 

Multivariate regularly varying Lévy measure 

Multivariate regular variation is an appropriate mathematical tool for discussing heavy tail 

phenomena as they occur for instance in operational risk. We begin with regular variation of 

random vectors or, equivalently, of multivariate distribution functions. 
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The idea is to have regular variation not only in some (or all) marginals, but along 

every ray starting in 0  and going through the positive cone to infinity. Clearly, this limits the 

possible dependence structures between the marginals, however, such models are still flexible 

enough to be broadly applied to various fields such as telecommunication, insurance, and last 

but not least VaR analysis in the banking industry. Furthermore, many of the dependence 

models implying multivariate regular variation can still be solved and analysed analytically. 

Let us consider a positive random vector X  with distribution function F  that is − as 

our Lévy measure  Π  − concentrated on E . Moreover, we introduce for ∈x E  the following 

sets (for any Borel set A ⊂ E  its complement in E  is denoted by cA ): 

c

1

y[ , ] [ , ] { :max 1}.
≤ ≤

= = ∈ >0 0x x yE E i

i d
ix

 

Assume there exists a Radon measure ν  on E  (i.e. a Borel measure that is finite on 

compact sets) such that 

( )
( )

[ ]( )
[ ]( ) [ ]( )

1

1t

1
lim lim

1

−

−→∞ →∞

∈−
= = ν

− ∈

c

t

P tF t
F t P t

0,
0,

1 0,1

c

c

X xx
x

X
                          ( )4.2  

holds for all ∈Ex , which are continuity points of the function [ ]( )ν c·0, . One can show that 

the above definition ( )4.2  implies that ν  has a homogeneity property; i.e. there exists some 

0α > such that  

[ ]( ) [ ]( )−αν = νc cssx x0, 0, ,   0>s ,               ( )4.3  

and we say that F is multivariate regularly varying with index −α  ( )−α∈F R . Condition 

( )4.2 also says that ( )F t1  as a function of t  is in −αR . Define now ( )b t  to satisfy 

( )( ) 1~ −F b t t1  as →∞t .  Then, replacing t  by ( )b t  in ( )4.2  yields 
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( ) [ ] [ ]( )lim , ,

→∞
∈

⎛ ⎞
⎟
⎠

ν⎜ =⎟⎜
⎝t

tP
b t

c cx xX 0 0 .                      ( )4.4  

In ( )4.4  the random variable X  is normalised by the function ( )⋅b . As explained in 

Resnick (2007), Section 6.5.6, normalisation of all components by the same function ( )·b  

implies that the marginal tails of X  satisfy for { }, 1, ,∈ …i j d  

( )
( )x

lim
→∞

=i i

j j

F x c
F x c

,  

where [ ), 0,∈ ∞i jc c . Assuming 0>1c we set w.l.o.g. 1=1c . Then we can also choose 

( )b t such that for →∞t  

                              ( )( ) ( ) ( )1
1

1

1~ ~
←

− ⎛ ⎞
⇔ ⎜ ⎟

⎝ ⎠
F b t t b t t

F
                                  ( )4.5  

and, by substituting in ( )4.4 , we obtain a limit on the left-hand side of  ( )4.4  with the same 

scaling structure as before. 

 To formulate analogous definitions for Lévy measures note first that we can rewrite 

( )4.2 by means of the distribution of X  as: 

[ ]( )
[ ]( ) [ ]( )lim

→∞
= ν

c

c

ct

P t

P t

X

X

x
x

0,
0,

0,1
. 

and, similarly, ( )4.4  as 

( )[ ]( ) ( )( ) [ ]( )cc c

t t
lim lim , ,
→∞ →∞

= = ν⎡ ⎤⎣ ⎦tP b t tP b tX Xx x x0, 0 0            ( )4.6  

Then, the analogue expression to ( )4.2  for a Lévy measure Π  is simply  
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[ ]( )
[ ]( )

{ }( )
{ }( ) [ ]( )

c

c1 1
ct t

1

:  or  or 
lim lim

:
 

 or  or →∞ →∞

Π Π ∈ > >
= =ν

Π ∈ > >Π

x
x

y
y

d d

d

t y tx y tx
y t y tt

0,
0,

0,1

E
E

           ( )4.7  

for all ∈Ex , which are continuity points of the function [ ]( ),ν ⋅ c0 . Summarising what we 

have so far yields the following definition of multivariate regular variation for Lévy measures, 

now formulated in analogy to ( )4.4  or ( )4.6 , respectively:  

 

Definition 4.5. [Multivariate regular variation for spectrally positive Lévy processes] 

Let Π  be a Lévy measure of a spectrally positive Lévy process on  E . Assume that there 

exists a function ( ) ( ): 0, 0,∞ → ∞b  satisfying ( ) → ∞b t as →∞t  and a Radon measure ν  on 

E  such that  

( )( ) [ ]( )t
lim ,
→∞

Π = ν⎡ ⎤⎣ ⎦t b t0, 0
c cx x                                     ( )4.8  

holds for all ∈Ex  which are continuity points of the function [ ]( ),ν ⋅0 c . Then ν  satisfies the 

homogeneity property  

[ ]( ) [ ]( ), , , s 0−αν = ν >0 0c cx xs s  

for some 0α >  and the Lévy measure Π  is called multivariate regularly varying with index 

−α  ( )−αΠ∈R .  

As before in the case of a regularly varying random vector X , we assume that in ( )4.8  

we can choose one single scaling function ( )⋅b , which applies to all marginal tail measures. In 

analogy to ( )4.5  we can therefore set  

( )( ) ( ) ( )1
1

1

1~ ~ ,
←

− ⎛ ⎞
Π ⇔ →∞⎜ ⎟Π⎝ ⎠

b t t b t t t .           ( )4.9  
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As explained above, normalisation of all components by the same function ( )⋅b  implies that 

the marginal tail measures satisfy for { }, 1, ,∈ …i j d  

( )
( ) [ )

x
lim , , 0,
→∞

Π
= ∈ ∞

Π
i i

i j
j j

x c c c
x c

.                                   ( )4.10  

As we have already said, multivariate regular variation is just a special way of describing 

dependence between multivariate heavy-tailed measures. Therefore it is natural to ask, under 

which conditions a given Pareto Lévy copula is in line with multivariate regular variation. 

Starting with a multivariate tail measureΠ , we know from Lemma 2.3 that we can derive its 

Pareto Lévy copula Ĉ  by normalising the marginal Lévy measures to standard 1-stable 

marginal Lévy processes, i.e. 

                                         1 1( ) ( ) ( ) , [0, ) ( )←Π Π
Π

→ Γ = = ∈ ∞i i i
i

x x x x
x

.          ( )4.11  

We now consider the question under which conditions the resulting multivariate tail measure 

Γ  of a standardised 1-stable Lévy process corresponds to a multivariate regularly varying 

Lévy measure Γ  (automatically with index 1− ).  

 

Example 4.6. [Pareto Lévy copula and multivariate regular variation]. 

Let 1 2( , ), 0= ≥X t t tX X t , be a spectrally positive Lévy process with  Lévy measure Π  on 

[ )0,∞ d . Transforming the marginal Lévy measure by (1 / ) ( )←Πi x , we obtain the Pareto Lévy 

copula ( ) ( )1 2 1 2
ˆ , [ , ) [ , )= Γ ∞ × ∞C x x x x of  ( )t 0≥tX .  
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 From ( )4.11  we know that, if Γ  is regularly varying, then with index 1− , and, 

therefore, we set ( ) =b t t . Obviously, for ( ) =b t t  we are in the standard case and all marginals 

are standard Pareto distributed with 1α = . Then, because in general we have  

                  ( ) ( ) ( ) ( )1 2 1 1 2 2 1 2, , ,⎛ ⎞⎡ ⎤⎜ ⎟⎣ ⎦⎝ ⎠
Π = Π + Π −Π0

c
x x x x x x ,  1 2( , )∈x x E ,          ( )4.12  

we immediately get for the left-hand side of ( )4.8  for the transformed Lévy measure Γ   

( ) ( )c

1 2 1 2
1 2

1 1 ˆ, ( , ) ,Γ = + −⎡ ⎤⎣ ⎦t tx tx t C tx tx
x x

0 . 

For bivariate regular variation with index 1− , the right-hand side above must converge 

for →∞t  to a Radon measure ν  on E , more precisely, 

( ) ( )c

1 2 1 2
1 2

1 1 ˆ , , ( , )+ − → ν ⎡ ⎤⎣ ⎦tC tx tx x x
x x

0  

with  

( ) ( )
c c

1
1 2 1 2, , , , 0,−ν = ν⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝

>
⎠

sx sx s x x s0 0 . 

This is clearly the case if the Lévy Pareto copula Ĉ  is homogenous of order -1 and, more 

generally, if there is a Radon measure µ  such that  

( ) ( ) ( )
c

1 2 1 2 1 2t
ˆlim , , , ,,

→∞

⎛ ⎞⎡ ⎤⎜ ⎟
⎠

∈⎣ ⎦⎝
= µ 0tC tx tx x x x x E . 

A more general result is the following, which links multivariate regular variation to the 

dependence concept of a Pareto Lévy copula. 

 

Theorem 4.7 (Böcker and Klüppelberg (2006), Theorem 3.16) 
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Let Π  be a multivariate tail measure of a spectrally positive Lévy process on E .Assume that 

the marginal tail measures Πi  are regularly varying with index −α  for some 0α > . Then the 

following holds. 

(1) The Lévy measure Π  is multivariate regularly varying with index −α  if and only if 

the standardised Lévy measure Γ  is regularly varying with index 1− .  

(2)  If the Pareto Lévy copula Ĉ  is homogeneous of order -1 and 0 2< α < , then Ĉ  is the 

Lévy measure of a multivariate α -stable process.  

 

Example 4.8  [Visualisation of the Clayton Pareto Lévy copula]. 

Recall the Clayton Lévy copula ( ) ( ) 1/

1 2 1 2
ˆ ,

−
= +x x x xC

θθ θ  for 1 2, 0>x x . From Definition 2.2 

we know that   

( ) [ ) [ )( ) ( )1 2 1 2 1 2,ˆ , , , ,= Γ ∞ × ∞ ∈x x x x xC x E , 

and the corresponding marginal processes have been standardised to be 1-stable Lévy 

processes. Since Ĉ  is homogeneous of order -1, we know from Theorem 4.7 that the bivariate 

Lévy process is a 1-stable process. We can also conclude that, if the marginal Lévy tail 

measures 1Π  and 2Π  before standardising the marginals were regularly varying with some 

index −α , then the Lévy measure Π  was bivariate regularly varying tail with index −α . 

Note also that  

[ ]( ) ( ) ( ) ( )
1/

c
1 1 2 2 1 2

1 2 1 2

1 1 1 1, ˆ .

−− −⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
Γ = Γ + Γ − = + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
x x C x x

x x x x

θθ θ

0, x  
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The homogeneity can be used as follows to allow for some visualisation of the dependence.  

We transform to polar coordinates by setting 1 cos=x r φ  and 2 sin=x r φ  for 

1 2
2 2= = +r x x x  and [ ]0, / 2∈ πφ . From the homogeneity property it follows  

[ ]( ) ( )
cc 1 cos ,sin : ( , )− ⎛ ⎞⎡ ⎤Γ = Γ = Γ⎜ ⎟⎣ ⎦⎝ ⎠

0, 0,x r rφ φ φ . 

This is depicted in Figure 3 where ( ),Γ r φ  is plotted for 1=r  as a function of φ , and thus the 

Clayton dependence structure is plotted as a measure on the quatercircle.  

 

 

Figure 3a and 3b about here 

 

 

Figure 3: Plot of the Pareto Lévy copula in polar coordinates ˆ ( , ) ( , )= ΓC r rφ φ as a function of 

the angle ( )0, / 2∈ πφ  for =1r  and different values for the dependence parameter. 

Left Plot: 1,8=θ (dotted line), 0,7=θ (dashed line), 0,3=θ  (solid line). 

Right Plot: 2,5=θ  (solid line), 5=θ (dashed line), 10=θ (dotted line), and = ∞θ (complete 

positive dependence, long-dashed line). 

It is worth mentioning that all we have said so far about multivariate regular variation 

of Lévy measures holds true for general spectrally positive Lévy processes. We now turn back 

again to the problem of calculating total OpVaR and consider a multivariate compound 

Poisson process, whose Lévy measure Π  is multivariate regularly varying according to ( )4.8 . 

In particular, this implies tail equivalence of the marginal Lévy measures, and we can write 

( )4.10  with some (0, )∈ ∞ic  as  
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( )
( )

( )
( )1 1 1 1

: lim
 

:
→∞

Π
Π

= = =i i i i
i ix

x x
c c

x x
F
F

λ λ
λ λ

                          ( )4.13  

i.e.  ( ) ( )lim /→∞ =x i 1 ix xF cF . We avoid, situations, where for some i  we have 0=ic , 

corresponding to cases in which for →∞x  the tail measure ( )Πi x  decays faster than α−x , 

i.e. in ( )4.13  we only consider the heaviest tail measures, all of tail index −α . This makes 

sense, because we know from our discussion at the beginning of this section that only the 

heaviest-tailed risk cells contribute to total OpVaR, see Theorem 4.1.  

When calculating total aggregated OpVaR, we are interested in the sum of these tail 

equivalent, regularly varying marginals, i.e. we have to calculate the tail measure  

( ) i
i 1

: , 0. +

=

⎛ ⎞⎧ ⎫
Π = Π ∈ > >⎨ ⎬⎜ ⎟

⎩ ⎭⎝ ⎠
∑

d

z x z zx E  

Analogously to Resnick (2007), Proposition 7.3, p. 227, the tail measure +Π  is also regularly 

varying with index −α , more precisely we have  

      ( )( )
d

1 1

lim : z : 1 : (1, ]+ −α − +α

→∞

⎧ ⎫ ⎧ ⎫
Π =ν ∈ > = ν ∈ > = ν ∞⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
∑ ∑

d

i it i= i=

t x zxb t z zx xE E .     ( )4.14  

Now, let us choose the scaling function ( )b t  so that ( )( ) 1
1 ~ −Π b t t . Then we have  

( )
( )

( )( )
( )( ) ( ]

z t
1 1

lim lim 1,
++

+

→∞ →∞

ΠΠ
= = ν ∞

Π Π

tz
z b tt

b t
. 

This implies the following result for aggregated OpVaR.  

 

Theorem 4.9 (Böcker and Klüppelberg (2006), Theorem 3.18). 

Consider a multivariate compound Poisson model ( )1 , 0= ≥X d
t t tX ,...,X t , with multivariate 

regularly varying Lévy measure Π  with index −α  and limit measure ν  in ( )4.8 . Assume 
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further that the severity distributions iF  for 1, ,= …i d  are strictly increasing and continuous. 

Then ( )
0

+

≥t t
X  is a compound Poisson process with parameters satisfying for →∞z  

           ( ) ( ] ( )1 1~ 1,  + + +
−αν ∞ ∈λ λF z F z R ,                      ( )4.15  

where ( ]
1

1, : 1+

=

⎧ ⎫
ν ∞ = ν ∈ >⎨ ⎬

⎩ ⎭
∑

d

i
i

xEx . Furthermore, total OpVaR is asymptotically given by  

 ( ) ( ]1
1

1OpVaR ~ 1 , 1
1,

←
+

− κ
κ − κ ↑

ν

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠∞t t

F
λ

.          ( )4.16  

We notice that for the wide class of regularly varying distributions, total OpVaR can 

effectively be written in terms of the severity distribution of the first cell. Specifically, the 

right-hand side of (4.16) can be understood as the stand-alone, asymptotic OpVaR of the first 

cell with an adjusted frequency parameter, namely 1 (1, ]+ν ∞λ . What remains is to find 

examples, where ( ]1,+ν ∞  can be calculated analytically or numerically to understand better 

the influence of certain dependence parameter. 

 Revisiting the case of independent operational risk cells 

Before we present some explicit results for the Clayton Pareto Lévy copula below, let us 

consider again the particularly easy case with independent cells. Since then all mass is on the 

positive axes, we obtain  

( ] ( ] ( ]11, 1, 1,+ν ∞ = ν ∞ + + ν ∞d .                      ( )4.17  

From ( )( ) 1
1 b ~ −Π t t  as →∞t  it follows for the tail measure of the first cell  

  ( )( ) ( ]1 1t
lim ,−α

→∞
Π = = ν ∞t b t z z z .                      ( )4.18  

For 2, ,= …i d we obtain by using ( )4.13  
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          ( )( ) ( )( )
( )( )

( )
( )

( )
( ) ( ]

t u
1

t
1

lim lim lim z ,−α

→∞ →∞ →∞

Π Π Π
Π = = = = ν ∞

Π ΠΠ
i i i

i i i
i

b t z uz u
t b t c z

u ub t
,         ( )4.19  

and, therefore, altogether ( ] 2
1, 1+

=
ν ∞ = +∑d

ii
c . By ( )4.15  together with 1 =i i ic cλ λ  we finally 

recover the result of Theorem 4.4. 

 

Two explicit results for the Clayton Lévy copula 

Let us consider a bivariate example where the marginal Lévy measures are not independent, 

and thus the limit measure ( , ]+ν ∞z  is not just the sum of the marginal limit measures as in 

( )4.17 . Instead, ( ],+ν ∞z   has to be calculated by taking also mass between the positive axes 

into account, which can be done by representing  ( ]z,+ν ∞  as an integral over a density.  

First, note that from ( )4.12  together with ( )4.18  and ( )4.19 , it follows in the case of a 

Pareto Lévy copula that for all 1 2( , )∈x x E   

( ) ( )c 1/

1 2 1 2 2 1 2 2, ( , )
−−α −α α − αν = + − +⎡ ⎤⎣ ⎦0 x x x c x x c x

θθ θ θ , 

which after differentiating yields  

( ) ( ) ( )( ) 1/ 2
2 (1 ) 1 1

1 2 2 1 2 2 1, 1 1 c / .
− −αθ− −α + − α − −′ν = α + +x x c x x x x

θ
θ θ θ θθ  

Hence, we can calculate  

( ] ( ] [ ]( ) ( )
1

1

1 2 1 20 1
1, 1, 0, ,

∞+

−
′ν ∞ = ν ∞ × ∞ + ν∫ ∫ x

x x dx dx  

 

           ( ) 1/ 11 1 1
2 1 1 10

1 1 c 1( ) − −
− − α − −α= + −α+ ∫

θ
θ θx x dx  

and, by substitution 1
1 1−= −u x , we obtain  
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( ] ( ) 1/ 1 1
20

1, 1 1 (1 )
∞ − −+ − −ααν ∞ = + α + +∫ c u u du

θθ θ  

     ( ) 1/ 11/ 1/ 1/ 1
2 20

1 1 ( )
∞α α α α− − − −= + + +∫c s s c ds

θθ  

     ( )2

11/ 1/ 1/
21

−αα α α−⎡ ⎤= + +⎢ ⎥⎣ ⎦
c E c Yθ              ( )4.20  

where Yθ  is a positive random variable with density ( ) ( ) 1/ 1
1

− −
=g s + s

θθ , independent of all 

parameters but the Pareto copula parameter θ . 

 

Example 4.10.  (a) For 1α =  we have ( ] 21, 1+ν ∞ = + c , which implies that, regardless of 

the dependence parameter θ , total OpVaR for all 0 < < ∞θ  is asymptotically equal to the 

independent OpVaR.   

(b) If 1α =θ ,  then  

( ]
1 1/
2

1/
2

11,
1

+ α
+

α

−
ν ∞ =

−
c
c

, 

with 2 2 1 2( / ) =c cλ λ  as defined in ( )4.13 . 

 

 

Figure 4 about here 

 

 

Figure 4: Illustration of the tail measure ( ]1,+ν ∞  as a function of α  for different values of θ . 

We have chosen 0.3=θ (light dependence, solid line), 1=θ (medium dependence, dashed 

line), and 10=θ (strong dependence, dotted-dashed line). Morover, the long-dashed line 

corresponds to the independent case. 
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Figure 4 illustrates the tail measure ( ]1,+ν ∞  as given in ( )4.20  for different values of 

θ  and α . Note that according to ( )4.16 , OpVaR increases with  ( ]1,+ν ∞ . Hence, Figure 4 

shows that in the case of 1α > , a higher dependence (i.e. a higher number of joint losses in the 

components) leads to a higher OpVaR, whereas for 1α < , it is the other way around: a lower 

dependence (i.e. a lower number of joint losses in the components) leads to a higher OpVaR. 

This again shows, how things may go awry for extremely heavy-tailed distributions. Due to 

the non-convexity of the OpVaR for 1α <  diversification is not only not present, but the 

opposite effect occurs. Finally, note that for →∞θ , independence occurs and 

( ] 21, 1+ν ∞ = + c  is constant as indicated by the horizontal long-dashed line in Figure 4. 

 

Disclaimer 

The opinions expressed in this article are those of the authors and do not necessarily reflect the 

views of UniCredit Group. Moreover, presented measurement concepts are not necessarily 

used by UniCredit Group or any affiliates 
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