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Summary. Gaussian ARMA processes with continuous time parameter, otherwise
known as stationary continuous-time Gaussian processes with rational spectral den-
sity, have been of interest for many years. (See for example the papers of Doob
(1944), Bartlett (1946), Phillips (1959), Durbin (1961), Dzhapararidze (1970,1971),
Pham-Din-Tuan (1977) and the monograph of Araté (1982).) In the last twenty
years there has been a resurgence of interest in continuous-time processes, partly as
a result of the very successful application of stochastic differential equation models
to problems in finance, exemplified by the derivation of the Black-Scholes option-
pricing formula and its generalizations (Hull and White (1987)). Numerous examples
of econometric applications of continuous-time models are contained in the book of
Bergstrom (1990). Continuous-time models have also been utilized very successfully
for the modelling of irregularly-spaced data (Jones (1981, 1985), Jones and Acker-
son (1990)). Like their discrete-time counterparts, continuous-time ARMA processes
constitute a very convenient parametric family of stationary processes exhibiting a
wide range of autocorrelation functions which can be used to model the empirical
autocorrelations observed in financial time series analysis. In financial applications
it has been observed that jumps play an important role in the realistic modelling of
asset prices and derived series such as volatility. This has led to an upsurge of inter-
est in Lévy processes and their applications to financial modelling. In this article we
discuss second-order Lévy-driven continuous-time ARMA models, their properties
and some of their financial applications, in particular to the modelling of stochas-
tic volatility in the class of models introduced by Barndorff-Nielsen and Shephard
(2001) and to the construction of a class of continuous-time GARCH models which
generalize the COGARCH(1,1) process of Klippelberg, Lindner and Maller (2004)
and which exhibit properties analogous to those of the discrete-time GARCH(p.q)
process.
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1. Introduction

In financial econometrics, many discrete-time models (stochastic volatility,
ARCH, GARCH and generalizations of these) are used to model the returns at
regular intervals on stocks, currency investments and other assets. For example
a GARCH process (&), is frequently used to represent the increments,
InP, —In P, 1, of the logarithms of the asset price P, at times 1,2,3,....
These models capture many of the so-called stylized features of such data, e.g.
tail heaviness, volatility clustering and dependence without correlation.

Various attempts have been made to capture the stylized features of finan-
cial time series using continuous-time models. The interest in continuous-time
models stems from their use in modelling irregularly spaced data, their use
in financial applications such as option-pricing and the current wide-spread
availability of high-frequency data. In continuous-time it is natural to model
the logarithm of the asset price itself, i.e. G(t) = In P(¢), rather than its
increments as in discrete time.

One approach is via the stochastic volatility model of Barndorff-Nielsen
and Shephard (2001) (see also Barndorff-Nielsen et al. (2002)), in which the
volatility process V and the log asset price G satisfy the equations (apart from
a deterministic rescaling of time),

(1.1) dV (t) = —AV(t)dt + dL(t),
(1.2) dG(t) = (v + BV (t))dt + /V (£)dW (t) + pdL(¢),

where A > 0, L = (L(t))te]R+ is a non-decreasing Lévy process and W =
(W(t)) teR, is standard Brownian motion independent of L. The volatility
process V is taken to be a stationary solution of (1.1), in other words a
stationary Lévy-driven Ornstein-Uhlenbeck process or a continuous-time au-
toregression of order 1. The background driving Lévy process L introduces
the possibility of jumps in both the volatility and the log asset processes,
a feature which is in accordance with empirical observations. It also allows
for a rich class of marginal distributions, with possibly heavy tails. The au-
tocorrelation function of the process V' is p(h) = exp(—A|h|). For modelling
purposes this is quite restrictive, although the class of possible autocorrela-
tions can be extended to a larger class of monotone functions if V' is replaced
by a superposition of such processes as in Barndorff-Nielsen (2001). However,
as we shall see, a much wider class of not necessarily monotone autocorre-
lation functions for the volatility can be obtained by replacing the process
Vin (1.1) and (1.2) by a Lévy-driven continuous-time autoregressive moving
average (CARMA) process as defined in Section 2. This class of processes
constitutes a very flexible parametric family of stationary processes with a
vast array of possible marginal distributions and autocorrelation functions.
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Their role in continuous-time modelling is analogous to that of autoregressive
moving average processes in discrete time. They belong to the more general
class of Lévy-driven moving average process considered by Fasen (2004).

A continuous-time analogue of the GARCH(1,1) process, denoted COG-
ARCH(1,1), has recently been constructed and studied by Kliippelberg et
al. (2004). Their construction is based on an explicit representation of the
discrete-time GARCH(1,1) volatility process which they use in order to obtain
a continuous-time analogue. Since no such representation exists for higher-
order discrete-time GARCH processes, a different approach is needed to con-
struct higher-order models in continuous time. The Lévy-driven CARMA pro-
cess plays a key role in this construction.

The present paper deals with second-order Lévy-driven continuous-time
ARMA (denoted CARMA) processes, since for most financial applications
processes with finite second moments are generally considered adequate.
(Analogous processes without the second-order assumption are considered
in Brockwell (2001).) In Section 2 we review the definition and properties,
deriving the kernel and autocovariance functions, specifying the joint charac-
teristic functions and discussing the issue of causality. Under the assumption
of distinct autoregressive roots, some particularly tractable representations of
the kernel, the autocovariance function and the process itself are derived. The
question of recovering the driving process from a realization of the process on
a (continuous) interval [0,T] is also considered.

Section 3 considers connections between continuous-time and discrete-time
ARMA processes.

In Section 4 we indicate the applications of CARMA processes to the
modelling of stochastic volatility in the Barndorff-Nielsen-Shephard stochastic
volatility model and in Section 5 their role in the construction of COGARCH
models of order higher than (1,1).

Section 6 deals briefly with the well-established methods of inference for
Gaussian CARMA processes and the far less developed question of inference
for more general Lévy-driven processes.

Before proceeding further we need a few essential facts regarding Lévy pro-
cesses. (For a detailed account of the pertinent properties of Lévy processes see
Protter (2004) and for further properties see the books of Applebaum (2004),
Bertoin (1996) and Sato (1999).) Suppose we are given a filtered probability
space (£2,F, (Fi)o<t<oo, P), where Fy contains all the P-null sets of F and
(F) is right-continuous.

Definition 1 (Lévy Process). An adapted process {L(t),t > 0} is said to
be a Lévy process if

(i) L(0) =0 a.s.,

(ii) L(t) — L(s) is independent of F, 0 < s < t < 00,

(iii) L(t) — L(s) has the same distribution as L(t — s) and

(iv) L(t) is continuous in probability.
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Every Lévy process has a unique modification which is cadlag (right con-
tinuous with left limits) and which is also a Lévy process. We shall therefore
assume that our Lévy process has these properties. The characteristic function
of L(t), ¢:(8) := E(exp(i#L(t))), has the Lévy-Khinchin representation,

(1.3) ¢e(0) = exp(t£(0)), 0 € R,

where

(1.4) &(0) =ibm — %0252 + / (el —1 — 1201 |)<1})v(d),
0

for some m € R, s > 0, and measure v on the Borel subsets of Ry = R\{0}.
v is known as the Lévy measure of the process L and satisfies the condi-
tion [R min(1,|ul*)v(du) < oo. If v is the zero measure then {L(t)} is
Brownian motion with E(L(t)) = mt and Var(L(t)) = s*t. If m = s2 = 0
and v(Rgp) < oo, then L(t) = at + P(t), where {P(¢)} is a compound
Poisson process with jump-rate v(Rg), jump-size distribution v/v(Ryg), and
a=— fRo oz v(du). A wealth of distributions for L(#) is attainable by suit-
able choice of the measure v. See for example Barndorff-Nielsen and Shephard
(2001). For the second-order Lévy processes (with which we are concerned in
this paper), E(L(1))? < oo. To avoid problems of parameter identifiability
we shall assume throughout that L is scaled so that Var(L(1)) = 1. Then
Var(L(t)) = ¢ for all ¢ > 0 and there exists a real constant p such that
EL(t) = ut for all t > 0. We shall then refer to the process L as a standard-
ized second-order Lévy process, written henceforth as SSLP.

2. Second-order Lévy-driven CARMA Processes

A second-order Lévy-driven continuous-time ARMA(p,q) process, where p
and ¢ are non-negative integers such that ¢ < p, is defined (see Brockwell
(2001)) via the state-space representation of the formal equation,

(2.1) a(D)Y (t) = ob(D)DL(t), t >0,

where o is a strictly positive scale parameter, D denotes differentiation with
respect to t, {L(t)} is an SSLP,

a(z) =2 + a1 2Pt + -+ ap,

b(Z) = b[) —+ blz + -4 bp,lzpfl,

and the coefficients b; satisfy by = 1 and b; = 0 for ¢ < j < p. The behaviour
of the process is determined by the process L and the coefficients {a;,1 < j <
p; b;,0 < j <gq; o}. In view of the scale parameter, o, on the right-hand side
of (2.1), there is clearly no loss of generality in assuming that Var(L(1)) = 1,
i.e. that L is an SSLP as defined at the end of Section 1. To avoid trivial and
easily eliminated complications we shall assume that a(z) and b(z) have no
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common factors. The state-space representation consists of the observation
and state equations,

(2.2) Y (t) = ob'X(t),

and

(2.3) dX(t) — AX(t)dt = e dL(t),

where
0 1 0 0 0 bo
0 0 1 0 0 b1

A = s e — y b =
0 0 0 1 0 by_»
—Qp —Qp—1 —Ap_—2 -+ —QA1 1 bp,1

(If p =1, A is defined to be —a;.) In the special case when {L(t)} is stan-
dard Brownian motion, (2.3) is an Ito equation with solution {X(¢),t > 0}
satisfying

t
(2.4) X (t) = e*X(0) + / eAMte dL(u),
0

where the integral is defined as the L? limit of approximating Riemann-
Stieltjes sums S,, corresponding to the partition of the interval [0,¢] by the
points {k/2", k € Z,0 < k < 2"t} and {t}. If L is any second-order Lévy pro-
cess the integral is defined in the same way. The continuous differentiability of
the integrand in (2.4) implies that the sequence {S,} converges geometrically
in L? and hence almost surely to the same limit. In fact the integral in (2.4) is
a special case (with deterministic and continuously differentiable integrand)
of integration with respect to a semimartingale as discussed in the book of
Protter (2004). From (2.4) we can also write

t

(2.5) X(t) = eME3X(s) +/ eAt=%e dL(u), forallt>s >0,
s

which clearly shows (by the independence of increments of {L(t)}) that {X(¢)}

is Markov. The following propositions give necessary and sufficient conditions

for stationarity of {X(t)}.

Proposition 1 If X(0) is independent of {L(t),t > 0} and E(L(1)?) < oo,
then {X(¢)} is weakly stationary if and only if the eigenvalues of the matrix
A all have strictly negative real parts and X(0) has the mean and covariance
matrix of [[* e%e dL(u), i.e. —A"lep and [~ e?Ve e'e'vdy respectively.

Proof. The eigenvalues of A must have negative real parts for the sum of
the covariance matrices of the terms on the right of (2.4) to be bounded
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in ¢. If this condition is satisfied then {X(t)} converges in distribution as
t — oo to a random variable with the distribution of fooo e e dL(u). Hence,
for weak stationarity, X(0) must have the mean and covariance matrix of
fooo e%e dL(u). Conversely if the eigenvalues of A all have negative real parts
and if X(0) has the mean and covariance matrix of [~ e*“e dL(u), then a

simple calculation using (2.4) shows that {X(t)} is weakly stationary.

Proposition 2. If X(0) is independent of {L(t),t > 0} and E(L(1)?) <
oo, then {X(t)} is strictly stationary if and only if the eigenvalues of the

matrix A all have strictly negative real parts and X(0) has the distribution
of [ e e dL(u).

Proof. Necessity follows from Proposition 1. If the conditions are satisfied then
strict stationarity follows from the fact that {X(¢)} is a Markov process whose
initial distribution is the same as its limit distribution.

Remark 1. It is convenient to extend the state process {X(t),t > 0} to a
process with index set (—o0,00). To this end we introduce a second Lévy
process {M(t),0 < t < oo}, independent of L and with the same distribution,
and then define the following extension of L:

L*(t) = L(t)[[[)’()o) (t) - M(—t—)l(,oop] (t), —00 <t < 0.

Then, provided the eigenvalues of A all have negative real parts, the process
{X(t)} defined by

(2.6) X(t) = / t eAt=Ye dL*(u),

— 00

is a strictly stationary process satisfying (2.5) (with L replaced by L*) for all
t > s and s € (—00,00). Henceforth we shall refer to L* as the background
SSLP and denote it for simplicity by L rather than L*.

Remark 2. It is easy to check that the eigenvalues of the matrix A, which
we shall denote by Ay, ..., A,, are the same as the zeroes of the autoregressive
polynomial a(z). The corresponding right eigenvectors are

[LA; A2 AT i=1,...,p,

We are now in a position to define the CARMA process {Y (t), —o0o < t < o0}
under the condition that

(2.7) Re(N;) <0, j=1,...,p.

Definition 2 (Causal CARMA Process). If the zeroes Ai,..., A, of the
autoregressive polynomial a(z) satisfy (2.7), then the CARMA(p, q¢) process
driven by the SSLP {L(t),—o0 < t < oo} with coefficients {a;,1 < j <
p; b;,0<j < gq; o} is the strictly stationary process,
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Y (t) = ob'X(t),

where .
X(#) = / eAt=1g qL(u),
i.e.
t
(2.8) Y(t)=0 / b'eAt%e dL(u).

Remark 3 (Causality and Non-causality). Under Condition (2.7) we see
from (2.8) that {Y(¢)} is a causal function of {L(¢)}, since it has the form

(2.9) Y (t) = /jo o(t — ) dL(u),

where

ob'edte ift >0,
(2.10) o(t) =

0 otherwise.

The function g is referred to as the kernel of the CARMA process {Y'(¢)}.
Under the condition (2.7), the function g defined by (2.10) can be written as

o [ 4 b(EN)
2.11 t)=— AL N,
(2.11) 9(t) 27 [00 ¢ a(iN)
(To establish (2.11) when the eigenvalues A1, ..., A, are distinct, we use the

explicit expressions for the eigenvectors of A to replace e in (2.10) by its
spectral representation. The same expression is obtained when the right side
of (2.11) is evaluated by contour integration. When there are multiple eigen-
values, the result is obtained by separating the eigenvalues slightly and taking
the limit as the repeated eigenvalues converge to their common value.) It is of
interest to observe that the representation (2.9) and (2.11) of {Y'(¢#)} defines
a strictly stationary process even under conditions less restrictive than (2.7),
namely

Re()\j) 750, jzl,...,p.

Thus (2.9) and (2.11) provide a more general definition of CARMA process
than Definition 2 above. However if any of the zeroes of a(z) has real part
greater than 0, the representation (2.9) of {Y(¢)} in terms of {L(¢)} will no
longer be causal as is the case when (2.7) is satisfied. This distinction between
causal and non-causal CARMA processes is analogous to the classification of
discrete-time ARMA processes as causal or otherwise, depending on whether
or not the zeroes of the autoregressive polynomial lie outside the unit circle
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(see e.g. Brockwell and Davis (1991)). From now on we shall restrict atten-
tion to causal CARMA processes, i.e. we shall assume that (2.7) holds,
so that the general expression (2.11) for the kernel g can also be written in
the form (2.10). However both forms of the kernel will prove to be useful.

Remark 4 (Second-order Properties). From the representation (2.8) of
a causal CARMA process driven by the SSLP L with EL(1) = p, we imme-
diately find that

EY (t) = —ob'A tep

and
(2.12) v(h) := cov(Y (t + h),Y (t)) = o*b’ M5 b,
where

o0
’
Y= / ee e'eVdy.
0

From the representation (2.9) of Y (¢) we see that v can also be expressed as
1) = cov(¥ (¢ + 1Y () = [ (A~ wglu)du,

where g(x) = g(—z) and g is defined in (2.11). Using the convolution theorem
for Fourier transforms, we find that

a(iw)

/ e~ why(h)dh = o®

—00

showing that the spectral density of the process Y is

(2.13) fw) =2

and the autocovariance function is

(2.14) ~v(h) o / 7 gwn | Biw)

= — dw.
27 J_o a(iw) ~

The spectral density (2.13) is clearly a rational function of the frequency w.
The family of Gaussian CARMA processes is in fact identical to the class of
stationary Gaussian processes with rational spectral density.

Remark 5 (Distinct Autoregressive Zeroes, the Canonical State
Representation and Simulation of V). When the zeroes Ai,...,\, of
a(z) are distinct and satisfy the causality condition (2.7), the expression for
the kernel g takes an especially simple form. Expanding the integrand in (2.11)
in partial fractions and integrating each term gives the simple expression,
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(2.15) 1) = 3 T o (),

[

r=

Applying the same argument to (2.14) gives a corresponding expression for
the autocovariance function, i.e.

(2.16) v(h) = cov(Yign,Y;) = o Z %e&hll

j=1

When the autoregressive roots are distinct we obtain a very useful repre-
sentation of the CARMA (p, ¢) process Y from (2.15). Defining

b(Ar)
(217) ar:Ua,(Ar)a T:]-)' » D,
we can write
p
(2.18) Y1) = S 1),
r=1
where
t
(2.19) Y, (t) = / o, e WAL (u).

This expression shows that the component processes Y, satisfy the simple
equations,

t
(2.20) Y, (t) = Y (s)er (=) +/ e VAL(), t>s, r=1,...,p.

S

Taking s = 0 and using Lemma 2.1 of Eberlein and Raible (1999), we find
that

t
(221)  Yo(t) = Vo (0)eM + ap L(t) + / e O L(w)du, ¢ >0,
0

where the last integral is a Riemann integral and the equality holds for all
finite t > 0 with probability 1. Defining

(2.22) Y (t) :=[Yi(t),..., Y, ()],
we obtain from (2.6), (2.15) and (2.19),
(2.23) Y (t) = cBR™'X(t),

where B = diag[b(\;)]}_; and R = [A;fl]p The initial values Y,.(0) in

i.j=1"
(2.21) can therefore be obtained from those of the components of the state
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vector X (0). The process Y provides us with an alternative canonical state
representation of Y (¢), ¢ > 0, namely

(2.24) Y(it)=1[1,...,1]Y(?)
where Y is the solution of
(2.25) dY (t) = diag[\]}_, Ydt + cBR'e dL.

with Y (0) = ¢ BR~1X(0).

Notice that the canonical representation of the process Y reduces the prob-
lem of simulating CARMA (p, ¢) processes with distinct autoregressive roots to
the much simpler problem of simulating the (possibly complex-valued) com-
ponent CAR(1) processes (2.19) and adding them together.

Example 1 (The CAR(1) Process). The CAR(1) (or stationary Ornstein-
Uhlenbeck) process satisfies (2.1) with b(z) = 1 and a(z) = z — X where A < 0.
From (2.15) and (2.16) we immediately find that g(h) = e*'Ijy «)(h) and
v(h) = o?e*"/(2|\]). In this case the 1 x 1 matrices B and R are both equal
to 1 so the (1-dimensional) state vectors X and Y are identical and the state-

space representation given by (2.2) and (2.3) is already in canonical form.
Equations (2.18) and (2.19) reduce to

Y(t) =Yi(t)

and .
Yi(t) = o / A= ()

— 00

respectively (since \; = A and a; = o).

Example 2 (The CARMA(2,1) Process). In this case b(z) = by + z,
a(z) = (z — A1)(z — A2) and the real parts of A\; and Ay are both negative.
Assuming that A\; # A2, we find from (2.15) that

g(h) = (e + a2€>\2h)I[0,oo)(h)

where o, = o(bp + A\-)/(Ar — A3—), ¥ = 1,2. An analogous expression for
~(h) can be found from (2.16). From (2.23) the canonical state vector is

_ @ _ o A2(bo+ A1) —(bo + M)
Y@ = {YQ(t)] A=A {—Al(bo+>\2) bo + A2

and the canonical representation of Y is, from (2.18) and (2.19),

X ()

Y (t) = Yi(t) + Ya(t)

where
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t
Y.(t) = / a,e L (u), r=1,2,

— 00

and a, = o(bg + \v) /(N — A3—p), 7 =1,2.

Remark 6 (The Joint Distributions). Since the study of Lévy-driven
CARMA processes is largely motivated by the need to model processes with
non-Gaussian joint distributions, it is important to go beyond a second-order
characterization of these processes. From Proposition 2 we already know that
the marginal distribution of Y (¢) is that of fo u)dL(u), where g is given by
(2.11) or, if the autoregressive roots are dlstlnct and the causality conditions
(2.7) are satisfied, by (2.15). Using the expression (1.3) for the characteristic
function of L(t), we find that the cumulant generating function of Y (¢) is

(2.26) log E(exp(i0Y (¢ / &(fg(u

showing that the distribution of Y'(¢), like that of L(t), is infinitely divisible.
In the special case of the CAR(1) process the distribution of Y'(¢) is also self-
decomposable (see Barndorff-Nielsen and Shephard (2001), Theorem 2.1, and
the accompanying references). More generally it can be shown (see Brock-
well (2001)) that the cumulant generating function of Y (¢1),Y (t2),...,Y (tn),
(tl < to <"'<tn) is

(2.27) log Elexp(if1Y (t1) + - - - 4+ i0,Y (t,,))] =

/Ooog (Zn:ﬁig(ti +u)> du+/ (Z@zg ) du +

/ (Z 0ig(t; ) dut+ [ £ (0ng(tn —u)) du.

tn—1

If {L(t)} is a compound Poisson process with finite jump-rate A and bilateral
exponential jump-size distribution with probability density f(z) = 1Be=7lel,
then the corresponding CAR(1) process (see Example 1) has marginal cumu-

lant generating function,
[ee]
= / &(Be™")du
0

where £(0) = A2 /(8> + 0%). Straightforward evaluation of the integral gives
2
k(0) = —QAln <1 + %) )

showing that Y (¢) has a symmetrized gamma distribution, or more specifically
that Y'(¢) is distributed as the difference between two independent gamma
distributed random variables with exponent A/(2¢) and scale parameter 3. In
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particular, if A = 2¢, the marginal distribution is bilateral exponential. For
more examples see Barndorff-Nielsen and Shephard (2001).

Remark 7 (Recovering the driving noise process). For statistical mod-
elling, one needs to know or to postulate an appropriate family of models for
the driving Lévy process L. It would be useful therefore to recover the real-
ized driving process, for given or estimated values of {a;,1 < j < p;b;,0 <
j < q;0}, from a realization of Y on some finite interval [0, T]. This requires
knowledge of the initial state vector X (0) in general, but if this is available (as
for example when a CARMA (p, 0) process is observed continuously on [0, T1]),
or if we are willing to assume a plausible value for X(0), then an argument
due to Pham-Din-Tuan (1977) can be used to recover {L(t),0 <t < T}. We
shall assume in this Remark that the polynomial b (as well as the polynomial
a) has all its zeroes in the left half-plane. This assumption is analogous to that
of invertibility in discrete time. Since the covariance structure of our Lévy-
driven process is exactly the same (except for slight notational changes) as
that of Pham-Din-Tuan’s Gaussian CARMA process and since his result holds
for Gaussian CARMA processes with arbitrary mean (obtained by adding a
constant to the zero-mean process) his L?-based spectral argument can be
applied directly to the Lévy-driven CARMA process to give, for t > 0,

(228) L) =0t [y () - YO (o)

- /Ot {zj: by X P9 (5) — ian(pj)(s)} ds,

where (=21 denotes the derivative of order p — g — 1 of the CARMA pro-
cess Y and X(@, ... X(®=1) are the components of the state process X (the
component X ) being the j* derivative of X(%)). X(¢) can be expressed in
terms of ¥ and X (0) by noting that (2.2) characterizes X (¥)as a CARMA (g, 0)
process driven by the process {o~! fot Y (s)ds}. Making use of this observa-
tion, introducing the ¢ x 1 state vector X, (t) := [X(©(¢),..., X~V (#)]" and
proceeding exactly as we did in solving the CARMA equations in Section 2,
we find that, for ¢ > 1,

t
(2.29) X, (t) = X,(0)eBt + o1 / eBtve Y (u)du,
0
where
0 1 0 0 0
0 0 1 0 0
B=1| 1 and e, = | : |,
0 0 0 - 1 0

—_

T e
with B := —bg if ¢ = 1, while for ¢ =0,
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(2.30) XO@) =o'V (1).

The remaining derivatives of X(© up to order p — 1 can be determined from
(2.29) or (2.30), completing the determination of the state vector X (¢). Having
recovered X(t), the SSLP is found from (2.28).

To illustrate the use of (2.28) and (2.29) or (2.30), we consider the CAR(1)
process of Example 1. In this case a(z) = z — A, b(z) = 1 and the (one-
dimensional) state vector is, from (2.30), X (t) = o¢~1Y(t). Substituting into
(2.28) gives

(2.31) Lt)=0"" {Y(t) -Y(0) — A/OtY(s)ds] :

It is easy to check directly that if V" is a Lévy-driven CARMA(1,0) process
with parameters a1(= —\) and ¢ and if L is the Lévy process defined by
(2.31), then

t
(2.32) Y (t) = Y(0)eM + 0/ AW AL(u),
0
since the last integral can be rewritten, by Lemma 2.1 of Eberlein and Raible
(1999), as o L(t) + o fot XMt I (u)du. Making this replacement and substi-
tuting from (2.31) for L, we see that the right-hand side of (2.32) reduces to
Y (¢).

In the case when the autoregressive roots are distinct, we can use the
transformation (2.23) to recover the canonical state process Y defined by
(2.19) and (2.22) from X. Then applying the argument of Pham-Din-Tuan to
the component processes Y, we obtain p (equivalent) representations of L(t),
namely

(233) L) =a.l |V.(t) —n(O)—Ar/Otn(s)ds] =1,

Although Pham-Din-Tuan’s result was derived with real-valued processes in
mind, it is easy to check directly, as in the CARMA(1,0) case, that if Y is a
Lévy-driven CARMA(p, ¢) process with parameters {a;,1 < j < p; b;,0 <
Jj < q; o} and L is the Lévy process satisfying the equations (2.33) with
possibly complex-valued Y, and A, then

t
Y, (t) = Y,.(0)eM? +/ e VALw), >0, r=1,...,p,
0
and these equations imply, with (2.23), that the state process X satisfies

t
X (t) = e*X(0) + / eAt=WedL(u), t > 0,
0

showing that ¥ = ob’X is indeed the CARMA (p, ¢) process with parameters
{aj,1<j<p;b;,0<j<gq; o} driven by L. Thus we have arrived at p very
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simple (equivalent) representations of the driving SSLP, any of which can be
computed from the realization of Y, the value of X(0) and the parameters
of the CARMA process. Of course for calculations it is simplest to choose a
value of r in (2.34) for which A, is real (if such an r exists).

3. Connections with Discrete-time ARMA Processes

The discrete-time ARMA(p,q) process {Y,} with autoregressive coeffi-
cients ¢1, ..., ¢p, moving average coeflicients 61, ...,6,, and white noise vari-
ance o3, is defined to be a (weakly) stationary solution of the " order linear
difference equations,

(3.1) (B)Y, =0(B)Zy, n=0,+1,+2, ...,

where B is the backward shift operator (BY,, = Y,—1 and BZ,, = Z,,_; for
all n), {Z,} is a sequence of uncorrelated random variables with mean zero
and variance o2 (abbreviated to {Z,,} ~ WN(0,03)) and

$(2) :=1— 1z —--- = hp2?,

0(z) =14 612+ -+ 0,27,

with 6, # 0 and ¢, # 0. We define ¢(z) := 1if p=0and #(z) := 1if ¢ = 0. We
shall assume that the polynomials ¢(z) and 6(z) have no common zeroes and
that ¢(z) = 1—¢12—---—pp2? is non-zero for all complex z such that |z| < 1.
This last condition guarantees the existence of a unique stationary solution
of (3.1) which is also causal, i.e. is expressible in the form Yy, = 372 ¢ Z,_;
for some absolutely summable sequence {t;}. It is evident from this repre-
sentation that the mean of the ARMA process defined by (3.1) is zero. The
process {Y,,} is said to be an ARMA(p, q) process with mean p if {Y;, — p} is
an ARMA (p, q) process. A more restrictive definition of ARMA process im-
poses the further requirement that the random variables Z,, be independent
and identically distributed, in which case we write {Z,} ~ IID(0,03). The
process {Y,} is then strictly (as well as weakly) stationary and we shall refer
to {Y,} as a strict ARMA process. If we impose the further constraint that
each Z,, is Gaussian, then we write {Z,,} ~ I[IDN(0,032) and refer to {Y,} as
a Gaussian ARMA process.

As one might expect, there are many structural similarities between
ARMA and CARMA processes. In the case when the polynomial ¢(z) has
distinct zeroes and ¢ < p, there is an analogue of (2.16) for the autocovari-
ance function of the ARMA process, namely

Y

J
1) ’

Y Athl( A0 h=0,£1,+£2
J

(3.2) —0? Z T

There is also a corresponding canonical representation analogous to that in
Remark 5 of Section 2. It takes the form (cf. (2.18) and (2.19)),
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(3.3) Yo=Y Y,

r=1
and
(34) Y;“,n: Z ﬁr&?ikzlm TZ]-:"')I)
k=—oc0
where £1, r =1,...,p, are the (distinct) zeroes of ¢(z), and
(&)
(35) ﬁ’l":_f’l" T, , r=1,...,p.
¢'(& )

From (3.4) we also obtain the relations (cf. (2.20)),
(36) Yin= grYr,n—l +BrZpn, n=0,£1,...5r=1,...,p.

Remark 8. When ¢ < p and the autoregressive roots are distinct, the equa-
tions (2.19) and (3.6) show that both the CARMA and ARMA processes can
be represented as a sum of autoregressive processes of order 1. Note however
that in both cases the component processes are not independent and are in
general complex valued.

Example 3 (The AR(1) Process). The defining equation (3.1) with ¢(z) =
1—¢&z and 6(z) = 1 is clearly already in canonical form and, since 8; = 1,
equations (3.3) and (3.4) take the form

Y, = }/1,n

n

(3.7) Yin= Y, %2,

k=—o00

Example 4 (The ARMA (2,1) Process). In this case ¢(z) = (1 —& 2)(1—
&z), where we assume that |[&1] < 1, |&| < 1 and & # &. The moving average
polynomial is #(z) = 1 + 6,z and the white noise variance is ¢2. From (3.5)
we find that

gr + 01

(38) /67‘ = m, r = 1,2

The canonical representation of the ARMA(2,1) process is thus

Yn - le,n + Yv2,n7
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where

n
(3.9) Yen=08 Y, & "%, r=12

k=—o00

with 8., r = 1,2, as defined in (3.7).

If YV is a Gaussian CARMA process defined as in Section 2 with stan-
dard Brownian motion as the driving process, then it is well-known (see e.g.
Doob (1944), Phillips (1959), Brockwell (1995)) that the sampled process
(Y(nd)),,cz with fixed 6 > 0 is a (strict) Gaussian ARMA(r, s) process with
0 < s < r <p and spectral density

(3.10 fsw) = f: S iy (0 N w+2km)), —T<w<m,

k=—o0

where fy(w), — oo < w < 00, is the spectral density of the original CARMA
process.

If L is non-Gaussian, the sampled process will have the same spectral den-
sity and autocovariance function as the process obtained by sampling a Gaus-
sian CARMA process with the same parameters, driven by Brownian motion
with the same mean and variance as L. Consequently from a second-order
point of view the two sampled processes will be the same. However, except in
the case of the CAR(1) process, the sampled process will not generally be a
strict ARMA process.

If Y is the CAR(1) process in Example 1, the sampled process is the strict
AR(1) process satisfying

(3.11) Y (nd) = eMY((n —1)0) + Z,, n=0,%1,...,
where

nd
(3.12) Zn=0 / A=W L ().

(n—1)6

The noise sequence {Z(n)} is ii.d. and Z(n) has the infinitely divisible dis-
tribution with log characteristic function f06 £(ofer)du, where £(8) is the log
characteristic function of L(1) as in (1.3). For the CARMA(p, ¢) process with
p > 1 the situation is more complicated. If the autoregressive roots Ay, ..., A,
are all distinct, then from (2.18) and (2.19) the sampled process {Y (nd)} is
the sum of the strict AR(1) component processes {Y,(nd)}, r =1,...,p, sat-
isfying
Y, (nd) = e*0Y,((n — 1)8) + Z,(n), n=0,+1,...,

where

néd
Z0(n) = ar / =0 (y),
(n—1)8
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and «, is given by (2.17).

The following question is important if we estimate parameters of a CARMA
process by fitting a discrete-time ARMA (p, ¢) process with ¢ < p to regularly
spaced data and then attempt to find the parameters of a CARMA process
whose values at the observation times have the same distribution as the val-
ues of the fitted ARMA process at those times. The critical question here is
whether or not such a CARMA process exists.

If a given Gaussian ARMA (p, q) process with ¢ < p is distributed as the
observations at integer times of some Gaussian CARMA process it is said
to be embeddable. Embeddability depends on the polynomials ¢(z) and 6(z).
Many, but not all, Gaussian ARMA processes are embeddable. For example
the ARMA(1,0) process (3.1) with ¢(z) = 1— ¢,z and white-noise variance o3
can be embedded, if 0 < ¢ < 1, in the Gaussian CAR(1) process defined by
(2.1) with a(z) = z —log(¢1), b(z) =1 and 0? = —2log(¢1)o2/(1 — ¢7) and,
if =1 < ¢; <0, it can be embedded in a CARMA(2,1) process (see Chan and
Tong (1987)). However Gaussian ARMA processes for which 8(z) = 0 has a
root on the unit circle are not embeddable in any CARMA process (see Brock-
well and Brockwell (1999)). The class of non-embeddable Gaussian ARMA
processes also includes ARMA(2,1) processes with autocovariance functions
of the form y(h) = C’lﬁllh‘ + C’gf‘zhl, where & and &, are distinct values in (0, 1)
and Cplog(&1) + Calog(&) > 0. Such ARMA processes exist since there are
infinitely many values of C; and Cs satisfying the latter condition for which
v is a non-negative-definite function on the integers.

The problem of finding a CARMA process whose autocovariance func-
tion at integer lags matches that of a given non-Gaussian ARMA process is
clearly equivalent to the problem of embedding a Gaussian ARMA process as
described above.

However the determination of a Lévy-driven CARMA process (if there is
one) whose sampled process has the same joint distributions as a given non-
Gaussian ARMA process is more difficult. For example, from (3.11) and (3.12)
we see that in order to embed a discrete-time AR(1) in a CAR(1) process,
the driving noise sequence {Z,} of the AR(1) process must be ii.d. with
an infinitely divisible distribution, and the coefficient ¢ in the autoregressive
polynomial (1 — ¢z) must be positive. Given such a process, with coefficient
¢ € (0,1) and white-noise characteristic function exp(1(#)), it is embeddable
in a CAR(1) process (which must have autoregressive polynomial a(z) = z— A,
where A = log(¢)) if and only if there exists a characteristic function exp(p(6))
such that

1
(3.13) / p(8e*)du = (6), for all § € R,
0

and then exp(p(f)t) is the characteristic function of oL(t) for the CAR(1)
process in which the AR(1) process can be embedded. It is easy to check
that if ¢(8) = —036?/2, i.e. if Z, is normally distributed with mean zero
and variance o2, then (3.13) is satisfied if p(f) = —A\o26%/(1 — €**), i.e. if



18 Peter Brockwell

oL(1) is normally distributed with mean zero and variance 2Ao2/(1 — e*}).
(More generally if Z, is symmetric a-stable with () = —¢|0|%, ¢ > 0,
a € (0,2], (3.13) is satisfied if p(f) = —acA|8|*/(1 — €?*), i.e. if oL(1) also
has a symmetric a-stable distribution. If @ € (0, 2) the processes do not have
finite variance but the embedding is still valid.)

4. An Application to Stochastic Volatility Modelling

In the stochastic volatility model (1.1) and (1.2) of Barndorff-Nielsen and
Shephard, the volatility process V is a CAR(1) (or stationary Ornstein-
Uhlenbeck) process driven by a non-decreasing Lévy process L. With this
model the authors were able to derive explicit expressions for quantities of
fundamental interest, such as the integrated volatility. Since the process V'
can be written, .
V(t) = / e MW AL (u),
—0o0

and since both the kernel, g(u) = e™*“I(y o)(u), and the increments of the
driving Lévy process are non-negative, the volatility is non-negative as re-
quired. A limitation of the use of the Ornstein-Uhlenbeck process however (and
of linear combinations with non-negative coeflicients of independent Ornstein-
Uhlenbeck processes) is the constraint that the autocorrelations p(h), h > 0,
are necessarily non-increasing in h.

Much of the analysis of Barndorff-Nielsen and Shephard can however be
carried out after replacing the Ornstein-Uhlenbeck process by a CARMA pro-
cess with non-negative kernel driven by a non-decreasing Lévy process. This
has the advantage of allowing the representation of volatility processes with
a larger range of autocorrelation functions than is possible in the Ornstein-
Uhlenbeck framework. For example, the CARMA(3,2) process with

a(z) = (z 4+ 0.1)(z + 0.5 — im/2)(z + 0.5 — iw/2) and b(z) = 2.792 + 52 + 2°

has non-negative kernel and autocovariance functions,
t t
g(t) = 0.8762e -1t + (0.1238 cos % + 2.5780 sin %) e 95t >0,
and
—0.1h wh . mh —0.5h
~v(h) =5.1161¢ + | 4.3860 cos - + 1.4066 sin 5 )€ , h>0,

respectively, both of which exhibit damped oscillatory behaviour.

There is of course a constraint imposed upon the allowable CARMA pro-
cesses for stochastic volatility modelling by the requirement that the ker-
nel g be non-negative. Conditions on the coefficients which guarantee non-
negativity of the kernel have been considered by Brockwell and Davis (2001)
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and Todorov and Tauchen (2004) for the CARMA (2,1) process with real au-
toregressive roots and, more generally by Tsai and Chan (2004). In his anal-
ysis of the German Mark/US Dollar exchange rate series from 1986 through
1999, Todorov (2005) finds that a good fit to the autocorrelation function
of the realized volatility is provided by a CARMA(2,1) model with two real
autoregessive roots.

A class of long-memory Lévy-driven CARMA processes was introduced
by Brockwell (2004) and Brockwell and Marquardt (2005) by replacing the
kernel g in (2.9) by the kernel,

7 itag gy —a DGA)
gd(t)—[me )‘(z)\) da(i)\)dA’

with 0 < d < 0.5. The resulting processes, which exhibit hyperbolic rather
than geometric decay in their autocorrelation functions, must however be
driven by Lévy processes with zero mean, and such Lévy processes cannot be
non-decreasing. Long-memory Lévy-driven CARMA processes cannot there-
fore be used directly for the modelling of stochastic volatility. They can how-
ever be used for the modelling of mean-corrected log volatility in order to
account for the frequently observed long memory in such series.

5. Continuous-time GARCH Processes

A continuous-time analog of the GARCH(1,1) process, denoted COGA-
RCH(1,1), has recently been constructed and studied by Kliippelberg et al.
(2004). Their construction uses an explicit representation of the discrete-time
GARCH(1,1) process to obtain a continuous-time analog. Since no such rep-
resentation exists for higher-order discrete-time GARCH processes, a different
approach is needed to construct higher-order continuous-time analogs. For a
detailed discussion of continuous-time GARCH processes see the article of
Lindner (2007) in the present volume.

Let (en)nen, be an iid sequence of random variables. For any non-negative
integers p and ¢, the discrete-time GARCH(p,q) process (fn)nE]N0 is defined
by the equations,

(5 1) &n = OnEn,
ol =a0ta&h + ...+l +Piol .+ B0l

where s := max(p, q), the initial values o2,...,0%_, are assumed to be iid and
independent of the iid sequence (€,,)n>s, and &, = Gn41 — G, represents the
increment at time n of the log asset price process (G”)nE]NO' In continuous-
time it is more convenient to define the GARCH process as a model for (G¢)>0
rather than for its increments as in discrete-time.

Equation (5.1) shows that the volatility process (V,, := ai)ne]NO can be
viewed as a “self-exciting” ARMA(q,p — 1) process driven by the noise se-
quence (anlgﬁfl)ne]N' This observation suggests defining a continuous time
GARCH model of order (p,q) for the log asset price process (G¢)i>0 by
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th: V‘/tst: t>07 G0:07

where (V;)i>0 is a left-continuous non-negative CARMA(q,p — 1) process
driven by a suitable replacement for the discrete time driving noise sequence
(Va—1£2_1),,eIN- By choosing the driving process to be

t
R, = / VidlL, L), e dR = Vid[L,L}".
0

where [L,L](d) is the discrete part of the quadratic covariation of the Lévy
process L, we obtain the COGARCH(p, q) process, which has properties anal-
ogous to those of the discrete-time GARCH process and which includes the
COGARCH(1,1) process of Kliippelberg et al.(2004) as a special case. The
precise definition is as follows.

Definition 3 (COGARCH(p,q) process). If p and ¢ are integers such
that g >p>1,00>0,a1,...,00 €ER, p1,...,8, €R, a, #0, B, #0, and

apy1 = ... = ay =0, we define the (¢ x ¢)-matrix B and the vectors a and e
by
0 1 o ... 0 a1 0
0 0 1 0 Qo 0
B=| : : o |, a= ol =
0 0 o ... 1 Qg1 0
_ﬁq _ﬁqfl _ﬁq72 s =P Qyq 1

with B := —f; if ¢ = 1. Then if L = (L¢)¢>0 is a Lévy process with non-trivial
Lévy measure, we define the (left-continuous) volatility process V- = (Vi)i>o0
with parameters B, a, ag and driving Lévy process L by

Vi=ap+a'Ys_, t>0, Vy=ay+a'Yy,

where the state process Y = (Y)¢>0 is the unique cadlag solution of the
stochastic differential equation

dY; = BY,_dt+e(oo +2'Y,_)d[L,LI", t>0,

with initial value Y, independent of the driving Lévy process (L¢)¢>o. If the
process (V;)¢>o is strictly stationary and non-negative almost surely, we say
that G = (Gt)t>o0, given by

dGy = /VidLy, t>0, Go=0,

is a COGARCH(p,q) process with parameters B, a, ap and driving Lévy
process L .

Conditions for the existence of a non-negative stationary solution of the
equations for V' and the properties of the resulting volatility and COGARCH(p, q)



Lévy-driven Continuous-time ARMA Processes 21

processes, including conditions for the existence of moments of order k, are
studied in the paper of Brockwell et al. (2006). In particular it is shown under
mild conditions that the process of increments

Gir) = Gyr — Gy,
for any fixed r > 0, has the characteristic GARCH properties,
EG) =0, COV(G,E:_)h, Gy =0 h>r,

while the squared increment process G")? has a non-zero autocovariance func-
tion, expressible in terms of the defining parameters of the process. The au-
tocovariance function of the stationary volatility process, if it exists, is that
of a CARMA process, just as the discrete-time GARCH volatility process has
the autocovariance function of an ARMA process.

6. Inference for CARMA Processes.

Given observations of a CARMA (p,q) process at times 0 < ¢ < to <
... < tn, there is an extensive literature on maximum Gaussian likelihood
estimation of the parameters. This literature however does not address the
question of identifying and estimating parameters for the driving process when
it is not Gaussian. In the general case we can write, from (2.2) and (2.5),

(6.1) Y(t;) =ob'X(t;), i=1,...,N,

where
t;

(6.2) X(ti):eA(ti*tH)X(ti_IH/ eAti—We dL(u), i=2,...,N,

ti—1

and X(t1) has the distribution of [ e#"edL(u). The observation equations
(6.1) and state equations (6.2) are in precisely the form required for appli-
cation of the discrete-time Kalman recursions (see e.g. Brockwell and Davis
(1991)) in order to compute numerically the best one-step linear predictors
of Ys,..., YN, and hence the Gaussian likelihood of the observations in terms
of the coefficients {a;,1 < j < p; b;,0 < j < ¢; o}. Jones (1981) used this
representation, together with numerical maximization of the calculated Gaus-
sian likelihood, to compute maximum Gaussian likelihood estimates of the
parameters for time series with irregularly spaced data. A similar approach
was used in a more general setting by Bergstrom (1985). If the observations
are uniformly spaced an alternative approach due to Phillips (1959) is to fit
a discrete-time ARMA model to the observations and then to determine a
Gaussian CARMA process in which the discrete-time process can be embed-
ded. (Recalling the results of Section 3 however, it may be the case that there
is no CARMA process in which the fitted ARMA process can be embedded.)
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For a CAR(p) process observed continuously on the time interval [0, T,
Hyndman (1993) derived continuous-time analogues of the discrete-time Yule-
Walker equations for estimating the coefficients. For a Gaussian CARMA
process observed continuously on [0, 7], the exact likelihood function was de-
termined by Pham-Din-Tuan (1977) who also gave a computational algorithm
for computing approximate maximum likelihood estimators of the parameters
which are asymptotically normal and efficient. The determination of the ex-
act likelihood, conditional on the initial state vector X(0), can also be carried
out for non-linear Gaussian CAR(p) processes and maximum conditional like-
lihood estimators expressed in terms of stochastic integrals (see Brockwell
et al. (2006), where this method of estimation is applied to threshold CAR
processes observed at closely spaced times, using sums to approximate the
stochastic integrals involved.)

For Lévy-driven CARMA processes, estimation procedures which take into
account the generally non-Gaussian nature of L are less well-developed. One
approach is to estimate the parameters {a;,1 < j < p; b;,0 < j < ¢; o}
by maximizing the Gaussian likelihood of the observations using (6.1) and
(6.2). If the process is observed continuously on [0, 7], these estimates and
the results of Remark 2.8 can be used to recover, for any observed or assumed
X(0), a realization of L on [0, T']. The increments of this realization can then be
examined and a driving Lévy process chosen whose increments are compatible
with the increments of the recovered realization of L. If the CARMA process
is observed at closely-spaced discrete time points then a discretized version of
this procedure can be used. This work is currently in progress.
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