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Abstract

A Gibbs sampler for a Poisson regression model including spatial effects is presented and evaluated. The approach is based
on that a Poisson regression model can be transformed into an approximate normal linear model by data augmentation using the
introduction of two sequences of latent variables. It is shown how this methodology can be extended to spatial Poisson regression
models and details of the resulting Gibbs sampler are given. In particular, the influence of model parameterisation and different
update strategies on the mixing of the MCMC chains is discussed. The developed Gibbs samplers are analysed in two simulation
studies and applied to model the expected number of claims for policyholders of a German car insurance company. The mixing
of the Gibbs samplers depends crucially on the model parameterisation and the update schemes. The best mixing is achieved
when collapsed algorithms are used, reasonable low autocorrelations for the spatial effects are obtained in this case. For the
regression effects however, autocorrelations are rather high, especially for data with very low heterogeneity. For comparison a
single component Metropolis–Hastings algorithms is applied which displays very good mixing for all components. Although the
Metropolis–Hastings sampler requires a higher computational effort, it outperforms the Gibbs samplers which would have to be
run considerably longer in order to obtain the same precision of the parameters.
c© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we present a straightforward Gibbs sampler for spatial Poisson regression models using data
augmentation techniques. In particular, we aim to investigate whether this Gibbs sampler is found to be superior
to a conventional single site Metropolis–Hastings (MH) sampler. The issue of model parameterisation and several
update schemes for the parameters in the Gibbs sampler is thoroughly addressed. The performance of the developed
Gibbs sampler schemes and the MH sampler is investigated in two simulation studies as well as on real data from
a German car insurance company. Performance of the samplers is measured in the computational costs required to
obtain the same precision of the posterior means of the parameters.

Since the full conditional distributions of a spatial Poisson regression model do not follow any standard distribution,
often single site MH steps are performed in a MCMC setting, see for example Diggle et al. (1998), Dimakos and
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Frigessi (2002), Gschlößl and Czado (2007b) or Gschlößl and Czado (2007a). However, this requires the choice of
appropriate proposal distributions in order to achieve reasonable acceptance rates and a good mixing of the MCMC
chains in the presence of model inherent parameter dependence. Advanced independence proposals, such as a normal
proposal with the same mode and inverse curvature at the mode as the target distribution, can lead to high acceptance
rates and low autocorrelations but involve considerable computational efforts.

Frühwirth-Schnatter and Wagner (2006b) developed a Gibbs sampler for Poisson regression models in small
counts. They show that by data augmentation using two sequences of latent variables a linear normal model is obtained.
In Frühwirth-Schnatter and Wagner (2006a) an application of this Gibbs sampler to state space models is given.
In Frühwirth-Schnatter and Wagner (2006b) the same methodology is applied for standard Poisson regression models
and Poisson regression models with overdispersion. Using similar techniques, a Gibbs sampler for logistic models is
developed in Frühwirth-Schnatter and Frühwirth (2007). However a comparison of the performance of these auxiliary
mixture samplers to other MCMC schemes has not been conducted so far. We provide now such a comparison in an
extended setting.

First we extend this methodology to spatial Poisson regression models in a straightforward manner allowing for
a Gibbs update of both regression parameters and spatial effects. Although we only consider spatial Poisson data
distributed on regions in this paper, the presented methodology could also be applied on geostatistical Poisson models
(see Diggle et al. (1998)). Secondly, we compare the performance of these extended auxiliary mixture samplers with
different parameterisations to a single site MH sampler with independence proposals.

In particular, it is well known, that mixing and convergence of the Gibbs sampler depend crucially on several
implementation issues (see for example Roberts and Sahu (1997) for a detailed discussion). High autocorrelations
can be reduced by updating several parameters in one block or using collapsed algorithms. For collapsed
algorithms particular components of the posterior are integrated out and updates are based on the resulting
marginal distribution. Another important issue is model parameterisation. Gelfand et al. (1995) discuss the efficiency
of centered and non-centered parameterisations for hierarchical normal linear models. Papaspiliopoulos et al.
(2003) address parameterisation issues for several classes of hierarchical models and introduce partially non-
centered parameterisations. Christensen et al. (2006) propose the standardization and orthogonalization of all model
components leading to efficient and robust MCMC algorithms.

Both centered and non-centered model parameterisations are considered. Further various algorithmic schemes,
such as a joint block update of the intercept and the spatial effects as well as collapsed algorithms (see Liu et al.
(1994)), are discussed. The performance of the samplers is examined and compared to a single site MH sampler
with independence proposals in two simulation studies. In the first study, the samplers are applied to data with
both large and small spatial effects, while the second study considers the influence of data heterogeneity on the
performance of the samplers. The performance is measured in the computational costs required in order to obtain a
certain precision of the posterior means of the regression parameters and spatial effects. This is done by taking both the
Monte Carlo error of the posterior means of the parameters and the computational time required for one iteration into
account. A very similar approach for comparing the performance of MCMC samplers is conducted by Christensen
and Waagepetersen (2002). Among the Gibbs samplers collapsed algorithms perform best. In particular for data with
small spatial effects, the Monte Carlo errors of the spatial effects are considerably reduced when collapsed samplers
and model parameterisations with non-centered scale or variance are used. The Monte Carlo errors of the regression
parameters however are rather high, especially for data with low heterogeneity. The MH independence sampler in
contrast, exhibits very low Monte Carlo errors and good mixing for both regression and spatial effects in all settings.
Although the MH sampler requires a higher computational effort, this drawback is compensated by the high precision
of the posterior means of the parameters. In order to obtain the same precision the Gibbs samplers would have to be
run considerably longer, offsetting the computational advantage in comparison to the MH sampler. Therefore we have
to conclude that the proposed Gibbs sampler for spatial Poisson regression models cannot outperform a single site
MH sampler using independence proposals.

In the literature various approaches for MCMC estimation in spatial Poisson models are provided. Knorr-Held
and Rue (2002) discuss efficient block sampling MH algorithms for Markov random field models in disease
mapping, based on the methodology developed in Rue (2001). Haran et al. (2003) study MH algorithms with
proposal distributions based on Structured MCMC, introduced by Sargent et al. (2000), for spatial Poisson models,
while Christensen et al. (2006) discuss Langevin–Hastings updates in spatial GLMM’s. Rue et al. (2004) present non-
Gaussian approximations to hidden Markov random fields and give applications in disease mapping and geostatistical
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models. A comparison of several methods for fitting spatial models with focus on a Bayesian model using a spectral
basis approach is given by Paciorek (2007). These methods have been found to be superior to a conventional MH
sampler only performing individual updates of the parameters. Therefore, since a single site MH sampler clearly
outperformed the Gibbs samplers developed in this paper, a comparison of the Gibbs samplers to these methods
seems to be unnecessary.

This paper is organized as follows. In Section 2 the spatial Poisson regression model is specified and the two steps
of the data augmentation scheme are described for this specific model. Details on several algorithmic schemes for
updating the regression and spatial effects are given in Section 3. In Section 4 the developed Gibbs sampler schemes
are examined and compared to a single component MH sampler with independence proposals in two simulation
studies. We also apply the Gibbs samplers to model the expected number of claims in a real data set from a German
car insurance company. Section 5 gives a summary and draws conclusions.

2. Data augmentation and Gibbs sampler for spatial Poisson regression models

We assume that observations Yi , i = 1, . . . , n observed at J regions follow a Poisson model

yi ∼ Poisson(µi ). (2.1)

The mean µi is specified by

µi = ti exp(z′

iα) := ti exp(x′

iβ + v′

iγ ) = ti exp(x′

iβ + γR(i)), (2.2)

where z′

i = (x′

i , v′

i ) denotes the covariate vector xi = (1, xi1, . . . , xi p)
′ and the incidence vector vi = (vi1, . . . , vi J )

′

for the regions, i.e.

vi j =

{
1, if R(i) = j
0 otherwise,

with R(i) ∈ {1, . . . , J } denoting the region of the i th observation. Note, that this model is not restricted to
only one observation per region. For the car insurance data analysed later on for example, there are several
observations with different covariates in each region. Further α = (β, γ )′ denotes the vector of regression parameters
β = (β0, β1, . . . , βp) and spatial random effects γ = (γ1, ..γJ ). By the inclusion of spatial effects we allow for
geographical differences in the J regions. The quantity ti gives the exposure time for the i th observation.

We assume a normal prior distribution for the regression parameters β, given by

β ∼ Np+1(0, V0),

where V0 = τ 2 Ip+1 with τ 2
= 100. Here Np(µ,Σ ) denotes the p-variate Normal distribution with mean µ and

covariance matrix Σ . For the spatial effects a conditional autoregressive (CAR) prior based on Pettitt et al. (2002) is
used. In particular, we assume

γ |ψ, σ 2
∼ NJ (0, σ 2 Q−1),

where the elements of the precision matrix Q = (Qi j ), i, j = 1, . . . , J are given by

Qi j =

1 + |ψ | · Ni i = j
−ψ i 6= j, i ↔ j
0 otherwise.

(2.3)

We write i ↔ j for neighbouring regions i and j and assume regions to be neighbours if they share a common border.
Ni denotes the number of neighbours of region i . The spatial hyperparameter ψ determines the degree of spatial
dependence. For ψ = 0 independence of the spatial effects is obtained whereas for ψ → ∞ the degree of spatial
dependency increases. Note, that this prior is a proper distribution in contrast to the well-known intrinsic CAR model
introduced by Besag and Kooperberg (1995). Other proper spatial prior distributions have been considered, see for
example Czado and Prokopenko (2007) who use a modification of model (2.3) and Sun et al. (2000).
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Table 1
Spatial prior and observation equation for different model parameterisations, where xi−0 := (xi1, . . . , xi p)

′ and β−0 := (β1, . . . , βp)

Parameterisation Spatial prior Observation equation

Centered γ c
∼ N (β0, σ

2 Q−1) µi = ti exp(x′
i−0β−0 + v′

i γ
c)

Non-centered mean γ ∼ N (0, σ 2 Q−1) µi = ti exp(β0 + x′
i−0β−0 + v′

i γ )

Non-centered mean and scale γ ∗
∼ N (0, Q−1) µi = ti exp(β0 + x′

i−0β−0 + σv′
i γ

∗)

Non-centered mean and variance γ ∗∗
∼ N (0, I ) µi = ti exp(β0 + x′

i−0β−0 + σv′
i Lγ ∗∗)

where L L ′
= Q−1

Therefore, we have a multivariate normal prior distribution for the regression and spatial parameters α which is
given by

α|θ ∼ Np+1+J (0,Σ ) (2.4)

with Σ =

(
V0 0
0 σ2 Q−1

)
. For the spatial hyperparameters θ = (ψ, σ 2) the proper prior distributions

ψ ∼ Fψ with density f (ψ) ∝
1

(1 + ψ)2
and σ 2

∼ IGamma(1, 0.005)

are assumed. Frühwirth-Schnatter (2004) showed that different parameterisations can influence the efficiency of
MCMC algorithms. Therefore we investigate similar parameterisations as Frühwirth-Schnatter (2004) for regression
problems in the following. The parameterisation of the model described by observation equation (2.2) and prior
specification (2.4) is non-centered in the mean, since the intercept β0 appears in the observation equation, but not
in the spatial prior formulation. Other possible model parameterisations include parameterisations additionally non-
centered in the scale or variance of the spatial prior as well as a centered parameterisation, where the intercept β0 only
appears as the mean of the spatial prior. These parameterisations are summarized in Table 1.

Initially, our investigations are based on the non-centered mean parameterisation given by (2.2) and (2.4).
Necessary changes when other parameterisations are used will be indicated specifically.

We now adopt the data augmentation scheme developed by Frühwirth-Schnatter and Wagner (2006a) to spatial
Poisson regressions. The basic idea of this data augmentation scheme is to regard the Poisson observations yi , i =

1, . . . , n, as the number of jumps of an unobserved Poisson process with intensity µi within the unit interval. The first
step of the data augmentation consists in the introduction of yi + 1 hidden inter-arrival times τi j , j = 1, . . . , yi + 1
for each observation yi . Using that the inter-arrival times are independent and follow an exponential distribution with
parameter µi (see for example Mikosch (2004)) i.e. τi j |α ∼ Exponential(µi ) = Exponential(1)/µi , we obtain

log τi j |α = − log ti − z′

iα + εi j , exp(εi j ) ∼ Exponential(1). (2.5)

Denote by τ = {τi j , i = 1, . . . , n, j = 1, . . . , yi + 1} the collection of all inter-arrival times. For a Gibbs sampling
approach we need to consider the conditional distribution of α given τ and y. Since this distribution is independent of
y, we see that it is proportional to the linear regression model in α with a non-normal error term given in (2.5) times
the prior for α. The second step of the data augmentation scheme eliminates the non-normality of model (2.5). As
shown by Frühwirth-Schnatter and Wagner (2006a), the error term in (2.5) can be approximated sufficiently close to
a normal distribution by a mixture of five normal distributions, i.e. the density of εi j can be approximated by

p(εi j ) = exp(εi j − exp(εi j )) ≈

5∑
r=1

wr fN (εi j ; mr , s2
r ),

where fN (·; mr , s2
r ) denotes the density of the normal distribution with mean mr and variance s2

r . Frühwirth-Schnatter
and Wagner (2006a) discuss the size of the approximation error and give the corresponding values for mr , s2

r and the
weights wr ≥ 0 summing up to 1.

In the second step of the data augmentation the component indicators ri j ∈ {1, . . . , 5} are introduced as latent
variables to assist mixing. Denoting the set of all component indicators by R = {ri j , i = 1, . . . , n, j = 1, . . . , yi +1},
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we have conditional on R

log τi j |α, ri j = − log ti − z′

iα + mri j + εi j , εi j ∼ N (0, s2
ri j
), (2.6)

i.e. we have conditional on α and ri j a normal model which is linear in α. Since the prior distribution π(α|θ) is normal
as well, the resulting posterior distribution is multivariate normal and a Gibbs sampler can be applied. Note, that by
performing this data augmentation we are no longer dealing with n but with

∑n
i=1(yi + 1) observations. Therefore

this Gibbs Sampler is mainly useful for count data with small counts only, otherwise the data set might get very large.
We summarize the above Gibbs sampler in the following algorithmic scheme:
Choose appropriate starting values for the component indicators R and the inter-arrival times τ .

(1) sample regression and spatial parameters α = (β, γ )′ given τ ,R, θ

(2) sample spatial hyperparameters θ = (ψ, σ 2) given α

(3) sample the inter-arrival times τi j given α, y

(4) sample the component indicators ri j given τ ,α.

Step (1) consists of sampling from a multivariate normal distribution. This can be done in one block, however
it might be computationally more efficient to perform an update in several smaller blocks. We will consider several
update strategies for Step 1 in Section 3 in more detail. The spatial hyperparameter ψ is updated using a MH step,
whereas σ 2 can be updated using a Gibbs step. Steps (3) and (4), elaborated in Frühwirth-Schnatter and Wagner
(2006a), are described in the Appendices A and B. Starting values for ri j , τi j and ζi were sampled as suggested
in Frühwirth-Schnatter and Wagner (2006a).

3. Updating schemes for the regression and spatial parameters in the Gibbs sampler

For α several update schemes are possible and will be discussed in this section. For notational convenience we
define with N :=

∑n
i=1(yi + 1)

τ̃ = (τ̃1, . . . , τ̃N ) := (τ11, . . . , τ1,y1+1, τ21, . . . , τ2,y2+1, . . . , τn1, . . . , τn,yn+1).

In a similar manner we define ε̃, m̃ and s̃2. Let t̃ = (t̃1, . . . , t̃N ) denote the vector where ti is repeated yi + 1 times.
Further define

ỹ = (ỹ1, . . . , ỹN ) := (log τ̃1 − m̃1 + log t̃1, . . . , log τ̃N − m̃ N + log t̃N ).

Using this notation we have according to (2.6)

ỹi |α,R ∼ N (−z̃′

iα, s̃2
i ),

where z̃ =

 z̃′
1
.
.
.

z̃′
N

 is a N × (p + 1 + J )-matrix where zi is repeated yi + 1 times.

3.1. Block update of α = (β, γ )′

For a joint update of the regression parameters β and the spatial effects γ in one block we have to consider the full
conditional of α = (β, γ )′ which is given by

α|θ , τ ,R ∼ Np+1+J (Σ−1
α µα,Σ

−1
α ),

where Σα := Σ−1
+
∑N

i=1
1
s̃2
i

z̃i z̃
′

i and µα := −
∑N

i=1
1
s̃2
i

z̃i ỹi .
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3.2. Separate update of β and γ

The calculation of the posterior covariance matrix Σ−1
α in Section 3.1 can be computationally expensive if the

number of regression parameters and spatial effects is large as is the case in most spatial applications. Therefore it
might be more efficient to update β and γ in two separate blocks. The full conditional distributions of β and γ are
given by

β|γ , θ , τ ,R ∼ Np+1(Σ−1
β µβ ,Σ

−1
β ) and γ |β, θ , τ ,R ∼ NJ (Σ−1

γ µγ ,Σ
−1
γ ).

The explicit formulas for Σβ , µβ , Σγ and µγ are given in Appendix C, Table C.1.

3.3. Block update of the intercept β0 and γ (block)

Due to identifiability problems between the intercept β0 and the spatial effects γ mixing is slow when β and γ are
updated in two separate blocks. Better results are achieved if a joint block update of β0 and γ is performed, whereas
the remaining parameters β−0 = (β1, . . . , βp) are still updated in one separate block. With this setting the posterior
distributions are given by

β−0|β0, γ , θ , τ ,R ∼ Np(Σ−1
β−0

µβ−0
,Σ−1

β−0
)

and

γ , β0|β−0, θ , τ ,R ∼ NJ+1(Σ−1
γβ0

µγβ0
,Σ−1

γβ0
)

with Σβ−0 , µβ−0
, Σγβ0 and µγβ0

as given in Appendix C, Table C.1.

3.4. Collapsed algorithm for a model parameterisation with a non-centered mean (coll1)

The joint posterior distribution of β and γ can be written as

p(β, γ |θ , τ ,R) ∝ p(β|τ ,R)p(γ |β, θ , τ ,R),

where p(β|τ ,R) =
∫

p(β, γ |θ , τ ,R)dγ is the marginalized posterior density of β with γ integrated out. It is shown
in the Appendix D that

β|τ ,R ∼ Np+1(Σ−1
col µcol,Σ

−1
col )

with Σcol and µcol as given in Table C.1.
Step (1) in the algorithmic scheme presented in Section 2 for the collapsed algorithm is given by:

• sample β from Np+1(Σ−1
col µcol,Σ

−1
col )

• sample γ |β, θ , τ ,R as in Section 3.2.

3.5. Collapsed algorithm for a model parameterisation with a non-centered mean and scale (coll2)

Up to now, we have considered models with the non-centered mean parameterisation specified by (2.2) and the
spatial prior γ |ψ, σ ∼ NJ (0, σ 2 Q−1). In this section we consider the third model parameterisation given in Table 1.
By assuming γ ∗

|ψ ∼ NJ (0, Q−1), σ appears as an unknown parameter in the observation equation, in particular we
have

µi = ti exp(x′

iβ + σγ ∗

R(i)).

Here γ ∗

R(i) is defined analogously to γR(i), see Section 2. For this parameterisation and π(·) denoting the prior
distributions, the joint posterior of β, γ ∗, ψ and σ is given by

p(β, γ ∗, ψ, σ |ỹ, τ ,R) ∝ exp

{
−

1
2

n∑
i=1

1

s̃2
i

(ỹi + x̃′

iβ + σ ṽ′

iγ
∗)2

}
· π(β)π(γ ∗

|ψ)π(ψ)π(σ).
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Following the lines of Section 3.4 we obtain for β the marginalized posterior distribution

β|σ, τ ,R ∼ Np+1((Σ ∗

col)
−1µ∗

col, (Σ
∗

col)
−1).

The full conditional distribution for γ ∗ is given by

γ ∗
|β, τ ,R, σ, ψ ∼ NJ ((Σ ∗

γ )
−1µ∗

γ , (Σ
∗
γ )

−1).

The definitions of Σ ∗

col, µ∗

col, Σ ∗
γ and µ∗

γ can be found in Appendix C, Table C.1. The spatial hyperparameter ψ is
again updated using a MH step since the full conditional distribution cannot be sampled from directly. For this model
parameterisation we choose a normal prior for σ , in particular σ ∼ N (0, τ 2

σ ). Note, that σ is not restricted to take
positive values, leading to non-identifiability, since the same likelihood results for (σ, γ ∗) and (−σ,−γ ∗). However,
as pointed out by Frühwirth-Schnatter (2004), this leads to an improved mixing for models with small scales σ 2 since
boundary problems for σ are avoided. The full conditional distribution of σ is then again normal, in particular

σ |β, γ ∗, τ ,R ∼ N ((Σ ∗
σ )

−1µ∗
σ , (Σ

∗
σ )

−1),

see Table C.1 for details on Σ ∗
σ and µ∗

σ .

3.6. Collapsed algorithm for a model parameterisation with a non-centered mean and variance (coll3)

In this section we consider the fourth model parameterisation given in Table 1. In contrast to the previous section,
we now assume the prior

γ ∗∗
∼ NJ (0, I ).

The spatial structure incorporated in the precision matrix Q is moved to the observation equation given by

µi = ti exp(x′

iβ + σv′

i Lγ ∗∗),

where L is a lower triangular matrix resulting from the Cholesky decomposition Q−1
= L L ′. The resulting joint

posterior distribution of β, γ ∗∗, ψ and σ is given by

p(β, γ ∗∗, ψ, σ |ỹ, τ ,R) ∝ exp

{
−

1
2

n∑
i=1

1

s̃2
i

(ỹi + x̃′

iβ + σ ṽ′

i Lγ ∗∗)2

}
· π(β)π(γ ∗∗)π(ψ)π(σ).

The marginalized posterior distribution of β changes to

β|σ, τ ,R ∼ Np+1((Σ ∗∗

col)
−1µ∗∗

col, (Σ
∗∗

col)
−1).

The full conditional distribution of γ ∗∗ is given by

γ ∗∗
|β, τ ,R, σ, ψ ∼ NJ ((Σ ∗∗

γ )
−1µ∗∗

γ , (Σ
∗∗
γ )

−1),

with Σ ∗∗

col, µ∗∗

col, Σ ∗∗
γ and µ∗∗

γ as given in Table C.1. While ψ is again updated using a MH step, the full conditional
distribution of σ is given by

σ |β, γ ∗∗, ψ, τ ,R ∼ N ((Σ ∗∗
σ )

−1µ∗∗
σ , (Σ

∗∗
σ )

−1),

see Table C.1 for details on Σ ∗∗
σ and µ∗∗

σ . Here again the normal prior σ ∼ N (0, τ 2
σ ) is assumed.

3.7. Centered CAR-Model (centered)

Alternatively, the centered spatial prior γ c
|β0 ∼ N (β0, σ

2 Q−1) with β0 ∼ N (0, τ 2) and β−0 ∼ N (0, τ 2 Ip) can
be used. For this model the posterior distribution for β−0 is the same as in Section 3.3 but with µβ−0

replaced by

−
∑N

i=1
1
s̃2
i

x̃β−0i (ỹi + γ c
R(i)).

The posterior distribution for γ c is given by

γ c
|β0,β−0, θ , τ ,R, y ∼ NJ (Σ−1

γ µcent
γ ,Σ−1

γ ),
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where Σγ is the same as in Section 3.2 and µcent
γ is given in Table C.1.

The intercept β0 is updated in an extra Gibbs step. In particular we have

β0|β−0, γ , θ , τ ,R, y ∼ N (Σ−1
β0
µβ0 ,Σ

−1
β0
)

with Σβ0 and µβ0 defined as in Table C.1.

4. Simulation studies and application

We aim to apply the developed Gibbs samplers to analyse the expected number of claims in a data set from
a German car insurance company. The data include 16307 policyholders in Bavaria with full comprehensive car
insurance for the year 2000. It contains information on several covariates like age and gender of the policyholders,
kilometers driven per year and the geographical region each policyholder is living in. Not all policyholders were
insured during the whole year, however the exposure time ti of each policyholder is known. Bavaria is divided into 96
regions. The variability of these data is very small, 95% of the observations are zero. The highest number of claims
observed is only four. The data have previously been analysed by Gschlößl and Czado (2007a) who considered both
a spatial Poisson regression model as well as spatial models taking overdispersion into account. They show that the
spatial effects are very small for these data and have no significant contribution to explaining the expected claim
number.

In this section, the performance of the Gibbs sampler schemes developed in Sections 2 and 3 will be initially
examined on simulated data. For comparison, we additionally use a single site Metropolis–Hastings algorithm for
spatial Poisson regression models with an independence proposal where both β and γ are updated component by
component. In particular, we use a t-distribution with 20 degrees of freedom as proposal which has the same mode
and inverse curvature at the mode as the target distribution.

The performance of the samplers is measured in terms of the computation time required in order to obtain a
certain precision of the estimated posterior means of the parameters. The posterior mean of a variable θ is given by
θ̄ :=

∑R
j=1 θ̂

j with θ̂ j , j = 1, . . . , R denoting the MCMC iterates of θ after burnin. The precision of θ̄ is given by

the Monte Carlo standard error of θ̄ which is defined as σMC (θ̄) := σasy(θ̄)/
√

R where

σ 2
asy(θ̄) := V ar(θ)

(
1 + 2

∞∑
k=1

ρk(θ)

)

denotes the asymptotic variance of θ̄ , Var(θ) the sample variance and ρk(θ) the autocorrelation of the MCMC
iterates θ̂1, . . . , θ̂ R at lag k. The asymptotic variance will be estimated using the initial monotone sequence estimator
(see Geyer (1992)), defined by

σ̂ 2
asy(θ̄) := V̂ar(θ)

(
1 + 2

2l+1∑
j=1

ρ̂k(θ)

)
,

where l is chosen to be the largest integer such that the sequence Γl = ρ̂2l(θ) + ρ̂2l+1(θ) is positive and monotone.
Here V̂ar(θ) := γ̂0, ρ̂k(θ) :=

γ̂k
γ̂0

, γ̂k :=
1
R

∑R−k
j=1 (θ̂

j
− θ̄ )(θ̂ j+k

− θ̄ ). We additionally require the estimated empirical
autocorrelations ρ̂2l+1(θ) to fall below 0.1.

In order to obtain a certain precision k, R = σ̂ 2
asy/k2 samples are needed. Hence, the computation time required

to obtain a precision k for an algorithm with computational costs m per iteration, is given by R · m. For a direct
comparison of the Gibbs sampler schemes to the MH independence sampler we consider the computational costs
relative to the costs of the MH sampler required to obtain the same precision of the posterior means of the parameters.
This is given by Rrel · mrel := (σ̂ 2

asy/σ̂
2
asy,ind) · (m/mind), where σ̂ 2

asy,ind and mind denote the estimated asymptotic
variance and the computational costs for one iteration of the MH independence sampler. The computational costs m
and mind will be evaluated numerically later on, see Table 2.

We consider two studies. In the first study the influence of the size of the spatial effects on mixing behaviour
is examined, while in the second study the impact of data heterogeneity is investigated. In both studies the Gibbs
samplers described in Sections 3.3–3.7, i.e. the following model parameterisations and update schemes are assumed:



4192 S. Gschlößl, C. Czado / Computational Statistics and Data Analysis 52 (2008) 4184–4202

Table 2
Computation times mrel for the different samplers relative to the MH independence sampler for the settings in Study 1 and Study 2

Sampler Study 1 Study 2

Independence 1 1
Block 0.87 0.27
Centered 0.86 0.26
Coll1 0.96 0.30
Coll2 0.99 0.31
Coll3 2.18 0.57

• non-centered mean:
. block update of β−0|β0, γ and (β0, γ )|β−0 given in Section 3.3 (block)
. collapsed algorithm given in Section 3.4 (coll1)

• non-centered mean and scale: collapsed algorithm given in Section 3.5 (coll2)
• non-centered mean and variance: collapsed algorithm given in Section 3.6 (coll3)
• centered parameterisation: algorithm given in Section 3.7 (centered).

In the following we will refer to these samplers as block, coll1, coll2, coll3 and centered.

4.1. Computational costs

Recall, that by using the data augmentation scheme described above, we are no longer dealing with n observations,
but with N =

∑n
i=1(yi + 1) latent inter-arrival times τi j and mixture component indicators ri j . Both τ and R have to

be updated, therefore the number of variables to sample from in each iteration is 2N + J + p+1 (+2 hyperparameters)
in comparison to J + p + 1(+2 hyperparameters) variables in the MH independence sampler. The MH independence
sampler in contrast requires the calculation of the posterior mode and the inverse curvature at the posterior mode for
each of the J + p + 1 components in every iteration. The posterior mode may be obtained using the bisection method
for example. In our simulation studies, except the sampler coll3, the Gibbs samplers are always faster than the MH
independence sampler. However, the computational advantage of the Gibbs samplers depends on the complexity of the
model. The computational costs mrel relative to the costs of the MH sampler for one iteration are reported in Table 2.
For the setting in Study 1 with 5000 observations, an intercept and two covariates for example, the centered Gibbs
sampler only takes 0.86 times as long as the MH independence sampler. For the setting in Study 2 with a larger data set
the centered Gibbs sampler even takes only 0.26 times as long. Among the Gibbs samplers the centered Gibbs sampler
is the fastest, followed closely by the Gibbs sampler using a block update. The collapsed Gibbs samplers non-centered
in the mean (coll1) and non-centered in mean and scale (coll2) require slightly more time than the centered Gibbs
sampler. The computational effort for the Gibbs sampler in the model parameterisation non-centered in the mean and
the variance (coll3) however is more than twice as large. In this algorithm a Cholesky decomposition of the precision
matrix Q−1 has to be performed in every iteration.

4.2. Study 1: Influence of the size of the spatial effects

We consider two simulated data sets of size 5000 with yi ∼ Poisson(µi ), i = 1, . . . , 5000. For both data sets the
mean µi is specified by

µi = exp(β0 + xi1β1 + xi2β2 + γR(i)),

where x1 is an indicator variable and x2 a continuous standardized variable. The exposure is assumed to be ti = 1
for all observations. We assume a simple spatial structure, namely 100 regions on a 10 × 10 grid with each square
having 4 neighbours. The spatial effects γ are generated according to the CAR prior γ ∼ N (0, σ 2 Q−1) with spatial
dependence parameter ψ = 3. For the first simulated data set y1 we assume that σ 2

= 1 resulting in a range of
[min(γ )max(γ )] = [−0.86, 0.85] for the spatial effects, whereas for the second data set y2 we take σ 2

= 0.01
resulting in a range of [min(γ )max(γ )] = [−0.08, 0.08]. The Gibbs samplers block, coll1, coll2, coll3 and centered
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Table 3
Estimated σ̂MC (upper row) for the regression parameters β1, β2 and average estimated σ̂MC for the spatial effects γ + β0 in the independence,
block, coll1 sampler, γ in the centered, β0 + σγ ∗ in the coll2 and β0 + σ Lγ ∗∗ in the coll3 sampler, as well as Rrel · mrel (lower row) for all
parameters for data set y1 and y2 using different update strategies in Study 1

Sampler Data set y1 Data set y2
Spatial effects β1 β2 Spatial effects β1 β2

Independence 0.0041 0.0015 0.0032 0.0021 0.0013 0.0030
1 1 1 1 1 1

Block 0.0100 0.0039 0.0130 0.0031 0.0042 0.0108
5.18 5.88 14.36 1.90 9.08 11.28

Centered 0.0102 0.0045 0.0115 0.0061 0.0078 0.0279
5.32 7.74 11.11 7.26 30.96 74.38

Coll1 0.0101 0.0031 0.0117 0.0022 0.0024 0.0097
5.83 4.10 12.83 1.05 3.27 10.04

Coll2 0.0099 0.0027 0.0105 0.0025 0.0029 0.0114
5.77 3.21 10.66 1.40 4.93 14.30

Coll3 0.0101 0.0024 0.0102 0.0023 0.0026 0.0133
13.23 5.58 22.15 2.62 8.72 42.85

as well as the independence MH sampler are run for 5000 iterations, a burnin of 1000 iterations is taken. As described
above, the performance of the samplers is measured in terms of the Monte Carlo standard error of the posterior means
of the parameters and the required computation times. Since estimation of the Monte Carlo error is based on the
estimated empirical autocorrelations, this quantity also depends on the mixing of the samplers. For a fair comparison
of the Monte Carlo error of the spatial effects the model parameterisation of each sampler has to be taken into account.
Therefore we compute the Monte Carlo error for β0 +γ for the MH independence sampler and the samplers block and
collapsed, while for the centered sampler the standard error of γ is considered since here the intercept is the spatial
prior mean and therefore already included in γ . For the coll2 and coll3 samplers the Monte Carlo errors for β0 + σγ ∗

and β0 + σ Lγ ∗∗, respectively, are computed.
In the left panel of Table 3, for each sampler the Monte Carlo standard errors and the performance relative to

the MH independence sampler Rrel · mrel are reported for the regression parameters β1, β2 and the spatial effects in
data set y1. For the spatial effects the average error, taken over all J components, is given. Additionally plots of the
empirical estimated autocorrelations are presented in Fig. 1. In the left panel the autocorrelations for 25 of the spatial
effects and in the right panel autocorrelations for the regression effects are plotted. Mixing for all Gibbs samplers
is reasonable fast since the autocorrelations of the spatial effects are below 0.1 at a lag of about 16–18 on average.
The average Monte Carlo error for the spatial effects is around 0.01 for all Gibbs samplers. The Monte Carlo error
of the regression parameters however is lower for the collapsed Gibbs samplers, for the block and the centered Gibbs
sampler especially the autocorrelations of β1 decrease rather slowly.

The independence MH sampler in contrast, displays the smallest Monte Carlo error for both spatial effects
and regression parameters. On average the autocorrelations of β0 + γ j are below 0.1 at a lag 3 already, the
autocorrelations for the regression parameters decrease rapidly as well. Considering the computational effort relative
to the MH independence sampler, given by Rrel · mrel, the MH independence sampler outperforms the Gibbs samplers
considerably. The computational effort required to obtain the same precision of the posterior means of the spatial
effects is more than 5 times as large for the Gibbs samplers compared to the independence sampler.

The corresponding results for data set y2 with small spatial effects are reported in the right panel in Table 3, plots
of the estimated empirical autocorrelations are given in Fig. 1. Here, clearly the lowest precision and worst mixing is
obtained if the Gibbs sampler based on the centered model parameterisation is used. This confirms the results given
in Gelfand et al. (1995). They show that for a hierarchical normal linear model with random effects the centered
parameterisation is efficient if the variance of the random effects dominates the variance in the data. However, if the
variance of the random effects is very small in contrast to the variability of the data (as it is the case in data set y2), high
posterior correlations result. For the block and particularly the collapsed Gibbs samplers a considerably lower Monte
Carlo error is obtained. The average Monte Carlo error of the spatial effects in the collapsed sampler coll1 is almost as
small as in the MH independence sampler. For the regression effects however, the MH independence sampler exhibits
lower Monte Carlo standard errors. The computational costs Rrel · mrel relative to the MH sampler, which are required
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Fig. 1. Estimated empirical autocorrelations for the spatial effects (left panel) and the regression parameters β1 (solid), β2 (dashed) (right panel)
for the independence MH sampler (i), the block (ii), centered (iii), coll1 (iv), coll2 (v) and coll3 (vi) Gibbs samplers for data sets y1 and y2.

to obtain the same precision of the posterior means of the parameters are greater than 1 for all Gibbs samplers for both
spatial effects and regression parameters. Hence, the independence sampler gives the best performance for data set y2
as well.
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The variance of the two simulated data sets y1 and y2 takes the values var(y1) = 0.51 and var(y2) = 0.49. However,
the variability of our real data from a car insurance company is very small, the variance of these data is only 0.05.
Therefore we conduct a second simulation study where we examine whether the heterogeneity of the data influences
the performance of the samplers.

4.3. Study 2: Influence of data heterogeneity

We simulate two data sets based on the design of the real data where, according to Gschlößl and Czado (2007a),
eight covariates significant for explaining the expected claim number yi were observed, i.e. yi ∼ Poisson(µi ), i =

1, . . . , 16 307 with

µi = ti exp(x′

iβ + γR(i)).

Here xi = (1, xi1, . . . , xi8) and xik, k = 1, . . . , 8 are standardized categorical and metrical covariates, the observation
specific exposure ti takes values up to one year. In this setting we have 96 irregular regions in Bavaria. The spatial
effects γ again are generated according to the CAR prior γ ∼ N (0, σ 2 Q−1) with ψ = 8 and σ 2

= 0.01. This results
in small spatial effects with a range of [−0.06 0.08], i.e. spatial effects similar to the ones observed in our real data
set. For the first data set y3 the intercept β0 is taken to be −1, whereas for the second data set y4 we take β0 = −2.5.
For the remaining regression parameters the same values are assumed for both data sets. The resulting variances of
y3 and y4 are Var(y3) = 0.46 and Var(y4) = 0.05, i.e. data set y4 has very low heterogeneity and is close to our real
data. The variance of data set y3 is not particularly high either, but in comparison to data set y4 we will refer to this
data set as data with high heterogeneity.

The block, centered, coll1, coll2 and coll3 Gibbs samplers are run for 5000 iterations, the first 1000 iterations are
discarded for burnin. For comparison again the MH independence sampler is applied. The Monte Carlo errors for
the posterior means of the regression parameters β1, . . . , β8, the spatial effects γ in the centered, β0 + γ in the non-
centered mean, β0 +σγ ∗ in the non-centered mean and scale and β0 +σ Lγ ∗∗ in the non-centered mean and variance
model parameterisation and the quantities Rrel · mrel are reported in Table 4. For the high heterogeneity data set y3 the
collapsed Gibbs samplers coll2 and coll3 exhibit the lowest Monte Carlo errors for the spatial effects among the Gibbs
samplers. The sampler coll2 even only requires 38% of the computational effort of the MH sampler in order to obtain
the same precision for the spatial effects. The precision and autocorrelations of the regression effects however are
considerably smaller in the independence sampler compared to all Gibbs samplers. In order to achieve a high precision
like in the MH sampler for all parameters, for each Gibbs sampler the maximum relative effort Rrel · mrel, occurring
for spatial and regression parameters, is required. Since the maximum values Rrel · mrel are considerably greater than
1 for each Gibbs sampler, the MH sampler is clearly superior to the Gibbs samplers. The average Monte Carlo error
for the spatial effects in data set y4 with low heterogeneity is rather high for the three Gibbs sampler schemes block,
centered and coll1 for both spatial effects and regression parameters, the estimated empirical autocorrelations plotted
in Fig. 2 decrease very slowly. While for the high heterogeneity data y3 the computational costs in order to obtain the
same precision for the spatial effects of the block Gibbs sampler are only 0.65 times as large as of the MH sampler,
for the data y4 the performance of the Gibbs sampler is clearly worse with Rrel · mrel = 5.37. Results are improved for
the collapsed algorithms based on the model parameterisations non-centered in the scale (coll2) and in the variance
(coll3). The sampler coll2 performs even better than the MH sampler (Rrel · mrel = 0.45). As indicated in Section 3.5,
the model parameterisation with non-centered scale is supposed to improve mixing particularly for models with small
scale σ 2 which is the case for data sets y3 and y4. However, the Monte Carlo errors for the regression parameters are
rather high for all Gibbs samplers and in particular considerably higher than that for the high heterogeneity data y3.
The MH independence sampler in contrast exhibits a high precision for all parameters again. Compared to data set
y3, the standard errors for all parameters resulting from the MH sampler are about twice as large for data set y4, this
loss of precision however is much smaller than that for the Gibbs samplers. According to the performance measure
Rrel · mrel for the regression parameters, the MH sampler outperforms the Gibbs samplers considerably. For example,
although the Gibbs sampler coll2 sampler only requires 31% of the computation time of the MH sampler for one
iteration (see Table 2), 30.33 (Rrel · mrel for β2) times the effort of the MH sampler for data set y4 would be needed in
order to obtain for all parameters a precision comparable to the MH sampler.
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Table 4
Estimated σ̂MC (upper row) for the regression parameters β1, . . . , β8 and estimated average σ̂MC for the spatial effects γ +β0 in the independence,
block, coll1 sampler, γ in the centered, β0 + σγ ∗ in the coll2 and β0 + σ Lγ ∗∗ in the coll3 sampler, as well as Rrel · mrel (lower row) for data set
y3 and y4 using different update strategies in Study 2

Data Sampler Spatial β1 β2 β3 β4 β5 β6 β7 β8
effects

Ind 0.0020 0.0346 0.0327 0.0003 0.0003 0.0008 0.0010 0.0003 0.0002
1 1 1 1 1 1 1 1 1

y3 Block 0.0031 0.1771 0.1627 0.0013 0.0022 0.0042 0.0039 0.0015 0.0009
0.65 7.07 6.68 5.07 14.54 7.44 4.11 6.75 5.47

Centered 0.0036 0.1955 0.1768 0.0015 0.0020 0.0038 0.0045 0.0013 0.0010
0.84 8.30 7.60 6.50 11.56 5.87 5.27 4.88 6.50

Coll1 0.0040 0.1487 0.1635 0.0011 0.0018 0.0032 0.0032 0.0015 0.0009
1.20 5.54 7.50 4.03 10.80 4.80 3.07 7.50 6.08

Coll2 0.0022 0.1561 0.1736 0.0014 0.0021 0.0030 0.0031 0.0012 0.0010
0.38 6.31 8.74 6.75 15.19 4.36 2.98 4.96 7.75

Coll3 0.0024 0.1899 0.1505 0.0014 0.0022 0.0031 0.0028 0.0016 0.0011
0.82 17.17 12.07 12.41 30.65 8.56 4.47 16.21 17.24

Ind 0.0048 0.0673 0.0611 0.0006 0.0006 0.0017 0.0021 0.0006 0.0005
1 1 1 1 1 1 1 1 1

y4 Block 0.0214 0.5199 0.3323 0.0038 0.0041 0.0217 0.0211 0.0076 0.0030
5.37 16.11 7.99 10.83 12.61 43.99 27.26 43.32 9.72

Centered 0.0114 0.5906 0.4910 0.0040 0.0052 0.0150 0.0209 0.0060 0.0055
1.47 20.02 16.79 11.56 19.53 20.24 25.75 26.00 31.46

Coll1 0.0189 0.6749 0.6181 0.0052 0.0057 0.0129 0.0133 0.0049 0.0049
4.65 30.17 30.70 22.53 27.08 17.27 12.03 20.01 28.81

Coll2 0.0058 0.5505 0.6044 0.0038 0.0048 0.0076 0.0070 0.0050 0.0041
0.45 20.74 30.33 12.43 19.84 6.20 3.44 21.53 20.84

Coll3 0.0091 0.5301 0.4789 0.0052 0.0056 0.0097 0.0096 0.0048 0.0044
2.05 35.36 35.02 42.81 49.65 18.56 11.91 36.48 44.14

Note that, compared to the collapsed algorithm coll2, the collapsed algorithm coll3 does not display significantly
lower standard errors, neither in Study 1 nor in Study 2. The additional computational effort required for coll3 which
is more than twice as large as for coll2, see Table 2, does not pay off.

4.4. Application to car insurance data

Finally we apply the discussed Gibbs samplers as well as the independence MH sampler on the car insurance data
set described at the beginning of this section. The Monte Carlo errors for the posterior means of the regression and
the spatial effects as well as the corresponding values of Rrel · mrel are reported in Table 5. Similar results as for data
set y4 which is very close to our real data, are observed. In particular for the regression parameters, the performance
of all Gibbs samplers is considerably worse than the performance of the MH independence sampler. When using the
non-centered scale and variance parameterisations at least for the spatial effects reasonable low errors are obtained,
however, according to the relative effort Rrel · mrel the MH sampler is still superior.

5. Summary and conclusions

We have presented a new MCMC methodology for spatial Poisson regression models, extending the approach
by Frühwirth-Schnatter and Wagner (2006a). Using data augmentation we have shown that a straightforward Gibbs
sampler for spatial Poisson models is available. Several update schemes like a joint block update of the intercept and
the spatial effects as well as collapsed algorithms have been discussed. Further we have addressed the issue of model
parameterisation, centered as well as non-centered model parameterisations in the mean, the scale and the variance
have been considered. The performance of the Gibbs sampler based on different model parameterisations and update
schemes has been compared to a single site MH independence sampler on simulated and real data. Performance is
measured in terms of the computational costs required in order to obtain the same precision of the posterior means of
the parameters.
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Fig. 2. Estimated empirical autocorrelations for the spatial effects (left panel) and the regression parameters β1, . . . , β8 (right panel) for the
independence MH sampler (i), the block (ii), centered (iii), coll1 (iv), coll2 (v) and coll3 (vi) Gibbs samplers for data sets y3 and y4.

For data which are not too homogeneous, the Gibbs samplers display good mixing and reasonable small Monte
Carlo errors. In particular for data with small spatial random effects, the performance is improved when collapsed
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Table 5
Estimated σ̂MC (upper row) for the regression parameters β1, . . . , β8 and average estimated σ̂MC for the spatial effects γ +β0 in the independence,
block, coll1 sampler, γ in the centered, β0 + σγ ∗ in the coll2 and β0 + σ Lγ ∗∗ in the coll3 sampler, as well as Rrel · mrel (lower row) for the car
insurance data using different update strategies

Sampler Spatial β1 β2 β3 β4 β5 β6 β7 β8
effects

Independence 0.0046 0.0673 0.0628 0.0006 0.0007 0.0017 0.0020 0.0006 0.0005
1 1 1 1. 1 1 1 1 1

Block 0.0192 0.5201 0.3823 0.0051 0.0083 0.0116 0.0203 0.0037 0.0047
4.70 16.13 10.01 19.51 37.96 12.57 27.82 10.27 23.86

Centered 0.0138 0.5465 0.5847 0.0045 0.0068 0.0126 0.0145 0.0048 0.0028
2.34 17.14 22.54 14.63 24.54 14.28 13.67 16.64 8.15

Coll1 0.0207 0.5967 0.5753 0.0040 0.0073 0.0155 0.0082 0.0043 0.0032
6.08 23.58 25.28 13.33 32.63 24.94 5.04 15.41 12.29

Coll2 0.0116 0.4359 0.6172 0.0046 0.0063 0.0122 0.0096 0.0057 0.0044
1.97 13.00 29.94 18.22 25.11 15.97 7.14 27.98 24.01

Coll3 0.0100 0.5167 0.5945 0.0056 0.0060 0.0115 0.0110 0.0054 0.0036
2.69 33.60 51.08 49.65 41.88 26.08 17.24 46.17 29.55

Gibbs samplers are used, while the centered parameterisation is not very efficient any more in this case. The MH
independence sampler however exhibits the smallest Monte Carlo errors for all parameters for data with both small
and large spatial effects. Taking additionally the required computation times of the samplers into account, the MH
sampler gives the best performance.

For data with low heterogeneity the Monte Carlo errors increase significantly for all Gibbs samplers, mixing of
the samplers is much worse. The MH sampler in contrast also mixes well for low heterogeneity data, the precision
of the posterior means of the parameters is considerably higher than that for the Gibbs samplers. Considering the
computation times of the samplers and the required MCMC iterations in order to obtain the same precision for all
parameters, the MH sampler clearly outperforms the Gibbs samplers for low heterogeneity data. Similar results are
observed for the real data which also display low heterogeneity.

As previously mentioned in Section 1, several other MCMC methods superior to a single site MH sampler have
been investigated in the literature for spatial Poisson models. The Gibbs samplers developed in this paper however,
turned out to be less efficient than a single site MH sampler. Therefore, these Gibbs algorithms cannot be regarded
as competitive alternatives to the efficient samplers mentioned in the introduction. However, the performance of the
Gibbs samplers might be improved by applying the reparameterisation techniques presented in Christensen et al.
(2006), which is the subject of current research.

In addition Frühwirth-Schnatter et al. (2007) have developed improved auxiliary mixture sampling algorithm for
hierarchical models of non-Gaussian data, which includes the Poisson case. In this case only the generation of at most
two auxiliary latent variables are needed instead of yi + 1 inter-arrival times considered here. They showed that the
effective sample size (see Kass et al. (1998)) per second is larger for their sampler compared to the sampler using
block updates developed in Knorr-Held and Rue (2002). Such a comparison however ignores the sample variability of
the MCMC iterates for the different samplers. A comparison along the lines of this paper is still missing and subject
of further investigations.
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Appendix A. Sampling the inter-arrival times

Given y and α, the inter-arrival times for different observations i = 1, . . . , n are independent. For fixed i however,
τi1, . . . , τi,yi +1 are stochastically dependent, but independent of the component indicators R. The inter-arrival times
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τi1, . . . , τiyi are independent of α and only depend on the number of jumps, whereas τi,yi +1 depends on the model
parameters. Using this we have

p(τ |y,α,R) =

n∏
i=1

p(τi,yi +1|yi ,α, τi1, . . . , τiyi )p(τi1, . . . , τiyi |yi ).

Given yi = n, the n arrival times of a Poisson process are distributed as the order statistics of nU ([0, 1]) distributed
random variables, see for example Mikosch (2004). The last inter-arrival time τi,yi +1, given yi , τi1, . . . , τiyi , is
exponentially distributed with mean 1/µi = 1/(ti exp(z′

iα)) conditionally on being greater than 1 −
∑yi

j=1 τi j . Using
the lack of memory property of the exponential distribution this corresponds to sampling τi,yi +1 from an exponential
distribution with mean 1/µi plus an “offset” 1−

∑yi
j=1 τi j . Therefore the inter-arrival times can be sampled as follows:

• If yi > 0
. sample yi random numbers ui1, . . . , uiyi ∼ U ([0, 1])

. sort these random numbers: ui,(1), . . . , ui,(yi )

. define τi j as the increments τi j = ui,( j) − ui,( j−1), j = 1, . . . , yi where u j,(0) := 0

. sample τi,yi +1 = 1 −
∑yi

j=1 τi j + ζi , where ζi ∼ Exponential(µi )

• If yi = 0 sample τi1 = 1 + ζi , where ζi ∼ Exponential(µi ).

Appendix B. Sampling the component indicators

The component indicators R are mutually independent given τ ,α, therefore p(R|τ ,α) =
∏n

i=1
∏yi +1

j=1
p(ri j |τi j ,α). Further

p(ri j = k|τi j ,α) =
p(ri j = k, τi j ,α)

p(τi j ,α)
=

p(τi j |ri j = k,α)p(ri j = k)

p(τi j |α)

∝ p(τi j |ri j = k,α)wk (B.1)

since wk = p(ri j = k). Since log τi j |α, ri j ∼ N (− logµi + mri j , s2
ri j
), τi j is log normal distributed, i.e.

p(τi j |ri j = k,α) ∝
1

skτi j
exp

[
−

1
2

(
log(τi j )+ logµi − mk

sk

)2
]
.

ri j can therefore be sampled from the discrete distribution (B.1) with five categories.

Appendix C. Details on the different update schemes

See Table C.1.

Appendix D. Details on algorithm in Section 3.4

For the collapsed algorithm in Section 3.4 we consider p(β|τ ,R) =
∫

p(β, γ |θ , τ ,R)dγ . We have

p(β, γ |θ , τ ,R) ∝ exp

{
−

1
2

[
N∑

i=1

1

s̃2
i

(ỹi + x̃′

iβ + ṽ′

iγ )
2
+ γ ′σ−2 Qγ + β ′τ−2 Iβ

]}

= exp

{
−

1
2

[
β ′τ−2 Iβ +

N∑
i=1

1

s̃2
i

(ỹi + x̃′

iβ)
2

]}

× exp

{
−

1
2

[
γ ′

(
N∑

i=1

1

s̃2
i

ṽi ṽ
′

i + σ−2 Q

)
γ + 2γ ′

N∑
i=1

1

s̃2
i

ṽi (ỹi + x̃′

iβ)

]}

:= c(β)× exp
{
−

1
2

[
γ ′ Aγ + 2γ ′a

]}
(D.1)
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Table C.1
Covariance and mean specifications for the update strategies in Sections 3.2–3.7

Section

3.2 Σβ := V −1
0 +

∑N
i=1

1
s̃2
i

x̃i x̃′
i

µβ := −
∑N

i=1
1
s̃2
i

x̃i (ỹi + γR(i))

Σγ :=
1
σ2 Q +

∑N
i=1

1
s̃2
i

ṽi ṽ′
i

µγ := −
∑N

i=1
1
s̃2
i

ṽi (ỹi + x̃′
i β)

3.3 Σβ−0 := V −1
0β−0

+
∑N

i=1
1
s̃2
i

x̃β−0i x̃′
β−0i

(block) µβ−0
:= −

∑N
i=1

1
s̃2
i

x̃β−0i (ỹi + γR(i) + β0)

Σγβ0 :=

τ−2 0

0
1

σ 2
Q

+
∑N

i=1
1
s̃2
i
(1, ṽi )(1, ṽi )

′

µγβ0
:= −

∑N
i=1

1
s̃2
i
(1, ṽi )(ỹi + x̃′

β−0i β−0)

V0β−0 = τ2 Ip

x̃β−0i = (x̃i1, . . . , x̃i p)

3.4 Σcol := τ−2 I +
∑N

i=1
1
s̃2
i

x̃i x̃′
i − (

∑N
i=1

1
s̃2
i

ṽi x̃′
i )

′ A−1(
∑N

i=1
1
s̃2
i

ṽi x̃′
i )

(coll1) µcol := (
∑N

i=1
1
s̃2
i

ṽi x̃′
i )

′ A−1(
∑N

i=1
1
s̃2
i

ṽi ỹi )−
∑N

i=1
1
s̃2
i

x̃i ỹi

A :=
∑N

i=1
1
s̃2
i

ṽi ṽ′
i + σ−2 Q

3.5 Σ∗
col := τ−2 I +

∑N
i=1

1
s̃2
i

x̃i x̃′
i − (σ

∑N
i=1

1
s̃2
i

ṽi x̃′
i )

′(A∗)−1(σ
∑N

i=1
1
s̃2
i

ṽi x̃′
i )

(coll2) µ∗
col := (σ

∑N
i=1

1
s̃2
i

ṽi x̃′
i )(A

∗)−1(σ
∑N

i=1
1
s̃2
i

ṽi ỹ′
i )−

∑N
i=1

1
s̃2
i

x̃i ỹi

A∗
:= σ 2 ∑N

i=1
1
s̃2
i

ṽi ṽ′
i + Q

Σ∗
γ := σ 2 ∑N

i=1
1
s̃2
i

ṽi ṽ′
i + Q

µ∗
γ := −σ

∑N
i=1

1
s̃2
i

ṽi (ỹi + x̃′
i β)

Σ∗
σ :=

∑N
i=1

1
s̃2
i
(γ ∗′ṽi ṽ′

i γ
∗)+ τ−2

σ

µ∗
σ := −

∑N
i=1 ṽ′

i γ
∗ 1

s̃2
i
(ỹi + x̃′

i β)

3.6 Σ∗∗
col := τ−2 I +

∑N
i=1

1
s̃2
i

x̃i x̃′
i −(σ

∑N
i=1

1
s̃2
i

˜L ′ṽi x̃′
i )

′(A∗∗)−1(σ
∑N

i=1
1
s̃2
i

˜L ′ṽi x̃′
i )

(coll3) µ∗∗
col := (σ

∑N
i=1

1
s̃2
i

L ′ṽi x̃′
i )(A

∗∗)−1(σ
∑N

i=1
1
s̃2
i

˜L ′ṽi ỹ′
i )−

∑N
i=1

1
s̃2
i

x̃i ỹi

A∗∗
:= σ 2 ∑N

i=1
1
s̃2
i

L ′ṽi ṽ′
i L + I

Σ∗∗
γ := σ 2 ∑N

i=1
1
s̃2
i

L ′ṽi ṽ′
i L + I

µ∗∗
γ := −σ

∑N
i=1

1
s̃2
i

L ′ṽi (ỹi + x̃′
i β)

Σ∗∗
σ :=

∑N
i=1

1
s̃2
i
(γ ∗∗′L ′ṽi ṽ′

i Lγ ∗∗)+ τ−2
σ

µ∗∗
σ := −

∑N
i=1 ṽ′

i Lγ ∗∗ 1
s̃2
i
(ỹi + x̃′

i β)

3.7 µcent
γ :=

β0
σ2 Q1 −

∑N
i=1

1
s̃2
i

ṽi (ỹi + x̃′
β−0i β−0)

(centered) Σβ0 :=
1
σ2

∑J
i, j=1 Qi j +

1
τ2

µβ0 :=
1
σ2 1′ Qγ c
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where A :=
∑N

i=1
1
s̃2
i

ṽi ṽ
′

i + σ−2 Q. Further

exp
{
−

1
2

[
γ ′ Aγ + 2γ ′a

]}
∝ exp

{
−

1
2

[
γ ′ Aγ + 2γ ′ A(A−1a)+ (A−1a)′ A(A−1a)− (A−1a)′ A(A−1a)

]}
∝ exp

{
−

1
2

[
(γ + A−1a)′ A(γ + A−1a)− (A−1a)′ A(A−1a)

]}
and therefore∫

exp
{
−

1
2

[
γ ′ Aγ + 2γ ′a

]}
dγ ∝ (2π)

J
2 |A |

−
1
2 exp

{
1
2
(A−1a)′ A(A−1a)

}
∝ exp

{
1
2
(A−1a)′ A(A−1a)

}
. (D.2)

From (D.1) and (D.2) it then follows that∫
p(β, γ |θ , τ ,R)dγ ∝ c(β) exp

{
1
2
(A−1a)′ A(A−1a)

}
∝ exp

{
−

1
2

[
β ′

(
τ−2 I +

N∑
i=1

1

s̃2
i

x̃i x̃
′

i

)
β + 2β ′

N∑
i=1

1

s̃2
i

x̃i ỹi − a′ A−1a

]}
.

Finally, with

a′ A−1a =

(
N∑

i=1

1

s̃2
i

ṽi ỹi +

N∑
i=1

1

s̃2
i

ṽi x̃
′

iβ

)′

A−1

(
N∑

i=1

1

s̃2
i

ṽi ỹi +

N∑
i=1

1

s̃2
i

ṽi x̃
′

iβ

)

∝ β ′

(
N∑

i=1

1

s̃2
i

ṽi x̃
′

i

)′

A−1

(
N∑

i=1

1

s̃2
i

ṽi x̃
′

i

)
β + 2β ′

(
N∑

i=1

1

s̃2
i

ṽi x̃
′

i

)′

A−1

(
N∑

i=1

1

s̃2
i

ṽi ỹi

)
it follows that

p(β|τ ,R) ∝ exp

{
−

1
2

[
β ′

(
τ−2 I +

N∑
i=1

1

s̃2
i

x̃i x̃
′

i −

(
N∑

i=1

1

s̃2
i

ṽi x̃
′

i

)′

A−1

(
N∑

i=1

1

s̃2
i

ṽi x̃
′

i

))
β

− 2β ′

((
N∑

i=1

1

s̃2
i

ṽi x̃
′

i

)′

A−1

(
N∑

i=1

1

s̃2
i

ṽi ỹi

)
−

N∑
i=1

1

s̃2
i

x̃i ỹi

)]}
,

i.e.

β|τ ,R ∼ N (Σ−1
col µcol,Σ

−1
col )

with

Σcol := τ−2 I +

N∑
i=1

1

s̃2
i

x̃i x̃
′

i −

(
N∑

i=1

1

s̃2
i

ṽi x̃
′

i

)′

A−1

(
N∑

i=1

1

s̃2
i

ṽi x̃
′

i

)
and

µcol :=

(
N∑

i=1

1

s̃2
i

ṽi x̃
′

i

)′

A−1

(
N∑

i=1

1

s̃2
i

ṽi ỹi

)
−

N∑
i=1

1

s̃2
i

x̃i ỹi .
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Frühwirth-Schnatter, S., Rudolf Frühwirth, 2007. Auxiliary mixture sampling with applications to logistic models. Computational Statistics and

Data Analysis 51, 3509–3528.
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