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Summary� Gaussian ARMA processes with continuous time parameter� otherwise
known as stationary continuous�time Gaussian processes with rational spectral den�
sity� have been of interest for many years� �See for example the papers of Doob
������� Bartlett ������� Phillips ���	��� Durbin ������� Dzhapararidze ���
����
���
Pham�Din�Tuan ���

� and the monograph of Arat�o ���
���� In the last twenty
years there has been a resurgence of interest in continuous�time processes� partly as
a result of the very successful application of stochastic di�erential equation models
to problems in �nance� exempli�ed by the derivation of the Black�Scholes option�
pricing formula and its generalizations �Hull and White ���

��� Numerous examples
of econometric applications of continuous�time models are contained in the book of
Bergstrom ������� Continuous�time models have also been utilized very successfully
for the modelling of irregularly�spaced data �Jones ���
�� ��
	�� Jones and Acker�
son �������� Like their discrete�time counterparts� continuous�time ARMA processes
constitute a very convenient parametric family of stationary processes exhibiting a
wide range of autocorrelation functions which can be used to model the empirical
autocorrelations observed in �nancial time series analysis� In �nancial applications
it has been observed that jumps play an important role in the realistic modelling of
asset prices and derived series such as volatility� This has led to an upsurge of inter�
est in L�evy processes and their applications to �nancial modelling� In this article we
discuss second�order L�evy�driven continuous�time ARMA models� their properties
and some of their �nancial applications� in particular to the modelling of stochas�
tic volatility in the class of models introduced by Barndor��Nielsen and Shephard
������ and to the construction of a class of continuous�time GARCH models which
generalize the COGARCH����� process of Kl�uppelberg� Lindner and Maller ������
and which exhibit properties analogous to those of the discrete�time GARCH�p�q�
process�
Keywords� L�evy process� continuous�time ARMA process� stochastic volatility�
COGARCH model� non�linear time series�
AMS Classi�cation � ��M��� ��H��� ��J�	
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�� Introduction
In �nancial econometrics� many discrete�time models �stochastic volatility�

ARCH� GARCH and generalizations of these� are used to model the returns at
regular intervals on stocks� currency investments and other assets� For example
a GARCH process ��n�n�IN is frequently used to represent the increments�
lnPn � lnPn��� of the logarithms of the asset price Pn at times �� �� �� � � ��
These models capture many of the so�called stylized features of such data� e�g�
tail heaviness� volatility clustering and dependence without correlation�

Various attempts have been made to capture the stylized features of �nan�
cial time series using continuous�time models� The interest in continuous�time
models stems from their use in modelling irregularly spaced data� their use
in �nancial applications such as option�pricing and the current wide�spread
availability of high�frequency data� In continuous�time it is natural to model
the logarithm of the asset price itself� i�e� G�t� 	 lnP �t�� rather than its
increments as in discrete time�

One approach is via the stochastic volatility model of Barndor
�Nielsen
and Shephard ������ �see also Barndor
�Nielsen et al� �������� in which the
volatility process V and the log asset price G satisfy the equations �apart from
a deterministic rescaling of time��

����� dV �t� 	 ��V �t�dt� dL�t��

����� dG�t� 	 �� � �V �t��dt�
p
V �t�dW �t� � �dL�t��

where � � �� L 	 �L�t��
t�IR�

is a non�decreasing L
evy process and W 	

�W �t��
t�IR�

is standard Brownian motion independent of L� The volatility

process V is taken to be a stationary solution of ������ in other words a
stationary L�evy�driven Ornstein�Uhlenbeck process or a continuous�time au�
toregression of order �� The background driving L
evy process L introduces
the possibility of jumps in both the volatility and the log asset processes�
a feature which is in accordance with empirical observations� It also allows
for a rich class of marginal distributions� with possibly heavy tails� The au�
tocorrelation function of the process V is ��h� 	 exp���jhj�� For modelling
purposes this is quite restrictive� although the class of possible autocorrela�
tions can be extended to a larger class of monotone functions if V is replaced
by a superposition of such processes as in Barndor
�Nielsen ������� However�
as we shall see� a much wider class of not necessarily monotone autocorre�
lation functions for the volatility can be obtained by replacing the process
V in ����� and ����� by a L
evy�driven continuous�time autoregressive moving
average �CARMA� process as de�ned in Section �� This class of processes
constitutes a very �exible parametric family of stationary processes with a
vast array of possible marginal distributions and autocorrelation functions�
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Their role in continuous�time modelling is analogous to that of autoregressive
moving average processes in discrete time� They belong to the more general
class of L
evy�driven moving average process considered by Fasen �������

A continuous�time analogue of the GARCH����� process� denoted COG�
ARCH������ has recently been constructed and studied by Kl�uppelberg et
al� ������� Their construction is based on an explicit representation of the
discrete�time GARCH����� volatility process which they use in order to obtain
a continuous�time analogue� Since no such representation exists for higher�
order discrete�time GARCH processes� a di
erent approach is needed to con�
struct higher�order models in continuous time� The L
evy�driven CARMA pro�
cess plays a key role in this construction�

The present paper deals with second�order L
evy�driven continuous�time
ARMA �denoted CARMA� processes� since for most �nancial applications
processes with �nite second moments are generally considered adequate�
�Analogous processes without the second�order assumption are considered
in Brockwell �������� In Section � we review the de�nition and properties�
deriving the kernel and autocovariance functions� specifying the joint charac�
teristic functions and discussing the issue of causality� Under the assumption
of distinct autoregressive roots� some particularly tractable representations of
the kernel� the autocovariance function and the process itself are derived� The
question of recovering the driving process from a realization of the process on
a �continuous� interval ��� T � is also considered�

Section � considers connections between continuous�time and discrete�time
ARMA processes�

In Section � we indicate the applications of CARMA processes to the
modelling of stochastic volatility in the Barndor
�Nielsen�Shephard stochastic
volatility model and in Section � their role in the construction of COGARCH
models of order higher than ������

Section � deals brie�y with the well�established methods of inference for
Gaussian CARMA processes and the far less developed question of inference
for more general L
evy�driven processes�

Before proceeding further we need a few essential facts regarding L
evy pro�
cesses� �For a detailed account of the pertinent properties of L
evy processes see
Protter ������ and for further properties see the books of Applebaum �������
Bertoin ������ and Sato �������� Suppose we are given a �ltered probability
space ���F � �Ft���t��� P �� where F� contains all the P �null sets of F and
�Ft� is right�continuous�

De�nition � �L�evy Process�� An adapted process fL�t�� t � �g is said to
be a L
evy process if

�i� L��� 	 � a�s��
�ii� L�t�� L�s� is independent of Fs� � � s 	 t 	��
�iii� L�t�� L�s� has the same distribution as L�t� s� and
�iv� L�t� is continuous in probability�
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Every L
evy process has a unique modi�cation which is c�adl�ag �right con�
tinuous with left limits� and which is also a L
evy process� We shall therefore
assume that our L
evy process has these properties� The characteristic function
of L�t�� 
t��� �	 E�exp�i�L�t���� has the L
evy�Khinchin representation�

����� 
t��� 	 exp�t������ � � IR�

where

����� ���� 	 i�m�
�

�
��s� �

Z
IR�

�ei�x � �� ix�Ifjxj��g���dx��

for some m � IR� s � �� and measure � on the Borel subsets of IR� 	 IRnf�g�
� is known as the L�evy measure of the process L and satis�es the condi�
tion

R
IR�

min��� juj����du� 	 �� If � is the zero measure then fL�t�g is

Brownian motion with E�L�t�� 	 mt and Var�L�t�� 	 s�t� If m 	 s� 	 �
and ��IR�� 	 �� then L�t� 	 at � P �t�� where fP �t�g is a compound
Poisson process with jump�rate ��IR��� jump�size distribution �
��IR��� and
a 	 �

R
IR�

u
��u� ��du�� A wealth of distributions for L�t� is attainable by suit�

able choice of the measure �� See for example Barndor
�Nielsen and Shephard
������� For the second�order L
evy processes �with which we are concerned in
this paper�� E�L����� 	 �� To avoid problems of parameter identi�ability
we shall assume throughout that L is scaled so that Var�L���� 	 �� Then
Var�L�t�� 	 t for all t � � and there exists a real constant � such that
EL�t� 	 �t for all t � �� We shall then refer to the process L as a standard�
ized second�order L�evy process� written henceforth as SSLP�

�� Second�order L�evy�driven CARMA Processes
A second�order L
evy�driven continuous�time ARMA�p� q� process� where p
and q are non�negative integers such that q 	 p� is de�ned �see Brockwell
������� via the state�space representation of the formal equation�

����� a�D�Y �t� 	 �b�D�DL�t�� t � ��

where � is a strictly positive scale parameter� D denotes di
erentiation with
respect to t� fL�t�g is an SSLP�

a�z� �	 zp � a�z
p�� � � � �� ap�

b�z� �	 b� � b�z � � � �� bp��z
p���

and the coe�cients bj satisfy bq 	 � and bj 	 � for q 	 j 	 p� The behaviour
of the process is determined by the process L and the coe�cients faj � � � j �
p� bj � � � j 	 q� �g� In view of the scale parameter� �� on the right�hand side
of ������ there is clearly no loss of generality in assuming that Var�L���� 	 ��
i�e� that L is an SSLP as de�ned at the end of Section �� To avoid trivial and
easily eliminated complications we shall assume that a�z� and b�z� have no
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common factors� The state�space representation consists of the observation
and state equations�

����� Y �t� 	 �b�X�t��

and

����� dX�t� �AX�t�dt 	 e dL�t��

where

A 	

�
������

� � � � � � �
� � � � � � �
���

���
���

� � �
���

� � � � � � �
�ap �ap�� �ap�� � � � �a�

�
������ � e 	

�
������

�
�
���
�
�

�
������ � b 	

�
������

b�
b�
���

bp��

bp��

�
������ �

�If p 	 �� A is de�ned to be �a��� In the special case when fL�t�g is stan�
dard Brownian motion� ����� is an Ito equation with solution fX�t�� t � �g
satisfying

����� X�t� 	 eAtX��� �

Z t

�

eA�t�u�e dL�u��

where the integral is de�ned as the L� limit of approximating Riemann�
Stieltjes sums Sn corresponding to the partition of the interval ��� t� by the
points fk
�n� k � Z� � � k 	 �ntg and ftg� If L is any second�order L
evy pro�
cess the integral is de�ned in the same way� The continuous di
erentiability of
the integrand in ����� implies that the sequence fSng converges geometrically
in L� and hence almost surely to the same limit� In fact the integral in ����� is
a special case �with deterministic and continuously di
erentiable integrand�
of integration with respect to a semimartingale as discussed in the book of
Protter ������� From ����� we can also write

����� X�t� 	 eA�t�s�X�s� �

Z t

s

eA�t�u�e dL�u�� for all t � s � ��

which clearly shows �by the independence of increments of fL�t�g� that fX�t�g
is Markov� The following propositions give necessary and su�cient conditions
for stationarity of fX�t�g�

Proposition � If X��� is independent of fL�t�� t � �g and E�L����� 	 ��
then fX�t�g is weakly stationary if and only if the eigenvalues of the matrix
A all have strictly negative real parts and X��� has the mean and covariance
matrix of

R�
�

eAue dL�u�� i�e� �A��e� and
R�
�

eAye e�eA
�ydy respectively�

Proof� The eigenvalues of A must have negative real parts for the sum of
the covariance matrices of the terms on the right of ����� to be bounded
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in t� If this condition is satis�ed then fX�t�g converges in distribution as
t�� to a random variable with the distribution of

R�
� eAue dL�u�� Hence�

for weak stationarity� X��� must have the mean and covariance matrix ofR�
�

eAue dL�u�� Conversely if the eigenvalues of A all have negative real parts

and if X��� has the mean and covariance matrix of
R�
�

eAue dL�u�� then a
simple calculation using ����� shows that fX�t�g is weakly stationary�

Proposition �� If X��� is independent of fL�t�� t � �g and E�L����� 	
�� then fX�t�g is strictly stationary if and only if the eigenvalues of the
matrix A all have strictly negative real parts and X��� has the distribution
of
R�
�

eAue dL�u��

Proof� Necessity follows from Proposition �� If the conditions are satis�ed then
strict stationarity follows from the fact that fX�t�g is a Markov process whose
initial distribution is the same as its limit distribution�

Remark �� It is convenient to extend the state process fX�t�� t � �g to a
process with index set ������� To this end we introduce a second L
evy
process fM�t�� � � t 	�g� independent of L and with the same distribution�
and then de�ne the following extension of L�

L��t� 	 L�t�I������t��M��t��I�������t�� �� 	 t 	��

Then� provided the eigenvalues of A all have negative real parts� the process
fX�t�g de�ned by

����� X�t� 	

Z t

��

eA�t�u�e dL��u��

is a strictly stationary process satisfying ����� �with L replaced by L�� for all
t � s and s � ������� Henceforth we shall refer to L� as the background
SSLP and denote it for simplicity by L rather than L��

Remark �� It is easy to check that the eigenvalues of the matrix A� which
we shall denote by ��� � � � � �p� are the same as the zeroes of the autoregressive
polynomial a�z�� The corresponding right eigenvectors are

�� �j �
�
j � � � �p��

j ��� j 	 �� � � � � p�

We are now in a position to de�ne the CARMA process fY �t���� 	 t 	�g
under the condition that

����� Re��j� 	 �� j 	 �� � � � � p�

De�nition � �Causal CARMA Process�� If the zeroes ��� � � � � �p of the
autoregressive polynomial a�z� satisfy ������ then the CARMA�p� q� process
driven by the SSLP fL�t���� 	 t 	 �g with coe�cients faj � � � j �
p� bj � � � j 	 q� �g is the strictly stationary process�
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Y �t� 	 �b�X�t��

where

X�t� 	

Z t

��

eA�t�u�e dL�u��

i�e�

����� Y �t� 	 �

Z t

��

b�eA�t�u�e dL�u��

Remark � �Causality and Non�causality�� Under Condition ����� we see
from ����� that fY �t�g is a causal function of fL�t�g� since it has the form

����� Y �t� 	

Z �

��

g�t� u� dL�u��

where

������ g�t� 	

�
�b�eAte if t � ��

� otherwise�

The function g is referred to as the kernel of the CARMA process fY �t�g�
Under the condition ������ the function g de�ned by ������ can be written as

������ g�t� 	
�

��

Z �

��

eit�
b�i��

a�i��
d��

�To establish ������ when the eigenvalues ��� � � � � �p are distinct� we use the
explicit expressions for the eigenvectors of A to replace eAt in ������ by its
spectral representation� The same expression is obtained when the right side
of ������ is evaluated by contour integration� When there are multiple eigen�
values� the result is obtained by separating the eigenvalues slightly and taking
the limit as the repeated eigenvalues converge to their common value�� It is of
interest to observe that the representation ����� and ������ of fY �t�g de�nes
a strictly stationary process even under conditions less restrictive than ������
namely

Re��j� �	 �� j 	 �� � � � � p�

Thus ����� and ������ provide a more general de�nition of CARMA process
than De�nition � above� However if any of the zeroes of a�z� has real part
greater than �� the representation ����� of fY �t�g in terms of fL�t�g will no
longer be causal as is the case when ����� is satis�ed� This distinction between
causal and non�causal CARMA processes is analogous to the classi�cation of
discrete�time ARMA processes as causal or otherwise� depending on whether
or not the zeroes of the autoregressive polynomial lie outside the unit circle
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�see e�g� Brockwell and Davis �������� From now on we shall restrict atten�
tion to causal CARMA processes� i�e� we shall assume that ����� holds�
so that the general expression ������ for the kernel g can also be written in
the form ������� However both forms of the kernel will prove to be useful�

Remark 	 �Second�order Properties�� From the representation ����� of
a causal CARMA process driven by the SSLP L with EL��� 	 �� we imme�
diately �nd that

EY �t� 	 ��b�A��e�

and

������ ��h� �	 cov�Y �t� h�� Y �t�� 	 ��b� eAjhj� b�

where

� 	

Z �

�

eAye e�eA
�ydy�

From the representation ����� of Y �t� we see that � can also be expressed as

��h� 	 cov�Y �t� h�� Y �t�� 	

Z �

��

�g�h� u�g�u�du�

where �g�x� 	 g��x� and g is de�ned in ������� Using the convolution theorem
for Fourier transforms� we �nd that

Z �

��

e�i�h��h�dh 	 ��
���� b�i��a�i��

����
�

�

showing that the spectral density of the process Y is

������ f��� 	
��

��

���� b�i��a�i��

����
�

and the autocovariance function is

������ ��h� 	
��

��

Z �

��

ei�h
���� b�i��a�i��

����
�

d��

The spectral density ������ is clearly a rational function of the frequency ��
The family of Gaussian CARMA processes is in fact identical to the class of
stationary Gaussian processes with rational spectral density�

Remark 
 �Distinct Autoregressive Zeroes� the Canonical State
Representation and Simulation of Y �� When the zeroes ��� � � � � �p of
a�z� are distinct and satisfy the causality condition ������ the expression for
the kernel g takes an especially simple form� Expanding the integrand in ������
in partial fractions and integrating each term gives the simple expression�
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������ g�h� 	 �

pX
r��

b��r�

a���r�
e�rhI������h��

Applying the same argument to ������ gives a corresponding expression for
the autocovariance function� i�e�

������ ��h� 	 cov�Yt�h� Yt� 	 ��
pX

j��

b��j�b���j�

a���j�a���j�
e�j jhj�

When the autoregressive roots are distinct we obtain a very useful repre�
sentation of the CARMA�p� q� process Y from ������� De�ning

������ �r 	 �
b��r�

a���r�
� r 	 �� � � � � p�

we can write

������ Y �t� 	

pX
r��

Yr�t��

where

������ Yr�t� 	

Z t

��

�re
�r�t�u�dL�u��

This expression shows that the component processes Yr satisfy the simple
equations�

������ Yr�t� 	 Yr�s�e
�r�t�s� �

Z t

s

�re
�r�t�u�dL�u�� t � s� r 	 �� � � � � p�

Taking s 	 � and using Lemma ��� of Eberlein and Raible ������� we �nd
that

������ Yr�t� 	 Yr���e
�rt � �rL�t� �

Z t

�

�r�re
�r�t�u�L�u�du� t � ��

where the last integral is a Riemann integral and the equality holds for all
�nite t � � with probability �� De�ning

������ Y�t� �	 �Y��t�� � � � � Yp�t��
��

we obtain from ������ ������ and �������

������ Y�t� 	 �BR��X�t��

where B 	 diag �b��i��
p
i�� and R 	 ��i��

j �pi�j��� The initial values Yr��� in
������ can therefore be obtained from those of the components of the state
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vector X���� The process Y provides us with an alternative canonical state
representation of Y �t�� t � �� namely

������ Y �t� 	 ��� � � � � ��Y�t�

where Y is the solution of

������ dY�t� 	 diag ��i�
p
i��Ydt � �BR��e dL�

with Y��� 	 �BR��X����
Notice that the canonical representation of the process Y reduces the prob�

lem of simulating CARMA�p� q� processes with distinct autoregressive roots to
the much simpler problem of simulating the �possibly complex�valued� com�
ponent CAR��� processes ������ and adding them together�

Example � �The CAR��� Process�� The CAR��� �or stationary Ornstein�
Uhlenbeck� process satis�es ����� with b�z� 	 � and a�z� 	 z�� where � 	 ��
From ������ and ������ we immediately �nd that g�h� 	 e�hI������h� and

��h� 	 ��e�jhj
��j�j�� In this case the �� � matrices B and R are both equal
to � so the ���dimensional� state vectors X and Y are identical and the state�
space representation given by ����� and ����� is already in canonical form�
Equations ������ and ������ reduce to

Y �t� 	 Y��t�

and

Y��t� 	 �

Z t

��

e��t�u�dL�u�

respectively �since �� 	 � and �� 	 ���

Example � �The CARMA����� Process�� In this case b�z� 	 b� � z�
a�z� 	 �z � ����z � ��� and the real parts of �� and �� are both negative�
Assuming that �� �	 ��� we �nd from ������ that

g�h� 	 ���e
��h � ��e

��h�I������h�

where �r 	 ��b� � �r�
��r � �	�r�� r 	 �� �� An analogous expression for
��h� can be found from ������� From ������ the canonical state vector is

Y�t� 	

�
Y��t�
Y��t�

	
	

�

�� � ��

�
���b� � ��� ��b� � ���
����b� � ��� b� � ��

	
X�t�

and the canonical representation of Y is� from ������ and �������

Y �t� 	 Y��t� � Y��t�

where
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Yr�t� 	

Z t

��

�re
�r�t�u�dL�u�� r 	 �� ��

and �r 	 ��b� � �r�
��r � �	�r�� r 	 �� ��

Remark � �The Joint Distributions�� Since the study of L
evy�driven
CARMA processes is largely motivated by the need to model processes with
non�Gaussian joint distributions� it is important to go beyond a second�order
characterization of these processes� From Proposition � we already know that
the marginal distribution of Y �t� is that of

R�
� g�u�dL�u�� where g is given by

������ or� if the autoregressive roots are distinct and the causality conditions
����� are satis�ed� by ������� Using the expression ����� for the characteristic
function of L�t�� we �nd that the cumulant generating function of Y �t� is

������ logE�exp�i�Y �t��� 	

Z �

�

���g�u��du�

showing that the distribution of Y �t�� like that of L�t�� is in�nitely divisible�
In the special case of the CAR��� process the distribution of Y �t� is also self�
decomposable �see Barndor
�Nielsen and Shephard ������� Theorem ���� and
the accompanying references�� More generally it can be shown �see Brock�
well ������� that the cumulant generating function of Y �t��� Y �t��� � � � � Y �tn��
�t� 	 t� 	 � � � 	 tn� is

������ logE�exp�i��Y �t�� � � � �� i�nY �tn��� 	

Z �

�

�



nX
i��

�ig�ti � u�

�
du�

Z t�

�

�



nX
i��

�ig�ti � u�

�
du �

Z t�

t�

�



nX
i��

�ig�ti � u�

�
du� � � ��

Z tn

tn��

� ��ng�tn � u�� du�

If fL�t�g is a compound Poisson process with �nite jump�rate � and bilateral
exponential jump�size distribution with probability density f�x� 	 �

��e
��jxj�

then the corresponding CAR��� process �see Example �� has marginal cumu�
lant generating function�

���� 	

Z �

�

���e�cu�du�

where ���� 	 ���
��� � ���� Straightforward evaluation of the integral gives

���� 	 �
�

�c
ln

�
� �

��

��



�

showing that Y �t� has a symmetrized gamma distribution� or more speci�cally
that Y �t� is distributed as the di
erence between two independent gamma
distributed random variables with exponent �
��c� and scale parameter �� In
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particular� if � 	 �c� the marginal distribution is bilateral exponential� For
more examples see Barndor
�Nielsen and Shephard �������

Remark 
 �Recovering the driving noise process�� For statistical mod�
elling� one needs to know or to postulate an appropriate family of models for
the driving L
evy process L� It would be useful therefore to recover the real�
ized driving process� for given or estimated values of faj � � � j � p� bj � � �
j 	 q��g� from a realization of Y on some �nite interval ��� T �� This requires
knowledge of the initial state vectorX��� in general� but if this is available �as
for example when a CARMA�p� �� process is observed continuously on ��� T ���
or if we are willing to assume a plausible value for X���� then an argument
due to Pham�Din�Tuan ������ can be used to recover fL�t�� � � t � Tg� We
shall assume in this Remark that the polynomial b �as well as the polynomial
a� has all its zeroes in the left half�plane� This assumption is analogous to that
of invertibility in discrete time� Since the covariance structure of our L
evy�
driven process is exactly the same �except for slight notational changes� as
that of Pham�Din�Tuan�s Gaussian CARMA process and since his result holds
for Gaussian CARMA processes with arbitrary mean �obtained by adding a
constant to the zero�mean process� his L��based spectral argument can be
applied directly to the L
evy�driven CARMA process to give� for t � ��

������ L�t� 	 ���
h
Y �p�q����t�� Y �p�q������

i

�

Z t

�

�
� qX
j��

bq�jX
�p�j��s��

pX
j��

ajX
�p�j��s�

�
� ds�

where Y �p�q��� denotes the derivative of order p� q� � of the CARMA pro�
cess Y and X���� � � � � X�p��� are the components of the state process X �the
component X�j� being the jth derivative of X����� X�t� can be expressed in
terms of Y andX��� by noting that ����� characterizesX���as a CARMA�q� ��

process driven by the process f���
R t
�
Y �s�dsg� Making use of this observa�

tion� introducing the q � � state vector Xq�t� �	 �X����t�� � � � � X�q����t��� and
proceeding exactly as we did in solving the CARMA equations in Section ��
we �nd that� for q � ��

������ Xq�t� 	 Xq���e
Bt � ���

Z t

�

eB�t�u�eqY �u�du�

where

B 	

�
������

� � � � � � �
� � � � � � �
���

���
���

� � �
���

� � � � � � �
�b� �b� �b� � � � �bq��

�
������ and eq 	

�
������

�
�
���
�
�

�
������ �

with B �	 �b� if q 	 �� while for q 	 ��
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������ X����t� 	 ���Y �t��

The remaining derivatives of X��� up to order p� � can be determined from
������ or ������� completing the determination of the state vectorX�t�� Having
recovered X�t�� the SSLP is found from �������

To illustrate the use of ������ and ������ or ������� we consider the CAR���
process of Example �� In this case a�z� 	 z � �� b�z� 	 � and the �one�
dimensional� state vector is� from ������� X�t� 	 ���Y �t�� Substituting into
������ gives

������ L�t� 	 ���

�
Y �t�� Y ���� �

Z t

�

Y �s�ds

	
�

It is easy to check directly that if Y is a L
evy�driven CARMA����� process
with parameters a��	 ��� and � and if L is the L
evy process de�ned by
������� then

������ Y �t� 	 Y ���e�t � �

Z t

�

e��t�u�dL�u��

since the last integral can be rewritten� by Lemma ��� of Eberlein and Raible
������� as �L�t� � �

R t
� �e

��t�u�L�u�du� Making this replacement and substi�
tuting from ������ for L� we see that the right�hand side of ������ reduces to
Y �t��

In the case when the autoregressive roots are distinct� we can use the
transformation ������ to recover the canonical state process Y de�ned by
������ and ������ from X� Then applying the argument of Pham�Din�Tuan to
the component processes Yr we obtain p �equivalent� representations of L�t��
namely

������ L�t� 	 ���
r

�
Yr�t�� Yr���� �r

Z t

�

Yr�s�ds

	
� r 	 �� � � � � p�

Although Pham�Din�Tuan�s result was derived with real�valued processes in
mind� it is easy to check directly� as in the CARMA����� case� that if Y is a
L
evy�driven CARMA�p� q� process with parameters faj � � � j � p� bj � � �
j 	 q� �g and L is the L
evy process satisfying the equations ������ with
possibly complex�valued Yr and �r� then

Yr�t� 	 Yr���e
�rt �

Z t

�

�re
�r�t�u�dL�u�� t � �� r 	 �� � � � � p�

and these equations imply� with ������� that the state process X satis�es

X�t� 	 eAtX��� �

Z t

�

eA�t�u�edL�u�� t � ��

showing that Y 	 �b�X is indeed the CARMA�p� q� process with parameters
faj � � � j � p� bj � � � j 	 q� �g driven by L� Thus we have arrived at p very
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simple �equivalent� representations of the driving SSLP� any of which can be
computed from the realization of Y � the value of X��� and the parameters
of the CARMA process� Of course for calculations it is simplest to choose a
value of r in ������ for which �r is real �if such an r exists��

�� Connections with Discrete�time ARMA Processes

The discrete�time ARMA�p� q� process fYng with autoregressive coe��
cients 
�� � � � � 
p� moving average coe�cients ��� � � � � �q� and white noise vari�
ance ��d� is de�ned to be a �weakly� stationary solution of the pth order linear
di
erence equations�

����� 
�B�Yn 	 ��B�Zn� n 	 ��	��	�� � � � �

where B is the backward shift operator �BYn 	 Yn�� and BZn 	 Zn�� for
all n�� fZng is a sequence of uncorrelated random variables with mean zero
and variance ��d �abbreviated to fZng 
WN��� ��d�� and


�z� �	 �� 
�z � � � � � 
pz
p�

��z� �	 � � ��z � � � �� �qz
q�

with �q �	 � and 
p �	 �� We de�ne 
�z� �	 � if p 	 � and ��z� �	 � if q 	 �� We
shall assume that the polynomials 
�z� and ��z� have no common zeroes and
that 
�z� 	 ��
�z�� � ��
pz

p is non�zero for all complex z such that jzj � ��
This last condition guarantees the existence of a unique stationary solution
of ����� which is also causal� i�e� is expressible in the form Yn 	

P�
j�� �jZn�j

for some absolutely summable sequence f�jg� It is evident from this repre�
sentation that the mean of the ARMA process de�ned by ����� is zero� The
process fYng is said to be an ARMA�p� q� process with mean � if fYn ��g is
an ARMA�p� q� process� A more restrictive de�nition of ARMA process im�
poses the further requirement that the random variables Zn be independent
and identically distributed� in which case we write fZng 
 IID��� ��d�� The
process fYng is then strictly �as well as weakly� stationary and we shall refer
to fYng as a strict ARMA process� If we impose the further constraint that
each Zn is Gaussian� then we write fZng 
 IIDN��� ��d� and refer to fYng as
a Gaussian ARMA process�

As one might expect� there are many structural similarities between
ARMA and CARMA processes� In the case when the polynomial 
�z� has
distinct zeroes and q 	 p� there is an analogue of ������ for the autocovari�
ance function of the ARMA process� namely

����� �d�h� 	 ���d

pX
j��

�
jhj��
j ���j����

��
j �


��j �
���
��
j �

� h 	 ��	��	�� � � � �

There is also a corresponding canonical representation analogous to that in
Remark � of Section �� It takes the form �cf� ������ and ��������
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����� Yn 	

pX
r��

Yr�n�

and

����� Yr�n 	

nX
k���

�r�
n�k
r Zk� r 	 �� � � � � p

where ���
r � r 	 �� � � � � p� are the �distinct� zeroes of 
�z�� and

����� �r 	 ��r
�����

r �


�����
r �

� r 	 �� � � � � p�

From ����� we also obtain the relations �cf� ��������

����� Yr�n 	 �rYr�n�� � �rZn� n 	 ��	�� � � � � r 	 �� � � � � p�

Remark �� When q 	 p and the autoregressive roots are distinct� the equa�
tions ������ and ����� show that both the CARMA and ARMA processes can
be represented as a sum of autoregressive processes of order �� Note however
that in both cases the component processes are not independent and are in
general complex valued�

Example � �The AR��� Process�� The de�ning equation ����� with 
�z� 	
� � �z and ��z� 	 � is clearly already in canonical form and� since �� 	 ��
equations ����� and ����� take the form

Yn 	 Y��n

where

����� Y��n 	
nX

k���

�n�kZk�

Example 	 �The ARMA����� Process�� In this case 
�z� 	 ��� ��z����
��z�� where we assume that j��j 	 �� j��j 	 � and �� �	 ��� The moving average
polynomial is ��z� 	 � � ��z and the white noise variance is ��d� From �����
we �nd that

����� �r 	
�r � ��
�r � �	�r

� r 	 �� ��

The canonical representation of the ARMA����� process is thus

Yn 	 Y��n � Y��n�
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where

����� Yr�n 	 �r

nX
k���

�n�kr Zk� r 	 �� ��

with �r� r 	 �� �� as de�ned in ������

If Y is a Gaussian CARMA process de�ned as in Section � with stan�
dard Brownian motion as the driving process� then it is well�known �see e�g�
Doob ������� Phillips ������� Brockwell ������� that the sampled process
�Y �n���

n�ZZ with �xed � � � is a �strict� Gaussian ARMA�r� s� process with
� � s 	 r � p and spectral density

����� f���� 	

�X
k���

���fY ��
���� � �k���� � � � � � ��

where fY ���� �� 	 � 	�� is the spectral density of the original CARMA
process�

If L is non�Gaussian� the sampled process will have the same spectral den�
sity and autocovariance function as the process obtained by sampling a Gaus�
sian CARMA process with the same parameters� driven by Brownian motion
with the same mean and variance as L� Consequently from a second�order
point of view the two sampled processes will be the same� However� except in
the case of the CAR��� process� the sampled process will not generally be a
strict ARMA process�

If Y is the CAR��� process in Example �� the sampled process is the strict
AR��� process satisfying

������ Y �n�� 	 e��Y ��n� ���� � Zn� n 	 ��	�� � � � �

where

������ Zn 	 �

Z n�

�n����

e��n��u�dL�u��

The noise sequence fZ�n�g is i�i�d� and Z�n� has the in�nitely divisible dis�

tribution with log characteristic function
R �
�
����e�u�du� where ���� is the log

characteristic function of L��� as in ������ For the CARMA�p� q� process with
p � � the situation is more complicated� If the autoregressive roots ��� � � � � �p�
are all distinct� then from ������ and ������ the sampled process fY �n��g is
the sum of the strict AR��� component processes fYr�n��g� r 	 �� � � � � p� sat�
isfying

Yr�n�� 	 e�r�Yr��n� ���� � Zr�n�� n 	 ��	�� � � � �

where

Zr�n� 	 �r

Z n�

�n����

e�r�n��u�dL�u��



L�evy�driven Continuous�time ARMA Processes �


and �r is given by �������
The following question is important if we estimate parameters of a CARMA

process by �tting a discrete�time ARMA�p� q� process with q 	 p to regularly
spaced data and then attempt to �nd the parameters of a CARMA process
whose values at the observation times have the same distribution as the val�
ues of the �tted ARMA process at those times� The critical question here is
whether or not such a CARMA process exists�

If a given Gaussian ARMA�p� q� process with q 	 p is distributed as the
observations at integer times of some Gaussian CARMA process it is said
to be embeddable� Embeddability depends on the polynomials 
�z� and ��z��
Many� but not all� Gaussian ARMA processes are embeddable� For example
the ARMA����� process ����� with 
�z� 	 ��
�z and white�noise variance ��d
can be embedded� if � 	 
 	 �� in the Gaussian CAR��� process de�ned by
����� with a�z� 	 z � log�
��� b�z� 	 � and �� 	 �� log�
���

�
d
��� 
��� and�

if �� 	 
� 	 �� it can be embedded in a CARMA����� process �see Chan and
Tong �������� However Gaussian ARMA processes for which ��z� 	 � has a
root on the unit circle are not embeddable in any CARMA process �see Brock�
well and Brockwell �������� The class of non�embeddable Gaussian ARMA
processes also includes ARMA����� processes with autocovariance functions

of the form ��h� 	 C��
jhj
� �C��

jhj
� � where �� and �� are distinct values in ��� ��

and C� log���� � C� log���� � �� Such ARMA processes exist since there are
in�nitely many values of C� and C� satisfying the latter condition for which
� is a non�negative�de�nite function on the integers�

The problem of �nding a CARMA process whose autocovariance func�
tion at integer lags matches that of a given non�Gaussian ARMA process is
clearly equivalent to the problem of embedding a Gaussian ARMA process as
described above�

However the determination of a L
evy�driven CARMA process �if there is
one� whose sampled process has the same joint distributions as a given non�
Gaussian ARMA process is more di�cult� For example� from ������ and ������
we see that in order to embed a discrete�time AR��� in a CAR��� process�
the driving noise sequence fZng of the AR��� process must be i�i�d� with
an in�nitely divisible distribution� and the coe�cient 
 in the autoregressive
polynomial �� � 
z� must be positive� Given such a process� with coe�cient

 � ��� �� and white�noise characteristic function exp������� it is embeddable
in a CAR��� process �which must have autoregressive polynomial a�z� 	 z���
where � 	 log�
�� if and only if there exists a characteristic function exp������
such that

������

Z �

�

���e�u�du 	 ����� for all � � IR�

and then exp�����t� is the characteristic function of �L�t� for the CAR���
process in which the AR��� process can be embedded� It is easy to check
that if ���� 	 ���d�

�
�� i�e� if Zn is normally distributed with mean zero
and variance ��d� then ������ is satis�ed if ���� 	 ����d�

�
�� � e���� i�e� if
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�L��� is normally distributed with mean zero and variance ����d
�� � e����
�More generally if Zn is symmetric ��stable with ���� 	 �cj�j�� c � ��
� � ��� ��� ������ is satis�ed if ���� 	 ��c�j�j�
�� � e���� i�e� if �L��� also
has a symmetric ��stable distribution� If � � ��� �� the processes do not have
�nite variance but the embedding is still valid��

	� An Application to Stochastic Volatility Modelling

In the stochastic volatility model ����� and ����� of Barndor
�Nielsen and
Shephard� the volatility process V is a CAR��� �or stationary Ornstein�
Uhlenbeck� process driven by a non�decreasing L
evy process L� With this
model the authors were able to derive explicit expressions for quantities of
fundamental interest� such as the integrated volatility� Since the process V
can be written�

V �t� 	

Z t

��

e���t�u�dL�u��

and since both the kernel� g�u� 	 e��uI������u�� and the increments of the
driving L
evy process are non�negative� the volatility is non�negative as re�
quired� A limitation of the use of the Ornstein�Uhlenbeck process however �and
of linear combinations with non�negative coe�cients of independent Ornstein�
Uhlenbeck processes� is the constraint that the autocorrelations ��h�� h � ��
are necessarily non�increasing in h�

Much of the analysis of Barndor
�Nielsen and Shephard can however be
carried out after replacing the Ornstein�Uhlenbeck process by a CARMA pro�
cess with non�negative kernel driven by a non�decreasing L
evy process� This
has the advantage of allowing the representation of volatility processes with
a larger range of autocorrelation functions than is possible in the Ornstein�
Uhlenbeck framework� For example� the CARMA����� process with

a�z� 	 �z � �����z � ���� i�
���z � ���� i�
�� and b�z� 	 ������ �z � z�

has non�negative kernel and autocovariance functions�

g�t� 	 ������e����t �

�
������ cos

�t

�
� ������ sin

�t

�



e���
t� t � ��

and

��h� 	 ������e����h �

�
������ cos

�h

�
� ������ sin

�h

�



e���
h� h � ��

respectively� both of which exhibit damped oscillatory behaviour�
There is of course a constraint imposed upon the allowable CARMA pro�

cesses for stochastic volatility modelling by the requirement that the ker�
nel g be non�negative� Conditions on the coe�cients which guarantee non�
negativity of the kernel have been considered by Brockwell and Davis ������
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and Todorov and Tauchen ������ for the CARMA����� process with real au�
toregressive roots and� more generally by Tsai and Chan ������� In his anal�
ysis of the German Mark�US Dollar exchange rate series from ���� through
����� Todorov ������ �nds that a good �t to the autocorrelation function
of the realized volatility is provided by a CARMA����� model with two real
autoregessive roots�

A class of long�memory L
evy�driven CARMA processes was introduced
by Brockwell ������ and Brockwell and Marquardt ������ by replacing the
kernel g in ����� by the kernel�

gd�t� 	

Z �

��

eit��i���d
b�i��

a�i��
d��

with � 	 d 	 ���� The resulting processes� which exhibit hyperbolic rather
than geometric decay in their autocorrelation functions� must however be
driven by L
evy processes with zero mean� and such L
evy processes cannot be
non�decreasing� Long�memory L
evy�driven CARMA processes cannot there�
fore be used directly for the modelling of stochastic volatility� They can how�
ever be used for the modelling of mean�corrected log volatility in order to
account for the frequently observed long memory in such series�


� Continuous�time GARCH Processes

A continuous�time analog of the GARCH����� process� denoted COGA�
RCH������ has recently been constructed and studied by Kl�uppelberg et al�
������� Their construction uses an explicit representation of the discrete�time
GARCH����� process to obtain a continuous�time analog� Since no such rep�
resentation exists for higher�order discrete�time GARCH processes� a di
erent
approach is needed to construct higher�order continuous�time analogs� For a
detailed discussion of continuous�time GARCH processes see the article of
Lindner ������ in the present volume�

Let ��n�n�N�
be an iid sequence of random variables� For any non�negative

integers p and q� the discrete�time GARCH�p�q� process ��n�n�IN�
is de�ned

by the equations�

�����
�n 	 �n�n�
��n 	 �� � ���

�
n�� � � � �� �p�

�
n�p � ���

�
n�� � � � �� �q�

�
n�q �

where s �	 max�p� q�� the initial values ��� � � � � � �
�
s�� are assumed to be iid and

independent of the iid sequence ��n�n�s� and �n 	 Gn�� �Gn represents the
increment at time n of the log asset price process �Gn�n�IN�

� In continuous�
time it is more convenient to de�ne the GARCH process as a model for �Gt�t��

rather than for its increments as in discrete�time�
Equation ����� shows that the volatility process �Vn �	 ��n�n�IN�

can be
viewed as a �self�exciting ARMA�q� p � �� process driven by the noise se�
quence �Vn���

�
n���n�IN� This observation suggests de�ning a continuous time

GARCH model of order �p� q� for the log asset price process �Gt�t�� by
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dGt 	
p
Vt dLt� t � �� G� 	 ��

where �Vt�t�� is a left�continuous non�negative CARMA�q� p � �� process
driven by a suitable replacement for the discrete time driving noise sequence
�Vn���

�
n���n�IN� By choosing the driving process to be

Rt 	

Z t

�

Vsd�L�L�
�d�
s � i�e� dRt 	 Vt d�L�L�

�d�
t �

where �L�L��d� is the discrete part of the quadratic covariation of the L
evy
process L� we obtain the COGARCH�p� q� process� which has properties anal�
ogous to those of the discrete�time GARCH process and which includes the
COGARCH����� process of Kl�uppelberg et al������� as a special case� The
precise de�nition is as follows�

De�nition � �COGARCH�p� q� process�� If p and q are integers such
that q � p � �� �� � �� ��� � � � � �p � IR� ��� � � � � �q � IR� �p �	 �� �q �	 �� and
�p�� 	 � � � 	 �q 	 �� we de�ne the �q� q�!matrix B and the vectors a and e
by

B 	

�
������

� � � � � � �
� � � � � � �
���

���
���

� � �
���

� � � � � � �
��q ��q�� ��q�� � � � ���

�
������ � a 	

�
������

��

��

���
�q��

�q

�
������ � e 	

�
������

�
�
���
�
�

�
������ �

with B �	 ��� if q 	 �� Then if L 	 �Lt�t�� is a L
evy process with non�trivial
L
evy measure� we de�ne the �left�continuous� volatility process V 	 �Vt�t��

with parameters B� a� �� and driving L
evy process L by

Vt 	 �� � a�Yt�� t � �� V� 	 �� � a�Y��

where the state process Y 	 �Yt�t�� is the unique c�adl�ag solution of the
stochastic di
erential equation

dYt 	 BYt� dt� e��� � a�Yt�� d�L�L�
�d�
t � t � ��

with initial value Y�� independent of the driving L
evy process �Lt�t��� If the
process �Vt�t�� is strictly stationary and non�negative almost surely� we say
that G 	 �Gt�t��� given by

dGt 	
p
Vt dLt� t � �� G� 	 ��

is a COGARCH�p� q� process with parameters B� a� �� and driving L
evy
process L �

Conditions for the existence of a non�negative stationary solution of the
equations for V and the properties of the resulting volatility and COGARCH�p� q�
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processes� including conditions for the existence of moments of order k� are
studied in the paper of Brockwell et al� ������� In particular it is shown under
mild conditions that the process of increments

G
�r�
t �	 Gt�r �Gt�

for any �xed r � �� has the characteristic GARCH properties�

EG
�r�
t 	 �� cov�G

�r�
t�h� G

�r�
t � 	 � h � r�

while the squared increment process G�r�� has a non�zero autocovariance func�
tion� expressible in terms of the de�ning parameters of the process� The au�
tocovariance function of the stationary volatility process� if it exists� is that
of a CARMA process� just as the discrete�time GARCH volatility process has
the autocovariance function of an ARMA process�

�� Inference for CARMA Processes�

Given observations of a CARMA�p� q� process at times � � t� 	 t� 	
� � � 	 tN � there is an extensive literature on maximum Gaussian likelihood
estimation of the parameters� This literature however does not address the
question of identifying and estimating parameters for the driving process when
it is not Gaussian� In the general case we can write� from ����� and ������

����� Y �ti� 	 �b�X�ti�� i 	 �� � � � � N�

where

����� X�ti� 	 eA�ti�ti���X�ti��� �

Z ti

ti��

eA�ti�u�e dL�u�� i 	 �� � � � � N�

and X�t�� has the distribution of
R�
�

eAuedL�u�� The observation equations
����� and state equations ����� are in precisely the form required for appli�
cation of the discrete�time Kalman recursions �see e�g� Brockwell and Davis
������� in order to compute numerically the best one�step linear predictors
of Y�� � � � � YN � and hence the Gaussian likelihood of the observations in terms
of the coe�cients faj � � � j � p� bj � � � j 	 q� �g� Jones ������ used this
representation� together with numerical maximization of the calculated Gaus�
sian likelihood� to compute maximum Gaussian likelihood estimates of the
parameters for time series with irregularly spaced data� A similar approach
was used in a more general setting by Bergstrom ������� If the observations
are uniformly spaced an alternative approach due to Phillips ������ is to �t
a discrete�time ARMA model to the observations and then to determine a
Gaussian CARMA process in which the discrete�time process can be embed�
ded� �Recalling the results of Section � however� it may be the case that there
is no CARMA process in which the �tted ARMA process can be embedded��
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For a CAR�p� process observed continuously on the time interval ��� T ��
Hyndman ������ derived continuous�time analogues of the discrete�time Yule�
Walker equations for estimating the coe�cients� For a Gaussian CARMA
process observed continuously on ��� T �� the exact likelihood function was de�
termined by Pham�Din�Tuan ������ who also gave a computational algorithm
for computing approximate maximum likelihood estimators of the parameters
which are asymptotically normal and e�cient� The determination of the ex�
act likelihood� conditional on the initial state vector X���� can also be carried
out for non�linear Gaussian CAR�p� processes and maximum conditional like�
lihood estimators expressed in terms of stochastic integrals �see Brockwell
et al� ������� where this method of estimation is applied to threshold CAR
processes observed at closely spaced times� using sums to approximate the
stochastic integrals involved��

For L
evy�driven CARMA processes� estimation procedures which take into
account the generally non�Gaussian nature of L are less well�developed� One
approach is to estimate the parameters faj � � � j � p� bj � � � j 	 q� �g
by maximizing the Gaussian likelihood of the observations using ����� and
������ If the process is observed continuously on ��� T �� these estimates and
the results of Remark ��� can be used to recover� for any observed or assumed
X���� a realization of L on ��� T �� The increments of this realization can then be
examined and a driving L
evy process chosen whose increments are compatible
with the increments of the recovered realization of L� If the CARMA process
is observed at closely�spaced discrete time points then a discretized version of
this procedure can be used� This work is currently in progress�
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