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Abstract

In this paper models for claim frequency and average claim size in non-life insurance are

considered. Both covariates and spatial random effects are included allowing the modelling

of a spatial dependency pattern. We assume a Poisson model for the number of claims,

while claim size is modelled using a Gamma distribution. However, in contrast to the usual

compound Poisson model, we allow for dependencies between claim size and claim frequency.

A fully Bayesian approach is followed, parameters are estimated using Markov Chain Monte

Carlo (MCMC). The issue of model comparison is thoroughly addressed. Besides the deviance

information criterion and the predictive model choice criterion, we suggest the use of proper

scoring rules based on the posterior predictive distribution for comparing models. We give

an application to a comprehensive data set from a German car insurance company. The

inclusion of spatial effects significantly improves the models for both claim frequency and

claim size and also leads to more accurate predictions of the total claim sizes. Further we

detect significant dependencies between the number of claims and claim size. Both spatial

and number of claims effects are interpreted and quantified from an actuarial point of view.
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1 Introduction

In this paper statistical models for the number of claims and the average claim size in non-life

insurance are discussed in a Bayesian context. Based on these models the total claim size can

be simulated which is fundamental for premium calculation. In particular we consider regres-

sion models for spatially indexed data and allow for an underlying spatial dependency pattern

by the inclusion of correlated spatial random effects. One important contribution of this paper

is that we further allow for dependencies between the number of claims and claim size. This

is in contrast to the classical compound Poisson model going back to Lundberg (1903), where

independence between claim frequency and claim size is assumed. Further the issue of model

comparison is discussed in detail. In particular, we aim to present that proper scoring rules

(Gneiting and Raftery (2007)) can be applied for comparing models with regard to their pos-

terior predictive distribution. We apply our approach to a large data set from a German car

insurance and quantify the impact of spatial and number of claims effects from an actuarial

perspective.

In the classical Poisson-Gamma model the number of claims is assumed to follow a Poisson

distribution and to be independent of the claim sizes which are modelled by a Gamma distri-

bution. The use of generalised linear models (GLMs) in actuarial science has been discussed

by Haberman and Renshaw (1996) who give several applications, including premium rating in

non-life insurance based on models for claim frequency and average claim size. A more detailed

study of GLMs for claim frequency and average claim sizes taking covariate information into

account is given in Renshaw (1994). Taylor (1989) and Boskov and Verrall (1994) analyse house-

hold contents insurance data incorporating geographic information. Whereas Taylor (1989) uses

spline functions, Boskov and Verrall (1994) assume a spatial Bayesian model based on Besag

et al. (1991). In both papers adjusted loss ratios are fitted, although Taylor (1989) states that

separate models for claim frequency and claim size are preferable.

Another approach, which also does not include a separate analysis of claim size and frequency is

given by Jørgensen and de Souza (1994) and Smyth and Jørgensen (2002). They use a compound

Poisson model, which they call Tweedie’s compound Poisson model due to its association to ex-

ponential dispersion models. Based on the joint distribution of the number of claims and the

total claim sizes, they model the claim rate, defined by total costs per exposure unit, directly.

Separate models for claim frequency and claim size have been used by Dimakos and Frigessi

(2002) for determining premiums. Based on a spatial Poisson regression model and a spatial

Gamma regression model for the average claim size, they estimate premiums by the product of

the expected claim frequency and the expected claim size. This approach relies on the indepen-

dence assumption of claim frequency and claim size. Here the spatial structure is modelled using

an improper Markov Random Field following Besag et al. (1991).

This paper extends the approach by Dimakos and Frigessi (2002). We also prefer a separate

analysis of claim frequency and claim size and assume a spatial Poisson regression model for

claim frequency and a Gamma model for the average claim size per policyholder. In particu-
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lar, separate risk factors for claim frequency and claim size models can be included. However,

in contrast to Dimakos and Frigessi (2002), we allow for dependencies between the number of

claims and claim size. In particular, claim size is modelled conditionally on the number of claims

which allows us to include the observed number of claims as covariate.

We follow a fully Bayesian approach, since random parameters can be used to adjust for param-

eter uncertainty. Panjer and Willmot (1983) state in this context: ”The operational actuarial

interpretation is that the risk is first selected from the whole set of risks in accordance with

the risk distribution, and the performance of the selected risk is then monitored. The statistical

interpretation is essentially Bayesian.” Markov Chain Monte Carlo (MCMC) is used for para-

meter estimation and thus facilitates the desired Bayesian inference.

In this paper spatial dependencies are modelled using a Gaussian conditional autoregressive

(CAR) prior introduced by Pettitt et al. (2002) for the spatial effects. CAR models are based

on the assumption that the effects of adjacent sites are similar, leading to a spatially smoothed

dependency pattern. In contrast to the often used intrinsic CAR model introduced by Besag

and Kooperberg (1995) the spatial prior considered here leads to a proper joint distribution of

the spatial effects. Other proper modifications of the intrinsic CAR model have been proposed

by Sun et al. (1999) and Czado and Prokopenko (2004).

Based on the MCMC output of the models for claim frequency and the average claim size, we

approximate the posterior predictive distribution of the total claim sizes using simulation. We

would like to emphasise again, that independence of claim size and claim frequency is not nec-

essary here.

We analyse a large data set from a German car insurance company using the above models. In

particular, we consider policyholders with full comprehensive car insurance and claims caused

by traffic accidents. One of our main interests is to investigate whether, after adjusting for co-

variate information, models are improved by adding spatial random effects. Further, we study

the impact of the observed number of claims as additional covariate for the claim size models

and quantify the effects on the expected claim sizes.

Models are compared using several criteria. Next to the well known deviance information cri-

terion (DIC) suggested by Spiegelhalter et al. (2002), the predictive model choice criterion

(PMCC), see for example Gelfand and Ghosh (1998), is used for comparing model fit and com-

plexity of the considered models. A novel contribution of this paper consists in the investigation

of proper scoring rules (Gneiting and Raftery (2007)) based on the posterior predictive distribu-

tion in the context of model comparison. In particular, we compare models under out of sample

conditions. Up to now proper scoring rules have only been used for assessing the quality of

probabilistic forecasts and determining parameter estimates based on the highest score.

The inclusion of spatial effects leads to a significantly improved model fit both for claim fre-

quency and claim size and more accurate predictions of the total claim sizes are obtained. When

spatial effects are neglected the posterior predictive means of the total claim sizes in some re-

gions with particular high (low) observed total claims are estimated considerably lower (higher)

than based on the spatial models. Further, effects for the number of claims are significant in the
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claim size models. For an increasing number of claims, the average claim sizes tend to decrease.

The paper is organized as follows. In Section 2 models for claim frequency and claim size are

discussed, information on the assumed prior distributions and the developed MCMC algorithms

is given. The criteria used for model comparison are presented in Section 3. In Section 4 we

develop and compare models for German car insurance data. Finally, we summarize our results

and draw conclusions.

2 Spatial regression models for claim frequency and claim size

In insurance premiums are based on the expected total claim size which is determined both by

the number of claims and the average claim size. In the following we consider spatial regression

models for these quantities. Note that we discuss in this paper models for individual, policyholder

specific data and not data aggregated for specific groups of policyholders.

2.1 Models for claim frequency

For claim frequency we choose a Poisson regression model with spatial effects. In particular, we

assume for the number of claims Ni, i = 1, .., n, observed at J regions

Ni ∼ Poisson(µNi ),

with mean µNi given by

µNi = ti exp(x′
iβ + γj(i)).

Here, ti denotes the exposure time of policyholder i. The covariate vector for the i-th observation

including an intercept is given by xi = (1, xi1, .., xip)
′ and β = (β0, β1, .., βp)

′ denotes the vector

of unknown regression parameters. Spatial dependencies are modelled by introducing a random

effect γj , j = 1, .., J for each region. The index j(i) denotes the region where the i-th policyholder

is residing. All spatial effects are combined in the random vector γ = (γ1, .., γJ )′. The following

prior assumptions complete the model. Since we have little prior information we consider a

normal prior with large standard deviation, in particular we assume

β ∼ Np+1(0, σ
2
βIp+1) with σ2

β = 100.

Here Ip+1 denotes the p+ 1-dimensional identity matrix. The proper conditional autoregressive

prior with hyperparameters σ2 and ψ

γ|σ2, ψ ∼ N(0, σ2Q−1) (2.1)

based on Pettitt et al. (2002) is chosen for the spatial effects. The (g, h)-th element of the spatial

precision matrix Q is specified by

Qgh =











1 + |ψ| ·mg g = h

−ψ g 6= h, g ∼ h ∀g, h = 1, .., J,

0 otherwise
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where g ∼ h denotes adjacent regions and mg gives the number of neighbours of region g. We

define regions to be neighbours if they share a common border. The parameter ψ determines the

degree of spatial dependence. For ψ = 0 the spatial effects are independent, while for increasing

values of ψ an increasing spatial dependency is obtained. Proper priors are assumed for the

spatial hyperparameters σ2 and ψ. In particular, we choose for σ2 the noninformative prior

σ2 ∼ IGamma(a, b) with a = 1 and b = 0.005

which is a common parameter choice for vague Gamma priors. For ψ the prior with density

function 1
(1+ψ)2

is utilized which takes high values for small ψ. We restrict ψ ≥ 0, since we expect

positive conditional partial correlations between regions. Only the hyperparameter 1
σ2 can be

sampled directly from a Gamma distribution, for the remaining parameters a single component

Metropolis Hastings algorithm is implemented. We choose independence proposals for the spatial

effects, in particular a t-distribution with 20 degrees of freedom having the same mode and inverse

curvature at the mode as the target distribution. As investigated in Gschlößl and Czado (2005)

this proposal distribution leads to very good mixing with low Monte Carlo standard errors. For

the regression parameters β and the spatial hyperparameter ψ symmetric random walk proposal

distributions are taken. See for example Gilks et al. (1996) for an introduction to MCMC, details

on the Metropolis Hastings algorithm and the choice of proposal distributions.

2.2 Modelling the average claim size

It is natural for the analysis of claim size to take only observations with positive claims into

account. We will consider models for the average claim size of a policyholder. Gschlößl (2006)

also investigates models for the individual claim sizes, but concludes that this leads to very

similar results for the data set considered in this paper. Since we aim to allow for the modelling

of dependencies between the number and the size of the claims, we consider models for the

claim size conditionally on the number of claims. Prior specifications are given at the end of

this section. For policyholder i = 1, .., n let Sik, k = 1, .., Ni, denote the individual claim sizes

for the Ni observed claims. In this paper we are interested in models for claim sizes resulting

from traffic accidents in car insurance, but not including IBNR (incurred but not reported)

losses. The latter type of data are typically skewed and do not contain extremely high claims,

which would require the use of heavy tailed distributions like the Pareto distribution (see for

example Mikosch (2004)). Therefore a Gamma model is sufficient. In particular, we assume that

individual claim sizes conditionally on Ni are independently Gamma distributed, i.e.

Sik|Ni ∼ Gamma(µSi , v), k = 1, .., Ni, i = 1, .., n (2.2)

with mean and variance given by E(Sik|Ni) = µSi and V ar(Sik|Ni) =
(µS

i )2

v
. We use the following

parameterisation of the Gamma distribution: f(sik|µ
S
i , v) = v

µS
i Γ(v)

(

vsik

µS
i

)v−1
exp

(

−vsik

µS
i

)

. The

average claim size Si for policyholder i is given by

Si :=

Ni
∑

k=1

Sik

Ni

.
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Since we assume Sik|Ni, k = 1, .., Ni to be independent and identically distributed, the average

claim size Si given the observed number of claims Ni is again Gamma distributed with mean

E(Si|Ni) = µSi and variance V ar(Si|Ni) =
(µS

i )2

Niv
, i.e.

Si|Ni ∼ Gamma(µSi , Niv). (2.3)

We perform a regression on the mean µSi including covariates wi and spatial effects ζ for the J

geographical regions. By choosing a log link we obtain the following mean specification:

µSi = exp(w′
iα + ζj(i)).

Here wi = (1, wi1, .., wiq)
′ denotes the vector of covariates for the i-th observation with intercept,

α = (α0, α1, .., αq)
′ the vector of unknown regression parameters and ζ = (ζ1, .., ζJ ) the vector

of spatial effects, which are modelled by a similar CAR prior as in the Poisson model for claim

frequency. Since we consider a model for average claim sizes conditionally on the number of

claims, the observed number of claims Ni may be introduced as a covariate as well. The number of

claims per policyholder observed in car insurance data is typically very low, therefore we include

Ni as a factor covariate with reference level Ni = 1, denoted by αNi=k, k = 2, .., argmaxiNi. The

mean µSi is therefore given by

µSi = exp(w′
iα + ζj(i)) = exp(

q
∑

l=0

wilαl +

argmaxiNi
∑

k=2

DkiαNi=k + ζj(i)), (2.4)

where Dki =

{

1, Ni = k

0, otherwise
. Similar to the Poisson model for the number of claims we have

little prior knowledge on the regression parameters α in the model for the average claim size.

Therefore we assume a normal prior with large standard deviation, in particular,

α ∼ Nq+argmaxiNi
(0, σ2

αIq+maxi Ni
)

with σ2
α = 100 which is a rather uninformed prior. For the scale parameter v the gamma

prior v|a, b ∼ Gamma(a, b), i.e. π(v|a, b) = ba

Γ(a)v
a−1 exp(−vb) with a = 1 is assumed, the

conditional mean and variance are given by E(v|a = 1, b) = 1
b

and V ar(v|a = 1, b) = 1
b2

,

respectively. Following a fully Bayesian approach we also assign a noninformative gamma prior

to the hyperparameter b, in particular b|c, d ∼ Gamma(c, d) with c = 1 and d = 0.005, yielding

E(b|c, d) = 200 and V ar(b|c, d) = 40000. However, the models turn out to be very robust with

respect to the prior on b, a very similar estimated posterior mean of v is obtained when b is fixed

to 0.005, which is a popular choice for a flat gamma prior.

The spatial effects are modelled using the conditional autoregressive prior (2.1), i.e.

ζ|σ2, ψ ∼ NJ(0, σ
2Q−1),

assuming the same prior distributions for the hyperparameters σ2 and ψ as in Section 2.1. The

hyperparameter b can be sampled directly from a gamma distribution, for the regression para-

meters, the spatial effects and spatial hyperparameters a single component Metropolis Hastings
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algorithm with the same proposal distributions as in the Poisson model discussed in Section 2.1

is used. For the scale parameter v a symmetric random walk proposal distribution is taken.

MCMC algorithms are implemented in Matlab, but OpenBugs could have been used as well.

However we prefer Matlab since we had more control over the implementation.

3 Model comparison

For complex hierarchical models like those considered in this paper, the computation of Bayes

factors (see for example Kass and Raftery (1995)) requires substantial efforts (compare to Han

and Carlin (2001)). Therefore, we consider here model choice criteria and scoring rules which

can be easily computed using the available MCMC output. In this paper only nested models are

compared, however, the criteria presented in this section also can be used for comparing non

nested models.

3.1 Deviance Information Criterion (DIC) and Predictive Model Choice Cri-

terion (PMCC)

The deviance information criterion (DIC), suggested by Spiegelhalter et al. (2002), for a prob-

ability model p(y|θ) with observed data y = (y1, .., yn) and unknown parameters θ is defined

by

DIC := E[D(θ|y)] + pD.

It considers both model fit as well as model complexity. The goodness-of-fit is measured by the

posterior mean of the Bayesian deviance D(θ) defined as

D(θ) = −2 log p(y|θ) + 2 log f(y)

where f(y) is some fully specified standardising term. Model complexity is measured by the

effective number of parameters pD defined by

pD := E[D(θ|y)] −D(E[θ|y]).

According to this criterion the model with the smallest DIC is to be preferred. Using the avail-

able MCMC output both pD and DIC are easily computed by taking the posterior mean of the

deviance E[D(θ|y)] and the plug-in estimate of the deviance D(E[θ|y]). We will compute the

DIC with the standardising term f(y) set to zero. An information theoretic discussion of the

DIC as criterion for posterior predictive model comparison is given in van der Linde (2005).

A related model comparison approach is given by the predictive model choice criterion (PMCC)

considered by Laud and Ibrahim (1995) and Gelfand and Ghosh (1998). It is based on the poste-

rior predictive distribution given by p(yrep|y) =
∫

p(yrep|θ)p(θ|y)dθ where yrep = (yrep,1, .., yrep,n)

denotes a new, replicated data set. Here yrep and y are assumed to be independent given θ.
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The posterior predictive distribution can be estimated by p̂(yrep|y) := 1
R

∑R
r=1 p(y|θ̂

r
) where

θ̂
r
, r = 1, .., R denotes the r-th MCMC iterate of θ after burnin. The PMCC is defined by

PMCC :=
n

∑

i=1

(µi − yi)
2 +

n
∑

i=1

σ2
i , (3.5)

where µi := E(yrep,i|y) and σ2
i := V ar(yrep,i|y) denote the expected value and the variance of

a replicate yrep,i of the posterior predictive distribution. Similar to DIC, models with a smaller

PMCC value are preferred. While the first term
∑n

i=1(µi − yi)
2 gives a goodness-of-fit measure

which will decrease with increasing model complexity, the second term
∑n

i=1 σ
2
i can be considered

as penalty term which will tend to be large both for poor and overfitted models (see Gelfand

and Ghosh (1998)). The quantities µi and σ2
i can be estimated based on the MCMC output

θ̂
r
, r = 1, .., R by µ̂i := 1

R

∑R
r=1 µi(θ̂

r
) and σ̂2

i := 1
R

∑R
r=1 σ

2
i (θ̂

r
), where µi(θ) and σ2

i (θ) denote

the mean and the variance of the underlying model p(y|θ) depending on the parameters θ. When

the mean µi(θ) and the variance σ2
i (θ) of the model are not explicitly available, the PMCC can

be alternatively evaluated using simulation. For every MCMC iteration r = 1, .., R after burnin,

a replicated data set yrrep = (yrrep,1, .., y
r
rep,n) can be simulated from p(y|θ̂r). The mean µi and

the variance σ2
i can then be estimated by the empirical counterparts µ̂i := 1

R

∑R
r=1 y

r
rep,i and

σ̂Si := 1
R−1

∑R
r=1(y

r
rep−µ̂i)

2. In the application given in Section 4 we compare models for average

and total claim sizes using PMCC. Since the mean µi(θ) and the variance σ2
i (θ) are explicitly

given in the models for the number of claims and for the average claim sizes, we will compute the

PMCC directly using the MCMC output for these models. The distribution of the total claim

sizes however, is not available in an analytically closed form, therefore here, the PMCC will be

evaluated using simulation as described above.

3.2 Scoring rules for continuous variables

Gneiting and Raftery (2007) consider scoring rules for assessing the quality of probabilistic fore-

casts. A scoring rule assigns a numerical score based on the forecast of the predictive distribution

for a specific model and the value that was observed. It can be used for comparing the predictive

distribution of several models. Ideally, both calibration and sharpness of the predictive distri-

bution are taken into account. Gneiting and Raftery (2007) also use scoring rules in estimation

problems for assessing the optimal score estimator for the unknown model parameters. Assume

a parametric model Pθ := p(y|θ) with parameters θ based on the sample y = (y1, .., yn). Then,

the mean score

Sn(θ) =
1

n

n
∑

i=1

S(Pθ, yi)

can be taken as a goodness-of-fit measure, where S is a strictly proper scoring rule, i.e. the highest

score is obtained for the true model. Since for the true parameter vector θ0 (see Gneiting and

Raftery (2007))

argmaxθSn(θ) → θ0, n→ ∞,
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the optimum score estimator based on scoring rule S is given by θ̂n = argmaxθSn(θ). We will use

scoring rules in a Bayesian context as measures for comparing models based on their posterior

predictive distribution. Gneiting and Raftery (2007) provide and discuss several scoring rules,

we will present some of the proper scoring rules for continuous variables here. In particular, we

consider the logarithmic score (LS), the continuous ranked probability score (CRPS), the interval

score (IS) and a score for quantiles which we will denote as quantile score (QS). All these scores

are positively oriented, i.e. the model with the highest mean score Sn(θ) is favoured.

The logarithmic score LS is given by

LS(p(yrep|y), yi) := log p(yrep = yi|y),

where p(yrep = yi|y) denotes the posterior predictive density at yrep = yi of the model under

consideration. When a sample of MCMC iterates θ̂
r
, r = 1, .., R after burnin is available, an

estimate of log p(yrep = yi|y) for the i-th observation is straightforward, i.e.

ˆlog p(yrep = yi|y) := log
( 1

R

R
∑

r=1

p(yi|θ̂
r
)
)

,

where p(y|θ̂
r
) denotes the density at the observed value y based on the r-th MCMC iterates.

In contrast to the logarithmic score which only considers the posterior predictive density evalu-

ated at the observed value, the following scoring rules take both calibration and sharpness into

account.

The continuous ranked probability score CRPS for a parametric model Pθ with posterior pre-

dictive cumulative density function (cdf) F (x) :=
∫ x

−∞ p(ỹ|y)dỹ is defined by

CRPS(F, yi) = −

∫ ∞

−∞
(F (x) − 1{x≥yi})

2dx,

where 1{x≥y} takes the value 1 if x ≥ y and 0 otherwise. Hence, the CRPS can be interpreted

as the integrated squared difference between the predictive and the empirical cdf based on the

single observation yi. A graphical illustration of the CRPS is presented in Figure 1 when Pθ is a

normal distribution. Here the pdf of a normal distribution with mean 0 and standard deviation

1 (left panel in first row) and 4 (left panel in second row) respectively is plotted. The difference

between the corresponding cdf and the empirical cdf for two observations y = 0 and y = 2 is

indicated in the middle and right plot of each row as dashed regions. These plots show that the

CRPS rewards sharp distributions, but also takes into account if the observation y is close to

the center or rather in the tails of the distribution. According to Székely (2003) the CRPS can

be expressed as

CRPS(Pθ, yi) =
1

2
E|yrep,i − ỹrep,i| − E|yrep,i − yi|. (3.6)

Here yrep,i, ỹrep,i are independent replicates from the posterior predictive distribution p(·|y) and

the expectation is taken with respect to p(·|y). Estimation of the CRPS is again straightforward

using the available MCMC output: for r = 1, .., R simulate independently two replicated data sets
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Figure 1: Pdf (left column with y = 0, 2 indicated as dashed lines) and cdf of a normal distribution

with mean 0 and standard deviation 1 (first row) and 4 (second row), respectively. The differences

between the cdf and the empirical cdf for two observations y = 0 (middle) and y = 2 (right) are

indicated as dashed regions.

yrrep = (yrrep,1, .., y
r
rep,n), ỹ

r
rep = (ỹrrep,1, .., ỹ

r
rep,n) based on the distribution p(y|θ̂

r
) and estimate

(3.6) by Ê|yrep,i − ỹ,rep,i| := 1
R

∑R
r=1 |y

r
rep,i − ỹrrep,i| and Ê|yrep,i − yi| := 1

R

∑R
r=1 |y

r
rep,i − yi|.

The interval score ISα is based on the (1 − α) 100 % posterior prediction interval defined

by I = [li, ui] where li and ui denote the α
2 and 1 − α

2 quantile of the posterior predictive

distribution for the i-th observation. It rewards narrow prediction intervals and assigns a penalty

for observations which are not covered by the interval. The interval score is defined by

ISα(li, ui, yi) =











−(ui − li) −
2
α
(li − yi) if yi < li

−(ui − li) if li ≤ yi ≤ ui

−(ui − li) −
2
α
(yi − ui) if yi > ui

.

Using the available MCMC output, replicated data sets yrrep = (yrrep,1, .., y
r
rep,n), r = 1, .., R, can

be simulated from which li and ui, i = 1, .., n can be estimated. In order to compare models

based on prediction intervals with both moderate and large coverage, we will use α = 0.1 and

α = 0.5, respectively.

As will be seen in the application, the posterior predictive distribution of the total claim size

in car insurance typically has most of its mass at zero. In particular, zero will in general be

included in the posterior prediction intervals and the interval score will not be appropriate for

model comparison. Here one-sided scores might be more interesting to investigate. Gneiting and

Raftery (2007) propose a proper scoring rule based on the quantiles Qα,i at level α ∈ (0, 1) of
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the predictive distribution for the i-th observation given by

S(Qα,i, yi) = αs(Qα,i) + (s(yi) − s(Qα,i))1{yi≤Qα,i} + h(yi)

for a nondecreasing function s and h arbitrary. We will use this score with the special choice

s(x) = x and h(x) = −αx and refer to the resulting scoring rule as quantile score QSα which is

given by

QSα(Qα,i, yi) = (yi −Qα,i)[1{yi≤Qα,i} − α].

Similar to the interval score, the α-quantile Qα,i of the posterior predictive distribution can be

computed based on the MCMC output and evaluation of the quantile score is straightforward.

The predictive model choice criterion PMCC discussed in the previous section, can be expressed

as a scoring rule as well. The corresponding positively oriented score function is defined by

S(Pθ, yi) = −(E(yrep,i|y) − yi)
2 − V ar(yrep,i|y).

However, this is not a proper scoring rule (see Gneiting and Raftery (2007)) and should be used

with care.

4 Application

The models considered in Section 2 will now be used to analyse a data set from a German car

insurance company. Our main questions of interest for this application are the following: Does

the inclusion of spatial effects, after having adjusted for covariate information, improve the model

fit and can we observe a spatial pattern for the expected number of claims and the expected

claim sizes? Does average claim size of a policyholder depend on the number of observed claims,

i.e. are there significant number of claims effects in the models for claim size? Based on the

models for the number of claims and claim size, we finally approximate the posterior predictive

distribution of the total claim sizes. Here again, we are interested to what extent the inclusion

of spatial and claim number effects influences the total claim sizes.

4.1 Data description

The data set contains information on policyholders in Germany with full comprehensive car

insurance within the year 2000. Not all policyholders were insured during the whole year, however

the exposure time ti of each policyholder is known. Several covariates like age and gender of the

policyholder, kilometers driven per year, type of car and age of car are given in the data. The

deductible which differs between policyholders will also be included as covariate. Germany is

divided into 440 regions, for each policyholder the region he/she is living in is known. We analyse

a subset of these data, in particular we only consider traffic accident data for policyholders with

three types of midsized cars. The resulting data set contains about 350000 observations. Table

1 shows that there is a very large amount of observations with no claim in the data set and the

maximum number of observed claims is only 4.
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number of claims percentage of observations number of observations

0 0.960 338330

1 0.039 13816

2 6.9 · 10−4 243

3 1.7 · 10−5 6

4 2.8 · 10−6 1

Table 1: Summary of the observed claim frequencies in the data.

The histogram of the observed positive individual claim sizes in DM given in Figure 2 reveals

that the distribution of the claim sizes is highly skewed. The average individual claim size is

given by DM 5371.0, the largest observed claim size takes the value DM 49339.1 which is less

than 0.01 % of the sum of all individual claim sizes. Therefore, the use of a Gamma model seems

to be justified.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

500

1000

1500

2000

2500

Figure 2: Histogram of the observed positive individual claim sizes.

For an increasing number of observed claims Table 2 shows that the average individual claim

sizes decrease, indicating a negative correlation between claim size and the number of claims.

all observations Ni = 1 Ni = 2 Ni = 3 Ni = 4

mean 5371.0 5389.9 4403.8 3204.2 330.5

Table 2: Mean of the observed individual claim sizes taken over all observations and over obser-

vations with Ni = k, k = 1, 2, 3, 4 observed claims separately.

4.2 Modelling claim frequency

We first consider models for claim frequency. In order to identify significant covariates and in-

teractions, the data set is first analysed in Splus using a Poisson model without spatial effects.

The obtained covariates specification is then used as a starting specification for our MCMC

algorithms. An intercept, seventeen covariates like age, gender of the policyholders or mileage

and interactions were found to be significant for explaining claim frequency. However, for rea-
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sons of confidentiality no details about these covariates and their effects will be reported. In

order to obtain low correlations between covariates, we use centered and standardized covariates

throughout the whole application. Since Germany is divided into 440 irregular spaced regions,

440 spatial effects are introduced for the MCMC analysis. We are interested in spatial effects

after adjusting for population effects, therefore the population density in each region is included

as covariate as well. In particular, the population density is considered on a logarithmic scale

which turned out to give the best fit in the initial Splus analysis.

The MCMC algorithm for the spatial Poisson regression model introduced in Section 2.1 is run

for 10000 iterations with starting values determined by the corresponding GLM without spa-

tial effects using an iterative weighted least squares algorithm. A burnin of 1000 iterations is

found to be sufficient after investigation of the MCMC trace plots. The trace plots for the re-

gression parameters are presented in Figure 3. The estimated empirical autocorrelations for the
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Figure 3: MCMC trace plots for the regression parameters β1, .., β17.

regression parameters and for 50 randomly chosen spatial effects centered around the intercept,

plotted in Figure 4, decrease reasonably fast. We assume both a model including and without

spatial effects, both containing the same covariates, and compare them using DIC and PMCC.

Although the effective number of parameters pD increases from 16.0 to 98.2, the improvement in

the goodness-of-fit expressed by the posterior mean of the deviance E[D(θ|y)], leads to a lower

value of the DIC when spatial effects are included (see Table 3). This shows that, after taking

the information given by the covariates into account, there is still some unexplained spatial het-

erogeneity present in the data which is captured by the spatial effects. Although the inclusion of
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Figure 4: Estimated empirical autocorrelations for the regression parameters β1, .., β17 and the

spatial effects centered around the intercept β0 + γi for 50 randomly chosen indices i.

the population density in each region allows for geographic differences already, spatial random

effects still have a significant influence on explaining the expected number of claims. The PMCC

given in Table 3 as well confirms these results.

γ DIC E[D(θ|y)] pD PMCC
∑n

i=1(µi − yi)
2

∑n
i=1 σ

2
i

no 122372 122356 16.0 28624 14297 14328

yes 122143 122045 98.2 28613 14280 14334

Table 3: DIC, posterior mean of the deviance D(θ|y), effective number of parameters pD and

PMCC, split in its two components, for the Poisson models for claim frequency with and without

spatial effects γ.

The left panel in the top row in Figure 5 shows a map of the estimated posterior means of the

spatial effects, ranging from -0.441 to 0.285. The corresponding posterior means of the risk factors

exp(γi) for the minimum and maximum spatial effects are given by 0.65 and 1.34, respectively.

A trend from the east to the west of Germany is visible for the spatial effects, the risk for claims

tends to be lower in the east and increases towards the south western regions. A map of 80 %

credible intervals for the spatial effects is given in the right panel. For the eastern and south

western regions significant spatial effects are present, whereas the spatial effects for the regions

in the middle of Germany do not significantly differ from zero.
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number of claims

−0.441 0.285 −1 1

average claim size

−0.215 0.119 −1 1

Figure 5: Map of the estimated posterior means (left) together with map of the 80 % credible

intervals (right) for the spatial effects in the Poisson (top row) and average (bottom row) claim

size regression model. For grey regions, zero is included in the credible interval, black regions

indicate strictly positive, white regions strictly negative credible intervals.

4.3 Modelling the average claim size

In this section the average claim sizes Si :=
∑Ni

k=1 Sik are analysed using the spatial Gamma

regression Model (2.3), i.e. Si|Ni ∼ Gamma(µSi , Niv) with mean specification (2.4). Considering

only observations with a positive number of claims, altogether 14066 observations are obtained.

Again, significant covariates and interactions are identified by analysing the data in Splus first,

assuming a Gamma model without spatial effects. An intercept and fourteen covariates inclu-

ding gender, type and age of car as well as the population density in each region, modelled as

polynomial of order four, have been found to have significant influence. Further, the observed

number of claims Ni is included as covariate. Since the highest number of claims is four, the
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number of claims is treated as a factor with three levels where Ni = 1 is taken as reference

level. These covariates will be taken into account when analysing the data set using MCMC.

Therefore, including spatial and number of claims effects the mean µSi is specified by

µSi = exp(w′
iα + ζj(i)) = exp(

14
∑

l=0

wilαl +

4
∑

k=2

DkiαNi=k + ζj(i))

where Dki =

{

1, Ni = k

0, otherwise
. In the following we consider both models with and without

number of claims effects αNi=k, k = 2, 3, 4 to quantify the influence of these effects. The MCMC

sampler for Model (2.3) including and without spatial effects and the observed number of claims

is run for 10000 iterations. Again a burnin of 1000 is found to be sufficiently large, plots of

the trace plots and the empirical autocorrelations are omitted for brevity reasons. Models are

compared using DIC, PMCC and some of the scoring rules given in Section 3. The lowest

value of the DIC is obtained for the model both including Ni and spatial effects (see Table

4). Although the increase of the estimated effective number of parameters is very small when

model with DIC E[D(θ|y)] pD

αNi=k ζ

yes yes 269092 269020 72.7

yes no 269136 269119 16.5

no yes 269122 269048 73.9

no no 269175 269159 15.9

αNi=k ζ LS ISα=0.5 ISα=0.1 CRPS PMCC
∑

n

i=1(µi − yi)
2

∑

n

i=1 σ
2
i

yes yes -9.5642 -55760 -20412 -2471.9 7.332 · 1011 3.540 · 1011 3.792 · 1011

yes no -9.5699 -56125 -20526 -2481.8 7.363 · 1011 3.575 · 1011 3.788 · 1011

no yes -9.5669 -55805 -20434 -2474.2 7.290 · 1011 3.538 · 1011 3.752 · 1011

no no -9.5734 -56170 -20575 -2484.3 7.321 · 1011 3.580 · 1011 3.741 · 1011

Table 4: DIC, posterior mean of the deviance D(θ|y), effective number of parameters pD and

mean score Sn(θ) for scoring rules LS, ISα (α = 0.5, 0.1), CRPS and PMCC, split in its two

components, for the average claim size models including and without spatial and claim number

effects.

the number of claims is included as covariate, the value of the posterior mean of the deviance

decreases by 28 and 40 in the model with and without spatial effects respectively, indicating a

significant improvement. The results for the scoring rules and the PMCC, divided into its two

components are reported in Table 4 as well. The computation of DIC, PMCC and the scores is

based on 5000 iterations of the MCMC output, the first 5000 iterations are neglected. Note, that

the computation of the interval score ISα and the continuous ranked probability score CRPS is

based on simulated data, whereas the logarithmic score LS and the PMCC are calculated directly
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using the MCMC output. For the logarithmic score LS, the interval score ISα and the CRPS

the highest mean score Sn(θ) is obtained for the model including spatial effects and number of

claims effects. This confirms the significance of spatial and number of claims effects. According

to the negatively oriented PMCC the spatial models also are to be preferred to the non-spatial

ones. However, lower values of PMCC are obtained for the models without number of claims

effects which is mainly caused by the second term of PMCC. Here it should be kept in mind,

that PMCC is not a proper scoring rule as noted in Section 3.2.

A map of the posterior means and the 80 % credible intervals of the spatial effects for the model

both including spatial effects and Ni is given in the bottom row in Figure 5. Similar results are

obtained for the model without Ni. The estimated posterior means of the risk factors exp(γi) for

the minimum and maximum spatial effects range from 0.81 to 1.13. Contrary to the estimated

spatial effects for claim frequency, the average claim size tends to be higher for some regions in

the east of Germany, whereas for regions in the south western part lower claim sizes are to be

expected. Again, according to the 80 % credible intervals, the spatial effects are only significant

for some regions in the east and the south west of Germany.

parameter posterior mean of αNi=k posterior mean of exp(αNi=k)

αN(i)=2 -0.295 0.745

(−0.382,−0.203) (0.683, 0.817)

αN(i)=3 -1.951 0.146

(−2.376,−1.462) (0.093, 0.232)

αN(i)=4 -2.642 0.082

(−3.473,−1.544) (0.031, 0.214)

Table 5: Estimated posterior means of the number of claims effects and the risk factors

exp(αN(i)=k) in the Gamma model for average claim sizes including spatial effects, with the

95 % credible intervals given in brackets.

The estimated posterior means together with 95 % credible intervals of the number of claims

effects αNi=k, k = 2, 3, 4 are reported in Table 5. For an easier interpretation of the results we

also give the estimated posterior means of the factors exp(αNi=k), k = 2, 3, 4, which quantify the

relative risk in contrast to observations with the same covariates but only one observed claim.

Compared to a policyholder with one observed claim, the expected average claim size for an

observation with two observed claims decreases by about 25 %. If three or four claims have been

reported, the expected average claim size even decreases by about 75 % and 92 %, respectively.

4.4 Posterior predictive distribution of the total claim size

The distribution of the total claim size is not available analytically, but can be determined

numerically using recursion formulas going back to Panjer (1981) when independence of claim

size and claim frequency is assumed and no regression is present. In contrast in our approach,

the independence assumption is violated and spatial regression models are considered. However,
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based on the MCMC output of the models for the number of claims and the average claim

size the posterior predictive distribution of the total claim size can be approximated. For this

independence of claim size and the number of claims is not required. In the following we describe

how the total claim size STi =
∑Ni

k=1 Sik for policyholder i = 1, .., n can be simulated based on

the MCMC output. Let β̂
r
, γ̂r,α̂r, ζ̂

r
, r = 1, .., R denote the MCMC draws after burnin for the

regression parameters and spatial effects of the claim frequency and average claim size model,

respectively. The quantities v̂r denote the MCMC draws of v in the Gamma model for average

claim sizes. Then, for r = 1, .., R, proceed as follows.

• simulate N r
i ∼ Poisson(µ̂i

Nr) where µ̂i
Nr := ti exp(x′

iβ̂
r
+ γ̂r

j(i))

• if N r
i = 0 set STri = 0

• otherwise simulate:

Sri ∼ Gamma(µ̂Sri , v̂
rN r

i ) where µ̂i
Sr := exp(w′

iα̂
r + ζ̂r

j(i)) and set STri := N r
i · Sri

Thus, a sample STri , r = 1, .., R of the total claim size STi is obtained for which the posterior

predictive distribution of STi can be approximated. Note that the Bayesian inference only pro-

vides information on number of claims effects αNi=k for number of claims up to k = 4, while

the simulated number of claims N r
i are not restricted to take values less or equal to 4. However,

since in our simulations only very rarely, if at all, a number of claims greater than 4 was simu-

lated, this effect can be neglected. In order to compare the simulated total claim sizes STi based

on the different models for claim size and claim frequency, we compute the continuous ranked

probability score CRPS and the predictive model choice criterion PMCC. DIC and the logarith-

mic score cannot be computed here, since they require the explicit form of the total claim size

distribution which is not available. The interval score will also be omitted out of the following

reasons: Due to the large amount of observations with zero claims in our data set, the percentage

of simulations with total claim size equal to zero is also very high. Zero will be included in the

(1−α) 100 % posterior predictive intervals of the total claim sizes for α = 0.5, 0.1 for almost all

observations. Therefore only observations above the upper quantiles of the prediction intervals

would be considered as outliers and be penalized. Hence, the use of the interval score will not

be appropriate any more. Instead we consider one-sided quantities here like the quantiles Qα at

level α = 0.95, 0.99 and the number of observations falling above these quantiles and compute

the quantile score QSα described in Section 3.2 for α = 0.95, 0.99. Both the scores as well as

the PMCC are computed using 5000 simulations of the total claim sizes STi . The results are

reported in Table 6.

The PMCC favours the simulations based on the models including spatial effects for the number

of claims only, further better results are achieved when number of claims effects are taken into

account. This is caused especially by the second term of the PMCC, representing the model

variances, which are considerably lower when the number of claims is included as covariate in

the claim size models.

The mean scores for the CRPS and the quantile scores QSα, α = 0.95, 0.99, are very close for all
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freq size

γ ζ PMCC
∑

n

i=1(µi − yi)
2

∑

n

i=1 σ
2
i

with αNi=k

yes yes 1.5757 · 1012 7.8032 · 1011 7.9540 · 1011

no no 1.5735 · 1012 7.8069 · 1011 7.9279 · 1011

yes no 1.5710 · 1012 7.8046 · 1011 7.9089 · 1011

no yes 1.5856 · 1012 7.8088 · 1011 8.0477 · 1011

without αNi=k

yes yes 1.5960 · 1012 7.8055 · 1011 8.1541 · 1011

no no 1.5909 · 1012 7.8088 · 1011 8.1000 · 1011

yes no 1.5894 · 1012 7.8072 · 1011 8.0871 · 1011

no yes 1.6052 · 1012 7.8108 · 1011 8.2414 · 1011

freq size 95 % 99 %

γ ζ CRPS quantile outliers QS0.95 quantile outliers QS0.99

with αNi=k

yes yes -212.26 476.3 3.60 % -205.2 6400.6 1.15 % -134.9

no no -212.35 456.0 3.65 % -205.7 6426.9 1.16 % -135.5

yes no -212.27 480.7 3.60 % -205.3 6393.5 1.17 % -135.4

no yes -212.36 460.0 3.65 % -205.8 6454.0 1.16 % -135.5

without αNi=k

yes yes -212.30 473.6 3.60 % -205.2 6433.6 1.16 % -135.3

no no -212.30 453.8 3.65 % -205.7 6455.1 1.16 % -135.5

yes no -212.28 477.8 3.60 % -205.3 6422.6 1.17 % -135.7

no yes -212.34 456.2 3.65 % -205.9 6482.1 1.16 % -135.7

Table 6: In the upper table the PMCC, split in its two components is given for several models

for the simulated total claim sizes STi . In the lower table the mean score Sn(θ) for the CRPS,

the average 95 % and 99 % quantiles given by 1
n

∑n
i=1Qα,i, the percentage of observations lying

above these quantiles and the corresponding quantile mean scores QSα, α = 0.95, 0.99, are given.

models, in general slightly higher scores are obtained for simulations based on a spatial Poisson

model for the number of claims. Further, the simulations based on a spatial model for both claim

frequency and claim size and including number of claims effects tend to achieve the highest score.

The average size of the quantiles seems to be mainly determined by the inclusion or neglect of

spatial effects in the Poisson model for the number of claims. The quantiles at level α = 0.95

are higher when spatial effects are included for the number of claims, reflecting a higher model

complexity. The percentage of observations above the 95 % quantile ranges from 3.60 % to

3.65 %, lying below the expected 5 %. This might be caused by the above noted fact. Since for

some observations even the 95 % quantile will be zero, a zero observation will not be regarded

as an outlier. This might be overcome by randomizing zero observations, i.e. considering zero
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observations as outliers with a certain probability when the 95 % quantile takes the value zero.

The 99% quantiles in contrast, are slightly higher when no spatial Poisson models are assumed,

the percentage of outliers is close to the expected 1 %.

In Figure 6 map plots of the observed total claim sizes and the posterior predictive means
1
R

∑R
r=1 S

Tr
i of the simulated total claim sizes, averaged over each region, are given. Since we

only consider the posterior predictive mean of the simulated total claim sizes, it is natural that

the map displaying the true total claim sizes shows more extreme values. Hence, for a better

visual comparison of the maps, we have built six classes for the total claim size in these plots,

assuming equal length for the four middle classes, but summarizing extremely small or high

values in broader classes. The simulations are based on the models for average claim sizes with the

number of claims included as covariate. When spatial effects are included in the Poisson model

(middle row), an increasing trend from the east to the west is observable for the simulated total

claim sizes. The additional inclusion of spatial effects for the average claim size leads to small

changes in the very eastern and south western parts of Germany. The rough spatial structure of

the observed total claim sizes (top) is represented reasonable well for these two models. However,

if spatial effects are only included for the average claim sizes, the regions with high observed

total claim sizes in the middle and south western parts of Germany are not detected. The same

holds for the simulations based on the models without any spatial effects. For regions in the

east of Germany with rather low true total claim sizes for example, the mean of the total claim

sizes is estimated up to 1.27 times as high when no spatial effects at all are taken into account

compared to a spatial modelling of claim frequency and claim size. For one south western region

with large observed total claims in contrast, the posterior mean of the simulated total claim size

based on non spatial models is only estimated 0.69 times as large compared to the simulations

based on spatial models for claim frequency and claim size.

The estimated probabilities for the total claim sizes being equal to zero as well as density

estimates of the positive simulated total claim sizes of the policyholders in the two regions

Hannover and Lörrbach are given in Figure 7. For Hannover which is located in the northern

middle part of Germany the largest posterior mean of the spatial effect in the average claim

size model was estimated (ζ̂ = 0.12), while in Lörrbach which is situated in the south west of

Germany the smallest effect ζ̂ = −0.22 was observed. The observed total claim size, averaged

over all policyholders in the region, is given by DM 335.0 in Hannover and DM 220.0 in Lörrbach,

respectively. The estimated posterior means of the spatial effects in the Poisson model for the

number of claims are given by γ̂ = −0.10 in Hannover and γ̂ = 0.29 in Lörrbach. Figure 7

shows that the estimated probability for zero total claim sizes and the density estimates of

the positive total claim sizes notedly change when spatial effects are included in the models

for claim frequency and average claim size. In Hannover, the inclusion of spatial effects in the

models for claim frequency and the average claim size leads to a higher estimated probability

of zero total claim sizes and heavier tails for the estimated density of the positive total claim

sizes. The posterior predictive mean of the total claim sizes, averaged over all policyholders in

Hannover, takes the value 254.3 when spatial effects are included which is closer to the observed
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Figure 6: Observed total claim sizes (top) and posterior predictive means of the simulated total

claim sizes based on Poisson and Gamma models for average claim sizes with and without spatial

effects. Grey level classification: [0, 100), [100, 150), [150, 200), [200, 250), [200, 300), [300,∞)
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total claim size than without spatial effects where the posterior predictive mean takes the value

252.3. In Lörrbach in contrast, the estimated probability for zero total claim sizes decreases

and more mass is given to small positive total claim sizes when spatial effects are added. Here

again the posterior predictive mean of the total claim sizes, averaged over all policyholders in

Lörrbach, is closer to the observed total claim size when spatial effects are taken into account

(218.4) compared to simulations based on the non spatial models where the posterior predictive

mean is estimated as 201.9.
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Figure 7: Estimated probabilities for zero total claim sizes (left panel) and density estimates

of the positive total claim sizes (right panel) of the policyholders in the regions Hannover and

Lörrbach based on spatial (solid lines) and non spatial (dashed lines) models for both claim

frequency and average claim size.

Ideally, when the predictive quality of models is of interest, the data should not be used twice,

i.e. parameter estimation should be based on part of the data only and predictions should be

done for the remaining data. Since in this section model comparison rather than prediction was

the focus, all data were used for parameter estimation and simulation of the total claim sizes.

However, for the sake of completeness, we also fitted the Poisson models for claim frequency and

the Gamma models for the average claim size based on 75 % of the data only. Then we simulated

from the predictive distributions of the total claim sizes for the remaining 25 % of the data and

assessed performance by comparing to the observed total claim sizes. The in Table 7 reported

results for PMCC, CRPS and the quantile scores are qualitatively the same as observed before.

The mean scores are very close for all models, the quantile scores give a slight preference to

simulations based on a spatial Poisson model. Note, that the mean scores take lower values now

compared to the simulations based on all data. Further, about 9 % of the observations exceed

the 95 % quantile, about 2.9 % are above the 99 % quantile. This shows, that prediction of the

true total claim sizes is worse here. However, this is to be expected, since the information given

in these 25 % of the data has not been accounted for in parameter estimation.
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freq size

γ ζ PMCC
∑

n

i=1(µi − yi)
2

∑

n

i=1 σ
2
i

with αNi=k

yes yes 4.0026 · 1011 2.0460 · 1011 1.9567 · 1011

no no 4.0013 · 1011 2.0465 · 1011 1.9548 · 1011

yes no 3.9932 · 1011 2.0460 · 1011 1.9470 · 1011

no yes 4.0193 · 1011 2.0475 · 1011 1.9718 · 1011

without αNi=k

yes yes 4.0472 · 1011 2.0467 · 1011 2.0005 · 1011

no no 4.0447 · 1011 2.0468 · 1011 1.9979 · 1011

yes no 4.0384 · 1011 2.0467 · 1011 1.9917 · 1011

no yes 4.0627 · 1011 2.0482 · 1011 2.0145 · 1011

freq size 95 % 99 %

γ ζ CRPS quantile outliers QS0.95 quantile outliers QS0.99

with αNi=k

yes yes -213.73 470.3 8.9 % -207.2 6376.2 2.9 % -139.4

no no -213.75 451.4 9.0 % -207.5 6411.0 2.9 % -139.3

yes no -213.76 472.3 8.9 % -207.3 6370.3 2.9 % -139.3

no yes -213.82 452.0 9.0 % -207.7 6247.5 2.9 % -139.8

without αNi=k

yes yes -213.77 467.2 8.9 % -207.3 6412.0 3.0 % -139.3

no no -213.80 448.3 9.0 % -207.4 6444.1 2.9 % -139.4

yes no -213.72 469.3 8.9 % -207.4 6403.0 2.9 % -139.5

no yes -213.75 448.6 9.0 % -207.8 6459.9 2.9 % -140.6

Table 7: PMCC, split in its two components, mean score Sn(θ) for the CRPS, the average

95 % and 99 % quantiles given by 1
n

∑n
i=1Qα,i, the percentage of observations lying above these

quantiles and the corresponding quantile mean scores QSα, α = 0.95, 0.99, for several models

for the simulated total claim sizes STi . Parameter estimation is based on 75 % of the data,

for remaining 25 % of the data total claim sizes are simulated from the posterior predictive

distribution.

5 Summary and conclusions

We have presented a Bayesian approach for modelling claim frequency and average claim size

taking both covariates and spatial effects into account. In contrast to the common approach

where independence of the number of claims and claim size is assumed, we do not need this as-

sumption. Instead, we have shown, that by including the observed number of claims as covariate

for claim size, the models for claim size are significantly improved. If for example a policyholder

caused two or three claims, the expected average claim size decreases by about 25 % and 75 %,

respectively, compared to a policyholder with only one claim. Based on the models for claim
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frequency and average claim sizes, we finally approximated the posterior predictive distribution

of the total claim sizes using simulation.

For model selection we suggest the use of proper scoring rules for continuous variables based

on the posterior predictive distribution. In particular, some of the presented scoring rules can

also be estimated for the total claim size, although the distribution of the total claim size is not

available analytically. According to the scoring rules and the PMCC, especially the inclusion of

spatial effects in the model for claim frequency leads to improved predictions of the total claim

sizes in our data set. However, the inclusion of number of claims effects in the claim size models

for our data set hardly affects the total claim sizes according to the scoring rules. This can be

explained by the fact, that very rarely more than one claim is simulated in accordance with the

observed data and therefore number of claims effects have almost no impact. It is to be expected

that for other data sets which are based for example on longer time horizons, thus having more

observations with more than one claim, this modelling framework which allows for dependencies

between number of claims and claim size will become very important for total claim size models.

The number of claims might also be modelled using more flexible models allowing for overdis-

persion like for example the negative binomial distribution, the generalised Poisson distribution

introduced by Consul and Jain (1973) or zero inflated models, see Gschlößl and Czado (2006)

for more details. However, for the data set analysed in this paper, the Poisson distribution was

sufficient.
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