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1 Introduction

In the paper Klüppelberg and Kostadinova [10] the integrated risk model (1.1) was intro-

duced and its properties were investigated. The main focus of the paper was on asymptotic

tail estimation, aiming at a proper risk assessment of the model in terms of such downside

risk measures as Value-at-Risk, expected shortfall and others. The asymptotic results of

this paper were applied to find an optimal investment strategy in Kostadinova [11, 12].

In the present paper we want to apply numerical methods to find the distribution tail.

Given these, one can easily find the optimal portfolio, maximizing the expected wealth

subject to a risk bound given in terms of a Value-at-Risk.

We first recall the model under consideration. For θ ∈ [0, 1] and the investment process

(Xθ(t))t≥0 we define the integrated risk process with the dynamics

dUθ(t) = c dt − dS(t) + Uθ(t−)
dXθ(t)

Xθ(t−)
, t > 0 , Uθ(0) = u ,

which has the solution (see Lemma 2.2 in [10])

Uθ(t) = eLθ(t)

(
u +

∫

(0,t]

e−Lθ(v) (cdv − dS(v))

)
, t ≥ 0 , (1.1)

where u > 0 is the initial capital, c > 0 the premium rate, and S(t) =
∑N(t)

j=1 Yj, t ≥ 0, is

a compound Poisson process with Poisson intensity λ > 0 and positive claims represented

by a generic random variable Y with finite mean µ, modelling the total claim amount

at time t. The stochastic process (eLθ(t))t≥0, independent of (S(t))t≥0, is the stock price

process for the mixed investment strategy. More precisely, we assume investment into a

Black-Scholes type market consisting of a riskless bond and a risky stock which follows

an exponential Lévy process. Their respective prices (X0(t))t≥0 and (X1(t))t≥0 follow the

equations

X0(t) = eδt and X1(t) = eL(t) , t ≥ 0.

The constant δ > 0 is the riskless interest rate and L is a Lévy process with characteristic

triplet (γ, σ2, ν). For θ ∈ [0, 1] we define (Xθ(t))t≥0 to be the investment process, controlled

by the constant mix strategy θ, which follows the dynamics

dXθ(t) = Xθ(t−)
(
(1 − θ)δ dt + θdL̂(t)

)
, t ≥ 0 , Xθ(0) = 1. (1.2)

Here L̂ is such that eL(t) = E(L̂(t)) and E denotes the stochastic exponential of a process.

Using Itô’s formula, the solution to this SDE is

Xθ(t) = e(1−θ)δtE(θL̂(t)) = eLθ(t) , t ≥ 0 ,
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where the Lévy process Lθ has characteristic triplet (γθ, σ
2
θ , νθ). For details on the model

we refer to [10] or [3], for background on Lévy processes to Cont and Tankov [1], Sato [16]

or Schoutens [17] .

Such models have been considered by various authors for geometric Brownian motion

as stock price process. As the ruin probability is a prominent risk measure in insurance,

various papers consider the ruin problem for such models; see e.g. Hipp and Plum [9],

Gaier [7], Frolova, Kabanov and Pergamenchtchikov [5] and Paulsen [13].

The problem we solve in this paper is triggered by a portfolio optimization problem:

determine the optimal investment with respect to the maximal expected wealth subject to

a bound on the risk, where we measure risk in terms of a high quantile of an appropriate

risk process.

Our paper is organised as follows. We start with a motivating example in Section 2.

In Section 3 we derive the partial integro-differential equation (PIDE), which we solve

then for the special case of a jump diffusion investment process in Section 4. Finally, we

show our method at work by presenting examples for different investment strategies and

summarize our findings.

2 A motivating example

We shall be interested in the net loss process, which we define as

Qθ(t) =

∫

(0,t]

eLθ(t)−Lθ(v) (dS(v) − c dv) , t ≥ 0 . (2.1)

Note that Qθ does not take the risk reserve into account, but simply calculates the balance

sheet of the integrated risk model.

We introduce the Value-at-Risk, which is one of the prominent risk measures in finance.

Definition 2.1. For a fixed time horizon T , an investment strategy θ and α ∈ (0, 1)

(typically very small) we define the Value-at-Risk by

VaR(T, θ, α) = inf{x ∈ R : P (Qθ(T ) > x) ≤ α} .

The following optimization problem is typical:

max
θ∈[0,1]

E[Uθ(T )] subject to VaR(T, θ, α) ≤ C (2.2)

for some given risk bound C > 0. Of course, analogous problems can be formulated

for other downside risk measures such as the expected shortfall (ES) and the semivari-

ance. Such optimization problems have been considered in a purely financial context

by Emmer, Klüppelberg and Korn [4], Gabih, Grecksch and Wunderlich [6], and by
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Basak and Shapiro [2] for a geometric Brownian motion price process, and by Emmer

and Klüppelberg [3] for a general exponential Lévy market.

The following result is a consequence of Lemma 3.2(a) in [10] and the independence

of investment and insurance risk processes.

Proposition 2.2. [Kostadinova [12], Lemma 2.6]

Let λ > 0 be the intensity of the claim arrival process and E[Y ] = µ < ∞. Assume that

the net profit condition c > λµ holds and that the investment process and the parameters

satisfy

δ < ln E[eL(1)] < ∞ .

Then E[Uθ(T )] is increasing in θ.

With this result we obtain the following optimization problem, equivalent to (2.2):

max
θ∈[0,1]

VaR(T, θ, α) ≤ C . (2.3)

In this paper we prepare the numerical solution of this problem. This means that

we provide numerical approximations of VaR(T, θ, α) for small α > 0. Given these, we

can simply read off the optimal value for θ. Our foremost goal in this paper is to derive

a partial integro-differential equation (PIDE) for the tail probability P (Qθ(T ) > x) for

positive x, which we can then solve numerically within the relevant region. Such analytic

methods have been applied in insurance mathematics to derive explicit impressions for

the ruin probability; examples can be found in Rolski et al. [15], e.g. in Section 5.3.

3 Derivation of the PIDE

Denote by Y a typical random claim size. The following is the main result of our paper.

Theorem 3.1. Define

H(x, t) = P (Qθ(t) > x) , t ≥ 0 , x ∈ R, (3.1)

and assume that the following conditions hold.

(1) The Lévy measure ν of L satisfies
∫
|x|>1

e2|x|ν(dx) < ∞.

(2) The partial derivative ∂tH(x, ·) exists for each x ∈ R.

(3) For each t > 0, the first and second partial derivatives ∂xH(·, t) and ∂xxH(·, t) exist,

and are continuous and bounded, on R.
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Then H is the solution to the PIDE

∂tH(x, t) − λ (EH(x − Y, t) − H(x, t))

=
σ2

θ

2
(∂xxH(x, t)x2 + ∂xH(x, t)x) − γθ∂xH(x, t)x

+

∫ (
H(xez, t) − H(x, t) − z∂xH(x, t)x1{|z|≤1}

)
νθ(−dz) + c∂xH(x, t) (3.2)

with boundary condition H(·, 0) = 1(−∞,0)(·).

Proof. For fixed x ∈ R and t > 0, take s > 0 small and consider the probability

P (Qθ(t + s) > x) = P

(∫

(0,t+s]

eLθ(t+s)−Lθ(v) (dS(v) − c dv) > x

)
. (3.3)

We introduce the process (Lθ(v))v≥0 := (Lθ(t + v) − Lθ(t))v≥0. Due to the independent

increments property of Lévy processes, (Lθ(v))v≥0 is an independent copy of Lθ, inde-

pendent of Ft, where (Ft)t≥0 is the filtration generated by (Xθ(t))t≥0. By definition we

have

Qθ(t + s) =

∫

(0,t+s]

eLθ(t+s)−Lθ(v) (dS(v) − c dv)

= eLθ(s)

(∫

(0,t]

+

∫

(t,t+s]

)
e−(Lθ(v)−Lθ(t)) (dS(v) − c dv)

= eLθ(s)

(
Qθ(t) +

∫

(0,s]

e−Lθ(u) (dS(u) − c du)

)
,

where in the last line we have set u = v − t. Furthermore, we have denoted by S(u) :=

S(t + u) − S(t) the sum of the claims in the interval (t, t + u].

In order to derive a formula for the tail of Qθ(t + s) we condition on the number of

claims in a small interval (t, t + s]. From the total probability formula we have

P (Qθ(t + s) > x) = (1 − λs + o(s))P (Qθ(t + s) > x |N(t + s) = N(t)) (3.4)

+ λsP (Qθ(t + s) > x |N(t + s) = N(t) + 1) + o(s) ,

where P (N(t + s) = N(t)) = P (no claims in (t, t + s]) = e−λs = 1 − λs + o(s). Consider

first the case with no claims in (t, t + s]. Conditionally on this,
∫
(t,t+s]

e−Lθ(u) dS(u) = 0,

and Lθ is independent of Ft, so we get

I0(s) := P (Qθ(t + s) > x |N(t + s) = N(t))

= P

(
eLθ(s)

(
Qθ(t) − c

∫

[0,s)

e−Lθ(u) du

)
> x

)
.

If there is one claim in the interval (t, t+s], we have that
∫
(t,t+s]

e−Lθ(u) dS(u) = Y e−Lθ(T ),

where T is the jump time and Y the jump size of S in (0, s]. As the Poisson process S is
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independent of Ft, so are T and Y . Moreover, due to the order statistics property of the

Poisson process, the r.v.
(
T |T ∈ (t, t + s]

) d
= U1 is uniformly distributed in the interval

[0, s] . Hence

I1(s) := P (Qθ(t + s) > x |N(t + s) = N(t) + 1)

= P

(
eLθ(s)

(
Qθ(t) + Y e−Lθ(T ) − c

∫

[0,s)

e−Lθ(u) du

)
> x

∣∣ T ∈ (0, s]

)

= P

(
eLθ(s)

(
Qθ(t) + Y e−Lθ(U1) − c

∫

[0,s)

e−Lθ(u) du

)
> x

)
.

Now we want to study equation (3.4) for s → 0, which we rewrite as

P (Qθ(t + s) > x) − P (Qθ(t) > x)

s
= λI1(s) − λI0(s) +

I0(s) − P (Qθ(t) > x)

s
+

o(s)

s
.

We have

(i) lims→0 I1(s) = P (Qθ(t) + Y > x). Indeed, as a Lévy process is cádlág process, we

have that lims→0 Lθ(s) = Lθ(0) = 0 a.s. Also lims→0

∫
[0,s)

e−Lθ(v) dv = 0 a.s. Further

we have U1 → 0 a.s. when s → 0, hence also lims→0 Lθ(U1) = 0 a.s.

(ii) Similarly as for I1(s), lims→0 I0(s) = P (Qθ(t) > x).

Since P (Qθ(t) > x) = H(x, t), assuming that the limit below exists, from the equation

above we obtain the following partial integro-differential equation (PIDE) for H:

∂tH(x, t) = λ
(
EH(x − Y, t) − H(x, t)

)
+ lim

s→0

1

s

(
I0(s) − H(x, t)

)
, (3.5)

with boundary condition H(·, 0) = 1(−∞,0)(·).

We now calculate the last term in (3.5). For s > 0 we have

I0(s) − H(x, t)

=
(
P

(
Qθ(t) > xe−Lθ(s)

)
− P (Qθ(t) > x)

)

−

(
P

(
Qθ(t) > xe−Lθ(s)

)
− P

(
Qθ(t) > xe−Lθ(s) + c

∫

[0,s)

e−Lθ(v) dv

))

=: J1(s) − J2(s) , say. (3.6)

First consider J1(s), separately for x > 0 and x < 0; note that for x = 0 we have

J1 ≡ 0. For x > 0, we set y = ln x and g(y) = H(ey, t). Then by the independence of the

investment process and the insurance risk process we can write

J1(s) = EH(xe−Lθ(s), t) − H(x, t) = Eg(y − Lθ(s)) − g(y) .
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Under Assumption (3) of Theorem 3.1, g(y) is continuous and bounded, and has contin-

uous and bounded first and second derivatives, for y ∈ R. So we can apply, e.g., Gihman

and Skorohod [8], p. 292, to deduce that

lim
s→0

1

s
J1(s) = lim

s→0

1

s
(Eg(y − Lθ(s)) − g(y)) = Ag(y) , y ∈ R , (3.7)

where A is the infinitesimal generator of the Lévy process −Lθ.

Calculating the partial derivatives implicit in the infinitesimal generator, we can check

that (3.7) implies, for x > 0,

lim
s→0

1

s
J1(s) =

σ2
θ

2
(∂xxH(x, t)x2 + ∂xH(x, t)x) − γθ∂xH(x, t)x

+

∫ (
H(xez, t) − H(x, t) − z∂xH(x, t)x1{|z|≤1}

)
νθ(−dz) . (3.8)

Here and in what follows we always take the integral over the support of the corresponding

Lévy measure.

For x < 0, we set y = ln |x| and g(y) = H(−ey, t). Then an analogous calculation gives

(3.8) again.

It remains to estimate the second term in (3.6). Define R(s) = c
∫
[0,s)

e−Lθ(v) dv. Then

we can write, using a Taylor expansion,

J2(s) = P
(
Qθ(t) > xe−Lθ(s)

)
− P

(
Qθ(t) > xe−Lθ(s) + c

∫

[0,s)

e−Lθ(v) dv

)

=

∫ ∫ (
P

(
Qθ(t) > xe−y

)
− P

(
Qθ(t) > xe−y + r

))
dP (Lθ(s) ≤ y,R(s) ≤ r)

=

∫ ∫ (
H(xe−y, t) − H(xe−y + r, t)

)
dP (Lθ(s) ≤ y,R(s) ≤ r)

= −E [R(s)∂xH(ξ(s), t)] . (3.9)

Here ξ(s) ∈ [xe−Lθ(s), xe−Lθ(s) + R(s)].

Now let

T (s) := −
1

s
R(s)∂xH(ξ(s), t) , s > 0 .

Then T (s) ≥ 0 a.s. and J2(s)/s = ET (s). We have R(s)
a.s.
→ 0 and also R(s)/s

a.s.
→ c, as

s → 0, so ξ(s)
a.s.
→ x and consequently,

T := lim
s→0

T (s) = − lim
s→0

1

s
R(s)∂xH(ξ(s), t) = −c∂xH(x, t) a.s.

We will have L1 convergence and deduce that lims→0 J2(s)/s = lims→0 ET (s) = T if we

show that (T (s))s>0 is uniformly integrable as s → 0. To see this, recall Assumptions (1)

and (3) in Theorem 3.1. Take ζ > 0 and consider

E(T (s)1{T (s)>ζ}) ≤
√

E(T 2(s))P (T (s) > ζ).
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Let Kt = supx∈R
(−∂xH(x, t)), which is finite by Assumption (3). Now by Theorem 25.3

of Sato [16] and Lemma A.1 of Klüppelberg and Kostadinova [10],
∫
|x|>1

e2|x|ν(dx) < ∞

implies that Ee−2Lθ(u) < ∞ for all u ∈ R. Using the notation Ee−sLθ(t) = e−tΨθ(s) for t ≥ 0

and for all s ∈ R such that the expectation is finite, we conclude

E[T 2(s)] ≤
c2K2

t

s2
E

(∫ s

0

e−Lθ(v)dv

)2

=
2c2K2

t

s2
E

∫ s

0

∫ s

u

e−(Lθ(v)−Lθ(u))e−2Lθ(u)dvdu

=
2c2K2

t

s2

∫ s

0

∫ s

u

e−(v−u)Ψθ(1)e−uΨθ(2)dvdu

≤
2c2K2

t

s2

(∫ s

0

eu(Ψθ(1)−Ψθ(2))du

)(∫ s

0

e−vΨθ(1)dv

)

= O(1) , s → 0 .

Since lims→0 P (T (s) > ζ) = P (−c∂xH(x, t) > ζ) equals 0 for large enough ζ, (T (s))s>0

is uniformly integrable, as asserted, and it follows that T (s)
L1→ T as s → 0. Hence, via

(3.9), the second term of (3.6) tends to c∂xH(x, t) a.s. as s → 0.

Plugging this into (3.5), we obtain (3.2).

4 Jump diffusion investment model

In this case

L(t) = γ t + σW (t) +

M(t)∑

j=1

Zj , t ≥ 0 , (4.1)

for γ ∈ R, σ > 0 and Zj i.i.d., independent of a Poisson process M with intensity η > 0

and W a Brownian motion independent of the compound Poisson process. The process

Lθ has a similar representation given by

Lθ(t) = γθ t + σθW (t) +

M(t)∑

j=1

Z
(θ)
j , t ≥ 0 , (4.2)

for γθ = δ + θ(γ − δ − σ2/2), σθ = θσ and Z
(θ)
j = ln(1 + θ(eZj − 1)) i.i.d., independent of

the Poisson process M . This means that the Lévy measure ν(z) = ηP (Z ≤ z) = ηFZ(z)

of L is transformed into

νθ(z) = ηP (ln(1 + θ(eZ − 1)) ≤ z) = ηP (Z(θ) ≤ z) = ηFZ(ln(1 + (ez − 1)/θ)). (4.3)

Recall that L and Lθ jump at the same time and that a jump of size Z of L leads to a

jump of size ln(1 + θ(eZ − 1)) > ln(1 − θ) of Lθ.
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In this case, it is not necessary to compensate the small jumps in the Lévy-Khinchine

representation and the PIDE in (3.2) reduces to

∂tH(x, t) − λ (EH(x − Y, t) − H(x, t))

=
σ2

θ

2
(∂xxH(x, t)x2 + ∂xH(x, t)x) − γθ∂xH(x, t)x (4.4)

+

∫
H(xez, t)νθ(−dz) − ηH(x, t) + c∂xH(x, t) .

We can rewrite this as

∂tH(x, t) − λEH(x − Y, t) + (λ + η)H(x, t)

=
σ2

θ

2
∂xxH(x, t)x2 + ∂xH(x, t)((

σ2
θ

2
− γθ)x + c) +

∫
H(xez, t)νθ(−dz) .

This formula further simplifies, since

∫
H(xez, t)νθ(−dz) = η

∫
H(xe−z, t)Fθ(dz) = ηEH(xe−Z(θ)

, t) .

Then

∂tH(x, t) − λEH(x − Y, t) + (λ + η)H(x, t)

=
σ2

θ

2
∂xxH(x, t)x2 + ∂xH(x, t)

(
(
σ2

θ

2
− γθ) x + c

)
+ ηEH(xe−Z(θ)

, t) . (4.5)

Numerical solution

For the PIDE (4.5) we present a numerical solution using a finite difference (FD) method.

Let us first emphasize that it is not known a priori whether a sufficiently smooth (or

classical) solution exists; for more details on existence and uniqueness see Seydel [18].

For a numerical solution, we shall assume that the insurance claim Y and the market

jump Z(θ) are absolutely continuous with densities fY and fθ, respectively. By (4.3) we

can express fθ in terms of the density f of a market jump Z of L:

fθ(z) =





f (ln (1 + (ez − 1)/θ))

ez

ez − 1 + θ
, z > ln(1 − θ) ,

0 , z ≤ ln(1 − θ) .

Rewriting (4.5) we have to solve the following initial value problem:

∂tH(x, t) − λ

∫ x

−∞

fY (x − y)H(y, t)dy + (λ + η)H(x, t) (4.6)

=
σ2

θ

2
∂xxH(x, t)x2 + ∂xH(x, t)

(
(
σ2

θ

2
− γθ) x + c

)
+ η

∫ ∞

ln(1−θ)

fθ(z)H(xe−z, t)dz ,
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with the initial condition H(·, 0) = 1(−∞,0). With a further substitution u = xe−z in the

market jump integral, we are able to apply numerical schemes to our problem.

The basic idea is to apply the FD method as for a standard initial value problem (or

parabolic PDE). That is, we discretize the derivatives using standard finite differences. For

the integrals (they integrate across space for a constant time), we substitute an integration

formula, for instance the composite trapezoidal rule (a formula that is of order 2). For

stability considerations, we discretize in time such that we obtain an implicit numerical

scheme.

The infinite domains of integration require specific numerical treatment. We restrict

the computation to the domain (−R,R) × (0, T ) for some R > 0. We use boundary

conditions H(−R, t) = 1 and H(R, t) = 0 and approximate those parts of the integrals in

(4.6) outside (−R,R) for x > 0 by

∫ −R

−∞

fY (x − y)H(y, t)dy ≈ F Y (x + R)

and for x < 0 and −R > x/(1 − θ) (where we interpret x/(1 − θ) = −∞ for θ = 1) by

∫ −R

x/(1−θ)

−fθ(ln(x/u))
1

u
H(u, t)du ≈

∫ ln(−x/R)

ln(1−θ)

fθ(u)du = F
(
ln

(
1 + (−

x

R
− 1)/θ

))
.

The localization error can be easily derived; see [18] for details.

The result of this discretization is a sequence of linear systems AH(i+1) = H(i) + b,

i = 0, . . . , n for some n ∈ N with H(0) = 1(−∞,0). In contrast to an ordinary parabolic

PDE, A is not a sparse but a dense matrix filled with entries from the two integrals.

Further details and extensions of the method (for instance an improved method of

order 2 using a BDF2 discretization in time) can be found in Seydel [18]. We computed

the illustrative results of Figure 1 using this improved FD method, comparing it with the

results of a Monte Carlo simulation for verification. The model parameters are given in the

caption. Depicted are numerical approximations for P (Qθ(T ) > x) and the corresponding

Monte Carlo estimates for different investment parameters θ in the left plots and the

corresponding absolute errors in the right plots. As expected the numerical method has

its largest errors around 0 due to the initial condition. The errors decrease for positive x

much faster than for negative x. Moreover, the method shows higher accuracy, when the

investment into risky stock is not too small. On the other hand, the error decreases faster

for smaller θ. The approximation becomes for all θ very good in the far out tails. As we

are interested in the right tail P (Qθ(T ) > x) for large x > 0, we find the approximation

very convincing.
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Figure 1: Numerical solution of H(·, T ) = P (Qθ(T ) > ·) for T = 1 in comparison to a Monte Carlo

simulation (left: both solutions plotted, right: difference of both solutions) for three values of θ (first

line: θ = 0.1, middle line: θ = 0.5 and last line: θ = 0.9. The following set of parameters has been

used. Insurance model: premium rate c = 10, standard exponential claim size Y , claims intensity λ = 5.

Investment model: γ = 0.2, σ = 0.4, the jump intensity is η = 3, a jump Z is centered normal with

variance 0.09. For the finite difference method we have used 800 x-grid points and 100 t-grid points.
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