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Abstract

Barndorff-Nielsen and Shephard [3] investigate supOU processes as volatil-

ity models. Empirical volatility has tails heavier than normal, long memory

in the sense that the empirical autocorrelation function decreases slower than

exponential, and exhibits volatility clusters on high levels. We investigate

supOU processes with respect to these stylized facts. The class of supOU pro-

cesses is vast and can be distinguished by its underlying driving Lévy process.

Within the classes of convolution equivalent distributions we shall show that

extremal clusters and long range dependence only occur for supOU processes,

whose underlying driving Lévy process has regularly varying increments. The

results on the extremal behavior of supOU processes correspond to the results

of classical Lévy-driven OU processes.
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1 Introduction

We investigate the extremal behavior of stationary supOU processes (superposition

of Ornstein-Uhlenbeck processes) of the form

Vt =

∫

R+×R

e−r(t−s) 1[0,∞)(t− s) dΛ(r, λs) for t ≥ 0, (1.1)

where λ > 0 and Λ is an infinitely divisible independently scattered random measure

(i. d. i. s. r. m.). Such models coincide under weak regularity conditions with models

introduced under the same acronym by Barndorff-Nielsen [1] aiming at volatility

modelling. They allow for non-trivial extensions of OU (Ornstein-Uhlenbeck) type

processes of the form

Vt =

∫ t

−∞

e−λ(t−s)dLλs for t ≥ 0, (1.2)

where λ > 0 and L is a Lévy process. The time-change by λ yields marginal dis-

tributions independent of λ. To guarantee that the volatility process V is positive,

the Lévy process L is chosen as subordinator. The resulting price process has mar-

tingale term dSt =
√
Vt dBt, where Bt is a Brownian motion, independent of the

volatility driving Lévy process. This model has been analyzed by Barndorff-Nielsen

and Shephard [3].

An alternative continuous-time model has been suggested by Klüppelberg, Lind-

ner and Maller [14]. In the COGARCH(1, 1) model, which is a continuous-time

version of the GARCH(1, 1) process, the price process has martingale term dSt =√
Vt dLt, where L is some arbitrary Lévy process and the volatility is given as solu-

tion of the SDE

dVt+ = (b− aVt) dt+ cVt d[L,L]
(d)
t (1.3)

for parameters a, b > 0 and c ≥ 0, where ([L,L]
(d)
t )t≥0 is the discrete part of the

quadratic variation process of L.

Interestingly, although the two types of models seem at first sight to be quite dif-

ferent, they share many properties; see Klüppelberg, Lindner and Maller [15]. The

models differ, however, in their extreme behavior. Whereas the large fluctuations

in terms of the tail behavior of the volatility in the Barndorff-Nielsen and Shephard

model (1.2) is inherited from the tail behavior of the increments of the Lévy pro-

cess, the COGARCH model (1.3) exhibits under weak regularity conditions always

Pareto-like tails. It has also been shown in Fasen, Klüppelberg and Lindner [12]

that both models can only model volatility clusters, if they have Pareto-like tails;
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i. e. the COGARCH model always does (under weak regularity conditions), and the

OU-type model does, if the Lévy process has Pareto-like increments.

Besides volatility clustering, another issue in volatility modelling is the fact that

many financial time series exhibit zero autocorrelation in the data, but a long range

dependence effect in the volatility. Despite the ongoing debate for the origins of this

effect, the modelling issue cannot just be ignored. Unfortunately, the autocovariance

functions of both volatility models, the OU-type model and the COGARCH(1, 1)

decrease exponentially fast.

Barndorff-Nielsen [1] suggests as a remedy the generalization of V to a supOU

process. In this paper we want to investigate the extremal behavior of model (1.1)

with respect to volatility clustering. As empirical findings indicate and economic

reasoning supports, financial data can be modelled by a normal mixture model with

tails ranging from exponential to Pareto. Consequently, it is indeed interesting to

identify models with such tail behavior, long range dependence effect and volatility

clusters in the extremes.

Our paper is organized as follows. We start in Section 2 with an introduction into

supOU processes as given in (1.1) including necessary and sufficient conditions for

the existence of a stationary version of (1.1). Moreover, we compare our definition

with Barndorff-Nielsen’s [1] slightly different definition and show that they coincide.

In the context of extreme value theory we prefer working with representation (1.1) as

it allows us to apply results for mixed MA processes as derived in Fasen [10,11]. As

we shall show in Section 2.2 supOU processes can model a wide range of correlation

functions from exponential to polynomial decrease. Poisson shot noise processes

as introduced in Section 2.3 present the basic structure for studying the extremal

behavior. In Section 2.4 we present the class of convolution equivalent distributions,

which will serve as models for the Lévy increments of supOU processes.

The extremal behavior of a supOU process, whose underlying driving Lévy pro-

cess is in the class of convolution equivalent distributions, is classified by the tail

behavior of the random variable L1 = Λ(R+ × [0, 1]), so that we have to distinguish

between different regimes for L1. In Section 3 we investigate the link between the

tail behavior of the Lévy increments in the class of convolution equivalent distribu-

tions, represented by L1, the stationary distribution V0 of the supOU process, and

sup0≤t≤1 Vt. In Section 4 we study the extremal behavior of V via marked point

processes, which characterize the distributions of the locations of extremes on high

levels. Moreover, we derive the distribution of cluster sizes of high level extremes

and the normalizing constants of running maxima. Our findings are summarized in

Section 5.

As not to disturb the flow of arguments we postpone classical definitions and

concepts to an Appendix.
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Throughout the paper we shall use the following notation. We abbreviate distri-

bution function by d. f. and random variable by r. v. For any d. f. F we denote its

tail F = 1 − F and F ∗ G for the convolution of F with the d. f. G. For two r. v. s

X and Y with d. f. s F and G we write X
d
= Y if F = G, and by

n→∞
=⇒ we denote

weak convergence for n → ∞. For two functions f and g we write f(x) ∼ g(x) as

x → ∞, if limx→∞ f(x)/g(x) = 1. We also denote R+ = (0,∞). For x ∈ R, we

define x+ = max{x, 0}.

2 The model

Let T be a σ-ring on R+ × R (i. e. countable unions of sets in T belong to T and

if A,B ∈ T with A ⊂ B then B\A ∈ T ) and let Λ = {Λ(A) : A ∈ T } be an

i. d. i. s. r. m., which means by definition that all finite dimensional distributions are

infinitely divisible and for all disjoint sets (An)n∈N in T we have that (Λ(An))n∈N is

an independent sequence and Λ (
⋃∞

n=1An) =
∑∞

n=1 Λ(An) almost surely (a. s.). We

work with i. d. i. s. r. m. s, whose characteristic function can be written in the form

E exp(iuΛ(A)) = exp(ψ(u)Π(A)) for u ∈ R, (2.1)

where Π is a measure on R+ × R, which is the product of a probability measure π

on R+ and the Lebesgue measure on R, and

ψ(u) = ium− 1

2
u2σ2 +

∫

R

(
eiux − 1 − iuκ(x)

)
ν(dx) for u ∈ R

with κ(x) = 1[−1,1](x). The function ψ is the cumulant generating function of an

infinitely divisible r. v. with generating triplet (m,σ2, ν), where m ∈ R, σ2 ≥ 0,

and ν is a measure on R, called Lévy measure, satisfying ν({0}) = 0 and
∫

R
(1 ∧

|x|2) ν(dx) < ∞. The generating quadruple (m,σ2, ν, π) determines completely the

distribution of Λ.

The underlying driving Lévy process

Lt = Λ(R+ × [0, t]) for t ≥ 0 (2.2)

has generating triplet (m,σ2, ν).

2.1 Existence and stationarity of the model

The following result guarantees existence, infinite divisibility and stationarity of

the model and ensures the equivalence of (1.1) and the supOU model as defined

in Barndorff-Nielsen [1]. For the comparison we recall first that integrals of the
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form
∫

R+×R
e−r(t−s) 1[0,∞)(t− s) dΛ(r, λs) are defined for each fixed t ≥ 0 as limit in

probability of simple functions (cf. Rajput and Rosinski [16], Theorem 2.7). Hence,

Vt is defined a. s. for each fixed t.

Proposition 2.1 Let (m,σ2, ν) be the generating triplet of an infinitely divisible

distribution with ∫

|x|>1

log(1 + |x|) ν(dx) <∞ . (2.3)

Define T : R+ × R → R+ × R by T (r, s) = (r, r−1s). Then the following hold:

(a) Let π̃ be a probability measure on R+ with λ :=
∫

R+
r π̃(dr) < ∞ and Λ̃ be

an i. d. i. s. r. m. with generating quadruple (m̃, σ̃2, ν̃, π̃). Then Λ = Λ̃ ◦ T−1

is an i. d. i. s. r. m. with generating quadruple (λm̃, λσ̃2, λν̃, π), where π(dr) =

λ−1rπ̃(dr).

(b) Let π be a probability measure on R+ with λ−1 :=
∫

R+
r−1 π(dr) < ∞ and Λ

be an i. d. i. s. r. m. with generating quadruple (m,σ2, ν, π). Then Λ̃ = Λ ◦ T
is an i. d. i. s. r. m. with generating quadruple (λ−1m,λ−1σ2, λ−1ν, π̃), where

π̃(dr) = λr−1π(dr).

(c) For Λ and Λ̃ as in (a) and (b) define for t ≥ 0,

Vt =

∫

R+×R

e−r(t−s) 1[0,∞)(t− s) dΛ(r, λs),

Xt =

∫ ∞

−∞

e−rt

∫ rt

−∞

es dΛ̃(r, λs) .

Then, Vt = Xt a. s. for t ≥ 0 and, hence, V is a version of X and vice

versa. Furthermore, V (and hence X) has a stationary version. For d ∈ N

let −∞ = t0 < t1 < . . . < td < ∞ and u1, . . . , ud ∈ R. The finite dimen-

sional distributions of the stationary process V have the cumulant generating

function

log E exp(i(u1Vt1 + . . .+ udVtd))

=
d∑

m=1

∫ ∞

0

∫ tm

tm−1

λψ
( d∑

j=m

uje
−r(tj−s)

)
ds π(dr). (2.4)

The results (a) and (b) follow by simple calculations of the characteristic func-

tions of the finite dimensional distributions of Λ and Λ̃. Statement (c) is the con-

sequence of the change of variables in (a) and (b), respectively, and Barndorff-

Nielsen [1], Theorem 3.1 (cf. Rajput and Rosinski [16], Proposition 2.6). Condi-

tion (2.3) and
∫

R+
r−1 π(dr) < ∞ are necessary and sufficient for the existence of a

stationary version of V (and hence X).

5



Vicky Fasen and Claudia Klüppelberg

Throughout this paper we shall assume that V is a measurable, separable and

stationary version of the supOU process as given in (1.1) and that P(sup0≤t≤1 |Vt| <
∞) = 1.

Remark 2.2 (i) By (2.4) the cumulant generating function of the stationary dis-

tribution is given by

log E exp(iuV0) =

∫ ∞

0

∫ 0

−∞

λψ (uers) ds π(dr) =

∫ 0

−∞

ψ (ues) ds for u ∈ R. (2.5)

This is the cumulant generating function of a stationary OU-type process (1.2)

driven by the underlying driving Lévy process L as given in (2.2). Then, V0 has

absolutely continuous Lévy measure νV with

νV (dx) = x−1ν [x,∞) dx for x > 0, (2.6)

and is selfdecomposable (Proposition A.5). Note that the stationary distribution of

V0 is independent of π.

(ii) Positivity of V , which is needed for volatility processes, can be guaranteed by

choosing L as a subordinator; i. e. ν has only support on R+ with
∫

(0,∞)
(1∧x) ν(dx) <

∞, σ2 = 0 and m =
∫∞

0
κ(x) ν(dx).

The following examples serve as motivation.

Example 2.3 (a) If π has only support in some λ > 0, i. e. π({λ}) = 1, then (2.4)

reduces to the cumulant generating function of the d-dimensional distribution of an

OU-type process. Thus, (1.1) defines the usual OU-type process (1.2).

(b) Let π be a discrete probability measure with π({λk}) = pk for k ∈ N and λk > 0.

Then the assumption λ−1 :=
∫

R+
r−1 π(dr) < ∞ is equivalent to

∑∞
k=1 pkλ

−1
k < ∞.

By (2.4) the cumulant generating function of the d-dimensional distribution is given

by

log E exp(i(u1Vt1 + . . .+ udVtd)) =
∞∑

k=1

d∑

m=1

∫ tm

tm−1

λpkψ

(
d∑

j=m

uje
−λk(tj−s)

)
ds.

Consequently, V has the same distribution as the superposition of independent OU

processes,

∞∑

k=1

∫ t

−∞

e−λk(t−s) dL
(k)
λs for t ≥ 0 ,

where (L(k))k∈N are independent Lévy processes with characteristic triplets

(pkm, pkσ
2, pkν).
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2.2 Dependence structure

Provided the underlying driving Lévy process has finite second moment the autocor-

relation function ρ of the stationary supOU process (1.1) can be calculated taking

derivatives with respect to u1 and u2 in (2.4) and taking the limit for u1, u2 → 0.

We obtain

ρ(h) = λ

∫ ∞

0

r−1e−hr π(dr) for h ≥ 0. (2.7)

For a discrete probability measure π as given in Example 2.3 we obtain

ρ(h) = λ
∞∑

k=1

pkλ
−1
k e−hλk for h ≥ 0. (2.8)

Remark 2.4 On the one hand the correlation function (2.7) of a supOU process de-

pends only on the probability measure π and is independent of the generating triplet

(m,σ2, ν) of the underlying driving Lévy process. On the other hand the stationary

distribution V0 depends only on (m,σ2, ν) and is independent of π, represented by

the cumulant generating function given in (2.5). Thus, supOU processes can model

the stationary distribution and the correlation function independently. This opens

the way to a simple statistical fitting of such models. More about supOU models and

applications to financial data can be found in Barndorff-Nielsen and Shephard [2,3].

There are various notions of long range dependence, all having in common that

the correlation function should decrease slower than exponential. We shall work

with the following definition.

Definition 2.5 A stationary process with correlation function ρ exhibits long range

dependence, if there exists a H ∈ (0, 1/2) and a a slowly varying function l (see

Definition A.2), such that

ρ(h) ∼ l(h)h−2H for h→ ∞.

We observe that long range dependence implies that
∫∞

0
ρ(h) dh = ∞.

The following result explains how long range dependence can be introduced into

supOU models. Essentially, the measure π needs sufficient mass near 0. We write

π(r) for π((0, r]).

Proposition 2.6 Let V be a stationary supOU process as in (1.1) and L be as in

(2.2) with EL2
1 = 1. We denote by ρ the correlation function of V . Suppose l is

slowly varying and H > 0. Then

π̃(r) ∼ (2H)−1l(r−1)r2H for r → 0, (2.9)
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if and only if

ρ(h) ∼ Γ(2H)l(h)h−2H for h→ ∞. (2.10)

If

π(r) ∼ λ−1(2H + 1)−1l(r−1)r2H+1 for r → 0, (2.11)

then (2.9) and, hence, (2.10) follow. The converse, i. e. (2.10) implies (2.11) holds,

provided that π is absolutely continuous with density π′, and r−1π′(r) is monotone

on (0, r0) for some r0 > 0.

Proof. The equivalence of (2.9) and (2.10) is a consequence of Karamata’s Taube-

rian theorem (Theorem 1.7.1’ in Bingham, Goldie and Teugels [4]) and ρ(h) =∫∞

0
e−hr π̃(dr); cf. (2.7). Furthermore, if (2.11) holds, then by Proposition 2.1 (b)

and π̃(dr) = λr−1π(dr), Karamata’s theorem (Theorem 1.5.11 in [4]) yields

π̃(r) = λ

∫ r

0

s−1 π(ds) = λr−1π(r) + λ

∫ ∞

r−1

π(s−1) ds ∼ λ(2H + 1)(2H)−1r−1π(r)

for r → 0. Hence, statements (2.9) and (2.10) follow.

If r−1π′(r) is monotone on (0, r0) for some r0 > 0, and invoking the monotone density

theorem (Theorem 1.7.2b in [4]), we get from (2.9)

r−1π′(r) ∼ λ−1l(r−1)r2H−1 for r → 0.

Hence, Theorem 1.6.1 in [4] yields π(r) ∼ λ−1(2H + 1)−1l(r−1)r2H+1 for r → 0. �

Example 2.7 A typical example of π to generate long range dependence in a supOU

process is a gamma distribution with density π(dr) = Γ(2H+1)−1r2He−r dr for r > 0

and H > 0. Then λ = 2H and

ρ(h) = Γ(2H)−1

∫ ∞

0

r2H−1e−r(h+1) dr = (h+ 1)−2H for h ≥ 0.

Remark 2.8 CARMA processes as reviewed by Brockwell [5] can be interpreted as

a superposition of OU-type processes. These models correspond to linear combina-

tions of OU processes driven by one single Lévy process. This mechanism creates

only processes with asymptotically exponentially decreasing correlation functions.
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2.3 Positive shot noise process

The structure of a supOU process can be well understood when considering the

following example.

Let Λ be a positive compound Poisson random measure in the sense that it

has generating quadruple (µPF ((0, 1]), 0, µPF , π), where µ > 0, PF is a probability

measure on R+ with corresponding d. f. F , and π is a probability measure on R+

with λ−1 :=
∫

R+
r−1 π(dr) <∞. Then Λ has the representation

Λ(A) =
∞∑

k=−∞

Zk 1{(Rk,Γk)∈A} for A ∈ T , (2.12)

where (Γk)k∈Z constitute the jump times of a Poisson process N = (Nt)t∈R on R with

intensity µ > 0. The process N is independent of the i. i. d. sequence of positive

r. v. s (Zk)k∈Z with d. f. F . Finally, the i. i. d. sequence (Rk)k∈Z with distribution π

is independent of all other quantities.

The resulting supOU process is then the positive shot noise process

Vt =

∫

R+×R

e−r(t−s) 1[0,∞)(t− s) dΛ(r, λs) =

Nλt∑

k=−∞

e−Rk(t−Γk/λ)Zk for t ≥ 0, (2.13)

and from (2.6) we get, if E log(1 + Z1) < ∞ (which is the analogue of (2.3) in this

model),

νV [x,∞) = µ

∫ ∞

x

y−1F (y) dy for x > 0

and a stationary version of V exists.

The qualitative extreme behavior of this supOU process can be seen in Figure 1

in detail. The supOU jumps upwards, whenever (Nλt)t≥0 jumps and decreases con-

tinuously between two jumps. This means in particular that V has local suprema

exactly at the jump times Γk/λ (and t = 0). Consequently, it is the discrete-time

skeleton of V at points Γk/λ that determines the extreme behavior of the shot noise

process. Although the underlying driving Lévy process L of the supOU process as

given in (2.2) and the driving Lévy process of the OU-type process are the same, we

see the influence of (Rk)k∈N on the exponential decrease of V for the simple OU-type

process, which governs the memory of the supOU process.

2.4 Convolution equivalent distributions

We aim at an extreme value analysis of supOU processes, where a first step always

concerns the tail behavior of the model. To relate the tail behavior of the underly-

ing driving Lévy process, represented by the tail of L1 as in (2.2), and the tail of
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Figure 1: Sample path of a supOU process Vt =
∑Nλt

k=−∞
e−Rk(t−Γk/λ)Zk as in Section 2.3 and,

for comparison, the OU-type process Vt =
∑Nλt

k=−∞
e−λt+ΓkZk for 0 ≤ t ≤ 400, with λ = 1/3,

µ = 1/3, F (x) = 1− exp(−x1/2) for x > 0 and π(r) = r3/2 for r ∈ (0, 1). In the first plot we show

the increments of the underlying driving Lévy process Lλt =
∑Nλt

k=1 Zk for 0 ≤ t ≤ 400.

the stationary process given by V0 we shall invoke relation (2.6) between the Lévy

measures.

The convolution equivalent distributions play a prominent role here, where we

distinguish different classes.

Definition 2.9

(a) A d. f. F on R with F (x) < 1 for all x ∈ R belongs to the class of convolution

equivalent distributions denoted by S(γ) for some γ ≥ 0, if the following conditions

hold:
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(i) F belongs to the class L(γ), i. e. for all y ∈ R locally uniformly

lim
x→∞

F (x+ y)/F (x) = exp(−γy).

(ii) limx→∞ F ∗ F (x)/F (x) exists and is finite.

If Z is a r. v. with d. f. F ∈ S(γ), then we also write Z ∈ S(γ).

(b) The class S(0) = S is called subexponential distributions.

Most of the literature on this topic is formulated for positive r. v. s, which extend

to r. v. s on R, when considering Z ∈ S(γ) if and only if Z+ ∈ S(γ). Important

properties of S(γ) can be found in Theorem A.3.

Subexponential distributions are heavy-tailed in the sense that no exponential

moments exist. S contains all d. f. s F with regularly varying tails (Definition A.2),

denoted by F ∈ R−α for some α > 0, but is much larger. Distribution functions in

S(γ) for some γ > 0 have exponential tails, hence are lighter tailed than subexpo-

nential distributions.

Next we present two different regimes governed by extreme value theory, which

classifies distributions according to their maximum domain of attraction. The max-

imum domain of attraction condition is an assumption on the tail behavior of a d. f.

F . Suppose we can find sequences of real numbers an > 0 and bn ∈ R such that

lim
n→∞

nF (anx+ bn) = − logG(x) for x ∈ R ,

for some non-degenerate d. f. G. Then we say F is in the maximum domain of

attraction of G (F ∈ MDA(G)). The Fisher-Tippett Theorem A.1 says that G is

either a Fréchet (Φα, α > 0), Gumbel (Λ) or Weibull (Ψα, α > 0) distribution.

Convolution equivalent distributions can be in two different maximum domains of

attraction, since they have unbounded support to the right (thus excluding the

Weibull distribution). All d. f. s such that F ∈ R−α for some α > 0 are subexpo-

nential and belong to MDA(Φα). Other convolution equivalent distributions may

belong to MDA(Λ).

Example 2.10 Typical examples of d. f. s in S ∩ MDA(Λ) have density functions

g(x) ∼ const. xβe−xα

for x→ ∞

for some β ∈ R, α ∈ (0, 1), like the heavy-tailed Weibull distributions. Distribution

functions, whose probability density satisfies

g(x) ∼ const. xβ−1e−γx for x→ ∞ (2.14)
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for β < 0 are an important subclass of S(γ)∩MDA(Λ). The papers of Cline [7] and

Goldie and Resnick [13] investigate criteria for d. f. s to be in S(γ) ∩ MDA(Λ).

We present here some important examples satisfying (2.14), which are also used

for financial modelling; we refer to Schoutens [20] for an overview of these d. f. s.

(a) GIG(β, δ, γ) (generalized inverse Gaussian distribution) with β < 0, δ > 0 and

γ ≥ 0, is in S(γ2/2) with probability density

g(x) = const. xβ−1 exp
(
−
(
δ2x−1 + γ2x

)
/2
)

for x > 0.

A special case is for β = −1/2 the inverse Gaussian distribution IG(δ, γ).

(b) NIG(α, β, δ, µ) (normal inverse Gaussian distribution) is for β, δ, µ ∈ R and

α > |β| in S(α− β) and

g(x) ∼ const. x−3/2 exp(−x(α− β)) as x→ ∞.

(c) GH(α, β, δ, µ, γ) (generalized hyperbolic distribution) is for β, δ, µ ∈ R,

α > |β|, γ < 0 in S(α− β) and

g(x) ∼ const. xγ−1 exp(−x(α− β)) as x→ ∞.

For γ = −1/2 the GH distribution is the NIG distribution, while the hyperbolic

distribution occurs for γ = 1.

(d) CGMY (C,G,M, Y ) for C,M,G > 0, Y ∈ (−∞, 2], introduced by Carr, Geman,

Madan and Yor [6]. For 0 < Y < 2 it belongs to S(M) with Lévy density

ν(dx) = C|x|−1−Y exp

(
G−M

2
x− G+M

2
|x|
)

for x ∈ R\{0}.

All these distributions are selfdecomposable, which means that they are possible

stationary distributions of OU-type processes and, hence, also of supOU processes.

We summarize in Proposition A.5 necessary and sufficient conditions of d. f. s to be

selfdecomposable.

3 Tail behavior

We use extensively the fact that for every infinitely divisible convolution equivalent

distribution the tail of the distribution function and the tail of its Lévy measure are

asymptotically equivalent; see Theorem A.3 (i).

Proposition 3.1 (Tail behavior of V )

Let V be a stationary supOU process as in (1.1) and L be the underlying driving

Lévy process (2.2).

12
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(a) Then L1 ∈ R−α if and only if V0 ∈ R−α. In this case

P(V0 > x) ∼ α−1
P(L1 > x) for x→ ∞.

(b) If L1 ∈ S(γ) ∩ MDA(Λ) with tail representation as given in (A.1), then also

V0 ∈ S(γ) ∩ MDA(Λ),

P(V0 > x) ∼ a(x)

x

EeγV0

EeγL1
P(L1 > x) for x→ ∞,

and P(V0 > x) = o(P(L1 > x)) for x→ ∞.

Proof. Recall from Remark 2.2 that the stationary distribution of a supOU process

driven by an i. d. i. s. r. m. with generating quadruple (m,σ2, ν, π) coincides with

the stationary distribution of an OU-type process (1.2) driven by the Lévy process

L with generating triplet (m,σ2, ν). Thus, applying Proposition 3.2 and Proposi-

tion 3.9 in Fasen et al. [12] we obtain sufficiency in (a) and (b). To prove the converse

of (a) assume that V0 ∈ R−α. Since νV (x,∞) =
∫∞

x
y−1ν (y,∞) dy for x > 0, and

νV (x,∞) ∼ P(V0 > x) for x→ ∞, we obtain by Bingham et al. [4], Theorem 1.7.2,

that ν(x,∞) ∼ ανV (x,∞) for x→ ∞. Hence, by Theorem A.3 (i) we conclude

P(L1 > x) ∼ αP(V0 > x) for x→ ∞. �

Lemma 3.2 Let V be a stationary supOU process as in (1.1) with absolutely con-

tinuous Lévy density νV (dx) = u(x) dx, where

u(x) ∼ const. xβ−1e−γx for x→ ∞

for γ > 0, and let L be the underlying driving Lévy process (2.2). Then V0 ∈
S(γ) ∩ MDA(Λ) if and only if β < 0, and L1 ∈ S(γ) ∩ MDA(Λ) if and only if

β < −1.

Proof. Using (2.6) we obtain ν(x,∞) = xu(x) for x > 0. Thus,

ν(dx)

dx
= −u(x) − xu′(x) ∼ const. γ xβe−γx for x→ ∞.

The result follows then from Rootzén [18], Lemma 7.1, and Theorem A.3 (i). �

The next proposition follows from Fasen [11], Proposition 3.3, and [10], Theorem 3.3.

Proposition 3.3 (Tail behavior of M(h))

Let V be a supOU process and define M(h) = sup0≤t≤h Vt for h > 0.

13
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(a) If L1 ∈ R−α, then also M(h) ∈ R−α and

P(M(h) > x) ∼
(
λh+ α−1

)
P(L1 > x) for x→ ∞.

(b) If L1 ∈ S(γ) ∩ MDA(Λ), then also M(h) ∈ S(γ) ∩ MDA(Λ) and

P(M(h) > x) ∼ λh
EeγV0

EeγL1
P(L1 > x) for x→ ∞.

Remark 3.4 (i) From Lemma 3.2 follows immediately that for β ∈ [−1, 0),

V0 ∈ S(γ) ∩ MDA(Λ) but L1 /∈ S(γ).

(ii) Proposition 3.3 implies that the tail of the maximum of a supOU process driven

by an i. d. i. s. r. m. with generating quadruple (m,σ2, ν, π) behaves like the tail of the

maximum of an OU-type process driven by a Lévy process with generating triplet

(m,σ2, ν). From this we conclude immediately that the long memory property of

supOU processes does not affect the tail behavior of M(h).

4 Extremal behavior of supOU processes

For a general i. d. i. s. r. m. Λ we decompose

Λ = Λ(1) + Λ(2) (4.1)

into two independent i. d. i. s. r. m. s.

Λ(1) has only jumps greater than 1; i.e. it has generating quadruple (0, 0, ν1, π)

with ν1(x,∞) = ν(1 ∨ x,∞) for x > 0 and ν1 (−∞, 1] = 0. Consequently, Λ(1)

is a positive compound Poisson random measure with representation (2.12) whose

underlying driving Lévy process L(1) is a compound Poisson process with intensity

ν(1,∞), jump times −∞ < · · · < Γ−1 < Γ0 < 0 < Γ1 < · · · <∞ and jump sizes Zk

with probability measure ν1/ν(1,∞).

Λ(2) summarizes all other features of the model; i.e. it has generating quadruple

(m,σ2, ν2, π) with ν2(−∞,−x) = ν (−∞,−x) and ν2(x,∞) = ν (1 ∧ x, 1] for x > 0.

This means that all the small positive jumps, the negative jumps, the Gaussian

component and the drift are summarized in Λ(2).

For d ∈ N0 let t1, . . . , td ≥ 0, and define

Mk = sup
t∈[Γk/λ,Γk+1/λ)

Vt and V(Γk) = (VΓk+t1 , . . . , VΓk+td) for k ∈ N.

For a Radon measure ϑ we write PRM(ϑ) for a Poisson random measure with

intensity measure ϑ, see Definition A.7. In our set-up ϑ will be a Radon measure on

14
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either of the spaces SF = [0,∞) × (0,∞] × [−∞,∞]d or SG = [0,∞) × (−∞,∞] ×
[−∞,∞]d, and MP (SF ) and MP (SG) will denote the spaces of all point measures

on SF and SG, respectively. For details on point processes see Resnick [17].

The following proposition is a consequence of Fasen [9], Theorem 2.5.1 and [10],

Theorem 4.1.

Proposition 4.1 (Point process behavior)

Let V be a stationary supOU process as in (1.1) and L be the underlying driving

Lévy process (2.2). Decompose Λ as in (4.1).

(a) Let L1 ∈ R−α with norming constants aT > 0 such that

lim
T→∞

TP(L1 > aTx) = x−α for x > 0.

Suppose
∑∞

k=1 ε(sk,Pk) is a PRM(ϑ) with ϑ(dt × dx) = dt × αx−α−1 dx independent

of the i. i. d. sequences (Γk,j)j∈N for k ∈ N with (Γk,j)j∈N

d
= (Γj)j∈N and independent

of the i. i. d. sequence (Rk)k∈N with probability distribution π. Define Γk,0 = 0 for

k ∈ N. Then, in the space MP (SF ),

∞∑

k=1

ε(Γk/(λn),a−1
λnMk,a−1

λnV(Γk/λ))

n→∞
=⇒

∞∑

k=1

∞∑

j=0

ε
(sk,Pke

−RkΓk,j/λ
,Pk(e

−Rk(Γk,j/λ+t1)
,...,e

−Rk(Γk,j/λ+td)
))
.

(b) Let L1 ∈ S(γ) ∩ MDA(Λ) with norming constants aT > 0 and bT ∈ R such

that

lim
T→∞

TP(L1 > aTx+ bT ) = exp (−x) for x ∈ R.

Suppose
∑∞

k=1 ε(sk,Pk) is a PRM(ϑ) with ϑ(dt × dx) = dt × [EeγL1 ]−1
EeγV0e−x dx

independent of the i. i. d. sequence (Rk)k∈N with probability distribution π. Then,

in the space MP (SG),

∞∑

k=1

ε(Γk/(λn),a−1
λn(Mk−bλn),b−1

λnV(Γk/λ))

n→∞
=⇒

∞∑

k=1

ε(sk,Pk,(e−Rkt1 ,...,e−Rktd )).

We give an interpretation of the point process results. In both parts of Proposi-

tion 4.1 the limit relations of the first two components show that the local suprema

Mk of V around Γk/λ, normalized by the constants determined via L1, converge

weakly to the same extreme value distribution as L1. The third vector component

indicates that for instance for d = 1 and t1 = 0 that the second and third component
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have the same limiting behavior; i. e. the Mk behave like VΓk/λ. The results show

also that local extremes of V on high levels happen at the jump times Γ/λ of the

Lévy process (L
(1)
λt )t≥0. Thus, the various features of L, which are modelled in Λ2,

have no influence on the location of local extremes on high levels. Moreover, the

third vector component indicates that, if the supOU process has an exceedance over

a high threshold, then it decreases after this event exponentially fast with a random

rate Rk and the distribution π of Rk governs the short/long range dependence of

the model.

As for OU-type processes there is an essential difference between the models (a)

and (b). In the second component and the third vector component of the limit point

process in (a) all points Γk,j/λ influence the limit, whereas in (b) only Γk,0 = 0 does.

This phenomenon certainly originates in the very large jumps caused by regular

variation of the underlying driving Lévy process. Even though the behavior of the

supOU between the large jumps has the tendency to decrease exponentially fast (this

comes from the shot-noise process generated by Λ(1) and may be overlaid by small

positive jumps, negative jumps, a drift and a Gaussian component), huge positive

jumps can have a long lasting influence on excursions above high thresholds. This

is in contrast to the semi-heavy tailed case in (b).

Result (b) can be interpreted that local extremes of models in S(γ) ∩ MDA(Λ)

show no extremal clusters. The constant [EeγL1 ]−1
EeγV0 in the intensity of the

Poisson random measure, which is 1 for γ = 0, reflects that for γ > 0 the small

jumps of L have a certain influence on the size of the local extremes of V , which is

in contrast to subexponential models in (a) and (b) with γ = 0. Although (VΓk/λ)k∈N

is not a stationary sequence VΓk/λ
k→∞
=⇒ V0 +Z1 (recall that Z1 has d. f. ν1/ν(1,∞)).

Furthermore,

ν(1,∞)P(V0 + Z1 > x) ∼ [EeγL1 ]−1
EeγV0P(L1 > x) for x→ ∞.

Thus (b) implies that the exceedances of (VΓk/λ)k∈N at times (Γk/λ)k∈N behave like

those of an i. i. d. sequence with distribution V0 + Z1. We have seen this constant

[EeγL1 ]−1
EeγV0 already earlier in Proposition 3.3.

Corollary 4.2 (Point process of exceedances)

Let V satisfy the assumptions of Proposition 4.1 and decompose Λ as in (4.1).

(a) Let L1 ∈ R−α. Suppose (sk)k∈N are the jump times of a Poisson process with

intensity x−α for fixed x > 0. Let (ζk)k∈N be i. i. d. discrete r. v. s, independent of

(sk)k∈N, with probability distribution

qk = P(ζ1 = k) = E exp(−αR0Γk/λ) − E exp(−αR0Γk+1/λ) for k ∈ N.
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Then

∞∑

k=1

ε(Γk/(λn),a−1
λnMk)(· × (x,∞))

n→∞
=⇒

∞∑

k=1

ζkεsk
in MP ([0,∞)).

(b) Let L1 ∈ S(γ) ∩ MDA(Λ). Suppose (sk)k∈N are the jump times of a Poisson

process with intensity [EeγL1 ]−1
EeγV0 e−x for fixed x ∈ R. Then

∞∑

k=1

ε(Γk/(λn),a−1
λn(Mk−bλn))(· × (x,∞))

n→∞
=⇒

∞∑

k=1

εsk
in MP ([0,∞)).

Again the qualitative difference of the two regimes is visible. For a regularly vary-

ing underlying driving Lévy process L the limiting process is a compound Poisson

process, where at each Poisson point a cluster appears, whose size is random with

distribution (qk)k∈N. In contrast to this, in the MDA(Λ) case, the limit process is

simply a homogeneous Poisson process; no clusters appear in the limit.

The next proposition follows immediately from Proposition 4.1.

Proposition 4.3 (Running maxima) Let V be a stationary supOU process as in

(1.1) and L the underlying driving Lévy process (2.2). Define M(T ) = sup0≤t≤T Vt

for T > 0.

(a) Let L1 ∈ R−α with norming constants aT > 0 such that

lim
T→∞

TP(L1 > aTx) = x−α for x > 0.

Then

lim
T→∞

P(a−1
λTM(T ) ≤ x) = exp(−x−α) for x > 0.

(b) Let L1 ∈ S(γ) ∩ MDA(Λ) with norming constants aT > 0 and bT ∈ R, such

that

lim
T→∞

TP(L1 > aTx+ bT ) = exp(−x) for x ∈ R.

Then

lim
T→∞

P(a−1
λT (M(T ) − bλT ) ≤ x) = exp(−[EeγL1 ]−1

EeγV0e−x) for x ∈ R.

Definition 4.4 (Extremal index function) Let (Vt)t≥0 be a stationary process.

Define the sequence Mk(h) = sup(k−1)h≤t≤kh Vt for k ∈ N, h > 0. Let θ(h) be

the extremal index (Definition A.8) of the sequence (Mk(h))k∈N. Then we call the

function θ : (0,∞) → [0, 1] extremal index function.
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The idea is to divide the positive real line into blocks of length h. By taking local

suprema of the process over these blocks the natural dependence of the continuous-

time process is weakened, in certain cases it even disappears. However, for fixed h

the extremal index function is a measure for the expected cluster sizes among these

blocks. For an extended discussion on the extremal index in the context of discrete-

and continuous-time processes see Fasen [9], pp. 83.

Corollary 4.5 (Extremal index function) Let V be a stationary supOU process

as in (1.1) and L the underlying driving Lévy process (2.2).

(a) If L1 ∈ R−α, then θ(h) = λhα/(λhα+ 1) for h > 0.

(b) If L1 ∈ S(γ) ∩ MDA(Λ), then θ(h) = 1 for h > 0.

Regularly varying supOU processes exhibit clusters among blocks, since θ(h) < 1.

So they have the potential to model both features: heavy tails and high level clusters.

This is in contrast to supOU processes in S(γ)∩MDA(Λ), where no extremal clusters

occur.

5 Conclusion

In this paper we have investigated the extremal behavior of supOU processes, whose

underlying driving Lévy process is in the class of convolution equivalent distribu-

tions. In contrast to OU-type and COGARCH processes (cf. [14]), regardless of the

driving Lévy process they can model long memory. We have concentrated on mod-

els with tails ranging from exponential to regularly varying; i. e. tails as they are

found in empirical volatility. The stochastic quantities characterizing the extreme

behavior for such models, which we have derived in this paper, include

• the tail of the stationary distribution of the supOU process V0 and M(h) =

sup0≤t≤h Vt, and the relation to the tail of the distribution governing the ex-

treme behavior,

• the asymptotic distribution of the running maxima, i. e. their MDA and the

norming constants,

• the cluster behavior of the model on high levels.

We want to indicate that long memory of a supOU process represented by π has

no influence on the existence of extremal clusters, only on the cluster sizes. SupOU

processes in S(γ) ∩ MDA(Λ) cannot model clusters on high levels. In contrast to

that, regularly varying supOU processes exhibit extremal clusters, which can be

described quite precisely by the distribution of the cluster sizes, which depends on
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π; see Corollary 4.2. In terms of the tail behavior of V0, M(h) and the running

maxima the results for a supOU process coincide with the results of an OU-type

process. Again they are not affected by the long memory property.

Appendix

A Basic notation and definition

We summarize some definitions and concepts used throughout the paper. For details

and further references see Embrechts, Klüppelberg and Mikosch [8].

The following is the fundamental theorem in extreme value theory.

Theorem A.1 (Fisher-Tippett Theorem)

Let (Xn)n∈N be an i. i. d. sequence with d. f. F and denote Mn = maxk=1,...,nXk.

Suppose we can find sequences of real numbers an > 0, bn ∈ R such that

lim
n→∞

P(a−1
n (Mn − bn) ≤ x) = lim

n→∞
F n(anx+ bn) = G(x) for x ∈ R

and some non-degenerate d. f. G (we say F is in the maximum domain of attraction

of G and write F ∈ MDA(G)). Then there are a > 0, b ∈ R such that x 7→ G(ax+b)

is one of the following three extreme value d. f. s:

• Fréchet: Φα(x) = G(ax+ b) =

{
0, x ≤ 0,

exp (−x−α) , x > 0,
for α > 0.

• Gumbel: Λ(x) = G(ax+ b) = exp (−e−x) , x ∈ R .

• Weibull: Ψα(x) = G(ax+ b) =

{
exp (− (−x)α) , x ≤ 0,

1, x > 0,
for α > 0 .

Definition A.2 A positive measurable function u : R → R+ is called regularly

varying with index α, denoted by u ∈ Rα for α ∈ R, if

lim
t→∞

u(tx)

u(t)
= xα for x > 0 .

The function u is said to be slowly varying if α = 0.

Theorem A.3 Let F be a d. f. with F (x) < 1 for all x ∈ R and f̂(γ) =
∫∞

−∞
eγx F (dx).
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(i) Let F be infinitely divisible with Lévy measure ν and γ ≥ 0. Then

F ∈ S(γ) ⇐⇒ ν(1, · ]/ν(1,∞) ∈ S(γ).

(ii) Suppose F ∈ S(γ), limx→∞G(x)/F (x) = q ≥ 0 and f̂G(γ) <∞. Then

lim
x→∞

F ∗G(x)

F (x)
= f̂2(γ) + qf̂1(γ)

and F ∗G ∈ S(γ). If q > 0, then also G ∈ S(γ).

(iii) F ∈ L(γ), γ ≥ 0, has the representation

F (x) = c(x) exp

[
−
∫ x

0

1

a(y)
dy

]
for x > 0, (A.1)

where a, c : R+ → R+ and limx→∞ c(x) = c > 0 and a is absolutely continuous

with limx→∞ a(x) = γ−1 and limx→∞ a′(x) = 0.

The following concept has proved useful in comparing tails.

Definition A.4 (Tail-equivalence)

Two d. f. s F and G (or two measures µ and ν) are called tail-equivalent if both have

support unbounded to the right and there exists some c > 0 such that

lim
x→∞

F (x)/G(x) = c or lim
x→∞

ν(x,∞)/µ(x,∞) = c .

For two tail-equivalent d. f. s in MDA(G) for some G one can choose the same norm-

ing constants.

Proposition A.5 Let X be a r. v. The following conditions are equivalent:

(a) X is selfdecomposable.

(b) There exists a Lévy process L such that X
d
=
∫∞

0
e−s dLs.

(c) X is infinitely divisible with absolutely continuous Lévy measure given by

ν(dx) =
k(x)

|x| dx for x ∈ R\{0},

k(x) ≥ 0, and k(x) is increasing on (−∞, 0) and decreasing on (0,∞).

Remark A.6 The integral in (b) exists if and only if (2.3) holds. The above propo-

sition is presented and discussed in Barndorff-Nielsen and Shephard [2], where also

further references can be found. It can also be found e.g. in Sato [19], Cor. 15.11

and Theorem 17.5.
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Definition A.7 (Poisson random measure)

Let (A,A, ϑ) be a measurable space, where ϑ is σ-finite, and (Ω,F ,P) be a prob-

ability space. A Poisson random measure N with intensity measure ϑ, denoted by

PRM(ϑ), is a collection of r. v. s (N(A))A∈A, where N(A) : (Ω,F ,P) → (N0,B(N0)),

with N(∅) = 0, such that:

(a) Given any sequence (An)n∈N of mutually disjoint sets in A:

N
( ⋃

n∈N

An

)
=
∑

n∈N

N(An) a. s.

(b) N(A) is Poisson distributed with intensity ϑ(A) for every A ∈ A.

(c) For mutually disjoint sets A1, . . . , An ∈ A, n ∈ N, the r. v. s N(A1), . . . , N(An)

are independent.

Definition A.8 (Extremal index)

Let X = (Xn)n∈Z be a strictly stationary sequence and θ ≥ 0. If for every x > 0

there exists a sequence un(x) with

lim
n→∞

nP(X1 > un(x)) = x and lim
n→∞

P( max
k=1,...,n

Xn ≤ un(x)) = exp(−θx),

then θ is called the extremal index of X and has value in [0, 1].
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