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Abstract
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1 Introduction

Throughout this paper let (Ω, F , (Ft)t≥0, P ) be a filtered complete probability space on

which all stochastic quantities are defined. The filtration (Ft)t≥0 is right continuous and all

stochastic processes to be defined in this paper are adapted. We define first the insurance

risk process as in the Cramér-Lundberg model by

U(t) = u + ct− S(t) , t ≥ 0 ,

where u > 0 is the initial risk reser.v.e, c > 0 is the constant premium rate and the total

claim amount process is defined as compound Poisson process S(t) =
∑N(t)

j=1 Yj, t ≥ 0.

The claim sizes (Yj)j∈N are independent and identically distributed (iid) random variables

(r.v.’s) with common distribution function F supported on the whole of R+ = (0,∞)

and finite mean µ. The claims arrive at random time points 0 < T1 < T2 < · · · and

the claim arrival process N(t) = card{k ≥ 1 : Tk ≤ t} for t > 0 with N(0) = 0 is a

homogeneous Poisson process with intensity λ > 0. Finally, (N(t))t≥0 and (Yj)j∈N are

independent processes.

This classical model is extended by allowing for investment of the risk reser.v.e. We

consider an insurer who invests its reser.v.e into a Black-Scholes type market consisting

of a bond and some stock, modeled by an exponential Lévy process. Their respective price

processes follow the equations

X0(t) = eδt and X1(t) = eL(t) , t ≥ 0 . (1.1)

The constant δ > 0 is the riskless interest rate. The process (L(t))t≥0 is a Lévy process

with characteristic exponent Ψ, i.e. E[exp (isL(t))] = exp (tΨ(s)), s ∈ R, t ≥ 0, where Ψ

has Lévy-Khintchine representation

Ψ(s) = isγ − σ2

2
s2 +

∫
R

(
eisx − 1− isx1{|x|≤1}

)
ν(dx) , s ∈ R, (1.2)

with γ ∈ R, σ ≥ 0 and Lévy measure ν satisfying ν({0}) = 0 and
∫

R(x2 ∧ 1)ν(dx) < ∞.

The characteristic triplet (γ, σ2, ν) determines the Lévy process. For general Lévy process

theory we refer to the monographs by Cont and Tankov [2] or Sato [24].

For allocation of the reser.v.e among the riskless and the risky asset we use the so-called

constant mix strategy; i.e. the initial proportions which are invested into bond and stock

remain constant over a predetermined planning horizon; see e.g. Emmer, Klüppelberg

and Korn [5], Section 2. Such a strategy is dynamic in the sense that it requires at every

instance of time a rebalancing of the portfolio depending on the corresponding price

changes. We denote by θ ∈ [0, 1] the fraction of the reser.v.e invested into the risky asset;

we call θ the investment strategy.
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To derive the investment process we follow the calculations in Emmer, Klüppelberg

and Korn [5] and Emmer and Klüppelberg [4]. We state first the corresponding SDEs for

the price processes, where we use Itô’s formula:

dX0(t) = δX0 (t) dt , t > 0 , X0(0) = 1 ,

dX1(t) = X1(t−) dL̂(t)

= X1(t−)

(
dL(t) +

σ2

2
dt + e∆L(t) − 1−∆L(t)

)
, t > 0 , X1(0) = 1 ,

where ∆L(t, ω) = L(t, ω) − L(t−, ω) for each ω ∈ Ω denotes the jump of L at time

t > 0. The process L̂ is such that eL(t) = E(L̂(t)), t ≥ 0, where E denotes the stochastic

exponential of a process (see, e.g. Protter [23], Section 2.8, or Cont and Tankov [2], Section

8.4.2).

Definition 1.1. For θ ∈ [0, 1] we define the investment process as the solution to the

SDE

dXθ(t) = Xθ(t−)
(
(1− θ)δdt + θdL̂(t)

)
, t > 0 , Xθ(0) = 1. (1.3)

This approach is based on self-financing portfolios and hence classical in financial

portfolio optimization; see Korn [14], Section 2.1. The following is a consequence of Itô’s

Lemma.

Lemma 1.2. The SDE (1.3) has the solution

Xθ(t) = E(L̂θ(t)) = eLθ(t) , t ≥ 0 , (1.4)

where L̂θ(t) = (1− θ)δt + θL̂(t) and Lθ is such that E(L̂θ(t)) = eLθ(t).

Lemma 1.3. [Emmer and Klüppelberg [4], Lemma 2.5]

The process (Lθ(t))t≥0 is a Lévy process with characteristic exponent Ψθ, and the charac-

teristic triplet (γθ, σ
2
θ , νθ) is given by

γθ = γθ + (1− θ)(δ +
σ2

2
θ)

+

∫
R
(log(1 + θ(ex − 1))1{| log(1+θ(ex−1))|≤1} − θx1{|x|≤1})ν(dx) ,

σ2
θ = θ2σ2 ,

νθ(A) = ν ({x ∈ R : log(1 + θ(ex − 1)) ∈ A}) for any Borel setA ⊂ R .

�
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Remark 1.4. (i) Besides the characteristic exponents Ψ and Ψθ we shall also need the

Laplace exponents given by

ϕ(s) = Ψ(is) = log E
[
e−sL(1)

]
, (1.5)

ϕθ(s) = Ψθ(is) = log E
[
e−sLθ(1)

]
, (1.6)

provided they exist. If ϕ(s) < ∞, then E
[
e−sL(t)

]
= etϕ(s) < ∞ for all t ≥ 0, see Sato [24],

Theorem 25.17. As we show in Lemma A.1(c), E
[
esLθ(1)

]
< ∞ for all θ ∈ [0, 1] provided

E
[
esL(1)

]
< ∞.

(ii) A jump of size ∆L of L leads to a jump of size e∆L − 1 of L̂ and to a jump of size

∆Lθ = log(1 + θ(e∆L − 1)) > log(1− θ) of Lθ. In other words, νθ is the image measure of

ν under the transformation x 7→ log(1 + θ(ex − 1)). This explains the requirement θ ≤ 1.

(iii) If L is a process of finite variation, then Lθ is as well. Indeed,∫
|x|≤1

|x|νθ(dx) =

∫
| log(1+θ(ex−1))|≤1

| log(1 + θ(ex − 1))|ν(dx)

≤
∫ −1

−∞
| log(1 + θ(ex − 1))|ν(dx) +

∫ p

−1

| log(1 + θ(ex − 1))|ν(dx) ,

where p = log(1 + θ−1(e − 1)) > 0. Then
∫ −1

−∞ | log(1 + θ(ex − 1))|ν(dx) ≤ | log(1 −
θ)|
∫ −1

−∞ ν(dx) < ∞ and, because of the finite variation of L, also
∫ p

−1
| log(1 + θ(ex −

1))|ν(dx) ≤
∫ p

−1
|x|ν(dx) < ∞ holds. �

The goal of this paper is to study the integrated risk process, which allows for risk

assessment of the insurance and investment risk at the same time. This process is defined

in Section 2. We assume throughout this paper that investment process and total claim

amount process are independent, which allows for a very explicit analysis of the integrated

risk process.

In Section 3 the stationary version of the integrated risk process, the discounted net

loss process (DNLP), is defined and investigated. The model fits into the framework of

generalized Ornstein-Uhlenbeck processes, which have recently attracted much attention.

Due to the special structure of our model we derive more specific results than in the

more general case treated in Lindner and Maller [16]. We start with stationarity condi-

tions and compare the process to its natural embedded discrete skeleton process; i.e. the

process sampled at the claim arrival times. Our most important results in this section

concern the tail behaviour of the stationary distribution. We show in particular that the

stationary distribution of the continuous time process and the discrete time process coin-

cide. We analyse two different regimes, which both lead to Pareto tails of the stationary

distribution. The reasons, however, are different. If the claims have finite moments of suf-

ficiently high order, under weak regularity conditions, both tails of the stationary DNLP
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are mainly determined by the Laplace exponent ϕθ in (1.6), i.e. heavy tails are mainly

caused by properties of the investment process. In contrast to that, if the investment pro-

cess has finite moments of sufficiently high order, but the claims have regularly varying

tail, then the right tail of the stationary DNLP inherits the tail of the claim size distri-

bution. In this case the left tail is of lower order than the right tail. We also discuss the

influence of the investment strategy θ on the tail behaviour. To obtain these results, we

use the theory of stochastic recurrence equations, see Goldie [7], Grey [9] and Konstan-

tinides and Mikosch [13]. Technicalities are summarized together with most of the proofs

in an Appendix.

The results of this paper are exploited in Kostadinova [15], where the optimal invest-

ment strategy θ is determined subject to a risk constraint of the insurer.

Throughout this paper we use the following notations. For a ∈ N we set a+ = max(0, a)

and a− = max(0,−a); we also define log+ a = max(0, log a) for a > 0. Furthermore, we

write
∫ b

a
:=
∫

(a,b]
for a < b in R. We also denote dxe = min{n ∈ N : x ≤ n} for x > 0 and

recall that for x > y we estimate x− y − 1 < dxe − dye < x− y + 1.

2 The integrated risk process

We start by defining the integrated risk process as the total risk reser.v.e, i.e. the result

of the insurance business and the net gains of the investment.

Definition 2.1. With the quantities as introduced in Section 1 we define the integrated

risk process (IRP) as the solution to the SDE

dUθ(t) = c dt− dS(t) + Uθ(t−)
(
(1− θ)δ dt + θdL̂(t)

)
, t > 0 , Uθ(0) = u . (2.1)

Lemma 2.2. The SDE (2.1) has the solution

Uθ(t) = eLθ(t)

(
u +

∫ t

0

e−Lθ(v) (cdv − dS(v))

)
, t ≥ 0 . (2.2)

Proof. Define

Z(t) =

∫ t

0

e−Lθ(v−)(cdv − dS(v)) =

∫ t

0

e−Lθ(v) (cdv − dS(v)) , t ≥ 0 . (2.3)

Equality holds as the independent processes Lθ and S have no common jumps almost

surely (a.s.) (see Cont and Tankov [2], Proposition 5.3). The integration by parts formula

gives

d(Xθ(t)Z(t)) = Xθ(t−)dZ(t) + Z(t−)dXθ(t) + d[Xθ, Z]t , t > 0 ,
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where [Xθ, Z] denotes the quadratic covariation process of Xθ and Y . Using again that the

processes Lθ and S have no common jumps a.s., an application of Theorems 28 and 29,

Chapter II of Protter [23] yields [Xθ, Z]t ≡ 0. Thus, as Xθ(t−)dZ(t) = cdt − dS(t), we

have

d (Xθ(t)Z(t)) = Xθ(t−)dZ(t) + dXθ(t)Z(t−)

= cdt− dS(t) + dXθ(t)

∫ t−

0

e−Lθ(v−)(cdv − dS(v)) , t > 0 .

Finally, from the last equality and from (1.3), (2.2) and (2.3) we get for t > 0

dUθ(t) = udXθ(t) + cdt− dS(t) + dXθ(t)

∫ t−

0

e−Lθ(v−)(cdv − dS(v))

= cdt− dS(t) + Xθ(t−)

(
u +

∫ t−

0

e−Lθ(v)(cdv − dS(v))

)
dXθ(t)

Xθ(t−)

= cdt− dS(t) + Uθ(t−)
(
(1− θ)δ dt + θdL̂(t)

)
.

Example 2.3. [Geometric Brownian motion with jumps]

Assume that the log returns of the risky asset are modeled by

L(t) = ξt + σW (t) + C(t) , t ≥ 0 ,

where ξ ∈ R, σ > 0, (W (t))t≥0 is a standard Brownian motion and C(t) =
∑M(t)

j=1 Zj,

t ≥ 0, is a compound Poisson process given by a homogeneous Poisson process (M(T ))t≥0

with intensity η and jump sizes represented by the generic r.v. Z. The Laplace exponent

of L is given by

ϕ(s) = −ξs + σ2 s2

2
+ η(Ee−sZ − 1) .

Note that L has drift γ = E[L(1)] = ξ + ηEZ. By Lemma 1.3

Lθ(t) = ξθt + σθW (t) + Cθ(t) , t ≥ 0 ,

where Cθ is a compound Poisson process with the same jump intensity η as C and jump

size log(1 + θ(eZ − 1)). Moreover, ξθ = ξθ + (1− θ)(δ + σ2

2
θ) and σ2

θ = θ2σ2. The Laplace

exponent of Lθ is given by

ϕθ(s) = −ξθs + σ2
θ

s2

2
+

∫ ∞

−∞
(e−sx − 1)νθ(dx) = −ξθs + σ2

θ

s2

2
+ η(E(1 + θ(eZ − 1))−s − 1) ,

and Lθ has drift

γθ = γθ + (1− θ)(δ +
σ2

2
θ) + η(E[log(1 + θ(eZ − 1))]− EZ) .
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In case of the classical geometric Brownian motion model with drift; i.e. if C(t) ≡ 0, we

have ξ = γ and

γθ = θγ + (1− θ)(δ +
σ2

2
θ) and σ2

θ = θ2σ2 . (2.4)

As L(t) = γt + σW (t), t ≥ 0, we have L̂(t) = (γ + σ2/2)t + σW (t), t ≥ 0. The SDE (2.1)

for Uθ reduces in this case to

dUθ(t) = cdt− dS(t)+Uθ(t−)
((

(1− θ)δ + θ(γ +
σ2

2
)
)
dt+ θσdW (t)

)
, t > 0 , Uθ(0) = u .

(2.5)

Geometric Brownian motion as investment process in an integrated risk management

context has been investigated by various authors. Paulsen [20, 21] considers the case,

when θ = 1, and Frolova Kabanov and Pergamenchchikov [6], when δ = 0; these models

are mathematically equivalent to ours.

Hipp and Plum [10, 11] analyse a model, when the insurance company invests into risky

assets, not necessarily financed from the risk reser.v.e. In contrast to that, in our model

the trading strategy θ is constant and θ ∈ [0, 1], i.e. short selling is not allowed and the

portfolio is self-financing.

More general models with exponential Lévy investment are considered in Paulsen [22], see

also Tang and Tsitsiashvili [25]. The main focus in all these papers is on ruin estimation.

�

Example 2.4. [VG Lévy process as risky investment process]

The variance gamma process (VG), suggested by Madan and Seneta [17], is a normal

mixture model, i.e. obtained by time change of an independent Brownian motion. The

time changing process is a gamma Lévy process C, where C(1)
d
= Γ(η, r), i.e. the density

is given by fΓ(x) = rηxη−1e−rx/Γ(η), x > 0, for parameters r, η > 0. The characteristic

triplet of C is (0, 0, νΓ) where νΓ(dx) = 1{x>0}ηx−1e−rx dx. A non-symmetric VG model

is given by

L(t) = ξt + W (C(t)) , t ≥ 0 ,

where ξ > 0 and W is Brownian motion with drift a < 0 and variance b2. This makes

it possible to model the usually obser.v.ed positive drift in combination with downwards

jumps of the price process. Mean and variance of L(1) are given by γ = E[L(1)] = ξ+aη/r

and var(L(1)) = b2η/r + a2η/r2. For the Laplace exponent of L we have

ϕ(s) = −ξs− η log

(
1− 1

r

(
b2 s2

2
− sa

))
, s ∈ R . (2.6)
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The Lévy measure of L is given by

ν(dx) =
r2

η|x|
exp

( a

b2
x−

√
a2 + 2b2r2/η

b2
|x|
)
dx , x ∈ R . (2.7)

If θ < 1, the characteristic triplet of Lθ calculated by Lemma 1.3 shows that Lθ is no

longer a VG Lévy process. However, as L is of finite variation, also Lθ is and its Laplace

exponent is given by

ϕθ(s) = −ξθs +

∫
R
(e−sx − 1)νθ(dx) = −ξθs +

∫
x>log(1−θ)

(
(1 + θ(ex − 1))−s − 1

)
ν(dx) ,

where ξθ = θξ + (1− θ)δ and ν is as in (2.7). We refer to Cont and Tankov [2], Section 4,

for more details. �

3 The discounted net loss process

We aim at measuring the risk of an insurance business at the beginning of a planning

period. Hence, following long tradition in insurance, we work with the discounted inte-

grated risk process. From a mathematical point of view we want to work with a stationary

process aiming at a reasonable statistical risk assessment. Taking all this into account we

introduce the discounted net loss process.

3.1 Definition, characteristic function and moments

Definition 3.1. With the quantities introduced in Section 1 we define the discounted net

loss process (DNLP) by

Vθ(t) = u− e−Lθ(t)Uθ(t) =

∫ t

0

e−Lθ(v) (dS(v)− c dv) , t ≥ 0 . (3.1)

First we calculate the chf and the moment functions of Vθ.

Lemma 3.2. For t ≥ 0 denote by v̂θ, t(s) = E exp(isVθ(t)) and f̂(s) = EeisY , s ∈ R.

Then

v̂θ, t(s) = E

[
exp

(∫ t

0

(
λ(f̂(se−Lθ(v))− 1)− icse−Lθ(v)

)
dv

)]
.

Moreover, the following moment representations hold.

(a) Assume that ϕ(1) < ∞ and EY = µ < ∞. Then for t ≥ 0,

EVθ(t) = (λµ− c)

∫ t

0

Ee−Lθ(v) dv =
c− λµ

ϕθ(1)
(1− etϕθ(1)) .
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(b) Assume that ϕ(2) < ∞ and EY 2 = µ2 < ∞. Then for t ≥ 0,

var(Vθ(t)) = λµ2

∫ t

0

Ee−2Lθ(v) dv + (c− λµ)2

∫ t

0

∫ t

0

cov(e−Lθ(v), e−Lθ(v′)) dv′ dv .

(c) Assume that ϕ(2) < ∞ and EY 2 = µ2 < ∞. Then for 0 ≤ y ≤ t,

cov(Vθ(y), Vθ(t)) = var(Vθ(y)) + (λµ− c)2

∫ t−y

0

Ee−Lθ(v)dv

∫ y

0

cov(e−Lθ(v), e−Lθ(y)) dv .

Proof. We apply Lemma 15.1 in Cont and Tankov [2]: for every t > 0 and left continuous

function g : [0, t] → R and a Lévy process Z with characteristic exponent ΨZ ,

E

[
exp

(
i

∫ t

0

g(v) dZ(v)

)]
= exp

(∫ t

0

ΨZ(g(v)) dv

)
. (3.2)

Setting Z(t) = S(t) − ct, t ≥ 0, we obtain ΨZ(s) = λ(f̂(s) − 1) − ics, s ∈ R. Con-

ditioning on the sample path of L up to time t, and using the notation EL [E [·]] =

E [E [· |L(v), v ∈ (0, t]]] for t ≥ 0, we have by independence of L and S for s ∈ R,

v̂θ, t(s) = EL

[
E

[
exp

(
is

∫ t

0

e−Lθ(v)dZ(v)

)]]
= E

[
exp

(∫ t

0

ΨZ(se−Lθ(v))dv

)]
= E

[
exp

(∫ t

0

(
λ(f̂(se−Lθ(v))− 1)− icse−Lθ(v)

)
dv

)]
.

The moments of the process Vθ (if they exist) can be obtained by taking derivatives of

the chf in 0. For the autocovariance function we also need E
[
Vθ(y)e−Lθ(y)

]
for y ≥ 0. We

apply (3.2) again and obtain

E
[
exp

(
isVθ(y)e−Lθ(y)

)]
= E

[
exp

(∫ y

0

(
λ
(
f̂(se−Lθ(v)−Lθ(y))− 1

)
− isce−Lθ(v)−Lθ(y)

)
dv

)]
.

Taking the first derivative of this chf in 0 we obtain

E
[
Vθ(y)e−Lθ(y)

]
= (λµ− c)E

[∫ y

0

e−Lθ(v)−Lθ(y) dv

]
.

For the autocovariance function we calculate for 0 ≤ y < t

cov(Vθ(t), Vθ(y)) = E [Vθ(t)Vθ(y)]− E [Vθ(t)] E [Vθ(y)]

= E [Vθ(y)E [Vθ(t) | Fy]]− E [E [Vθ(t) | Fy]] E [Vθ(y)] .
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We calculate the conditional expectation

E[Vθ(t) | Fy] = E

[
Vθ(y) + e−Lθ(y)

∫ t

y

e−(Lθ(v)−Lθ(y)) dZ(v) | Fy

]
= Vθ(y) + e−Lθ(y)E

[∫ t

y

e−(Lθ(v)−Lθ(y)) dZ(v)

]
,

where the last equality holds by the independent increments of L. By the stationarity

increments property of L and Z we obtain∫ t

y

e−(Lθ(v)−Lθ(y)) dZ(v)
d
=

∫ t−y

0

e−Lθ(v) dZ(v)
d
= Vθ(t− y) ,

where the r.v. Vθ(t− y) is independent of Fy. Hence we can write

cov(Vθ(t), Vθ(y))

= var(Vθ(y)) + E [Vθ(t− y)]
(
E
[
Vθ(y)e−Lθ(y)

]
− E [Vθ(y)] E

[
e−Lθ(y)

])
= var(Vθ(y)) + (λµ− c)E [Vθ(t− y)]

×
∫ y

0

(
E
[
X−1

θ (v)X−1
θ (y)

]
− E

[
X−1

θ (v)
]
E
[
X−1

θ (y)
])

dv ,

which implies (c).

Remark 3.3. Note that for ϕθ(1) < 0 we have limt→∞ EVθ(t) = (λµ− c)/|ϕθ(1)|. Under

the net profit condition c > λµ the right hand side is negative. This can be interpreted

that in this situation the mean profit is positive. �

3.2 Stationarity of the discounted net loss process

We are interested in possible stationarity of the discounted net loss process Vθ. The fol-

lowing example is well-known in the case of c = 0. For a pure bond strategy, i.e. when

θ = 0, the DNLP converges to a r.v. with finite left endpoint. In particular, when the

insurance claims are exponentially distributed, the discounted net loss process converges

to a gamma distribution.

Example 3.4. [Pure bond strategy]

For θ = 0 we have Lθ(t) = δt. Then for s ∈ R we get

E
[
eisV0(t)

]
= exp

(
λ

∫ t

0

(
E exp

(
ise−δvY

)
− 1
)

dv

)
exp

(
−isc

∫ t

0

e−δv dv

)
= exp

(
λ

δ

∫ 1

e−δt

(
E exp

(
ise−δvY

)
− 1
) 1

y
dv

)
exp

(
isc

e−δt − 1

δ

)
→ exp

(
λ

δ

∫ 1

0

(
EeisyY − 1

) 1

y
dy

)
e−isc/δ , t →∞ .
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Hence, V0(t) converges in distribution and we denote by V ∞
0 the limit r.v. From the limit

result above follows that V ∞
0 can be decomposed to V ∞

0 = V ∞
0,+ − c/δ where the random

variable V ∞
0,+ is a.s. positive. From this follows that the stationary r.v. V ∞

0 has no left tail

and its left endpoint is −c/δ.

When the claims are exponentially distributed with density f(y) = e−y/µ/µ, y > 0, and

chf f̂(s) = EeisY = (1− isµ)−1, s ∈ R; then we get for s ∈ R

lim
t→∞

E
[
eisV0(t)

]
= exp

(
λ

δ

∫ 1

0

(
1

1− isµy
− 1

)
1

y
dy

)
e−isc/δ = e−isc/δ (1− isµ)−λ/δ .

We recognise (1− isµ)−λ/δ as the chf of a gamma distributed r.v. X
d
= Γ(λ

δ
, 1

µ
) with

density fX(x) = µ−λ/δx−1+(λ/δ) exp(−x/µ)/Γ(λ/δ), x > 0. Consequently, we have shown

that

V0(t)
d→ V ∞

0
d
= Γ(

λ

δ
,
1

µ
)− c

δ
, t →∞ .

For c = 0 this is a well known result (see e.g. the introduction in Nilsen and Paulsen [18]

and references therein). �

We now turn to the discounted net loss process for θ > 0. As this process is an

exponential functional of a Lévy process and fits in the framework of generalized OU

processes, and Lθ and S are independent processes, the NASCs of Proposition 2.4 of

Lindner and Maller [16] apply to our situation. Whenever L(t) → ∞ a.s. and the tail

F (x) = 1− F (x), x > 0, of the claim size distribution decreases to 0 not too slowly, then

there exists a finite r.v. V ∞, c
θ such that

Vθ(t)
a.s.→ V ∞, c

θ , t →∞ . (3.3)

Unfortunately, for very few examples the stationary distribution is known. The fol-

lowing examples can be found in Carmona, Petit and Yor [1]. We present them in terms

of our insurance application.

Example 3.5. [Geometric Brownian motion as risky investment process and small claims;

continuation of Example 2.3]

Let the risky asset be modeled by a geometric Brownian motion. Then, according to

Example 2.3, the resulting investment process is also geometric Brownian motion with

parameters γθ and σθ given in (2.4). When the claims of the portfolio are sufficiently

small, it is possible to approximate the total claim amount process by Brownian motion.

We consider this situation and take (S(t)−ct)t≥0 as Brownian motion with drift λµ−c < 0

and variance λµ. Then V ∞,c
θ follows a Pearson type IV distribution with density

f(x) = const. (1 + x2)−(γθ/σ2
θ)+1/2 exp

(
− 2

σθ

c− λ√
λµ

arctan x

)
, x ∈ R . �

11



Example 3.6. [Geometric Brownian motion as risky investment process, exponential

claims and no premiums; continuation of Example 2.3]

Let the risky asset be modeled by a geometric Brownian motion and γθ and σθ be given

by (2.4). Assume that c = 0 and that the insurance claims are exponentially distributed

with mean µ. Then it is shown in Nilsen and Paulsen [18] that

V ∞,c
θ

d
=

X

Z
,

where X ∼ Γ(b, 1
µ
) with density fX(x) = µ−bxb−1e−x/µ/Γ(b), x > 0, and is independent of

Z, which is beta distributed with density

fZ(x) =
Γ(a + b + 1)

Γ(a)Γ(b + 1)
xa−1(1− x)b−1 , 0 < x < 1 ,

where

a =
2γθ

σ2
θ

and b =
γθ

σ2
θ

(√
1 +

2λσ2
θ

γ2
θ

− 1

)
.

Straightforward calculations show that the density of 1/Z

f1/Z(x) ∼ Γ(a + b + 1)

Γ(a)Γ(b + 1)
x−a−1 , x →∞ .

Hence the corresponding distribution tail

F 1/Z(x) ∼ Γ(a + b + 1)

a Γ(a)Γ(b + 1)
x−a , x →∞ .

On the other hand, the r.v. X has light right tail and is independent of Z. Consequently,

by Breiman’s classical result

P (V ∞,c
θ > x) ∼ const. x−a , x →∞ ,

with a = 2γθ/σ
2
θ . This will be confirmed by our result in Theorem 4.4; see also Example 4.5

below. �

For more general models the theory of discrete and continuous time perpetuities can

provide at least the tail behaviour of such models. The advantage of our model lies in

the fact that it has a natural discrete time skeleton, which allows us to apply standard

methods from the theory of random recurrence equations.

Let Tj =
∑j

k=1 Ek, j ∈ N, be the claim arrival times, where (Ek)k∈N is a sequence

of iid exponentially distributed r.v.’s with parameter λ. We denote by E a generic r.v.

of (Ek)k∈N. Recall that Y is a generic claim size. This allows us to introduce a natural

discretization of the process Vθ given by (Vθ(Tk))k∈N0 , which will prove useful. We denote

by

(Aθ, Bθ) =

(
Y e−Lθ(E) − c

∫ E

0

e−Lθ(v) dv , e−Lθ(E)

)
. (3.4)

12



Proposition 3.7. Set T0 = 0 and note that N(Tk) = k. For k ∈ N define

Aθ,k =

∫ Tk

Tk−1

e−(Lθ(v)−L(Tk−1))(dS(v)− cdv) ,

Bθ,k = e−(Lθ(Tk)−Lθ(Tk−1)) .

(a) Then ((Aθ,k, Bθ,k))k∈N is a sequence of iid bivariate r.v.’s with the same distribution

as the vector in (3.4).

(b) Define (Vθ,k)k∈N by the following backward stochastic recurrence equation

Vθ,0 = 0 and Vθ,k =
k∑

m=1

Aθ,m

m−1∏
j=1

Bθ,j , k ∈ N . (3.5)

Then Vθ(Tk) = Vθ,k for all k ∈ N.

Proof. (a) is an immediate consequence of the stationary and independent increments of

Lévy processes.

(b) For k ∈ N we have

Vθ(Tk) =

∫ Tk

0

e−Lθ(v) (dS(v)− cdv)

=

∫ Tk−1

0

e−Lθ(v) (dS(v)− cdv) +

∫ Tk

Tk−1

e−Lθ(v) (dS(v)− cdv)

= Vθ(Tk−1) + e−Lθ(Tk−1)

∫ Tk

Tk−1

e−(Lθ(v)−Lθ(Tk−1)) (dS(v)− cdv)

= Vθ(Tk−1) +
k−1∏
j=1

e−(Lθ(Tj)−Lθ(Tj−1))

∫ Tk

Tk−1

e−(Lθ(v)−Lθ(Tk−1)) (dS(v)− cdv)

= Vθ(Tk−1) + Aθ,k

k−1∏
j=1

Bθ,j .

We have used that for every Lévy process the stationary and independent increments

property also holds for the random time inter.v.als defined by (Tj)j∈N. Equation (3.5)

follows then by iteration.

For the sequence (Vθ,k)k∈N0 Goldie and Maller [8] derive also for this discrete time

process NASCs for stationarity; see their Theorem 2.1. In our insurance context it is,

however, more natural to work with moment conditions, which are slightly weaker. They

are stated and discussed in Corollary 4.1 of [8], where also precise references to earlier

work can be found. In Lemma A.3 we show that these conditions are satisfied in our model

under weak conditions. We obtain the following result.

13



Theorem 3.8. Assume that Y is supported on the whole of R+ and EY = µ < ∞,

E[L(1)] > 0 and ϕθ(1) < λ. Let (Vθ,k)k∈N0 be defined as in (3.5).

(a) Then

Vθ,k
a.s.→ V ∞

θ =
∞∑

m=1

Aθ,m

m−1∏
j=1

Bθ,j , k →∞ , (3.6)

where the series on the rhs converges absolutely with probability 1.

Moreover, V ∞
θ satisfies the identity in law

V ∞
θ

d
= Aθ + BθV

∞
θ , (3.7)

where V ∞
θ and (Aθ, Bθ) are independent.

(b) Let the discounted net loss process (Vθ(t))t≥0 be defined by equation (3.1). Then Vθ(t)

converges a.s. if and only if Vθ,k does and

V ∞
θ = V ∞,c

θ a.s. (3.8)

Proof. (a) Stationarity of the discrete time sequence (Vθ,k)k∈N is usually proved via the

corresponding backward stochastic recurrence equation. In order to prove (3.7) we intro-

duce r.v.’s Ṽθ,k for k ∈ N invoking the same iid sequence ((Aθ,k, Bθ,k))k∈N as above.

Ṽθ,0 = 0 and Ṽθ,k = Aθ,k + Ṽθ,k−1Bθ,k =
k∑

m=1

Aθ,m

k∏
j=m+1

Bθ,j , k ∈ N .

We obser.v.e that for every k ∈ N

((Aθ,j, Bθ,j))1≤j≤k
d
= ((Aθ,k−j+1, Bθ,k−j+1))1≤j≤k ,

implying that
k∑

m=1

Aθ,m

m−1∏
j=1

Bθ,j
d
=

k∑
m=1

Aθ,m

k∏
j=m+1

Bθ,j ,

hence Vθ,k
d
= Ṽθ,k for all k ∈ N. The result goes back to Kesten [12] (see his Theorem 5);

Proposition 8.4.3 in Embrechts, Klüppelberg and Mikosch [3] also states the result with

proof. The conditions in that proposition hold due to Lemma A.3 in Appendix 4.2.

(b) Consider the continuous time process Vθ.

Vθ(t)
a.s.
=

∫ TN(t)

0

e−Lθ(v)(dS(v)− cdv) +

∫ t

TN(t)

e−Lθ(v)(dS(v)− cdv)

= Vθ,N(t) + e−Lθ(TN(t))

∫ t

TN(t)

e−(Lθ(v)−Lθ(TN(t))) (dS(v)− cdv) , t ≥ 0 =, ,

14



where in the last line the integral is independent of the first summand. Since N(t)
a.s.→∞

as t →∞, we know from part (a) that Vθ,N(t)
a.s.→ V ∞

θ as t →∞. Moreover, as EL(1) > 0,

we have by Lemma A.1(b) that E[Lθ(1)] > 0 and hence e−Lθ(TN(t))
a.s.→ 0 as t → ∞. As

t− TN(t)
d
= E, the last integral is a finite random variable. This implies (3.8).

Remark 3.9. The condition ϕθ(1) < λ is needed to show Lemma A.3(a) which, together

with Lemma A.3(b), ensures a.s. convergence of Vθ,k as k → ∞ to a finite r.v. When

ϕθ(1) ≤ 0, the limit variable has finite mean, whereas for ϕθ(1) ∈ (0, λ) it has infinite

mean; see also Lemma 3.2 and Remark 3.3.

4 Tail behaviour of the discounted net loss process

From now on in most of our results we exclude the pure bond strategy and assume

that θ ∈ (0, 1]. Moreover, we assume that the conditions of Theorem 3.8 hold. Then the

stationary random variable V ∞
θ exists and satisfies the fixed point equation (3.7). As we

are interested in distributional properties of V ∞
θ we can work with the continuous time

process or with the discrete skeleton process as they both lead to the same a.s. limit.

Our next goal is the tail behaviour of V ∞
θ . To this end we start with some preliminary

results on Laplace transforms. Note that the condition δ < log E[eL(1)] = ϕ(−1) is quite

natural. Indeed, it guarantees that the expected value of the risky stock investment is

larger than the riskless bond investment.

Lemma 4.1. Let θ ∈ (0, 1] and assume that 0 < E[L(1)] < ∞, and either σ > 0 or

ν((−∞, 0)) > 0. Define V∞ = {v ≥ 0 : ϕ1(v) < ∞} and assume that v∗1 = supV∞ /∈ V∞.

(a) Then there exists a unique positive κ = κ(θ) > 0 such that ϕθ(κ) = 0. Moreover,

ϕ′
θ(κ) > 0 and

κ(θ)


> 1 if ϕθ(1) < 0 ,

= 1 if ϕθ(1) = 0 ,

< 1 if ϕθ(1) ∈ (0, λ) .

(4.9)

(b) Let δ < ϕ(−1). For fixed s > 0 the function ϕθ(s) is strictly convex in θ.

(c) Let δ < ϕ(−1). Then the function κ(θ) as defined in (a) is decreasing in θ.

Proof. (a) First note that ϕθ(0) = 0 for all θ ∈ (0, 1]. Moreover, ϕ′
1(0) = −E[L] < 0 and

limv→v∗1
ϕ1(v) = ∞. Hence the existence of κ(1) follows from convexity.

Now assume that θ ∈ (0, 1). For θ < 1 we set p = log((1 + θ−1(e − 1)) > 0, q = −∞, if

θ−1(1− e−1) ≥ 1, and q = log(1− θ−1(e−1− 1)) < 0, if θ−1(1− e−1) < 1. Then for s ∈ R+
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we get∫
|x|≥1

e−sxνθ(dx) =

∫
| log(1+θ(ex−1))|≥1

(1 + θ(ex − 1))−sν(dx)

=

∫ q

−∞
(1 + θ(ex − 1))−sν(dx) +

∫ ∞

p

(1 + θ(ex − 1))−sν(dx)

≤ (1− θ)−s

∫ q

−∞
ν(dx) + e−s

∫ ∞

p

ν(dx) < ∞ .

By Proposition 3.14 in Cont and Tankov [2] ϕθ(s) < ∞.

On the other hand, for 0 < θ ≤ 1 we have

Ee−vLθ(1) ≥ P (Lθ(1) < 0)E[e−vLθ(1) |Lθ(1) < 0)] .

Note that limv→∞ E[e−vLθ(1) |Lθ(1) < 0] = ∞. Since P (Lθ(1) < 0) > 0 holds by

Lemma A.2, we have

lim
v→∞

Ee−vLθ(1) = lim
v→∞

eϕθ(v) = ∞ . (4.10)

Then the existence of κ(θ) for θ ∈ (0, 1) follows from the above together with the convexity

of ϕθ and the fact that ϕ′
θ(0) = −E[Lθ(1)] ∈ (−∞, 0) (see Lemma A.1 (a,b)).

(b) We consider the function ϕθ(s) =: ϕ(θ, s) for θ ∈ [0, 1] and s > 0 as a function in

two variables. Then

ϕ(θ, s) := −
(

δ + θ(γ +
σ2

2
− δ)

)
s +

σ2

2
s(s + 1)θ2

+

∫
R

(
(1 + θ(ex − 1))−s − 1 + sθx1{|x|≤1}

)
ν(dx) ,

and we investigate ϕ(θ, s) as a function of θ. First notice that

∂

∂θ
ϕ(θ, s) = −

(
γ +

σ2

2
− δ

)
s + σ2s(s + 1)θ

−s

∫
R

(
(ex − 1)

(1 + θ(ex − 1))s+1 − x1{|x|≤1}

)
ν(dx) .

As δ < ϕ(−1), we have ∂
∂θ

ϕ(0, s) = −(ϕ(−1)− δ)s < 0. Secondly,

∂2

∂θ2
ϕ(θ, s) = s(s + 1)

(
σ2 +

∫
R

(ex − 1)2

(1 + θ(ex − 1))s+2ν(dx)

)
> 0 , (4.11)

i.e. the function ϕ(θ, s) is strictly convex in θ.

(c) From (b) follows that for each fixed s > 0 there exists some θ∗(s) > 0, in which ϕ(θ, s)

attains its minimum. Consider 0 ≤ θ1 < θ2 ≤ 1. We shall show that κ(θ1) > κ(θ2) > 0.
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To this end fix s = κ(θ2) and consider its corresponding value θ∗(s) = argminθ ϕ(θ, s).

Assume first that θ∗(κ(θ2)) ≥ θ2. Then ϕ(θ, κ(θ2)) is decreasing in [0, θ2) and hence

0 = ϕ(θ2, κ(θ2)) ≤ ϕ(0, κ(θ2)) = −δκ(θ2) < 0 ,

which is a contradiction. Hence θ∗(κ(θ2)) < θ2. So for θ ∈ [0, θ∗(κ(θ2)) ), ϕ(θ, κ(θ2)) is

decreasing function of θ and for θ ∈ (θ∗(κ(θ2)), 1], ϕ(θ, κ(θ2)) is an increasing function of

θ. Next consider θ1 < θ∗(κ(θ2)). This implies

ϕ(θ1, κ(θ2)) < ϕ(0, κ(θ2)) < 0 = ϕ(θ1, κ(θ1)) ,

which – by convexity of ϕ(θ, s) in s (for fixed θ) – implies κ(θ1) > κ(θ2). Assume now

that θ∗(κ(θ2)) ≤ θ1 < θ2, where ϕ(θ, s) is increasing in θ. Then

ϕ(θ1, κ(θ2)) < ϕ(θ2, κ(θ2)) = 0 = ϕ(θ1, κ(θ1)) ,

hence, again by convexity of ϕ(θ, s) in s, we obtain κ(θ1) > κ(θ2). This completes the

proof.

4.1 Claims with finite moment of order κ

Theorem 4.1 of Goldie [7] guarantees under natural conditions, which hold by Lemma A.4

that V ∞
θ has a heavy left or right tail. In the context of risk management, however, only

the right tail is of prime interest. Invoking the theory of large deviations as suggested in

the context of ruin theory by Nyrhinen [19] gives us a method to decide about right and

left tails separately. The next lemma concerns properties of

lθ(s) = log E[e−sLθ(E)] = log E[Bs
θ ] = log

λ

λ− ϕθ(s)
. (4.12)

First note that lθ(s) < ∞ on Sθ = {v ≥ 0 : ϕθ(v) < λ} and supSθ /∈ Sθ.

Lemma 4.2. Let the conditions of Lemma 4.1 hold and κ = κ(θ) ∈ (0,∞) be the unique

value satisfying ϕθ(κ) = 0. Then the following hold.

(a) lθ is strictly convex and continuously differentiable on the interior of Sθ and lθ(κ) = 0.

(b) There exists β = β(θ) > 0 such that lθ(κ + β) < ∞.

(c) l′θ(κ) ∈ (0, ∞) and P (Bθ > 1) > 0.

Proof. (a) follows as in Lemma 4.1 and by definition of κ.

For (b) we note that from ϕθ(0) = ϕθ(κ) = 0 and strict convexity follows that ϕθ(s) < 0

for s ∈ (0, κ). As λ > 0, there exist b ∈ (0, λ) and β > 0, such that ϕθ(κ + β) = b < λ.

Hence, for this β > 0 we have lθ(κ + β) < ∞.
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The first part of (c) follows from l′θ(κ) = λ−1ϕ′
θ(κ) ∈ (0, ∞) as ϕ′

θ(κ) ∈ (0, ∞).

For the second part of (c) we use continuity in probability of Lévy processes. Since

P (Lθ(1) < 0) > 0, there exist η, ε > 0, such that for t ∈ (1 − ε, 1 + ε) we have

P (Lθ(t) < 0) ≥ η. Then

P (Bθ > 1) = P (Lθ(E) < 0) ≥ λ

∫ 1+ε

1−ε

P (Lθ(z) < 0)e−λzdz ≥ ηλ

∫ 1+ε

1−ε

e−λzdz > 0 .

Next we present a large deviations result, which is proved in Appendix B. The idea is

taken from Nyrhinen [19] and his proof is adapted to our situation.

Lemma 4.3. Let the conditions of Lemma 4.1 hold and κ(θ) ∈ (0,∞) be the unique

value satisfying ϕθ(κ) = 0. Assume also that Y is supported on the whole of R+ and that

EY < ∞. Then

lim inf
x→∞

log P (V ∞
θ > x)

log x
≥ −κ(θ) and lim inf

x→∞

log P (V ∞
θ < −x)

log x
≥ −κ(θ) . (4.13)

In the following result we show that V ∞
θ has heavy left and right tail. It is an appli-

cation of Theorem 4.7 of Goldie [7] in combination with Lemma 4.3.

Theorem 4.4. Assume that the conditions of Theorem 3.8 and Lemma 4.1 hold. Let

κ = κ(θ) ∈ (0,∞) be the unique value satisfying ϕθ(κ) = 0. Assume also that Y is

supported on the whole of R+. Let β be as in Lemma 4.2(b) and assume that

EY κ+β < ∞ . (4.14)

Then there exist constants C± such that for x →∞

P (V ∞
θ > x) = C+ x−κ + O(x−(κ+β/2)) and P (V ∞

θ < −x) = C− x−κ + O(x−(κ+β/2)) .

(4.15)

Moreover,

C± = C±(θ) =
1

κm
E
[(

(Aθ + BθV
∞
θ )±

)κ − ((BθV
∞
θ )±

)κ]
> 0 , (4.16)

where

m = m(θ) =
1

λ
ϕ′

θ(κ(θ)) ∈ (0,∞) . (4.17)

Proof. Lemma 4.2 guarantees that m = ϕ′
θ(κ)/λ = l′θ(κ) ∈ (0,∞). The rate result (4.15)

holds by Theorem 4.7 in Goldie [7], where it is possible to choose the parameter β =

β(θ) > 0 in Theorem 3.2 of Goldie [7] small enough such that the contour integral in

formula (3.8) vanishes. Note also that we can always choose the same β for the left and
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right tail. For more details see also the discussions after Theorems 3.1 and 3.2 in Goldie [7].

The conditions of this theorem are satisfied: (3.3) and (3.4) hold by the choice of β and

Lemma 4.2(b).

Furthermore, E[|Aθ|κ+β] < ∞ by (4.14) and Lemma A.4(c). Define the probability law

η(dx) = eκxP (log Bθ ∈ dx). This is spread out as log Bθ = −Lθ(E) is. The corresponding

first moment is positive as ϕ′
θ(κ) > 0 by Lemma 4.1, and the second moment is finite,

since the moment generating function exists in a neighbourhood of 0. Finally, η̃(β) =

ϕθ(κ + β) < ∞ by Lemma 4.2(b).

To prove that C+(θ) > 0 we apply Lemma 4.3. Assume that C+(θ) = 0. Then from (4.15)

follows that there exists some constant M ∈ (0,∞) and some x0 such that

P (V ∞
θ > x) ≤ Mx−(κ+β/2) , x > x0 ,

which implies, taking logarithms,

log P (V ∞
θ > x)

log x
≤ log M

log x
− κ− β

2
.

Now letting x tend to ∞ and making use of (4.13) we get the following inequality chain

−κ ≤ lim inf
x→∞

log P (V ∞
θ > x)

log x
≤ lim

x→∞

log P (V ∞
θ > x)

log x
≤ −κ− β

2
,

which is a contradiction to β > 0. Hence C+ > 0.

To prove that C− > 0 note that P (V ∞
θ < −x) = P (−V ∞

θ > x). Moreover, −V ∞
θ is the

almost sure limit of the random recurrence equation

−Vθ,0 = 0 and − Vθ,n =
n∑

m=1

(−Aθ,m)
m−1∏
j=1

Bθ,j , n ∈ N ,

with (Aθ,k, Bθ,k) as defined in (3.5). Hence, Lemma 4.3 applies.

Theorem 4.4 says that V ∞
θ has left and right Pareto-like tails. By Lemma 4.1(c) the

Pareto index κ = κ(θ) is decreasing in θ. This can be interpreted that the more we invest

into the risky asset the heavier the tail of the stationary DNLP becomes. More risky

investment increases the risk.

Example 4.5. [Dangerous investment]

In this example we demonstrate that investment into risky stock can be dangerous, al-

though the insurance claims are moderate. Assume for simplicity that the claims have

moments of all order. Let the conditions on the investment process in Theorem 3.8 be

satisfied so that there exists an a.s. limit V ∞
θ of the DNLP. Theorem 4.4 gives

P (V ∞
θ > x) ∼ C+(θ)x−κ , x →∞ , (4.18)
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where κ = κ(θ) is determined by the investment process only. Intuitively, in this case the

extremes of the investment process dominate the extremes of the resulting integrated risk

process.
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Figure 1: Upper left plot: sample path of the insurance tisk process with premium rate c = 50, intensity
of the Poisson claim arrival process λ = 20 and exponentially distributed claims with mean µ = 2, i.e.
F (x) = e−x/2, x > 0. Upper right plot: sample path of the log-investment process for investment strategy
θ = 1 (pure stock investment) and the VG process L(t) = qt + Wa,b(SΓ(t)), t > 0, with parameters
q = 0.05. W is Brownian motion with drift a = −0.01, variance b2 = 0.04 − a2 and var(SΓ) = 1. Lower
plot: sample path of the resulting IRP with initial capital u = 100. The time horizon is T = 10. It is
clearly seen that the jumps of the IRP are dominated by the jumps of the investment process.

The parameter κ can only be calculated explicitly, if the price process of the risky asset

is geometric Brownian motion; see Example 2.3. Then the investment process is again

geometric Brownian motion given by

Xθ(t) = exp(γθt + σθW (t)) , t ≥ 0 ,

with γθ and σθ as in (2.4). The value κ is the unique positive solution to

ϕθ(s) = −γθs +
σ2

θ

2
s2 = 0
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given by

κ = κ(θ) =
2γθ

σ2
θ

=
2

σ2θ2

(
γθ + (1− θ)(δ +

σ2

2
θ)

)
.

In the case of Brownian motion with jumps with distribution Z (Example 2.3), κ is given

as the unique positive solution to

ϕθ(s) = −ξθs + σ2
θ

s2

2
+ η(E[(1 + θ(eZ − 1))−s]− 1) = 0 ,

where ξθ and σθ are given in Example 2.3. Even in this simple case κ(θ) can only be found

by numerical methods. The problem becomes even more difficult for a VG Lévy process

(Example 2.4) or any other process with infinite jump activity.

In Figure 2 we have plotted the value κ(θ) as a function of the investment strategy θ for

three different models for the risky asset. Recall that by Lemma 4.1(c) κ(θ) is decreasing

in θ for all Lévy models. This means that in all models more investment into the risky

asset leads to a heavier tail of V ∞
θ ; i.e. more risky investment yields a higher risk.

We compare a Brownian motion model with two different VG models. The parameters are

chosen such that mean and variance of the log returns of the risky asset are the same in

all models. As we can see in Figure 2, jumps in the model yield a smaller κ, corresponding

to a heavier tail of V ∞
θ . Higher intensity of large negative jumps yields also a smaller κ.

�
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Pareto exponent vs investment strategy
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κ(
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Figure 2: The Pareto exponent κ(θ) in (4.18) as a function of the investment strategy θ. We compare the
following investment models: Brownian motion model with drift 0.04 and volatility 0.2, a VG model with
parameters as in Figure 1 and a more pessimistic VG model of the form L(t) = qt + Wa,b(SΓ(t)) where
q = 0.14, a = −0.1 and b2 = 0.04 − a2 (more large negative jumps, which are compensated by a larger
deterministic drift q).
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4.2 Regularly varying claims

In this section we consider claim size distributions satisfying F (x) = x−α`(x), x > 0, where

limx→∞ `(xt)/`(x) = 1 for all t > 0; i.e. F is regularly varying with index α > 1 and we

require throughout that α < κ. Here κ = κ(θ) ∈ (1,∞) is the unique value satisfying

ϕθ(κ) = 0 for some fixed θ ∈ (0, 1] as defined in Lemma 4.1. In this case EY κ = ∞, hence

this is a different situation than in Section 4.1. In the next proposition we shall see that

in this case the tail of the stationary r.v. V ∞
θ is determined by the tail behaviour of Y .

Theorem 4.6. Let V ∞
θ be the stationary solution to the stochastic recurrence equation

(3.5). Let κ = κ(θ) ∈ (1,∞) be the unique value satisfying ϕθ(v) = 0. Assume that the

claim size Y has distribution with regularly varying tail for some α ∈ (1, κ(θ)). Then the

following assertions hold.

(a) Right tail. V ∞
θ has also regularly varying tail with index α, more precisely,

P (V ∞
θ > x) ∼ λ

|ϕθ(α)|
P (Y > x) , x →∞ . (4.19)

(b) Left tail. Assume that σ > 0 or ν(−∞, 0) > 0. In the case when L is of finite

variation, assume that either the drift is non-zero, or that for no r > 0 the support of the

Lévy measure νθ is concentrated on rZ. Then

lim sup
x→∞

log P (V ∞
θ < −x)

log x
= −κ .

In particular,

lim
x→∞

P (V ∞
θ < −x)

P (V ∞
θ > x)

= 0 .

Proof. (a) Recall that ϕθ(0) = ϕθ(κ) and ϕθ is strictly convex in s; i.e. ϕθ(s) < 0 for all

0 < s < κ. As α < κ we have ϕθ(α) < 0. Hence

E[Bα
θ ] =

λ

λ− ϕθ(α)
< 1 ,

and there exists some β > 0 such that E[Bα+β
θ ] < ∞. Then, if we can show that Aθ is

regularly varying with index α, it follow directly from Proposition 2.4 in Konstantinides

and Mikosch [13] that

P (V ∞
θ > x) ∼ 1

(1− E[Bα
θ ])

P (Aθ > x) , x →∞ .

As there exists some β > 0, such that E[Bα+β
θ ] < ∞, from Breiman’s classical result, see

Lemma 2.2 in [13], follows that

P (Y e−Lθ(E) > x) = P (Y Bθ > x) ∼ E[Bα
θ ]P (Y > x) , x →∞ . (4.20)
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Define ξ = Y e−Lθ(E) and η = c
∫ E

0
e−Lθ(v) dv, then both r.v.’s ξ and η are a.s. positive. On

the one hand we estimate

P (ξ − η > x) ≤ P (ξ > x) . (4.21)

On the other hand, for every ε > 0 we calculate

P (ξ − η > x) + P (η > εx) ≥ P (ξ − η > x , η ≤ εx) + P (η > εx)

≥ P (ξ > (1 + ε)x, η ≤ εx) + P (η > εx, ξ > (1 + ε)x)

= P (ξ > (1 + ε)x) .

This implies

P (ξ − η > x) ≥ P (ξ > (1 + ε)x)− P (η > εx) . (4.22)

As 1 < α < κ, by (A.2) we know that E[ηα] < ∞. As a consequence, for every ε > 0

follows limx→∞ xαP (η > εx) = 0 . This together with (4.20) and inequalities (4.21) and

(4.22) implies the following estimates for the tail of Aθ as x →∞:

E[Bα
θ ]

P (Y > (1 + ε)x)

P (Y > x)
∼ P (ξ > (1 + ε)x)

P (Y > x)
≤ P (Aθ > x)

P (Y > x)
≤ P (ξ > x)

P (Y > x)
→ E[Bα

θ ] .

Letting x →∞ on the left hand side, and then ε → 0 gives (4.19).

(b) First notice that

P (V ∞
θ < −x) ≤ P

(
c

∫ ∞

0

exp(−Lθ(v))dv > x

)
. (4.23)

The r.v. V ∞,−
θ = c

∫∞
0

exp(−Lθ(v))dv satisfies the fixed point equation

V ∞,−
θ

d
= A−

θ + BθV
∞,−
θ ,

for A−
θ = c

∫ E

0
exp(−Lθ(v))dv > 0 and Bθ = exp(−Lθ(E)) > 0 a.s.. By (A.2), setting

g = κ > 1, E[|A−
θ |κ] < ∞. Therefore we may apply Theorem 4.1 and Lemma 2.2 of

Goldie [7] and we get for some constant C > 0

P
(
c

∫ ∞

0

exp(−Lθ(v))dv > x
)
∼ C x−κ x →∞ .

Inequality (4.23) ensures that

lim sup
x→∞

log P (V ∞
θ < −x)

log x
≤ −κ .

From this follows that for every ε > 0 there exists some x0 = x0(ε) such that P (V ∞
θ <

−x) ≤ x−κ+ε holds for all x ≥ x0; on the other hand, due to (4.19), also P (V ∞
θ > x) ≥

x−α+ε/2 for all x ≥ x0. Since α < κ, for ε small enough, for all x > x0 we get

P (V ∞
θ < −x)

P (V ∞
θ > x)

≤ x−(κ−α−ε/2) → 0 , x →∞ . �
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Theorem 4.6(a) gives a Pareto-like right tail. In the context of risk management this

is the important tail as it describes the likelihood of large losses.

Example 4.7. [Dangerous claims]

In this example we demonstrate how large insurance claims may dominate the extremes

in the integrated risk process. Let the claims have Pareto-like tail with exponent α > 1,

i.e. P (Y > x) ∼ CY x−α, x →∞, for some constant CY > 0. Then the claims have finite

moments up to order α, including a finite mean, but no moments of order larger than

α. Let the conditions on the investment process in Theorem 3.8 be satisfied. Then there

exists an a.s. limit V ∞
θ of the DNLP. Theorem 4.6 applies: recall first from Lemma 4.1(c),

if α < κ(1), then α < κ(θ) for all θ ∈ [0, 1]). In this case,

P (V ∞
θ > x) ∼ C(θ)x−α , x →∞ . (4.24)

The investment process enters only into the constant C(θ) = λµCY /|ϕθ(α)|. Intuitively,

in this case the large insurance claims dominate the extremes of the resulting IRP. This

is illustrated in Figure 3.

The constant C(θ) can be calculated explicitly for models such that ϕθ(α) can be cal-

culated. In principle this holds for the geometric Brownian motion model, and also for

special cases of the geometric Brownian motion with jumps (Example 2.3). For processes

with infinite jump activity (Example 2.4), the constant C(θ) has to be computed numeri-

cally. In Figure 4 we have plotted the Pareto constant C(θ) as a function of the investment

strategy θ for three different models for the risky asset. �

Appendix

A Conditions for stationarity and Pareto tail approximation

The first lemma concerns the connection between the expectation and the moment gen-

erating function of Lθ(1) and those of L(1).

Lemma A.1. Let θ ∈ [0, 1].

(a) If E[L(1)] < ∞, then also E[Lθ(1)] < ∞.

(b) If E[L(1)] > 0, then also E[Lθ(1)] > 0.

(c) If ϕ(s) = E
[
e−sL(1)

]
< ∞, then ϕθ(s) = E

[
e−sLθ(1)

]
< ∞.

Proof. (a) E[L(1)] < ∞ is equivalent to
∫

R x1{|x|>1} ν(dx) < ∞. Note that this formulation

is chosen as a particular way to control the large jumps of the process. The cut-off points -1
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Figure 3: Upper left plot: sample path of the insurance process with premium rate c = 50, intensity of
the Poisson claim arrival process λ = 20 and Pareto distributed claims with mean µ = 2 and Pareto
exponent α = 1.1, i.e. F (x) = ( 0.2

0.2+x )−1.1, x > 0. Upper right plot: sample path of the investment process
for investment strategy θ = 1 (pure stock investment) and log returns of the risky asset modeled by a VG
process with parameters as in Figure 1. Lower plot: sample path of the resulting IRP with initial capital
u = 100. The time horizon is T = 10. It is clearly seen that the large jumps of the IRP are dominated by
the large insurance claims.

and 1 can be chosen arbitrarily and need not have the same modulus. By Remark 1.4(ii),

the large jumps are of the form log(1+θ(e∆L(1)−1)). Since log(1+θ(ex−1)) ≥ log(1−θ),

i.e. negative jumps are bounded below, we only need to control large positive jumps. Note

that by l’Hospital’s rule

lim
x→∞

log(1 + θ(ex − 1))

x
= 1 .

This implies that for large enough h > 0∫ ∞

h

log(1 + θ(ex − 1))ν(dx) ≤
∫ ∞

h

(x + ε)ν(dx) < ∞ .

(b) First note that, whenever the expectations are finite, then E[L(1)] = γ+
∫

R x1{|x|>1} ν(dx)

and E[Lθ(1)] = γθ +
∫

R x1{|x|>1} νθ(dx) (see, e.g. Sato [24], E25.12, p. 163). Now assume
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Figure 4: The Pareto constant C(θ) in (4.24) as a function of the investment strategy θ. We compare a
Brownian motion and two VG models. The parameters of the models are as in Figure 2. Note that the
more risky the investment model, the larger is the difference between the minimal and the maximal value
of C(θ); i.e. between the minimal and the maximal value of the tail of V ∞

θ .

that E[L(1)] > 0. By Lemma 1.3, setting (1− θ)(δ + σ2

2
θ) =: a > 0, we obtain

E[Lθ(1)] = γθ + a +

∫
R

log(1 + θ(ex − 1))1{| log(1+θ(ex−1))|>1}ν(dx)

+

∫
R
(log(1 + θ(ex − 1))1{| log(1+θ(ex−1))|≤1} − θx1{|x|≤1})ν(dx)

= a + θE[L(1)] +

∫
R
(log(1 + θ(ex − 1))− θx) ν(dx) > 0 ,

since the integrand is positive.

(c) Recall that

ϕ(s) = Ψ(is) = −γs +
σ2

2
s2 +

∫
R
(e−sx − 1 + sx1{|x|≤1})ν(dx)

and we assume that ϕ(s) < ∞, equivalently, the integral being finite. We consider the

corresponding integral for ϕθ(s). We denote

h(θ) :=

∫
R
(e−sx − 1 + sx1{|x|≤1})νθ(dx)

=

∫
R

(
(1 + θ(ex − 1))−s − 1− s log(1 + θ(ex − 1))1{| log(1+θ(ex−1))|≤1}

)
ν(dx) .

Now the function h(θ) is continuous in θ ∈ [0, 1]. Moreover, h(0) = 0 and

h(1) =

∫
R

(
esx − 1− sx1{|x|≤1}

)
ν(dx) = ϕ(s) < ∞ ,

hence h(θ) is finite for all θ ∈ [0, 1].
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Lemma A.2. If σ > 0 or ν((−∞, 0)) > 0, then P (Lθ(1) < 0) > 0 for all θ ∈ (0, 1].

Proof. If σ > 0, then by Lemma 1.3 also σθ > 0, and the Gaussian component guaran-

tees the result. On the other hand, if ν((−∞, 0)) > 0, then Remark 1.4(ii) ensures also

downwards jumps of Lθ, giving again the result. For more details we refer to Sato [24],

Section 24.

Lemma A.3. Assume that EY = µ < ∞, E[L(1)] > 0 and ϕθ(1) < λ.

Then for the r.v.’s Aθ and Bθ defined in (3.4) we have

(a) E log+ |Aθ| ≤
λµ + c

λ− ϕθ(1)
< ∞ ;

(b) −∞ ≤ E log |Bθ| = − 1
λ
E[Lθ(1)] < 0 .

Proof. We first prove (b). From Lemma A.1(a) we know that E[Lθ(1)] > 0. Moreover,

if E[Lθ(1)] < ∞, then E[Lθ(t)] = tE[Lθ(1)] (see Sato [24], E25.12, Formula (25.7) at

p. 163). Then we obtain

E[log |Bθ|] = −E[Lθ(E)] = −λ

∫ ∞

0

E[Lθ(z)]e−λz dz = −E[Lθ(1)]

λ
.

For the proof of (a) we use that for every r.v. X > 0 a.s., also log X < X a.s. and

max(0, log X) ≤ X; hence E[max(0, log X)] ≤ EX. Then we estimate

E[log+ |Aθ|] = E

[
log+

∣∣∣∣Y e−Lθ(E) − c

∫ E

0

e−Lθ(v) dv

∣∣∣∣]
≤ E

[∣∣∣∣Y e−Lθ(E) − c

∫ E

0

e−Lθ(v) dv

∣∣∣∣] ≤ µE
[
e−Lθ(E)

]
+ cE

[∫ E

0

e−Lθ(v) dv

]
.

Now for the first summand we calculate for ϕθ(1) < λ,

E
[
e−Lθ(E)

]
= λ

∫ ∞

0

eϕθ(1)ze−λz dz =
λ

λ− ϕθ(1)
< ∞ .

For the second summand we write

E

[∫ E

0

e−Lθ(v) dv

]
= λ

∫ ∞

0

(∫ z

0

evϕθ(1)dv

)
e−λz dz .

If ϕθ(1) = 0, then the last term is equal to 1/λ < ∞. If ϕθ(1) 6= 0, then ϕθ(1) < λ,

λ

∫ ∞

0

(∫ z

0

evϕθ(1)dv

)
e−λz dz =

λ

ϕθ(1)

∫ ∞

0

e−z(λ−ϕθ(1))dz − 1

ϕθ(1)
=

1

λ− ϕθ(1)
< ∞ .
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Lemma A.4. Let the conditions of Lemma 4.1 be satisfied and κ = κ(θ) ∈ (0,∞) be the

unique value satisfying ϕθ(κ) = 0. Then

(a) E [Bκ
θ ] = 1;

(b) E
[
Bκ

θ log+ Bθ

]
< ∞;

(c) If E [Y q] < ∞ for some q ≥ 1, then E
[
|Aθ|min(q,κ+β) ] < ∞ for β > 0 as in

Lemma 4.2(b).

Proof. From (4.12) we know that E [Bs
θ ] = elθ(s), hence (a) follows directly from the

definition of κ(θ) as in Lemma 4.2.

Part (b) is a simple consequence of Lemma 4.2(b).

To prove (c) we consider two cases. Define r := κ + β. Assume first that r ≤ 1 ≤ q and

obser.v.e that then ϕθ(1) ≥ 0. As the function f(x) = xr is concave on R+, |x + y|r ≤
|x|r + |y|r for every x, y ∈ R. Hence we estimate

E [|Aθ|r] = E

[∣∣∣∣Y e−Lθ(E) − c

∫ E

0

e−Lθ(v) dv

∣∣∣∣r]
≤ E

[(
Y e−Lθ(E)

)r]
+ crE

[(∫ E

0

e−Lθ(v) dv

)r]
.

The first term on the rhs of the inequality is finite as EY r < ∞ and Ee−rLθ(E) < ∞ and

both r.v.’s are independent. For the second term Jensen’s inequality yields

E

[(∫ E

0

e−Lθ(v) dv

)r]
= λ

∫ ∞

0

E

[(∫ z

0

e−Lθ(v) dv

)r]
e−λz dz

≤ λ

∫ ∞

0

(∫ z

0

Ee−Lθ(v) dv

)r

e−λz dz = λ

∫ ∞

0

(∫ z

0

evϕθ(1) dv

)r

e−λz dz .

If ϕθ(1) = 0 then the last term is equal to E[Er] < ∞ as E is exponentially distributed.

If ϕθ(1) 6= 0, then we have

λ

∫ ∞

0

(∫ z

0

evϕθ(1) dv

)r

e−λz dz =
λ

ϕθ(1)

∫ ∞

0

(
ezϕθ(1) − 1

)r
e−λz dz

≤ λ

ϕθ(1)

∫ ∞

0

e−z(λ−rϕθ(1)) dz < ∞ ,

provided that ϕθ(1) < λ/g, which is satisfied for ϕθ(1) < λ for g ≤ 1.

Now assume that g = min(r, q) > 1. Then the function f(x) = xg is convex giving

E [|Aθ|g] = E

[∣∣∣∣Y e−Lθ(E) − c

∫ E

0

e−Lθ(v)dv

∣∣∣∣g]
≤ 2g−1

(
E
[
Y ge−gLθ(E)

]
+ cgE

[(∫ E

0

e−Lθ(v)dv

)g])
. (A.1)
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Now again from Jensen’s inequality for the second expectation above we have

E

[(∫ E

0

e−Lθ(v)dv

)g]
= λ

∫ ∞

0

E

[(∫ z

0

e−Lθ(v)dv

)g]
e−λzdz

≤ λ

∫ ∞

0

zg−1

∫ z

0

E[e−gLθ(v)]dve−λzdz = λ

∫ ∞

0

zg−1

∫ z

0

evϕθ(g)]dve−λzdz < ∞(A.2)

as Ee−gLθ(v) ≤ 1. For the first expectation in (A.1) we have E
[
Y ge−gLθ(E)

]
= E[Y g]E[Bg

θ ] <

∞ by part (a), and the proof is completed.

B Proof of Lemma 4.3

Lemma 4.3 is a large deviations result. We largely follow Nyrhinen [19] with adaptations

to our situation. We introduce some notations first. Set

m(θ) = l′θ(κ(θ)) . (B.1)

For d ∈ (0, 1/m(θ)), ε′ > 0 and n ∈ N define the subsets Dn = Dn(d, ε′) and En =

En(d, ε′) of Ω by

Dn =
{

ω ∈ Ω : sup
0<α≤1/m(θ)−d

∣∣∣ 1
n

dαne∑
j=1

log Bθ,j − αm(θ)
∣∣∣ ≤ ε′

}
,

(B.2)

En =

{
ω ∈ Ω : sup

j=1,...,d(1/m(θ)−d)ne
|Aθ,j| ≤ eε′n

}
.

The following lemma is the key for the proof of Lemma 4.3.

Lemma B.1. Let the conditions of Lemma 4.1 hold and κ = κ(θ) ∈ (0,∞) be the unique

value satisfying ϕθ(κ) = 0. Let also EY < ∞. Then for every d ∈ (0, 1/m(θ)) there exists

some ε′ > 0 such that

lim inf
n→∞

log P (Dn(d, ε′) ∩ En(d, ε′))

n
≥ −κ(θ) . (B.3)

Proof. Recall that under the probability measure P the sequence ((Aθ,k, Bθ,k))k∈N con-

sists of iid random vectors all distributed like (Aθ, Bθ) as defined in (3.4). Define a new

probability measure Q by

dQ(y1, y2) = y
κ(θ)
2 dP (y1, y2) ,

for (y1, y2) ∈ R2 and such that ((Aθ,k, Bθ,k))k∈N is again a sequence of iid random vectors

with respect to Q. We denote by EQ the expectation under Q. Then, for k ∈ N and any
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measurable function f : R2k → R we have

E [f((Aθ,1, Bθ,1), . . . , (Aθ,k, Bθ,k))]

=

∫
Rk

∫
(0,∞)k

f((y1
1, y1

2), . . . , (y
k
1 , yk

2)) dP (y1
1, y1

2) · · · dP (yk
1 , yk

2)

=

∫
Rk

∫
(0,∞)k

f((y1
1, y1

2), . . . , (y
k
1 , yk

2)) (y1
2)
−κ(θ)dQ(y1

1, y1
2) · · · (yk

2)
−κ(θ)dQ(yk

1 , yk
2)

= EQ

[( k∏
j=1

Bθ,j

)−κ(θ)

f((Aθ,1, Bθ,1), . . . , (Aθ,k, Bθ,k))

]
. (B.4)

Take ε′′ ∈ (0, ε′). Then using (B.4) and the definition of Dn we estimate

P (Dn(d, ε′) ∩ En(d, ε′))

≥ P (Dn(d, ε′′) ∩ En(d, ε′′)) = E [1{Dn(d, ε′′) ∩ En(d, ε′′)}]
= EQ

[
exp

(
−κ(θ)(− log Bθ,1 − · · · − log Bθ,d(1/m(θ)−d)ne)

)
1{Dn(d, ε′′) ∩ En(d, ε′′)}

]
≥ exp (−κ(θ)n (ε′′ + 1− dm(θ))) Q(Dn(d, ε′′) ∩ En(d, ε′′)) .

As 0 < dm(θ) < 1 follows

log P (Dn(d, ε′) ∩ En(d, ε′))

n
≥ −κ(θ)(1 + ε′′) +

log Q(Dn(d, ε′′) ∩ En(d, ε′′))

n
.

Then, if we can show that

lim
n→∞

Q(Dn(d, ε′′) ∩ En(d, ε′′)) = 1 , (B.5)

we obtain (B.3) after letting ε′′ → 0. For the proof of (B.5) it is sufficient to show that

lim
n→∞

Q(Dn(d, ε′′)) = 1 and lim
n→∞

Q(En(d, ε′′)) = 1 . (B.6)

We start with the lhs of (B.6). Note that by Lemma 4.2(b) there exists some s in a

neighborhood of 0 such that

EQ [Bs
θ ] = E

[
B

s+κ(θ)
θ

]
< ∞ .

This implies for such s

EQ [Bs
θ ] =

d

ds
(log EQ [Bs

θ ])|s=0 =
d

ds

(
log E

[
B

s+κ(θ)
θ

])
|s=0

=
d

ds
(log E [Bs

θ ])|s=κ(θ) = l′θ(κ(θ)) = m(θ) .

From the above follows that for the sum Sn = log Bθ,1 + · · · + log Bθ,n the SLLN holds

under the measure Q, i.e.
Sn

n

Q−a.s.→ m(θ) , n →∞ .
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For x > 0 we have xn/ dxne → 1 as n →∞, hence for 0 < α ≤ 1/m(θ)− d we obtain

Sdαne

n

Q−a.s.→ αm(θ) , n →∞ ,

from which follows the lhs of (B.6), i.e.

Q
(∣∣Sdαne/n− αm(θ)

∣∣ ≤ ε′′ , 0 < α ≤ 1/m(θ)− d
)
→ Q(Dn(d, ε′′)) = 1 , n →∞ .

To show the rhs of (B.6) first note that, if EY < ∞, then Lemma 4.2(c) implies that

E[|Aθ|min(1,κ)] < ∞. Second, by Hölder’s inequality, for p, q > 0 satisfying 1
p

+ 1
q

= 1 we

get for some s > 0

EQ [|Aθ|s] = E [Bκ
θ |Aθ|s] ≤ (E [Bκp

θ ])1/p (E [|Aθ|sq])1/q
.

We can choose p > 1 such that κp < κ+β, where β > 0 is as in Lemma 4.2(b) and s′ > 0

such that s′q < min(κ, 1). In other words, Hölder’s inequality guarantees the existence of

some s′ > 0, such that

EQ[|Aθ|s
′
] < ∞ .

Then for this s′ > 0 we estimate

EQ

[
|Aθ|s

′
]
≥ EQ

[
|Aθ|s

′
1{|Aθ| ≥ eε′′n}

]
≥ es′ε′′nQ(|Aθ| ≥ eε′′n) . (B.7)

Furthermore, for this s′ > 0, using that (Aθ,j)j∈N is a sequence of iid r.v.’s and (B.7), we

have

Q(En(d, ε′′)) = Q
(
|Aθ,j| ≤ eε′′n , j = 1, . . . , d(1/m(θ)− d)ne

)
= 1− d(1/m(θ)− d)neQ(|Aθ| > eε′′n)

≥ 1− d(1/m(θ)− d)ne e−s′ε′′nEQ

[
|Aθ|s

′
]

.

Now, as EQ[|Aθ|s
′
] < ∞, after letting in the last expression n → ∞, we get the rhs of

(B.6). This completes the proof.

Proof of Lemma 4.3. By Lemma 4.2(c) we have that P (Bθ > 1) > 0, from which follows

the existence of some b > 1 satisfying P (|Bθ − b| < ε) > 0 for ε ∈ (0, b− 1). Then

0 < P (|Bθ − b| < ε) = λ

∫ ∞

0

P (log(b− ε) < −Lθ(z) < log(b + ε)) e−λz dz ,

and, therefore, there exists some t > 0 such that P (log(b− ε) < −Lθ(t) < log(b + ε)) > 0.

From Theorem 24.3 in Sato we know that Lθ(t) has unbounded support for every t > 0,

hence by continuity in probability,

P (log(b− ε) < −Lθ(v) < log(b + ε) for v ∈ (0, t]) > 0 (B.8)
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Then we have

q = P (Aθ > 0, |Bθ − b| < ε)

= P (Y e−Lθ(E) − c

∫ E

0

e−Lθ(v)dv > 0 , |e−Lθ(E) − b| < ε)

≥ P (Y (b− ε)− c

∫ E

0

e−Lθ(v)dv > 0 , |e−Lθ(E) − b| < ε)

= P

(
Y (b− ε)− c

∫ E

0

e−Lθ(v)dv > 0 , |e−Lθ(E) − b| < ε | Y >
b + ε

b− ε
c y

)
P

(
Y >

b + ε

b− ε
c y

)
,

where y > 0 is arbitrary. As the support of Y is the whole of R+, the claims can come

arbitrarily large, hence q1 := P (Y > b+ε
b−ε

c y) > 0. Note that we do not need to fix y > 0 at

this step and therefore we can still apply (B.8) a few lines later to estimate q. We estimate

q ≥ q1P

(
y(b + ε)−

∫ E

0

e−Lθ(v)dv > 0 , |e−Lθ(E) − b| < ε

)
= q1λ

∫ ∞

0

P

(
y(b + ε)−

∫ z

0

e−Lθ(v)dv > 0 , |e−Lθ(z) − b| < ε

)
e−λz dz

≥ q1λ

∫ ∞

0

P

(
y(b + ε)−

∫ z

0

e−Lθ(v)dv > 0 , |e−Lθ(v) − b| < ε for v ∈ (0, z]

)
e−λz dz

≥ q1λ

∫ ∞

0

P
(
y − z > 0, |e−Lθ(v) − b| < ε for v ∈ (0, z]

)
e−λz dz

≥ q1λ

∫ y

0

P
(
|e−Lθ(v) − b| < ε for v ∈ (0, z]

)
e−λz dz .

Therefore, q ≥ q1λP (|e−Lθ(v)−b| < ε for v ∈ (0, y))P (E < y). The probability P (|e−Lθ(v)−
b| < ε for v ∈ (0, y)) > 0 is selected such that (B.8) is satisfied. Consequently, we may

choose numbers b > 1 and ε ∈ (0, b− 1), such that

q = P (|Bθ − b| < ε, Aθ > 0) > 0 . (B.9)

To prove our result we take some d ∈ (0, 1/m(θ)), where m(θ) is as in (B.1), and some

small number ε′ > 0, which we shall fix later. Recall the sets Dn = Dn(d, ε′) and En =

En(d, ε′) in (B.2). and set m = 1 + dαne for 0 < α < 1/m(θ) − d. Then for ω ∈ Dn we

have (cf. (B.2))

log Bθ,1 + · · ·+ log Bθ,m−1 ≤ (ε′ + αm(θ))n ≤
(
ε′ +

m− 1

n
m(θ)

)
n ≤ (ε′ + 1− dm(θ))n .

For m ∈ N set Πm =
∏m

j=1 Bθ,j and Π0 = 1. For sufficiently large n ∈ N and ω ∈ Dn ∩En
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we estimate, starting with the definition in (3.5),

Vθ,d(1/m(θ)−d)ne =

d(1/m(θ)−d)ne∑
m=1

Aθ,mΠm−1

≥ −eε′n

d(1/m(θ)−d)ne∑
m=1

exp

(
m−1∑
j=1

log Bθ,j

)
≥ −d(1/m(θ)− d)ne eε′nen(ε′+1−dm(θ))

> −e(3ε′+1−dm(θ))n . (B.10)

The last inequality holds as for all ε′ > 0 and sufficiently large n ∈ N we have

d(1/m(θ)− d)ne < eε′n.

Let d′ ∈ (0, d). For n ∈ N introduce the following subset of Ω

Fn = {ω ∈ Ω |Aθ,j > 0, |Bθ,j − b| < ε, j = d(1/m(θ)− d)ne+ 1, . . . , d(1/m(θ)− d′)ne} .

As the index sets are disjoint, Fn is independent of Dn ∩ En. From (B.9) we conclude

P (Fn) ≥ q(d−d′)n+1 . (B.11)

Further, for sufficiently large n ∈ N and ω ∈ Fn we consider the increment (recall that

b− ε > 1)

Vθ,d(1/m(θ)−d′)ne − Vθ,d(1/m(θ)−d)ne =

d(1/m(θ)−d′)ne∑
m=d(1/m(θ)−d)ne+1

Aθ,mΠm−1 > 0 (B.12)

Next we define for n ∈ N one more subset of Ω:

Gn =
{
ω ∈ Ω |Aθ,d(1/m(θ)−d′)ne+1 > 1

}
,

From xF = ∞ follows that Aθ has infinite right endpoint; hence

P (Gn) = P (Aθ > 1) = r > 0 . (B.13)

Finally for sufficiently large n ∈ N we consider for ω ∈ Dn ∩ En ∩ Fn ∩Gn

Vθ,d(1/m(θ)−d′)ne+1 =
(
Vθ,d(1/m(θ)−d′)ne+1 − Vθ,d(1/m(θ)−d′)ne

)
+
(
Vθ,d(1/m(θ)−d′)ne − Vθ,d(1/m(θ)−d)ne

)
+ Vθ,d(1/m(θ)−d)ne

> Πd(1/m(θ)−d′)ne − en(1−m(θ)d+3ε′) , (B.14)

where we have used that
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(i) Vθ,d(1/m(θ)−d′)ne+1 − Vθ,d(1/m(θ)−d′)ne ≥ Πd(1/m(θ)−d′)ne for ω ∈ Gn;

(ii) Vθ,d(1/m(θ)−d′)ne − Vθ,d(1/m(θ)−d)ne ≥ 0 for ω ∈ Fn from (B.12);

(iii) Vθ,d(1/m(θ)−d)ne > −en(1−m(θ)d+3ε′) for ω ∈ Dn ∩ En from (B.10).

For ω ∈ Dn ∩ Fn we estimate the product in (B.14) using the definitions of Dn and Fn

Πd(1/m(θ)−d′)ne = exp

d(1/m(θ)−d)ne∑
j=1

log Bθ,j

× exp

 d(1/m(θ)−d′)ne∑
d(1/m(θ)−d)ne+1

log Bθ,j


≥ exp((−ε′ + 1−m(θ)d)n)(b− ε)(d−d′)n−1 , (B.15)

where b − ε > 1. By fixing ε′ such that 5ε′ = (d − d′) log(b − ε) we obtain the following

lower bound in (B.15)

Πd(1/m(θ)−d′)ne ≥
1

b− ε
exp((4ε′ + 1−m(θ)d)n) .

Using this in (B.14) results in the following inequality

Vθ,d(1/m(θ)−d′)ne+1 ≥ exp((1−m(θ)d)n)

(
1

b− ε
exp(n4ε′)− exp(n3ε′)

)
> exp((1−m(θ)d)n) , (B.16)

where for the last inequality we have used that for sufficiently large n ∈ N holds

exp(4ε′n) > (b− ε)(exp(3ε′n)− 1) .

We derived inequality (B.14) for sufficiently large n ∈ N for ω ∈ (Dn ∩ En) ∩ Fn ∩ Gn,

where Dn ∩ En, Fn and Gn are mutually independent. Hence, together with (B.11) and

(B.13), taking logarithm and dividing by n, we obtain the following inequality

log P
(
Vθ,d(1/m(θ)−d′)ne+1 > exp ((1−m(θ)d)n)

)
n

≥ log P (Dn ∩ En)

n
+

log P (Gn)

n
+

log P (Fn)

n

=
log P (Dn ∩ En)

n
+

log r

n
+ (d− d′ +

1

n
) log q .

Now we let n →∞ and make use of (B.3) resulting into

lim inf
n→∞

log P
(
Vθ,d(1/m(θ)−d′)ne+1 > exp ((1−m(θ)d)n)

)
n

≥ −κ(θ) + (d− d′) log q .
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Finally, letting d′ → d and d → 0 and substituting n = log x, we obtain

lim inf
x→∞

log P (Vθ,dlog x/m(θ)e+1 > x)

log x
≥ −κ(θ) . (B.17)

Denote now k := k(x) = dlog x/m(θ)e + 1 and note that, due to the iid increments

property of the Lévy processes,

V ∞
θ =

∫ ∞

0

e−Lθ(v)(dS(v)− cdv)

= Vθ(Tk) +

∫ ∞

Tk

e−Lθ(v)(dS(v)− cdv)

= Vθ(Tk) + e−Lθ(Tk)

∫ ∞

Tk

e−(Lθ(v)−Lθ(Tk))(dS(v)− cdv)

d
= Vθ(Tk) + e−Lθ(Tk)Ṽ ∞

θ ,

where Ṽ ∞
θ is a copy of V ∞

θ , independent of FTk
. Furthermore, recalling from Proposi-

tion 3.7(b) that Vθ,k = Vθ(Tk) we can write

log P (V ∞
θ > x)

log x
≥ log P (Vθ,k > x)

log x
+

log P (Ṽ ∞
θ ≥ 0)

log x
.

Note that P (Ṽ ∞
θ ≥ 0) > 0 because of (3.6) and the fact that (because of full support of

Y on R+) we have P (Aθ > 0) > 0. Letting x tend to infinity and making use of (B.17)

gives (4.13).

To prove the rhs of (4.13) it suffices to show (B.9) and (B.13) for the r.v. −Aθ. Again we

take b > 1 such that P (|Bθ − b| < ε) > 0 for all ε ∈ (0, b− 1).

q = P (−Aθ > 0, |Bθ − b| < ε) = P

(
c

∫ E

0

e−Lθ(v)dv − Y e−Lθ(E) > 0 , |e−Lθ(E) − b| < ε

)
≥ P

(
c

∫ E

0

e−Lθ(v)dv − Y (b + ε) > 0 , |e−Lθ(E) − b| < ε

)
= P

(
c

∫ E

0

e−Lθ(v)dv − Y (b + ε) > 0 , |e−Lθ(E) − b| < ε |Y <
b− ε

b + ε
c y

)
P

(
Y <

b− ε

b + ε
c y

)
,

where y > 0 is arbitrary. As the support of Y is the whole of R+, the claims can come

arbitrarily close to 0, hence q1 := P (Y < b−ε
b+ε

c y) > 0. Note that we do not need to fix

y > 0 at this step and therefore we can still apply (B.8) a few lines later to estimate q.
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Therefore

q ≥ q1P

(∫ E

0

e−Lθ(v)dv − y(b− ε) > 0 , |e−Lθ(E) − b| < ε

)
= q1λ

∫ ∞

0

P

(∫ z

0

e−Lθ(v)dv − y(b− ε) > 0 , |e−Lθ(z) − b| < ε

)
e−λz dz

≥ q1λ

∫ ∞

0

P

(∫ z

0

e−Lθ(v)dv − y(b− ε) > 0 , |e−Lθ(v) − b| < ε for v ∈ (0, z]

)
e−λz dz

≥ q1λ

∫ ∞

0

P
(
z − y > 0, |e−Lθ(v) − b| < ε for v ∈ (0, z]

)
e−λz dz

≥ q1λ

∫ ∞

y

P
(
|e−Lθ(v) − b| < ε for v ∈ (0, z]

)
e−λz dz > 0 .

The proof of the rhs of (4.13) follows by repetition of all steps of the proof of the lhs of

(4.13), replacing Aθ and Vθ,k for k ∈ N by −Aθ and −Vθ,k , k ∈ N, respectively. To this

end we still have to show that

r = P (−Aθ > 1) > 0 (B.18)

Indeed, from the infinite right end point of E follows

P (c

∫ E

0

e−Lθ(v)dv − Y e−Lθ(E) > 1)

≥
∫ ∞

0

P (c

∫ E

0

e−Lθ(v)dv − ye−Lθ(E) > 0 ,
∣∣e−Lθ(v) − b

∣∣ < ε for v ∈ (0, E)) dF (y)

≥
∫ ∞

0

P (E >
y(b + ε)

c(b− ε)
) dF (y) > 0 .
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[4] Emmer, S. and Klüppelberg, C. (2004) Optimal portfolios when stock prices follow an
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