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1 Introduction

It would be a mistake to conclude that the only way to succeed in banking

is through ever-greater size and diversity. Indeed, better risk management

may be the only truly necessary element of success in banking.

Alan Greenspan, Speach to the American Bankers Association, 10/5/2004.

Risk is an inevitable part of every financial institution, above all banks and
insurance companies. Risks are implicitly accepted when such institutions
provide their financial services to customers and explicitly when they take
risk positions that offer profitable, above-average returns. There is no unique
view on risk and usually it is considered in certain sub-classes such as market
risk, credit risk and operational risk, also interest rate risk and liquidity risk.
Market risk is associated with trading activities; it is defined as the poten-
tial loss arising from adverse price changes of a bank’s positions in financial
markets and encompasses interest rate, foreign exchange, equity and credit-
spread risk. Credit risk is defined as potential losses arising from a customer’s
default or loss of credit rating. Such risks usually include loan default risk,
counterparty risk, issuer risk and country risk. Finally, operational risk is due
to losses resulting from inadequate or failed internal processes, human errors,
technological breakdowns, or from external events.

Moreover, risk can be distinguished by the negative effects and poten-
tial hazards it has on different kinds of stakeholders, e.g risks may seriously
threaten the firm’s market value (shareholders’ perspective), create losses to
their lenders (debtholders’ perspective), or jeopardizing the stability of the
financial system (regulators’ perspective). Though the individual interests of
these groups may be rather diverse, all parties are interested in an continued
existence of the institution. Hence, a bank needs a certain amount of capi-
tal relative to its risk as a buffer against future potential losses. This capital



2 Klaus Böcker, and Claudia Klüppelberg

base must be sufficient so that also very unlikely losses, measured at a high
confidence level, can be absorbed.

The growing awareness of risk inherent in banking industry is partially
owing to spectacular crunches like the Saving & Loans crisis in the 1970s or
the Japanese banking crisis in the 1990s and led to an increasing demand for
banking supervision at the international level, finally resulting in the Basel
Committee of Banking Supervision under the auspices of the Bank for Interna-
tional Settlement (BIS) in Basel. The basic idea underlying modern banking
regulation is pretty simple, namely that banks should quantify their risks
and then are required to keep a certain amount of equity capital (the so-
called “capital charge”) as a buffer against it. For instance, the minimum
capital ratio according to the “Basel Accord” should be 8 % of the so-called
“risk-weighted assets”, although some regulators set different target levels for
individual banks, which may be substantially higher than 8 %.

The first important proposal of the Committee was the “1988 Accord”, and
even though it was primarily dealing with rather crude methods for assessing
credit risk, “Basel I” was a major step towards a common framework for
calculating minimum capital standards for international banks. In 1996 the
Committee then released an amendment to the Basel I Accord where banks
were allowed to build sophisticated internal models for calculating capital
charges for their market risk exposures.

The new Basel Accord “Basel II” [BII04], which should be fully imple-
mented by year-end 2007, describes a more comprehensive risk measure and
minimum standard for capital adequacy and is structured in three Pillars.
Pillar I imposes new methodologies of calculating regulatory capital, thereby
mainly focusing on credit risk and operational risk. For the latter, banks can
then use—similar as it is already the case for market risk—their own internal
modelling techniques (commonly referred to as advanced measurement ap-
proaches (AMA)) to determine capital charges, and we consider this subject
again in section 2.

Pillar II then introduces the so-called Internal Capital Adequacy Assess-
ment Process (ICAAP) and contains guidance to supervisors on how they
should review an institution’s ICAAP. Besides the treatment of so-called
“other” risks that are not covered under Pillar I such as interest rate risk
or credit concentration risk, it deals with an institution’s overall risk expo-
sure. According to the Committee of European Banking Supervisors [CEBS],
banks should calculate an “overall capital number” as an integral part of their
ICAAP. This single-number metric should encompass all risks related to dif-
ferent businesses and risk types. Above all, regulators want to understand
the extent to which the institution has introduced diversification and corre-
lation effects when aggregating different risk types. A particularly important
example of this issue is considered in section 3 where the inter-risk correlation
between credit and market risk is investigated.

A milestone in mathematical finance was the idea of dynamic replica-
tion introduced in 1973 by Fischer Black, Myron Scholes and Robert C.
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Merton [BS73], revolutionizing the theory of pricing and hedging of finan-
cial derivatives completely. Then, since the introduction of internal market
risk models in 1996, quantitative risk management has become an interesting
and fruitful research area for mathematicians and statisticians; cf. Föllmer &
Klüppelberg [FK02].

Although our project focussed at the beginning on credit risk problems
alone with results documented in Hillebrand [H06], our industry partner was
interested in further collaboration in operational risk and aggregation of dif-
ferent risk types, more precisely in aggregation of market and credit risk.
As these are new areas with many interesting open problems, we henceforth
concentrate on these cutting-edge topics.

Our paper is organised as follows. In section 2 we suggest a novel method
for calculating operational risk at a high confidence level by using the new
concept of Lévy copulas. Our results can be used as an approximation for
operational Value-at-Risk and deliver important insights into extremal de-
pendence modelling in general. In section 3 we then investigate the interac-
tion between a credit portfolio and another risk type, which can be thought
of as market risk. Combining Merton-like factor models for credit risk with
linear factor models for market risk, we analytically calculate their inter-risk
correlation and show how inter-risk correlation bounds can be derived. For
known inter-risk correlation the total aggregated credit and market risk can
be approximated (cf. (20) below). We conclude with a discussion of possible
overlapping risk and indicate the assignment problem of a simple financial
instrument to one specific risk like operational, credit or market risk.

2 Analytical Approximation of Operational Risk

One of the determinants of Basel II is Operational Risk, defined as losses
resulting from inadequate or failed internal processes, human errors, techno-
logical breakdowns, or from external events. Risk in all categories of Basel
II is defined as Value-at-Risk (VAR) of the total loss (per year) at a certain
confidence level κ near 1. If we denote by S this total loss, then VAR(κ) is
the capital amount such that total losses remain below VAR with at least
probability κ. This is a rather simplistic risk measure; it only becomes non-
trivial because the total loss S is not a straightforward quantity. Below we
concentrate on the advanced measurement approach (AMA) and indicate the
problems involved for obtaining VAR(κ). It is important to note that the Basel
Committee specifies as quantitative standards a confidence level of κ = 0.999
and only models, which capture potentially severe tail loss events.

2.1 The Loss Distribution Approach

A required feature of AMA for measuring operational risk in the context of
Pillar II is that it allows for explicit correlations between different operational
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risks, usually classified according to an event type/business line matrix con-
sisting of eight business lines and seven loss event types. The core problem
here is the multivariate modelling and how the dependence structure between
different matrix cells affects a bank’s total operational risk. The prototypical
loss distribution approach (LDA) assumes that, for each cell i = 1, . . . , d, the
cumulated operational loss Si(t) up to time t is described by an aggregate loss
process

Si(t) =

Ni(t)∑

k=1

X i
k , t ≥ 0 , (1)

where for each i the sequence (X i
k)k∈N are independent and identically dis-

tributed (iid) positive random variables with distribution function Fi describ-
ing the magnitude of each loss event (loss severity), and (Ni(t))t≥0 counts
the number of losses in the time interval [0, t] (called frequency), independent
of (X i

k)k∈N. For regulatory capital and economic capital purposes, the time
horizon is usually fixed to t = 1 year. The bank’s total operational risk is then
given as

S+(t) := S1(t) + S2(t) + · · · + Sd(t) , t ≥ 0 . (2)

The present literature suggests to model dependence between different op-
erational risk cells by means of different concepts, which basically split into
models for frequency dependence on the one hand and for severity dependence
on the other hand.

Here we suggest a model based on the new concept of Lévy copulas (see e.g.
Cont & Tankov [CT04]), which models dependence in frequency and severity
simultaneously, yielding a model with comparably few parameters. Moreover,
our model has the same advantage as a distributional copula: the dependence
structure between different cells can be separated from the marginal processes
Si for i = 1, . . . , d. This approach allows for closed-form approximations for
operational VAR (OpVAR).

2.2 Dependent Operational Risks and Lévy Copulas

In accordance with a recent survey of the Basel Committee on Banking Su-
pervision about AMA practices at financial services firms, we assume that
the loss frequency processes Ni in (1) follows a homogeneous Poisson process
with rate λi > 0. Then the aggregate loss (1) constitutes a compound Poisson
process and is therefore a Lévy process .

A key element in the theory of Lévy processes is the notion of the so-
called Lévy measure. A Lévy measure controls the jump behaviour of a Lévy
process and, therefore, has an intuitive interpretation, in particular in the
context of operational risk. The Lévy measure of a single operational risk cell
measures the expected number of losses per unit time with a loss amount in
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a prespecified interval. For our compound Poisson model, the Lévy measure
Πi of the cell process Si is completely determined by the frequency parameter
λi > 0 and the distribution function Fi of the cell’s severity: Πi([0, x)) :=
λiP (X i ≤ x) = λiFi(x) for x ∈ [0,∞). The corresponding one-dimensional
tail integral is defined as

Πi(x) := Πi([x,∞)) = λiP (X i > x) = λiF i(x) . (3)

Our goal is modelling multivariate operational risk. Hence, the question is

how different one-dimensional compound Poisson processes Si(·) =
∑Ni(·)

k=1 X i
k

can be used to construct a d-dimensional compound Poisson process S =
(S1, S2, . . . , Sd) with in general dependent components. It is worthwhile to
recall the similar situation in the case of the more restrictive setting of static
random variables. It is well-known that the dependence structure of a random
vector can be disentangled from its marginals by introducing a distributional
copula. Similarly, a multivariate tail integral

Π(x1, . . . , xd) = Π([x1,∞) × · · · × [xd,∞)) , x ∈ [0,∞]d , (4)

can be constructed from the marginal tail integrals (3) by means of a Lévy
copula. This representation is the content of Sklar’s theorem for Lévy processes
with positive jumps, which basically says that every multivariate tail integral
Π can be decomposed into its marginal tail integrals and a Lévy copula Ĉ
according to

Π(x1, . . . , xd) = Ĉ(Π1(x1), . . . , Πd(xd)) , x ∈ [0,∞]d . (5)

For a precise formulation of this Theorem we refer to Cont & Tankov [CT04],
Theorem 5.6. Now we can define the following prototypical LDA model.

Definition 1. [Multivariate Compound Poisson model]
(1) All aggregate loss processes Si for i = 1, . . . , d are compound Poisson
processes with tail integral Πi(·) = λiFi(·).
(2) The dependence between different cells is modelled by a Lévy copula

Ĉ : [0,∞)d → [0,∞), i.e. the tail integral of the d-dimensional compound
Poisson process S = (S1, . . . , Sd) is defined by

Π(x1, . . . , xd) = Ĉ(Π1(x1), . . . , Πd(xd)).

2.3 The Bivariate Clayton Model

A bivariate model is particularly useful to illustrate how dependence modelling
via Lévy copulas works. Therefore, we now focus on two operational risk cells
as in Definition 1(1). The dependence structure is modelled by a Clayton Lévy
copula, which is similar to the well-known Clayton copula for distribution
functions and parameterized by ϑ > 0 (see Cont & Tankov [CT04], Example
5.5):
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Fig. 1. Decomposition of the domain of the tail integral Π
+
(z) for z = 6 into a

simultaneous loss part Π
+

‖ (z) (orange area) and independent parts Π⊥1(z) (solid

black line) and Π⊥2(z) (dashed black line).

Ĉϑ(u, v) = (u−ϑ + v−ϑ)−1/ϑ , u, v ≥ 0 .

This copula covers the whole range of positive dependence. For ϑ → 0 we
obtain independence and then, as we will see below, losses in different cells
never occur at the same time. For ϑ → ∞ we get the complete positive
dependence Lévy copula given by Ĉ‖(u, v) = min(u, v). We now decompose
the two cells’ aggregate loss processes into different components (where the
time parameter t is dropped for simplicity),

S1 = S⊥1 + S‖1 =

N⊥1∑

k=1

X1
⊥k +

N‖∑

l=1

X1
‖l ,

S2 = S⊥2 + S‖2 =

N⊥2∑

m=1

X2
⊥m +

N‖∑

l=1

X2
‖l ,

(6)

where S‖1 and S‖2 describe the aggregate losses of cell 1 and 2 that is gen-
erated by “common shocks”, and S⊥1 and S⊥2 describe aggregate losses of
one cell only. Note that apart from S‖1 and S‖2, all compound Poisson pro-
cesses on the right-hand side of (6) are mutually independent. The frequency
of simultaneous losses is given by

Ĉϑ(λ1, λ2) = lim
x↓0

Π‖2(x) = lim
x↓0

Π‖1(x) = (λ−ϑ
1 + λ−ϑ

2 )−1/ϑ =: λ‖ ,

which shows that the number of simultaneous loss events is controlled by
the Lévy copula. Obviously, 0 ≤ λ‖ ≤ min(λ1, λ2), where the left and right
bounds refer to ϑ → 0 and ϑ → ∞, respectively. Consequently, in the case of
independence, losses never happen at the same instant of time.

Also the severity distributions of X1
‖ and X2

‖ as well as their dependence
structure are determined by the Lévy copula. To see this, define the joint
survival function as
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Fig. 2. Two-dimensional LDA Clayton Pareto model (with Pareto tail index α =
1/2) for different parameter values.
Left column: compound processes, right column: frequencies and severities.
Upper row: δ = 0.3 (low dependence), middle row: δ = 2 (medium dependence),
lower row: δ = 10 (high dependence).

F ‖(x1, x2) := P (X1
‖ > x1, X

2
‖ > x2) =

1

λ‖
Ĉϑ(Π1(x1), Π2(x2)) (7)

with marginals

F ‖1(x1) = lim
x2↓0

F ‖(x1, x2) =
1

λ‖
Ĉϑ(Π1(x1), λ2) (8)

F ‖2(x2) = lim
x1↓0

F ‖(x1, x2) =
1

λ‖
Ĉϑ(λ1, Π2(x2)) . (9)
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Fig. 3. Visualisation of the cells’ loss frequencies controlled by the Clayton Lévy
copula for λ1 = 10 000 and λ2 = 100. Left blue axis: frequency λ‖ of the simultaneous
loss processes S‖1 and S‖2 as a function of the Lévy Clayton copula parameter ϑ
(blue, dashed line). Right orange axis: frequency λ⊥1 of the independent loss process
S⊥1 of the first cell as a function of the Lévy Clayton copula parameter ϑ (orange,
solid line).

In particular, it follows that F‖1 and F‖2 are different from F1 and F2, respec-
tively. To explicitly extract the dependence structure between the severities of
simultaneous losses X1

‖ and X2
‖ we use the concept of a distributional survival

copula. Using (7)–(9) we see that the survival copula Sϑ for the tail sever-
ity distributions F ‖1(·) and F ‖2(·) is the well-known distributional Clayton
copula; i.e.

Sϑ(u, v) = (u−ϑ + v−ϑ − 1)−1/ϑ, 0 ≤ u, v ≤ 1 .

For the tail integrals of the independent loss processes S⊥1 and S⊥2. we obtain
for x1, x2 ≥ 0

Π⊥1(x1) = Π1(x1) − Π‖1(x1) = Π1(x1) − Ĉϑ(Π1(x1), λ2) ,

Π⊥2(x2) = Π2(x2) − Π‖2(x2) = Π2(x2) − Ĉϑ(λ1, Π2(x2)) ,

so that λ⊥1 = λ1 − λ‖ , λ⊥2 = λ2 − λ‖.

2.4 Analytical Approximations for Operational VAR

In this section we turn to the quantification of total operational loss encom-
passing all operational risk cells and, therefore, we focus on the total aggregate
loss process S+ defined in (2). Our goal is to provide some general insight to
multivariate operational risk and to find out, how different dependence struc-
tures (modelled by Lévy copulas) affect OpVAR, which is the standard metric
in operational risk measurement. We need some notation to define it properly.

The tail integral associated with S+ is given by

Π
+
(z) = Π({(x1, . . . , xd) ∈ [0,∞)d :

d∑

i=1

xi ≥ z}) , z ≥ 0 . (10)
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For d = 2 we can write

Π
+

(z) = Π⊥1(z) + Π⊥2(z) + Π
+

‖ (z) , z ≥ 0 , (11)

where Π⊥1(·) and Π⊥2(·) are the independent jump parts and

Π
+

‖ (z) = Π({(x1, x2) ∈ (0,∞)2 : x1 + x2 ≥ z}) , z ≥ 0 ,

describes the dependent part due to simultaneous loss events.
Since for every compound Poisson process with intensity λ > 0 and positive

jumps with distribution function F , the tail integral is given by Π(·) = λF (·),
it follows from (11) that the total aggregate loss process S+ is again compound
Poisson with frequency parameter and severity distribution

λ+ = lim
z↓0

Π
+
(z) and F+(z) = 1 − F

+
(z) = 1 − Π

+
(z)

λ+
, z ≥ 0 . (12)

This result proves now useful to determine a bank’s total operational risk
consisting of several cells. Before doing that, recall the definition of OpVAR
for a single operational risk cell (henceforth called stand-alone OpVAR.) For
each cell, stand-alone OpVAR at confidence level κ ∈ (0, 1) and time horizon
t is the κ-quantile of the aggregate loss distribution, i.e.

VARt(κ) = G←t (κ) = inf{x ∈ R : P (S(t) ≤ x) ≥ κ} . (13)

In Böcker & Klüppelberg [BK05, BK06, BK07a, BK07b] it was shown
that OpVAR at high confidence level can be approximated by a closed-form
expression, if the loss severity is subexponential, i.e. heavy-tailed. As this is
common believe we consider in the sequel this approximation, which can be
written as

VARt(κ) ∼ F←
(

1 − 1 − κ

EN(t)

)
, κ ↑ 1 , (14)

where the symbol “∼” means that the ratio of left and right hand side con-
verges to 1. Moreover, EN(t) is the cell’s expected number of losses in the
time interval [0, t]. Important examples for subexponential distributions are
lognormal, Weibull, and Pareto. We want to emphasize already here that such
first order asymptotics work extremely well for heavy-tailed Pareto-like tails,
which are realistic in operational risk. Since the loss frequencies only enter as
their mean EN(t), any sophisticated modelling of the loss number process is
superfluous, see Böcker & Klüppelberg [BK06] for more details. Instead all
effort should be directed into a more accurate modelling of the loss severity
distribution.

Here, we extend the idea of an asymptotic OpVAR approximation to the
multivariate problem. In doing so, we exploit the fact that S+ is a compound
Poisson process with parameters as in (12). In particular, if F+ is subex-
ponential, we can apply (14) to estimate total OpVAR. Consequently, if we
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are able to specify the asymptotic behaviour of F
+
(x) as x → ∞ we have

automatically an approximation of VARt(κ) as κ ↑ 1.
To make more precise statements about OpVAR, we focus our analysis on

Pareto distributed severities with distribution function

F (x) =
(
1 +

x

θ

)−α

, x > 0 ,

with shape parameters θ > 0 and tail parameter α > 0. Pareto’s law is the
prototypical parametric example for a heavy-tailed distribution and suitable
for operational risk modelling. As a simple consequence of (14), in the case
of a compound Poisson model with Pareto severities (Pareto-Poisson model)
analytic OpVAR is given by

VARt(κ) ∼ θ

[(
λ t

1 − κ

)1/α

− 1

]
∼ θ

(
λ t

1 − κ

)1/α

, κ ↑ 1 . (15)

To demonstrate the kind of results we obtain by such approximation meth-
ods we consider a Pareto-Poisson model, where the severity distributions Fi

of the first (say) b ≤ d cells are tail equivalent with tail parameter α > 0 and
dominant to all other cells, i.e.

lim
x→∞

F i(x)

F 1(x)
=

(
θi

θ1

)α

, i = 1, . . . , b , lim
x→∞

F i(x)

F 1(x)
= 0 , i = b + 1, . . . , d .(16)

In the important cases of complete positive dependence and independence,
closed-form results can be found and may serve as extreme cases concerning
the dependence structure of the model.

Theorem 1. Consider a compound Poisson model with cell processes S1, . . . , Sd

with Pareto distributed severities satisfying (16). Let VARi
t(·) be the stand-

alone OpVAR of cell i.

(1) If all cells are completely dependent with the same frequency λ for all cells,
then S+ is compound Poisson with parameters

λ+ = λ and F
+
(z) ∼

(
b∑

i=1

θi

)α

z−α , z → ∞ ,

and total OpVAR is asymptotically given by

VAR+
‖t(κ) ∼

b∑

i=1

VARi
t(κ), κ ↑ 1 . (17)

(2) If all cells are independent, then S+ is compound Poisson with parameters

λ+ = λ1 + · · · + λd and F
+
(z) ∼ 1

λ+

b∑

i=1

(
θi

z

)α

λi , z → ∞ , (18)
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and total OpVAR is asymptotically given by

VAR+
⊥t(κ) ∼

[
b∑

i=1

(
VARi

t(κ)
)α
]1/α

, κ ↑ 1 . (19)

Theorem 1 states that for the completely dependent Pareto-Poisson model,
total asymptotic OpVAR is simply the sum of the dominating cell’s asymp-
totic stand-alone OpVARs. Recall that this is similar to the new proposals
of Basel II, where the standard procedure for calculating capital charges for
operational risk is just the simple-sum VAR. To put it another way, regulators
implicitly assume complete dependence between different cells, meaning that
losses within different business lines or risk categories always happen at the
same instants of time.

Very often, the simple-sum OpVAR (17) is considered to be the worst case
scenario and, hence, as an upper bound for total OpVAR in general, which
in the heavy-tailed case can be grossly misleading. To see this, assume the
same frequency λ in all cells also for the independent model, and denote by
VAR+

‖ (κ) and VAR+
⊥(κ) completely dependent and independent total Op-

VAR, respectively. Then, as explained in detail in [BK06] for heavy-tailed
severity data with F i(xi) ∼ (xi/θi)

−α as xi → ∞, subadditivity of OpVAR is
violated because the sum of stand-alone OpVARs is smaller than independent
total OpVAR. The following table, taken from [RK99], illustrates this.

α VAR+

‖ VAR+

⊥

1.2 178.2
1.1 187.8
1.0 200.0
0.9

200.0
216.0

0.8 237.8
0.7 269.2

Table 1. Comparison of total OpVaR for two operational risk cells (each with stand
alone VaR of 100 million) in the case of complete dependence (‖) and independence
(⊥) for different values of α.

More general dependence structures can be investigated within the frame-
work of multivariate regular variation. For homogeneous models, in particular
for the Clayton Lévy copula, precise results have been derived in Klüppelberg
and Resnick [KR07] and applied to find OpVAR approximations in Böcker
and Klüppelberg [BK06].
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3 Inter-Risk Correlation of Market and Credit Risk

3.1 The Necessity for Risk Aggregation

A core element of modern risk control is the calculation of an aggregated
group-wide risk figure, which is used to evaluate the capital adequacy of a
financial institution. Until now no standard procedure for risk aggregation
has emerged, but a widespread approach in the banking industry is “aggre-
gation across risk types”, where in a first step marginal, institution-wide loss
distributions for all relevant risk types are calculated. These marginal risk
figures describe the group-wide, pre-aggregated risk of a given risk type en-
compassing different legal entities, divisions, regions etc. Then, in a second
step, the dependence structure between these pre-aggregated risk-type figures
is modelled and finally the total risk can be calculated.

The easiest way of aggregating risks is simply to add up all pre-aggregated
risk-type figures (cf. Theorem 1(1) in the case of different operational risk fig-
ures). Problems with this procedure have been indicated after Theorem 1 and
made transparent in Table 1). Consequently, this yields only a very rough
estimate of the bank-wide total risk. Furthermore, banks usually try to re-
duce overall risk by accounting for diversification between different risk types–
measured by correlation–because this allows them to reduce expensive equity
capital. Hence, advanced approaches for risk aggregation begin with an anal-
ysis of the dependence structure between different risk types.

Important measures of dependence in the context of risk-type aggregation
are correlation (which models linear dependence); possible non-linear depen-
dence is often modeled by means of copulas. In practise, a widespread ap-
proach for aggregating different risk types is the so-called square-root-formula
approach or variance-covariance approach. Though mathematically justified
only in the case of elliptically distributed risk types (with the multivariate
normal or t distributions as prominent examples), this approach is very often
used as a first approximation because total aggregated capital can then be cal-
culated explicitly without expensive simulations. If XT = (X1, . . . , Xm) is the
vector of pre-aggregated risk figures (e.g. economic capital Xi for risk-types
i = 1, . . . , m), and R the inter-risk correlation matrix, then total aggregated
risk Xtot is for elliptically distributed X given by

Xtot =
√

XT R X . (20)

Hence, a typical problem of risk aggregation is the estimation of the inter-risk
correlation matrix R.

In the sequel we concentrate on the two-dimensional problem consisting
of credit risk together with another risk type, which henceforth is referred to
as market risk. Credit risk can be more than six times as large as the classical
market risk associated with trading activities, and it is clear that in this case
total risk (20) is mainly dominated by credit risk alone and, in particular,
it is only little affected by inter-risk correlation. However, the exposures of
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other market-like risk types like financial investment risk, real estate risk, or
business risk, which are often measured by banks in the context of economic
capital and Basel II compliance, are comparable in volume to overall credit
risk, and the question regarding correct modelling of inter-risk correlation
again becomes important.

We combine a Merton-like factor model for credit risk with a linear factor
model for market risk. Both models are driven by a set of (macroeconomic)
factors Y = (Y1, . . . , YK) where the factor weights are allowed to be zero so
that a risk type may only depend on a subset of Y . This section is based on
[BH07].

3.2 Modelling Credit and Market Risk

Normal Factor Model for Credit Risk

To describe credit portfolio loss, we choose a classical structural model as
it can be found e.g. in Bluhm, Overbeck & Wagner [BOW02]. Within these
models, a borrower’s credit quality is driven by a so-called “ability-to-pay”
process. Consider a portfolio of n loans. Then, default of an individual obligor
i ∈ {1, . . . , n} is described by a Bernoulli random variable Li with P(Li = 1) =
pi = 1−P(Li = 0) where pi is the obligor’s probability of default within time
period [0, T ] for fixed T > 0. Following Merton’s idea, counterparty i defaults if
its asset value log-return Ai falls below some threshold Di, sometimes referred
to as default point, i.e.

Li = 11{Ai<Di} , i = 1, . . . , n . (21)

If we denote the exposure at default (perhaps enriched by discounting factors
and/or net of recovery rates) of an individual obligor by ei, portfolio loss is
given by

L(n) =

n∑

i=1

ei Li . (22)

In a factor-model approach, the asset values Ai are linked to a set of macroe-
conomic factors Y1, . . . , YK , which are assumed to be normally distributed and
the vector (Y1, . . . , YK) has been transformed to standard normal.

Definition 2. [Normal factor model for credit risk] Let Y = (Y1, . . . , YK)
be a random vector of (macroeconomic) factors with multivariate standard
normal distribution. We assume that each of the asset value log-returns Ai

for i = 1, . . . , n linearly depends on Y as well as on a standard normally
distributed idiosyncratic factor εi (which models the performance of firm i)
independent of Y , i.e.

Ai =

K∑

k=1

βikYk +

√√√√1 −
K∑

k=1

β2
ik εi , i = 1, . . . , n , (23)
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with factor loadings βik satisfying R2
i :=

∑K
k=1 β2

ik ∈ [0, 1], which is that part
of the variance of Ai which can be explained by the systematic factor vector
Y . Then L(n) as given in (22) is called normal factor model for credit risk.

Equation (23) implies that log-returns A1, . . . , An are standard normally
distributed, but dependent with correlations

ρij := corr(Ai, Aj) =

K∑

k=1

βikβjk , i, j = 1, . . . , n . (24)

Owing to the normal factor structure of the model, the default point Di of
every obligor is related to its default probability pi by

Di = Φ−1(pi) , i = 1, . . . , n , (25)

where Φ is the standard normal distribution function. Moreover, the joint
default probability of two obligors is given by

pij := P(Ai ≤ Di, Aj ≤ Dj) =

{
Φρij

(Di, Dj) , i 6= j ,

pi , i = j ,
(26)

where Φρij
denotes the bivariate normal distribution function with standard-

ized marginals and correlation ρij given by (24). Finally, the default correla-
tion between two different obligors is given by

corr(Li, Lj) =
pij − pi pj√

pi(1 − pi) pj(1 − pj)
, i, j = 1, . . . , n . (27)

Factor Models for Market Risk

We assume that market risk is already pre-aggregated and can be approxi-
mated by a one-dimensional random variable Z, representing the aggregated
profit and loss (P/L) distribution due to changes in some market variables,
such as interest rates or equity prices.

As in the credit risk model of Definition 2, we explain fluctuations of
the P/L random variable Z by means of (macroeconomic) factors Y =
(Y1, . . . , YK). We use the same macroeconomic factors for credit and market
risk, where independence of risk from such a factor is indicated by a loading
factor 0.

As we want to add market and credit risk quantities, we use the convention
that losses correspond to positive values of Z. One can think of Y as a vector
describing the healthiness of the economy in the sense that positive (negative)
values of the Yk correspond to a good (bad) economy, implying a decreasing
(increasing) market risk.
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Definition 3. [Normal factor model for market risk] Let Y = (Y1, . . . , YK)
be a random vector of (macroeconomic) factors with multivariate standard
normal distribution. Then, the normal factor model for the pre-aggregated
market risk P/L is given by

Z = −σ




K∑

k=1

γkYk +

√√√√1 −
K∑

k=1

γ2
k η


 (28)

with factor loadings satisfying
∑K

k=1 γ2
k ∈ [0, 1], which is that part of the vari-

ance of Z which can be explained by the systematic factor Y . Furthermore,
η is a standard normally distributed idiosyncratic factor, independent of Y .
Finally, σ is the standard deviation of Z.

Definition 4. [Normal factor model for credit and market risk] Let Y =
(Y1, . . . , YK) be a random vector of (macroeconomic) factors with multivariate
standard normal distribution. Let the credit portfolio loss L(n) be given by (22)
and the asset value log-returns Ai for i = 1, . . . , n are modeled by the normal
factor model (23). Let Z be the pre-aggregated market risk P/L modeled by
the normal factor model (28). When the credit model’s idiosyncratic factors
εi for i = 1, . . . , n are independent of η, then we call (L(n), Z) the normal
factor model for credit and market risk.

In order to account for possible heavy tails for Z we introduce the following
global shock approach.

Definition 5. [Shock model for market risk] Let Y = (Y1, . . . , YK) be a ran-
dom vector of (macroeconomic) factors with multivariate standard normal dis-
tribution and let η be the standard normally distributed idiosyncratic factor,
independent of Y . Further, let W be a positive random variable, independent
of Y and η. Then the shock model for the pre-aggregated market risk P/L is
given by the normal mixture model

Z̃ = −σW




K∑

k=1

γkYk +

√√√√1 −
K∑

k=1

γ2
k η



 , (29)

where σ is a scaling factor. If W =
√

ν/Sν and Sν is a χ2
ν distributed random

variable with ν degrees of freedom, then we call Z̃ a tν-model for the pre-
aggregated market risk P/L.

The mixing variable W can be interpreted as a “global shock” driving the
variance of all factors. Such an overarching shock may occur from political
distress, severe economic recession or some natural disaster.
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3.3 Inter-Risk Correlation

We now investigate the correlation between credit risk L(n) and market risk
Z, which is defined as

corr(L(n), Z) =
cov(L(n), Z)√

var(L(n))
√

var(Z)
. (30)

Within our modelling framework, we are able to analytically investigate inter-
risk correlation yielding closed-form results.

First we assume that both market and credit risk have a normally dis-
tributed factor structure.

Theorem 2 (Inter-risk correlation for the normal factor model). Sup-
pose that credit portfolio loss L(n) and market risk Z are described by the
normal factor model of Definition 4. Then correlation between L(n) and Z is
given by

corr(L(n), Z) =

∑n
i=1 ri ei exp

(
− 1

2D2
i

)
√

2π var(L(n))
, (31)

where Di is the default point (25)

ri := corr(Ai, Z) =

K∑

k=1

βikγk , i = 1, . . . , n, (32)

and

var(L(n)) =

n∑

i,j=1

ei ej (pij − pi pj), (33)

where pij the joint default probability (26).

Proof. Using E(Z) = 0 and that η in (28) is independent of Y (and thus of
Li), the covariance between L(n) and Z is

cov(L(n), Z) = E(ZL(n)) = −σ

n∑

i=1

ei

K∑

k=1

γk E(YkLi) . (34)

Recall the definition of Li in (21) with Ai as in (23), and define for k ∈
{1, . . . , K}

A
(−k)
i =

K∑

l=1

l 6=k

βil Yl +

√√√√1 −
K∑

j=1

β2
ij εi .

Conditioning on Yk yields for the expectation
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E(Yk Li) = E
(
Yk E(11{Ai<Di} | Yk)

)

= E
(
Yk P(A

(−k)
i ≤ Di − βikYk)

)

= E

(
Yk Φ

(Di − βik Yk√
1 − β2

ik

))
,

where we have used that A
(−k)
i is normally distributed with variance 1− β2

ik.
By partial integration and the fact that for the density ϕ of the standard
normal distribution y ϕ(y) has antiderivative ϕ(y), we obtain

E(Yk Li) =

∫ ∞

−∞
y Φ
(Di − βik y√

1 − β2
ik

)
ϕ(y) dy

= − βik√
1 − β2

ik

∫ ∞

−∞
ϕ

(
Di − βik y√

1 − β2
ik

)
ϕ(y) dy .

The right-hand side is −βik times the density of a random variable U =√
1 − β2

ikX + βikY for standard normal iid X, Y at point Di. Since U is then
again standard normal, we obtain

E(Yk Li) = −βikϕ(Di) = − βik√
2π

e−
D2

i
2 . (35)

Plugging this into (34) with ri as in (32) this yields

cov(L(n), Z) =
σ√
2π

n∑

i=1

ei ri e−
D2

i
2 .

Furthermore, from (22) we calculate

var(L(n)) =
n∑

i,j=1

ei ej

(
E(LiLj) − E(Li)E(Lj)

)

=
n∑

i,j=1

ei ej (pij − pi pj) ,

where pij is the joint default probability (26). �

Note that ri may become negative if (some) factor weights βik and γk have
different signs. Therefore, in principal, also negative inter-risk correlations can
occur between the credit and market portfolio. Typical values for the inter-risk
correlation lie in a range between 10 % and 60 % and vary significantly within
the banking sector. A similar result can be obtained for the shock model o
Definition 5.
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Theorem 3 (Inter-risk correlation for the tν factor model). Suppose
that credit portfolio loss L(n) is described by the normal factor model of Def-
inition 2. Denote by Z and Z̃ the market risk described by the normal factor
and by the shock model of Definition 3 and Definition 5, respectively. If W
has finite second moment, then

corr(L(n), Z̃) =
E(W )√
E(W 2)

corr(L(n), Z) . (36)

For the tν model with ν > 2 we get

corr(L(n), Z̃) = f(ν) corr(L(n), Z) (37)

with

f(ν) :=

√
ν − 2

2

Γ
(

ν−1
2

)

Γ
(

ν
2

) . (38)

Proof. Since E(Z) = 0, we obtain with

cov(L(n), Z̃) = E(W ) cov(L(n), Z) and var(Z̃) = E(W 2) var(Z)

that

corr(L(n), Z̃) =
E(W )√
E(W 2)

corr(L(n), Z) .

For the tν model with ν > 0 we have W =
√

ν/S, where S is χ2
ν distributed

with density

fν(s) =
2−ν/2

Γ
(

ν
2

) e−s/2 sν/2−1 , s ≥ 0 .

It follows for ν > 1 that

E

(
1√
S

)
=

2−ν/2

Γ
(

ν
2

)
∫ ∞

0

e−s/2 sν/2−3/2 ds =
Γ
(

ν−1
2

)
√

2Γ
(

ν
2

) .

Analogously, for ν > 2 we calculate E
(

1
S

)
=
(

1
ν−2

)
. Plugging this into (36)

gives formula (37). �

Remark 1. Since E(W ) > 0, by the Cauchy-Schwarz inequality,

0 <
E(W )√
E(W 2)

≤ 1 .

As a consequence thereof, given a positive inter-risk correlation corr(L(n), Z) ∈
(0, 1] for normally distributed market risk, introducing a shock into the model
results in a smaller inter-risk correlation (36). For the tν model this situation
is depicted in Figure 4. �
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The fact that corr(L(n), Z) linearly depends on the correlations ri and
thus on the factor loadings γk implies the following Proposition, which can be
used to estimate upper bounds for the inter-risk correlation, when no specific
information about market risk is available.

Proposition 1 (Inter-risk correlation bounds). Suppose that credit port-
folio loss L(n) and market risk Z are described by the normal factor model
of Definition 4. Assume that the market model factor loadings γk for k =
1, . . . , K are unknown. Then correlation between L(n) and Z is bounded by

|corr(L(n), Z)| ≤
∑n

i=1 ei

√∑K
k=1 β2

ik exp
(
− 1

2D2
i

)
√

2π var(L(n))
≤ 1 , (39)

where var(L(n)) is given in (33).

Proof. Since the obligor’s exposures ei are assumed to be positive, it follows
from (31) that

|corr(L(n), Z)| ≤
∑

i ei |ri| exp
(
− 1

2D2
i

)
√

2π
∑

ij ei ej (pij − pi pj)
.

From
∑K

k=1 γ2
k ≤ 1 it follows by the Cauchy-Schwartz inequality that

|ri| =

∣∣∣∣∣

K∑

k=1

βikγk

∣∣∣∣∣ ≤
(

K∑

k=1

β2
ik

)1/2 ( K∑

k=1

γ2
k

)1/2

≤
(

K∑

k=1

β2
ik

)1/2

.

The right-hand side is bounded by one, since
∑K

k=1 γ2
k = 1 corresponds to the

correlation of the degenerate case of model (28). �

Therefore, solely based on the parametrization of the normal credit factor
model and the assumption of a normally distributed, pre-aggregated market
risk, bounds for the inter-risk correlation can be derived. Moreover, from the
explicit form of (37) in Theorem 3 it is clear that a similar result holds also
for the tν distributed market risk.

One-Factor Approximations

Instructive examples regarding the inter-risk correlation and its bounds can
be obtained for one-factor models and they are useful to explain general char-
acteristics of inter-risk correlation. As shown in Böcker & Hillebrand [BH07],
section 4.1, such a common one-factor framework for both credit and market
risk can be defined consistently, and in the sequel we want to summarize some
of their results.

Within the one-factor framework, the credit portfolio is assumed to be
homogenous; i.e. for i = 1, . . . , n exposure ei = e, default probability pi = p,
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Fig. 4. LHP approximations of the inter-risk correlation bound as a function of the
average portfolio rating according to (41). The solid line corresponds to the normal
factor model (formally ν → ∞) and the dashed line to the shock model with ν = 5.
The uniform asset correlation is assumed to be ρ = 10 %.

and factor loadings βik = βk for k = 1, . . . , K, i.e. these quantities are the
same for all credits of the portfolio. and both market and credit risk are
systematically explained only by one single factor Ỹ := 1√

ρ

∑K
k=1 βkYk, which

is a compound of all Yk for k = 1, . . . , K, where ρ :=
∑K

k=1 β2
k is the uniform

asset correlation of the credit portfolio; i.e. for any two asset value log-returns
Ai, Aj the correlation is equal to ρ. The situation simplifies further in the case
of a sufficiently large portfolio, where we consider n → ∞, resulting in the
so-called large homogenous portfolio (LHP) approximation (see also Bluhm,
Overbeck & Wagner [BOW02], section 2.5.1.)

L(n)

n e

a.s.→ Φ

(
D −√

ρ Ỹ√
1 − ρ

)
= : L , n → ∞ ,

where D = Φ−1(p) and ne is the total exposure of the credit portfolio. The
LHP approximation plays an important role in the context of credit portfolio
modelling; e.g. it is the underlying assumption in the calculation formula for
regulatory capital charges in the internal-ratings-based (IRB) approach of
Basel II.

Adopting the LHP approximation for the tν market model with the normal
model as formal limit model with limν→∞ f(ν) = 1, inter-risk correlation
simplifies considerably. From (26) we get the joint default probability p12 =
Φρ(D, D) for two arbitray firms in the portfolio, and from (32) we see that

r =
∑K

k=1 βkγk. Then

corr(L, Z̃) = f(ν)
r e−D2/2

√
2π(p12 − p2)

, (40)

which is corr(L, Z) for the normal model with f(ν) = 1. The bound (39)
simplifies to
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|corr(L, Z̃)| ≤ f(ν)

√
ρ e−D2/2

√
2π(p12 − p2)

. (41)

According to equations (40) and (41), inter-risk correlation and its bound
are functions of the homogeneous asset correlation ρ and the average default
probability p and thus on the average rating structure of the credit portfo-
lio. This is depicted in Figure 4 where LHP approximations of the inter-risk
correlation bound are plotted as a function of the average portfolio rating.

A crucial point in the above approximation is the homogeneity of the credit
portfolio. Even if actual credit portfolios are rarely exactly homogenous, the
derived LHP approximations is a useful approximation in practice for the up-
per inter-risk correlation bound. Let us consider the normal factor model and
so equation (41). For a loss distribution of a general credit portfolio (obtained
for instance by Monte Carlo simulation) with expected loss µ, standard devi-
ation ς, and total exposure etot, estimators p̂ and ρ̂ for p and ρ, respectively,
can be found by moment matching; i.e. by comparing the expected loss and
the variance of the simulated portfolio with those of an LHP:

µ̂ = etot p̂ (42)

ς̂2 = e2
tot (p̂12 − p̂2) = e2

tot

[
Φρ̂(Φ

−1(p̂), Φ−1(p̂)) − p̂2
]
. (43)

From (41) we then obtain the following moment estimator for the upper inter-
risk correlation bound

B̂LHP(p̂, ρ̂) = f(ν̂)
etot

ς̂

√
ρ̂ exp

[
− 1

2

(
Φ−1(p̂)

)2]
√

2π
. (44)

Conclusion

In this paper we suggested separate models for operational risk, credit risk
and market risk, aiming at an integrated model quantifying the overall risk of
a financial institution. In doing so, we adopted the common idea that “risk”
of a financial position or even an entire bank can be separated into different
risk types.

In general, however, such a silo approach often causes problems when
risk-type definitions are overlapping, or the classification into risk types is
unrealistic or even not possible. We want to present a simple but convincing
example.

Consider a fixed-rate corporate bond, where the investor receives fixed,
regular interest payments (with a rate set at the time the bond is issued) until
the bond matures, called the coupon rate. On one hand, such an investment
bears market risk, in particular interest rate risk: If market interest rates rise,
then the market price of the bond will fall, because new bonds are expected
to be issued with higher coupon rates, making old bonds less attractive. On
the other hand, the bond also has credit risk, since the coupon rate of a bond
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also depends on the financial health of the issuer; i.e. on the credit rating of
the company. The higher the company’s default probability is, the less likely
is that it will be able to pay the interest on the bond and to pay-off the bond
at maturity. In this example (and of course also for more complex financial
instruments) it does not make sense to distinguish market from credit risk,
the only threat for the trader is a decrease in the market value of the bond.

Furthermore, professional trading of financial instruments requires a com-
plex IT-infrastructure, and so also bears a significant fraction of operational
risk. However, even in our simple example of the coupon bond, the question
regarding its operational VAR remains unsolved. Similar problems arise in the
context of other Pillar II risk types such as business and strategic risk, which
are currently only poorly considered within a firm’s enterprise risk manage-
ment process. For a novel approach to this particular risk see Böcker [B07].

In accordance with Alan Greenspan we belief that a reliable and function-
ing risk management system is the basis for success in banking. Therefore,
future research has to tackle the problem of how total risk (beyond that of
market, credit and operational risk) can be measured and managed properly.
To achieve such a “grand unified theory” of risk, a more holistic view on risk
instead of the widespread silo approach is called for.
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