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Abstract

This paper focuses on an extension of zero-inflated generalized Poisson (ZIGP) regression models

for count data. We discuss generalized Poisson (GP) models where dispersion is modelled

by an additional model parameter. Moreover, zero-inflated models in which overdispersion is

assumed to be caused by an excessive number of zeros are discussed. In addition to ZIGP

models considered by several authors, we now allow for regression on the overdispersion and

zero-inflation parameters. Consequently, we propose tools for an exploratory data analysis on

the dispersion and zero-inflation level. An application dealing with outsourcing of patent filing

processes will be used to compare these nonnested models. The model parameters are fitted by

maximum likelihood using our R package ”ZIGP” available on CRAN. Asymptotic normality

of the ML estimates in this non-exponential setting is proven. Standard errors are estimated

using the asymptotic normality of the estimates. Appropriate exploratory data analysis tools

are developed. Also, a model comparison using AIC statistics and Vuong tests is carried out.

For the given data, our extended ZIGP regression model will prove to be superior over GP

and ZIP models and even over ZIGP models with constant overall dispersion and zero-inflation

parameters demonstrating the usefulness of our proposed extensions.
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1 Introduction

This paper considers zero-inflated generalized Poisson (ZIGP) regression models. The general-

ized Poisson distribution has first been introduced by Consul and Jain (1970). ZIGP models

have recently been found useful for the analysis of count data with a large amount of zeros

(for score tests, see e.g. Famoye and Singh (2003), Gupta et al. (2004), Bae et al. (2005)

and Famoye and Singh (2006), for mixing property see Joe and Zhu (2005) and for a Baeysian

approach see Gschlößl and Czado (2006)). It is a large class of regression models which contains

zero-inflated Poisson (ZIP), generalized Poisson (GP) and Poisson regression (for ZIP, see e.g.

Lambert (1992), for GP see e.g. Consul and Famoye (1992) and Famoye (1993)). The interest

in this class of regression models is driven by the fact that it can handle overdispersion and/or

zero-inflation, which count data very often exhibit. Here we allow for regression not only on the

mean but on the overdispersion and zero-inflation parameters. This allows us to model individ-

ual overdispersion and zero-inflation by groups (e.g. by gender of an insured person). The aim

is to improve model fit in those cases in which overall dispersion or zero-inflation parameters are

insufficient. At the same time, we are interested in keeping the model complexity in terms of

additional parameters low. Here we would like to mention a paper by Ghosh et al. (2006) which

considers an alternative flexible class of zero-inflated regression models associated with power

series distributions. The authors present a Bayesian approach for the above class of regressions

models and also allow for regression on zero-inflation level.

Since the ZIGP distribution does not belong to the exponential family, the regression model

is no generalized linear model (GLM). Further the existing asymptotic theory for GLM and

its extensions considered so far is not applicable for these models. Therefore we develop the

appropriate asymptotic theory and investigate the small sample properties of the maximum

likelihood estimates.

A comparison of nine models extending the regular Poisson GLM by dispersion and zero-

inflation parameters will be facilitated. Since these models might be nonnested, partial deviance,

likelihood ratio tests or the AIC criterion are not applicable. Instead we use a test proposed by

Vuong (1989) for nonnested models.

The usefulness of our extensions will be demonstrated in an application dealing with patent

outsourcing. We investigate make-or-buy decision drivers for the patent filing process. This data

has already been examined by Wagner (2006), who used a negative binomial regression approach.

Currently, there are only basic studies on the general determinants of outsourcing available. Sako

(2005) states that offshoring even of services such as medical diagnosis, patent filing, payroll and

benefits administration has become easy with the growth of information technology. Abraham

and Taylor (1996) name possible reasons for outsourcing behaviour, such as wage and benefit

savings or availability of specialized skills. We focus on firm specific attributes such as the

R&D spending per employee or patent. Also, Amit and Schoemaker (1993) recommend that a

company’s decision should depend on the value of the corporate tasks and hence the resources

necessary for the provision of these tasks. To analyse this complex data, we develop exploratory

data analysis tools for overdispersion and zero-inflation. We see that heterogeneity is high and

strongly depends on a company’s industry. We illustrate step-by-step that all enhancements are

useful for this data. A graphical model interpretation will be performed comparing our results

with those obtained by Wagner (2006).

This paper is organized as follows: Section 2 introduces our regression model. The necessary

asymptotic theory is discussed in Section 3. Section 4 gives an overview of possible model
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extensions of the Poisson GLM and summarizes AIC and the Vuong test for model selection.

Tools for an exploratory data analysis will be proposed in Section 5 and applied to our data

afterwards. Section 6 investigates covariate effects on the mean response and the overdispersion

factor as well as interprets the results. We conclude with a summary and discussion. The Fisher

information matrix and a sketch of the proof of Theorem 1 are given in the Appendix.

2 ZIGP (µi, ϕi, ωi) regression

Famoye and Singh (2003) introduced a zero-inflated generalized Poisson ZIGP (µi, ϕ, ω) re-

gression model. The generalized Poisson GP (µ, ϕ) distribution was first introduced by Con-

sul and Jain (1970) and subsequently studied in detail by Consul (1989). We refer to its

mean parametrization (see e.g. Consul and Famoye (1992)). For X ∼ GP (µ, ϕ) we have

V ar(X) > (=, <) E(X) ⇔ ϕ > (=, <) 1. This allows for modelling over- and underdisper-

sion. However in the case of underdispersion (ϕ < 1), the support of the distribution depends

on µ and ϕ, which is difficult to enforce when µ and ϕ need to be estimated. Further, in the

regression context this fact implies that the support of a link function for ϕ depends on µ. There-

fore, we restrict to the case of overdispersion. A ZIGP distribution is defined analogously to a

zero-inflated Poisson (ZIP) distribution (see Mullahy (1986)) with an additional zero-inflation

parameter ω. Thus, this distribution has three parameters µ, ϕ and ω and will be denoted by

X ∼ ZIGP (µ, ϕ, ω). Its probability density function (pdf) is given by

P (Y = y| µ, ϕ, ω) = 1l{y=0}

[

ω + (1 − ω)e
− µ

ϕ

]

+1l{y>0}

[

(1 − ω)
µ(µ + (ϕ − 1)y)y−1

y!
ϕ−ye

− 1
ϕ

(µ+(ϕ−1)y)
]

, (2.1)

where ϕ > max(1
2 , 1− µ

m) and m is the largest natural number with µ + m(ϕ− 1) > 0, if ϕ < 1.

Mean and variance of the ith observation Yi ∼ ZIGP (µi, ϕ, ω) are given by

E(Yi|X = xi) = (1 − ω)µi (2.2)

and σ2
i := V ar(Yi|X = xi) = E(Yi|X = xi)

(

ϕ2 + µiω
)

. (2.3)

One of the main benefits of considering a regression model based on the ZIGP distribution is

that it allows for two sources of overdispersion, one by mixing (see Joe and Zhu (2005)) and

one by zero-inflation. It reduces to Poisson regression when ϕ = 1 and ω = 0, to GP regression

when ω = 0 and to ZIP regression when ϕ = 1.

In some data sets a constant overdispersion and/or constant zero-inflation parameter might

be too restrictive. Therefore, we extend the regression model of Famoye and Singh (2003) by

allowing for regression on ϕ and ω. We denote this model as a ZIGP (µi, ϕi, ωi) regression

model with response Yi and (known) explanatory variables xi = (1, xi1, . . . , xip)
t for the mean,

wi = (1, wi1, . . . , wir)
t for overdispersion and zi = (1, zi1, . . . , ziq)

t for zero-inflation, i = 1, . . . , n.

For individual observation periods, we allow exposure variables Ei, which satisfy Ei > 0 ∀ i.

1. Random components:

{Yi, 1 ≤ i ≤ n} are independent with Yi ∼ ZIGP (µi, ϕi, ωi).

2. Systematic components:

Three linear predictors ηµ
i (β) = xt

iβ, ηϕ
i (α) = wt

iα and ηω
i (γ) = zt

iγ, i = 1, . . . , n influence

the response Yi. Here, β = (β0, β1, . . . , βp)
t, α = (α0, α1, . . . , αr)

t and γ = (γ0, γ1, . . . , γq)
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are unknown regression parameters. The matrices X = (x1, . . . ,xn)t, W = (w1, . . . ,wn)t

and Z = (z1, . . . ,zn)t are called design matrices.

3. Parametric link components:

The linear predictors ηµ
i (β), ηϕ

i (α) and ηω
i (γ) are related to the parameters µi(β), ϕi(α)

and ωi(γ), i = 1, . . . , n as follows:

(i) Mean level

E(Yi | β) = µi(β) := Eie
xt

iβ = ext
iβ+log(Ei) > 0

⇔ ηµ
i (β) = log(µi(β)) − log(Ei) (log link), (2.4)

(ii) Overdispersion level

ϕi(α) := 1 + ewt
iα > 1

⇔ ηϕ
i (α) = log(ϕi(α) − 1)) (modified log link), (2.5)

(iii) Zero-inflation level

ωi(γ) :=
ezt

iγ

1 + ezt
iγ

∈ (0, 1)

⇔ ηω
i (γ) = log

(

ωi(γ)

1 − ωi(γ)

)

(logit link). (2.6)

It should be noted that the link function for the zero-inflation level does not allow for no

zero-inflation. A modification which would allow this, would require complex restrictions on

the range of the mean values, which is not desirable. Since we will conduct nonnested model

comparisons, this model restriction is not severe. The unknown parameters are collected in δ,

i.e. δ := (βt, αt, γt)t, and its maximum likelihood (ML) estimate will be denoted by δ̂. The

following abbreviations for i = 1, . . . , n will be used:

µi(β) := ext
iβ+log(Ei), P 0

i (δ) := exp

(

−Ei·e
xt

i
β

1+e
wt

i
α

)

bi(α) := ewt
iα, ϕi(α) := 1 + bi(α),

ki(γ) := ezt
iγ, ωi(γ) := ki(γ)

1+ki(γ) .

For observations y1, . . . , yn, the log-likelihood of a ZIGP (µi, ϕi, ωi) regression can be written as

l(δ) =

n
∑

i=1

1l{yi=0}

[

log

(

ezt
iγ + exp

(

−Ei · ext
iβ

1 + ewt
iα

))

− log(1 + ezt
iγ)

]

+1l{yi>0}

[

− log(1 + ezt
iγ) + log(Ei) + xt

iβ − log(yi!) − yi log(1 + ewt
iα)

+(yi − 1) log(Ei ext
iβ + ewt

iαyi) −
Ei ext

iβ + ewt
iαyi

1 + ewt
iα

]

. (2.7)

Second, the score vector has the following representation:

sn(δ) = (s0(δ), . . . , sp(δ), . . . , sp+r+1(δ), . . . , sp+r+q+2(δ))t , (2.8)

where
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sm(δ) :=
∂

∂βm
l(δ) =

n
∑

i=1

xim

(

1l{yi=0}

[−P 0
i (δ)µi(β)/ϕi(α)

ki(γ) + P 0
i (δ)

]

+1l{yi>0}

[

1 +
(yi − 1)µi(β)

µi(β) + bi(α)yi
− 1

ϕi(α)
µi(β)

]

)

, m = 0, . . . , p, (2.9)

sp+1+m(δ) :=
∂

∂αm
l(δ) =

n
∑

i=1

wimbi(α)

(

1l{yi=0}

[

P 0
i (δ)µi(β)/ϕi(α)2

ki(γ) + P 0
i (δ)

]

+1l{yi>0}

[

(yi − 1)yi

µi(β) + bi(α)yi
− yi

ϕi(α)
+

µi(β) − yi

ϕi(α)2

]

)

,

m = 0, . . . , r, (2.10)

sp+r+2+m(δ) :=
∂

∂γm
l(δ) =

n
∑

i=1

zimki(γ)

(

1l{yi=0}

[

1

ki(γ) + P 0
i (δ)

]

− 1

1 + ki(γ)

)

,

m = 0, . . . , q. (2.11)

To compute δ̂, we simultaneously solve the equations obtained by equating the score vector

(2.8) to zero. The Fisher information F n(δ) is needed for the variance estimation of the ML

estimates. It is calculated in the appendix. The R package ”ZIGP” available on CRAN facilitates

ML estimation of the ZIGP (µi, ϕi, ωi) models.

3 Asymptotic Theory and small sample properties for

ZIGP (µi, ϕi, ωi) regression models

Since the ZIGP regression model is not a GLM, we need to prove existence, consistency and

asymptotic normality of the ML estimate δ̂. In analogy to Fahrmeir and Kaufmann (1985) we

will use the Cholesky square root of the Fisher information matrix to norm the ML estimator.

The left Cholesky square root A1/2 of a positive definite matrix A is given by the unique

lower triangular matrix A1/2(A1/2)t = A, which has positive diagonal elements. We write

At/2 := (A1/2)t. In addition to that, let λmax(A) and λmin(A) be the largest and smallest

eigenvalues of A, respectively. For vectors we use the L2 norm ‖ · ‖2, for matrices the spectral

norm ‖A‖2 = λmax(AtA)1/2 = sup
‖u‖2=1

‖Au‖2. The vector δ0 :=
(

βt
0, α

t
0, γ

t
0

)t
consists of the

true - yet unknown - model parameters. In addition, we define a neighborhood of the true

parameter vector δ0 by Nn(ε) := {δ : ‖F t/2
n (δ0)(δ − δ0)‖ ≤ ε} for ε > 0. Also, let ∂Nn(ε) =

{δ : ‖F t/2
n (δ0)(δ − δ0)‖ = ε}. For simplicity, we omit the arguments δ0, β0, α0 and γ0. Then,

we write µi instead of µi(β0), ϕi instead of ϕi(α0), ki for ki(γ0) and P 0
i for P 0

i (δ0). Admissible

sets for β, α and γ are B, A and G. We assume deterministic compact regressors. Further

assumptions for the theorem are:

(A1) (Divergence) Let n
λmin(Fn) ≤ C1 ∀ n ≥ 1, where C1 is a positive constant,

(A2) (Compact regressors) The sets {xn, n ≥ 1} ⊂ Kx ⊂ R
p+1, {wn, n ≥ 1} ⊂ Kw ⊂ R

r+1

and {zn, n ≥ 1} ⊂ Kz ⊂ R
q+1 are compact sets,
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(A3) (ZIGP (µi, ϕi, ωi) regression)

Link functions are used as introduced for ZIGP (µi, ϕi, ωi) regression. Moreover, let δ0 be

an interior point of B × A × G, where B ⊂ R
p+1, A ⊂ R

r+1 and G ⊂ R
q+1 are open sets.

Theorem 1 (Consistency and Asymptotic Normality of the ML estimates). Given (A1) - (A3),

there is a sequence of random variables δ̂n such that

(i) P (sn(δ̂n) = 0) → 1, for n → ∞ (asymptotic existence (AE)),

(ii) δ̂n
P→ δ0, for n → ∞ (weak consistency (WC)),

(iii) F
t/2
n (δ̂n − δ0)

D⇒ Np(0, Ip+r+q+3), for n → ∞ (asymptotic normality (AN)).

A sketch of the proof can be found in the appendix.

Further, we investigated the convergence speed of the distribution of the ML estimates to

their normal approximation in a simulation study.

We generated sets of 1000 random vectors of length n. For each of the three parameters

we used linear predictors consisting of an intercept and an additional regressor with equidistant

values. Corresponding QQ plots of the standardized ML estimates are given in Figure 1. We see

that the performance for the mean (β) and zero-inflation (γ) regression parameters is satisfactory

even for a smaller sample size, while large sample sizes are needed for the overdispersion (α)

regression parameters. Further parameter settings were investigated. In particular increasing

the µi range results in a lower convergence speed, while increasing dispersion or zero-inflation

resulted in lower convergence speed (for details see Erhardt (2006)).

4 Model Comparison

The tree in Figure 2 sketches an evolution of nine models starting from (1) Poisson regression

to (9) ZIGP (µi, ϕi, ωi) regression described in Section 2. A covariate being significant in terms

of the Wald test (e.g. in the mean design of Poi(µi)) can be insignificant in another model (say

ZIGP (µi, ϕ, ω)). The same holds for dispersion and zero-inflation designs. Therefore, the full

pool of covariates chosen in an exploratory data analysis will be checked for significance in each

model individually. We used sequential elimination of insignificant effects. As design matrices

may thus be different, these models need not be nested. For nested model comparisons one can

use the AIC (see e.g. Heiberger and Holland (2004, p. 572)), while for nonnested models we use

a test proposed by Vuong (1989).

A covariate being significant in terms of the Wald test (e.g. in the mean design of Poi(µi)) can

be insignificant in another model (say ZIGP (µi, ϕ, ω)). The same holds for dispersion and zero-

inflation designs. Therefore, the full pool of covariates chosen in an exploratory data analysis

will be checked for significance in each model individually. We used sequential elimination of

insignificant effects. As design matrices may thus be different, these models need not be nested.

For nested model comparisons one can use the AIC (see e.g. Heiberger and Holland (2004, p.

572)), while for nonnested models we use a test proposed by Vuong (1989).

Vuong compares two regression models which need not to be nested (see Vuong (1989)). The

Kullback–Leibler information criterion KLIC (Kullback and Leibler (1951)) is a measure for

the ’distance’ between two statistical models. We have

KLIC := E0[log h0(Yi|xi)] − E0[log f(Yi|vi, δ̂)], (4.1)
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Figure 1: QQ-Plots of centered and normed ML estimates based on N = 1000 data sets

where h0(·|·) is the true conditional density of Yi given xi (i.e., the true but unknown model),

E0 is the expectation given the true model, and δ̂ is an estimate of δ in model with f(Yi|vi, δ̂)

(which is not the true model). Generally, the better of two models is the one with smaller

KLIC, for it is closer to the true, but unknown, specification. If model 1 is closer to the true

specification, we have

E0[log h0(Yi|xi)] − E0[log f1(Yi|vi, δ̂
1
)] < E0[log h0(Yi|xi)] − E0[log f2(Yi|wi, δ̂

2
)]

⇔ E0 log
f1(Yi|vi, δ̂

1
)

f2(Yi|wi, δ̂
2
)

> 0. (4.2)

Vuong defines statistics mi := log

(

f1(yi|vi,δ̂
1
)

f2(yi|wi,δ̂
2
)

)

, i = 1, . . . , n. Then m = (m1, . . . , mn)t is a
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(1) Poi(µi)

(2) ZIP(µi, ω) (1) (4) GP(µi, ϕ) (2)

(6) ZIGP(µi, ϕ, ω) (1),(2)

(3) ZIP(µi, ωi) (5) GP(µi, ϕi)

(7) ZIGP(µi, ϕ, ωi)
(2) (8) ZIGP(µi, ϕi, ω) (1)

(1)ω ∈ [0, 1]

(9) ZIGP(µi, ϕi, ωi)
(2)ϕ ∈ [1,∞)

Figure 2: Overview of model enhancements of the Poisson GLM

random vector with mean µm
0 = (µm

1 , . . . , µm
n )t := E0(m), if h0 is the true probability mass

function. Hence, we can test H0: µm
0 = 0 against H1 : µm

0 6= 0. In other words: ’both models

are equally close to the true specification.’ Mean µm
0 , however, is unknown. Therefore, Vuong

considers the test statistic ν defined below and shows that under H0

ν :=

√
n[ 1

n

∑n
i=1 mi]

√

1
n

∑n
i=1(mi − m̄)2

D→ N(0, 1), (4.3)

where m̄ := 1/n
∑n

i=1 mi. This allows to construct an asymptotic α-Level test of H0: µm
0 = 0

versus H1: not H0. It rejects H0 if and only if |ν| ≥ z1−α
2
, where z1−α

2
is the (1 − α

2 )–quantile

of the standard normal distribution. The test chooses model 1 over 2, if ν ≥ z1−α
2
. This is

reasonable since significantly high values of ν indicate a higher KLIC of model 1 compared to

model 2 according to formula (4.2). Analogously, model 2 is chosen, if ν ≤ −z1−α
2
.

5 Application: Outsourcing of patent applications

The data consists of patent information of the European Patent Office. It has been examined and

amended with corporate information by Wagner (2006). There are two ways of filing a patent

application: a company’s internal patent department can undergo the application process itself

or the company may delegate it to an external patent attorney. Wagner (2006) examines decision

drivers using negative binomial panel regression. The survey considers 107 European companies

(i = 1, . . . , 107) over a eight years (1993 to 2000). Since data for each company is aggregated

over one year, we expect a company’s correlation over years to be small in comparison to a trend

effect. Figure 3 shows boxplots of the estimated residual autocorrelations for time lags of 1 and

2 years. We see evidence that the autocorrelation is indeed low. Residuals have been calculated

according to our best-fit model (9) ZIGP (µi, ϕi, ωi), which will be introduced in Table 3.

Table 1 gives an overview of all influential variables. For more details see Wagner (2006, pp.

119-121). We used standard exploratory data analysis tools to investigate main effects and two-

dimensional interactions on the mean level. In particular, we grouped the data and calculated
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Figure 3: Boxplots of estimated residual autocorrelations for time lags of 1 and 2 years based

on Model (9) given in Table 3

group means of log observations standardized by their exposure ignoring possible zero-inflation.

The four strongest two-dimensional interactions were LN.COV ∗ BREADTH, CHEM.PHA ∗
LN.COV, CHEM.PHA ∗ SQRT.EMP and RDmiss ∗ CHEM.PHA. We assume independent ob-

servations and therefore write Yi instead of Yit, Ei for Eit. We collect all observations in a data

vector Y := (Y1, . . . , Y856) = (Y1,1, Y1,2, . . . , Y1,8, Y2,1, . . . , Y2,8, Y3,1, . . . , Y107,8)
t. The observation

year will be accounted for by using YEAR as a covariate.

There is no established method for finding covariates that have significant influence on the

overdispersion parameter. We now propose such a method based on the modified log link (2.5)

and ignore zero-inflation, i.e. we assume Yi ∼ GP (µi, ϕi). For each potential covariate, we

consider classes consisting of categories for categorical covariates or scoring classes for metric

covariates. For metric covariates we select five scoring classes formed by the 0%, 20%, 40%, . . . ,

100% quantiles. We have σ2
i = µi · ϕ2

i ⇔ ϕi = ±
√

σ2
i /µi. With ϕi = 1 + ewt

iα we get

wt
iα = log

(

√

σ2
i

µi
− 1

)

=: fi(µi, σ
2
i ). (5.1)

We estimate fi(µi, σ
2
i ) for observations i ∈ class j, j = 1, . . . , J with nj observations by fj(µ̂j , σ̂

2
j ),

where µ̂j := 1
nj

∑

i∈j Yi and σ̂j := 1
nj−1

∑

i∈j(Yi − µ̂j)
2. If there were no overdispersion in class

j, mean and variance would be identical and the fraction σ2
j /µj would be 1. The logarithm

in (5.1) is taken to detect classes with large overdispersion. We will select a covariate for the

overdispersion level if the corresponding fractions fj(µ̂j , σ̂
2
j ) ≥ 2 for some class j of this covariate.

For example, the fractions separated by year and industry range from 4.8 to 443.

In order to determine appropriate covariates for zero-inflation modelling, we calculate em-

pirical logits. This approach arises from binary regression: the event ’observation Yi is zero’ is

a binary random variable. Then

ω̂j :=
#{Yi = 0, δij = 1}

#{Yi = 0} , where δij :=

{

1 i ∈ class j

0 else
, (5.2)

and ˆlogit(ω̂j) := log

(

ω̂j + 1
2

1 − ω̂j + 1
2

)

, i = 1, . . . , 856. (5.3)
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Variable Description

Y Response Y represents the number of patents being filed by a company in

one year by an external patent attorney. The values lie in [0, 953], where zero

occurs 129 times.

E This exposure is the yearly total of a company’s applications regardless of

the application procedure. We have Ei > 0 ∀ i.

COV This metric covariate is the coefficient of variation of a company’s number

of applications referring to the past five years. For mean modelling we use a

log transformation LN.COV.

BREADTH Metric covariate BREADTH is a measure for the number of scientific fields

a company has handed patent applications in for. High values correspond

to broad areas of research. On dispersion level, dummy BREADTH.49.72

indicates if BREADTH is in (0.490, 0.721] (0) or not (1), where 0.490 is the

20%, 0.721 the 60% quantile of the observations. For zero-inflation modelling

dummy BREADTH.06 indicates if a company has a higher (0) or lower (1)

BREADTH than 0.642 (40% quantile).

EMP A company’s number of employees. For the mean level we use the square root

of EMP denoted by SQRT.EMP. On dispersion level, dummy EMP.11291

indicates if a company has more (0) or less (1) than 11 291 employees (40%

quantile). On zero-inflation level, dummy EMP.2023.11291 indicates if EMP

lies in (2023, 11291] (1) or not (0), which are the (20%, 40%] quantiles.

RDP The average amount spent for a patent in MN Euros is given by RDP. It

describes the average research and development (R&D) cost per patent. On

the mean level, we transform RDP by using its inverse INV.RDP. For zero-

inflation modelling, dummy RDP.34 indicates if a company has a higher (0)

or lower (1) RDP than 3.353 (67% quantile).

RDE Covariate RDE is the average R&D cost per employee in 1000 Euros. Hence,

it is a measure for the research intensity. For mean modelling we try the

linear, quadratic and cubical transformations, i.e. RDE1, RDE2 and RDE3.

On dispersion level, dummy RDE.63 indicates if RDE ≥ 6.3 (0) or RDE <

6.3 (1) (67% quantile).

RDmiss Dummy variable RDmiss indicates if R&D data is missing (1) or not (0).

CHEM.PHA

ELEC.TEL

ENGINEER

CAR.SUPP

MED.BIOT

OTHER

These are six industry dummies: Chemical / Pharma, Electro / Telecom-

munication, Engineering, Cars and Suppliers, Medtech / Biotech and other

industries. We also use industry group dummies ELEC.TEL.OTHER,

CAR.SUPP.OTHER and CHEM.PHA.ENGIN.

YEAR This is the observation year with values from 1993 to 2000.

Table 1: Description of variables considered in the regression models for the patent data
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A shift of 1/2 is used in (5.3) to assure calculation also for cases in which a class has not a

single observation Yi = 0. If scoring classes are determined by quantiles, the numbers of ob-

servations nj in each class are expected to be roughly equal. Hence, a covariate X with J

scoring classes having no influence on the number of zeros in Y is expected to have around

1/J of Y -zeros in every class. So, large deviation of the empirical logit from log
(

1/J+1/2
1−1/J+1/2

)

indicates high influence of X on zero-inflation. Table 2 shows empirical logits of EMP, where

class 2 has the highest deviation of the reference value ˆlogit(0.2) = log
(

0.2+0.5
1−0.2+0.5

)

= −0.62. For

Class 1 Class 2 Class 3 Class 4 Class 5

Interval [0, 2020] (2020, 11320] (11320, 30249] (30249, 75322] (75322, 466938]

nj 172 171 171 171 171
ˆlogit(ω̂j) -0.48 -0.21 -0.72 -0.83 -0.9

Table 2: Empirical logits of five scoring classes of EMP calculated according to (5.3)

mean, dispersion and zero-inflation regression we select the following covariates according to the

above strategies. For the mean level, they are INTERCEPT, LN.COV, BREADTH, SQRT.EMP,

INV.RDP, RDE1, RDE2, RDE3, RDmiss, CHEM.PHA, ELEC.TEL.OTHER, YEAR, LN.COV ∗
BREADTH, CHEM.PHA ∗ LN.COV, CHEM.PHA ∗ SQRT.EMP and RDmiss ∗ CHEM.PHA. For

overdispersion we select INTERCEPT, ENGINEER, CAR.SUPP.OTHER, MED.BIOT, YEAR,

BREADTH.49.72, EMP.11291 and RDE.63. For zero-inflation the chosen covariates are IN-

TERCEPT, EMP.2023.11291, BREADTH.06, RDP.34 and CHEM.PHA.ENGIN. By sequential

elimination on an α-level of 5%, however, in Table 3 we get the following regression equations

for each model class considered in Figure 2. Fixed parameters are counted in the AIC statistic

if they are estimated (such as ωi = ω in (2) ZIP (µi, ω)) and are not counted if they are not

estimated (such as ϕi = 1 in (2) ZIP (µi, ω).) All covariates have been centered and standard-

ized for numerical stability. From Table 3 we see that only three nested model comparisons

can be conducted using the AIC; namely (2) vs. (3), (4) vs. (5) and (7) vs. (9). In all these

comparisons the more complex model is the better fitting model. All other test decisions have

to be based on the Vuong test. Another approach to select models within each model class

is ’backward selection’, i.e. to sequentially eliminate the covariate from the full model which

minimizes the AIC the most (as long as the AIC shrinks). In case of (9) ZIGP (µi, ϕi, ωi) this

leads to almost the same model as in Table 3. It’s AIC of 6 526 is only two points below the

suggested model whereas there are two additional effects RDE.2 and EMP.2023.11291 which are

insignificant at the 5% level. Model comparison is carried out using the methods discussed in

Section 4. Table 4 again lists models (1) through (9) in rows (I) and columns (II). The entries

show Vuong test results for every combination of an (I) and a (II) model. We choose an α-level

of 5%, i.e. z1−α
2

= 1.96. In the first line of each cell, the Vuong statistic ν is given. In the second

row the decision of the Vuong test is shown, i.e. if model (I) or (II) is better. Next to that we

see the p-values of ν. For example, the most upper left cell refers to model (I) = (2) ZIP (µi, ω)

compared to (II) = (1) Poi(µi). The Vuong statistic is ν = 4.2, which implies that Vuong prefers

model (I) ZIP (µi, ω) (see line 2). The p-value of ν is < 10−4.

We now discuss the consequences of the Poisson GLM enhancements.

Adding a zero-inflation parameter: Comparing (1) Poi(µi) with model (2) ZIP (µi, ω),

the Vuong test prefers the latter model with a test statistic of ν = 4.2 (see Table 4).
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Model Model Equation µ Model Equation ϕ Model Equation ω l(δ̂) p +

r + q

AIC

(1) Poi(µi) offset(E) + 1 + LN.COV + BREADTH

+ SQRT.EMP + INV.RDP + RDE1 +

RDE2 + RDE3 + RDmiss + CHEM.PHA

+ ELEC.TEL.OTHER + YEAR + LN.COV

* BREADTH + CHEM.PHA * LN.COV

+ CHEM.PHA * SQRT.EMP + RDmiss *

CHEM.PHA

ϕi = 1 ∀i

(not estimated)

ωi = 0 ∀i

(not estimated)

-11 931.9 16 23 896

(2) ZIP (µi, ω) offset(E) + 1 + LN.COV + BREADTH

+ SQRT.EMP + INV.RDP + RDE1 +

RDE2 + RDE3 + RDmiss + CHEM.PHA

+ ELEC.TEL.OTHER + YEAR + LN.COV

* BREADTH + CHEM.PHA * LN.COV

+ CHEM.PHA * SQRT.EMP + RDmiss *

CHEM.PHA

ϕi = 1 ∀i

(not estimated)

ωi = ω ∀i -9 574.6 17 19 183

(3) ZIP (µi, ωi) offset(E) + 1 + LN.COV + BREADTH

+ SQRT.EMP + INV.RDP + RDE1 +

RDE2 + RDE3 + RDmiss + CHEM.PHA

+ ELEC.TEL.OTHER + YEAR + LN.COV

* BREADTH + CHEM.PHA * LN.COV

+ CHEM.PHA * SQRT.EMP + RDmiss *

CHEM.PHA

ϕi = 1 ∀i

(not estimated)

1 + BREADTH.06 +

EMP.2023.11291

+ RDP.34 +

CHEM.PHA.ENGIN

-9 533.8 21 19 110

(4) GP (µi, ϕ) offset(E) + 1 + BREADTH + SQRT.EMP

+ INV.RDP + RDE1 + RDE2 + RDE3 +

CHEM.PHA + ELEC.TEL.OTHER

ϕi = ϕ ∀i ωi = 0 ∀i

(not estimated)

-3 416.1 10 6 852

(5) GP (µi, ϕi) offset(E) + 1 + BREADTH + SQRT.EMP +

INV.RDP + RDE1 + RDE2 + RDE3 + RDmiss

+ CHEM.PHA + ELEC.TEL.OTHER + RDmiss *

CHEM.PHA

1 + CAR.SUPP.OTHER

+ MED.BIOT + YEAR

+ BREADTH.49.72 +

EMP.11291 + RDE.63

ωi = 0 ∀i

(not estimated)

-3 356.8 18 6 750

(6) ZIGP (µi, ϕ, ω) offset(E) + 1 + LN.COV + BREADTH +

SQRT.EMP + INV.RDP + RDE1 + RDmiss +

CHEM.PHA + ELEC.TEL.OTHER + YEAR +

LN.COV * BREADTH + RDmiss * CHEM.PHA

ϕi = ϕ ∀i ωi = ω ∀i -3 308.6 14 6 645

(7) ZIGP (µi, ϕ, ωi) offset(E) + 1 + LN.COV + BREADTH +

SQRT.EMP + INV.RDP + RDE1 + CHEM.PHA

+ ELEC.TEL.OTHER + LN.COV * BREADTH

ϕi = ϕ ∀i 1 + BREADTH.06 -3 298.5 12 6 621

(8) ZIGP (µi, ϕi, ω) offset(E) + 1 + LN.COV + BREADTH +

SQRT.EMP + RDE1 + RDmiss + CHEM.PHA +

ELEC.TEL.OTHER + LN.COV * BREADTH

1 + CAR.SUPP.OTHER

+ YEAR + EMP.11291 +

RDE.63

ωi = ω ∀i -3 269 15 6 568

(9) ZIGP (µi, ϕi, ωi) offset(E) + 1 + LN.COV + BREADTH +

SQRT.EMP + INV.RDP + RDE1 + CHEM.PHA

+ ELEC.TEL.OTHER + LN.COV * BREADTH

1 + ENGINEER +

CAR.SUPP.OTHER +

YEAR + EMP.11291 +

RDE.63

1 + BREADTH.06

+ RDP.34 +

CHEM.PHA.ENGIN

-3 245.2 19 6 528

Table 3: Model equations and AIC for each of the nine models after sequential elimination of insignificant covariates
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(II) (1) Poi(µi) (2) ZIP (3) ZIP (4) GP (5) GP (6) ZIGP (7) ZIGP (8) ZIGP

(I) (µi, ω) (µi, ωi) (µi, ϕ) (µi, ϕi) (µi, ϕ, ω) (µi, ϕ, ωi) (µi, ϕi, ω)

(2) ZIP ν = 4.2

(µi, ω) V: (I) < 10−4

(3) ZIP ν = 4.27 ν = 4.32

(µi, ωi) V: (I) < 10−4 V: (I) < 10−4

(4) GP ν = 10.8 ν = 9.94 ν = 9.88

(µi, ϕ) V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−22

(5) GP ν = 10.8 ν = 10.1 ν = 9.99 ν = 3.94

(µi, ϕi) V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−4

(6) ZIGP ν = 10.8 ν = 10.3 ν = 10.2 ν = 4.21 ν = 2.08

(µi, ϕ, ω) V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−4 V: (I) 0.04

(7) ZIGP ν = 10.8 ν = 10.3 ν = 10.2 ν = 4.29 ν = 2.32 ν = 1.88

(µi, ϕ, ωi) V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−4 V: (I) 0.02 V: none 0.06

(8) ZIGP ν = 10.8 ν = 10.3 ν = 10.2 ν = 5.15 ν = 4.01 ν = 3.1 ν = 2.16

(µi, ϕi, ω) V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−6 V: (I) < 10−4 V: (I) < 0.002 V: (I) 0.03

(9) ZIGP ν = 10.8 ν = 10.3 ν = 10.3 ν = 5.69 ν = 4.73 ν = 4.28 ν = 3.91 ν = 2.9

(µi, ϕi, ωi) V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−22 V: (I) < 10−6 V: (I) < 10−4 V: (I) < 10−4 V: (I) < 10−4 V: (I) < 0.004

Table 4: Model comparison using the Vuong test
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Adding a dispersion parameter: Adding a dispersion parameter has a strong positive

impact on model quality. Comparing (1) Poi(µi) and (4) GP (µi, ϕ), the Vuong statistic is

ν = 10.8. This again indicates that our data is in fact overdispersed.

Regression on the zero-inflation parameter: If we allow regression on the zero-inflation

parameter, the AIC decreases again. For instance, comparing the nested models (2) ZIP (µi, ω)

and (3) ZIP (µi, ωi), the AIC falls from 19 183 to 19 110 (see Table 3). Further, ν = 4.32, so

Vuong prefers model (3) ZIP (µi, ωi), too. The p-value is < 0.01.

Regression on the dispersion parameter: Comparing model (4) GP (µi, ϕ) with (5)

GP (µi, ϕi), we see a drop in AIC from 6 852 to 6 750. The Vuong statistic is ν = 3.94.

All in all, model (9) ZIGP (µi, ϕi, ωi) seems fit our data in terms of the Vuong test best. This

model is preferred over all other models discussed (see the last row in Table 4). Applied to (1)

Poi(µi) vs. (9) ZIGP (µi, ϕi, ωi), the Vuong test has the largest significance of all comparisons,

its statistic is ν = 10.8.

6 Model interpretation

We will now interpret model (9) ZIGP (µi, ϕi, ωi). Parameter estimates and their estimated

standard errors together with the p-values of the corresponding Wald tests can be found in

Table 5.

First of all, we see that RDmiss has been dropped during the sequential elimination of in-

significant variables, which is in line with Wagner (2006, p. 133). This is comforting since

RDmiss indicates missing R&D data. Otherwise, we would have a significant systematic error.

We now want to perform an analysis of the impact of mean, overdispersion and zero-inflation

regressors. Thus, we calculate mean, overdispersion and zero-inflation functions of these covari-

ates and fix all remaining covariates. For metric covariates we use their empirical mode or mean,

for categorical covariates we compare their categories. Exposure E will also be replaced by its

empirical mode EM .

6.1 Outsourcing rate as a function of covariates influencing the mean level

We are interested in outsourcing rates E(Yi)/Ei rather than absolute ’outsourced’ patent num-

bers. For all outsourcing functions we have to separate between the three industry groups

Chemical / Pharma, Electro / Telecommunication / Others and all remaining industries. Fig-

ure 4 shows the resulting outsourcing rates as functions of covariates EMP, RDP and RDE.

Increasing firm size in terms of employees reduces the share of outsourced applications. As

Wagner (2006, p. 133) explains, ’larger firms are more likely to have their own IP-department

and hence more likely to process a higher share of the workload internally’. For RDP−1, we get

a fairly small coefficient β̂4 = −0.123. Also, for very small values RDP< 0.1 the outsourcing

share is low. For larger values, it is high and quite constant. A reason for that is that 262 ob-

servations have no R&D information and hence have RDP= 0. These companies, however, have

an average of only 20 000 employees, whereas the overall average is 50 000. German accounting

standards did not require firms to publish their R&D expenses in their balance sheets and it is

likely that only large corporations voluntarily did this in the explanatory notes of their balance

sheets. Whether or not expensive R&D preceded a patent (high RDP) has minor impact on the

outsourcing rate. This is in line with Wagner (2006, p. 133). Our model predicts that for higher

R&D intensity, companies are likely to file their patents themselves. Wagner (2006, p. 133),
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Estimate Std. Error p-value

MEAN REGRESSION

INTERCEPT -0.951 0.059 0.000

log(COV) 0.031 0.036 0.384 a

BREADTH 0.041 0.032 0.195 a

EMP1/2 -0.394 0.027 0.000

RDP−1 -0.123 0.033 0.000

RDE 0.124 0.033 0.000

Chemical / Pharma -0.272 0.099 0.006

Electro / Telecommunication / Other 0.306 0.066 0.000

log(COV) * BREADTH -0.104 0.034 0.003

OVERDISPERSION REGRESSION

INTERCEPT 1.968 0.086 0.000

Engineering -0.426 0.171 0.013

Cars / Suppliers / Other -0.488 0.096 0.000

YEAR 0.161 0.042 0.000

1l{EMP < 11 291} -0.587 0.103 0.000

1l{RDE < 6.3} -0.305 0.096 0.002

ZERO-INFLATION REGRESSION

INTERCEPT -4.282 0.586 0.000

1l{BREADTH < 0.642} 2.271 0.578 0.000

1l{RDP < 3.353} -1.241 0.522 0.017

Chemical / Pharma / Engineering 1.085 0.413 0.009

Mean range µ̂ [0.18, 446.3]

Overdispersion parameter range ϕ̂ [2.41, 10.15]

Zero-inflation parameter range ω̂ [0.00, 0.28]

aAlthough insignificant, this covariate remains in the model because of a significant interaction.

Table 5: Summary of model (9) ZIGP (µi, ϕi, ωi) using centered and standardized covariates

who obtains a positive influence of RDE as well, stresses that a negative development would

have been more plausible: the higher spending on R&D per employee, the greater a company’s

focus on research. These companies are more likely to have their own patent departments.

Figure 5 shows projected outsourcing rates affected by both COV and BREADTH. The

deflection arises from the interaction of these two effects. The higher BREADTH or COV

as singular effects, the less patents are outsourced. Interaction effects strongly decrease our

outsourcing projection if both variables have low values. There are only few companies having

low BREADTH and COV at the same time. Their low outsourcing rates seem to arise from

their unique situation. Schneider Electronics for instance had to face severe losses throughout

the nineties and therefore had to cut their R&D activities way below the industry average.

Filing patents themselves might arise from expenditure reasons. Heidelberger Druckmaschinen,

however, is the world market leader and went public in 1997. Market leaders are known to trust

their own patent departments more than external attorneys.

Finally, we look at industry differences. Chemical / Pharma companies have the lowest

outsourcing rates (3.11%). Especially for pharmaceutical companies, one single and very complex
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Figure 4: Influence of EMP, RDP and RDE on the outsourcing rate while fixing other covariates

by their empirical modes

patent protects one product, e.g. a drug. An important part of each patent application is

thorough research if a similar patent has already been filed. Chemical / Pharma companies were

among the first ones to establish internal patent databases to ensure quick and reliable research

for equal or similar patents. Thus, it makes sense to have an internal department undergo

the whole application process. Electro / Telco & Other have a predicted outsourcing share of

5.54%. The reason is the different role patents play for them. It is well known that patenting

is largely driven by portfolio strategies in the Electronics industry in general and particularly

in the semi-conductor sector (Hall and Ham (2001)). Due to overlapping technologies in these

areas, firms often need to gain access to competitors’ technologies and therefore engage in vast

cross-licensing agreements. In the negotiations for cross-licenses the total size of the patent

portfolio of the licensees has higher relevance than the characteristics of individual patents.

Therefore the strategic value of individual patent is comparably low to electronic firms which

might lead to a higher willingness to delegate the application procedure to external attorneys.

For all remaining industries we predict an outsourcing rate of 4.08%.

6.2 Overdispersion and zero-probability as functions of regression covariates

We define the overdispersion factor of a random Yi ∼ ZIGP (µi, ϕi, ωi) as Vi := V ar(Yi)
E(Yi)

=

ϕ2
i + µiωi. There are only categorical covariates for overdispersion: w := (1, ENGINEER,

CAR.SUPP.OTHER, YEAR, EMP.11291, RDE.63), Using (2.5), we get

ϕ̂(w) := 1 + exp
(

α̂0 + w1 · α̂1 + . . . + w5 · α̂5

)

. (6.1)
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Figure 5: Common influence of COV and BREADTH on the estimated outsourcing rate

µ̂(COV, BREADTH)/EM per industry

We can use this overdispersion function to estimate V (X = x, W = w, Z = z) = ϕ2 + µ · ω by

V̂ (X = x, W = w, Z = z) := ϕ̂(w)2 + µ̂(x) · ω̂(z). (6.2)

Companies are interested in a prediction of their zero-probability rather than their zero

inflation. This is the probability that a company has filed every patent in a certain year itself.

A zero can arise from the binary zero-inflation process or from the GP variable, thus we predict

P̂ (Y = 0|X = x, W = w, Z = z) := ω̂(z) + (1 − ω̂(z)) · exp
(

− µ̂(x)

ϕ̂(w)

)

(6.3)

ω̂(z) :=
exp(γ̂0 + z1 · γ̂1 + . . . + zq · γ̂q)

1 + exp(γ̂0 + z1 · γ̂1 + . . . + zq · γ̂q)
, (6.4)

where z := (1, BREADTH.06, RDP.34, CHEM.PHA.ENGIN).

We see that for estimating V ar(Y )
E(Y ) and P (Y = 0), we need both ϕ̂(w) and ω̂(z) (see (6.2)

and (6.3)). Consequently, we have to define common parameters, i.e. a union of the categorical

settings for overdispersion and zero-inflation regression. As we are only looking at grouped

industries, we can define four new common groups as ’Cars / Supplier / Other’, ’Medtech /

Biotech / Electro / Telco’, ’Engineering’ and ’Chemical / Pharma’. Remaining dummies are

EMP.11291 and RDE.63 for overdispersion and RDP.34 and BREADTH.06 for zero-inflation.

Therefore, we have to consider sixteen settings for each of these four industry groups, i.e. 64

different classes. We investigate, however, only 14 cases with the most observations, which

account for 63 of the 107 companies. These classes can be found in Table 6 denoted by j.

Columns µ̄j thru ω̂j are estimates of µj , ϕj and ωj . We will look at year 2 000 since it should be

most interesting. For both overdispersion and zero-inflation, we need an estimate of the mean

µ̂. In order to get appropriate values for class j, we use means µ̄j of the fitted values for µ for

those companies in class j. They are given by µ̄j := 1/nj
∑

i∈Ij
µ̂i, where µ̂i = µ̂(xi, wi, zi).

The quotes V̂ (X, W , Z) range between 11 and 136 and indicate high overdispersion. For

large companies in terms of employees, overdispersion is especially high (see for example class
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7 vs. class 11). The same holds for RDE: overdispersion rises as R&D intensity increases (see

for instance class 1 vs. 2). Industry Engineering has the lowest overdispersion, Cars / Suppliers

and Other are second. All remaining industries show high overdispersion. For Engineering

we can state that it is typical for this industry that a large number of patents are developed.

The number of patents filed is often regarded as a mean to boost the company’s competitive

position. Thus, the management works with patent number objectives the R&D departments

have to fulfil. Accomplishing these aims is easier for an industry which needs many patents as

they might just file minor inventions as patents. Often, this results in a ’precision landing’ as

far as patent numbers are concerned. Also, the number of patents filed the year before is often

regarded as a minimum goal for the current year. These effects decrease the application variance

and hence overdispersion.

Figure 6 shows the influence of the observation year on the estimated overdispersion factor

per industry. The legend lists the classes in descending order. We predict a positive super-linear

development. Again, Engineering shows lowest overdispersion with V̂ (X, W , Z) in [14.3, 14.5].

Largest overdispersion occurs in ’Medtech / Biotech / Electro / Telco’ which have values in

[37.1, 135.9].

1993 1994 1995 1996 1997 1998 1999 2000

0
50

10
0

15
0

Class 7
Class 14
Class 8
Class 10
Class 9

Class 3
Class 2
Class 11
Class 12
Class 1

Class 4
Class 13
Class 6
Class 5

V̂ (X,W ,Z)

Year

Figure 6: Influence of YEAR on the estimated overdispersion factor while fixing other covariates

by their modes; legend in descending order

The zero-probabilities range between 0.4% and 34%. A small BREADTH has a strong pos-

itive impact on P̂ (Y = 0|x, w, z) (see for example class 5 vs. 6). This is evident since small

research areas make it easier for companies to have their patent activity covered by internal

patent attorneys. Engineering is likely to have high zero-probability, see e.g. class 13, where

P̂ (Y = 0|x, w, z) = 33.68%. Chemical / Pharma show low zero-probability. Especially phar-

maceutical companies have developed own patent databases and therefore are likely to file all
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Class defining covariates

Class dispersion covariates zero-inflation covariates

j nj Industry EMP RDE RDP BREADTH µ̄j ϕ̂j ω̂j V̂ (X , W , Z) P̂ (Y = 0|x, w, z)

1. 6 Cars / Suppl. / Other ≥ 11 291 < 6.3 ≥ 3.353 ≥ 0.642 18.0 5.14 1.36% 26.7 4.34%

2. 5 Cars / Suppl. / Other ≥ 11 291 ≥ 6.3 ≥ 3.353 ≥ 0.642 36.4 6.62 1.36% 44.3 1.77%

3. 5 Cars / Suppl. / Other ≥ 11 291 ≥ 6.3 ≥ 3.353 < 0.642 18.6 6.62 11.81% 46.0 17.08%

4. 5 Cars / Suppl. / Other ≥ 11 291 < 6.3 < 3.353 ≥ 0.642 27.8 5.14 0.40% 26.6 0.85%

5. 5 Cars / Suppl. / Other < 11 291 < 6.3 ≥ 3.353 ≥ 0.642 33.8 3.30 1.36% 11.4 1.37%

6. 5 Cars / Suppl. / Other < 11 291 < 6.3 ≥ 3.353 < 0.642 8.4 3.30 11.81% 11.9 18.77%

7. 4 Medt. / Biot. / Elec. / Telc. ≥ 11 291 ≥ 6.3 ≥ 3.353 < 0.642 277.8 10.15 11.81% 135.9 11.81%

8. 4 Medt. / Biot. / Elec. / Telc. ≥ 11 291 ≥ 6.3 < 3.353 ≥ 0.642 350.3 10.15 0.40% 104.5 0.40%

9. 4 Medt. / Biot. / Elec. / Telc. ≥ 11 291 < 6.3 ≥ 3.353 ≥ 0.642 43.8 7.75 1.36% 60.6 1.71%

10. 4 Medt. / Biot. / Elec. / Telc. ≥ 11 291 < 6.3 ≥ 3.353 < 0.642 14.1 7.75 11.81% 61.7 26.18%

11. 4 Medt. / Biot. / Elec. / Telc. < 11 291 ≥ 6.3 ≥ 3.353 < 0.642 19.5 6.09 11.81% 39.4 15.39%

12. 4 Medt. / Biot. / Elec. / Telc. < 11 291 ≥ 6.3 < 3.353 < 0.642 14.4 6.09 3.73% 37.6 12.76%

13. 4 Engineering < 11 291 < 6.3 ≥ 3.353 < 0.642 9.0 3.45 28.38% 14.5 33.68%

14. 4 Chemical / Pharma ≥ 11 291 ≥ 6.3 ≥ 3.353 ≥ 0.642 61.6 10.15 3.93% 105.5 4.15%

Table 6: Estimated overdispersion factor and probability of no outsourced patent application for 14 classes which have the largest numbers of

observations in year 2000
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patents themselves. We predict higher zero-probability for high-RDP companies (compare for

instance classes 1 and 4). Here, P̂ (Y = 0|x, w, z) rises from 0.85% to 4.43%. Expensive patents

(high RDP) are likely to be filed by internal departments exclusively. It seems like in crucial

situations, companies trust their own patent departments more than external attorneys.

7 Conclusions and Discussions

We introduced a ZIGP (µi, ϕi, ωi) regression model, which not only extends the known Poisson

GLM by overdispersion and zero-inflation parameters but also allows for regression on these

parameters. Also, we developed the necessary asymptotic theory for these models, thus filling

a theoretical and practical gap in this research area. From a simulation study, we saw that

medium sample sizes of n ≥ 200 are necessary to estimate the regression parameters on the

mean and zero-inflation level, while one needs larger sample sizes to estimate the ones on the

overdispersion level well.

Moreover, we carried out a comparison of different models based on the Poisson model using

data investigating the determinants of patent outsourcing. We illustrated that every extension

of our ZIGP (µi, ϕi, ωi) regression model improved model fit in terms of the AIC statistic for

nested comparisons and Vuong statistics for nested and nonnested comparisons. Both AIC and

Vuong tests chose the introduced ZIGP (µi, ϕi, ωi) regression model as the one fitting our data

best. All in all, the AIC decreased by 73% as compared to the Poisson GLM.

A model interpretation confirmed insights of former work on the given data from an economic

point of view. We added an analytical and economic interpretation for overdispersion and zero-

inflation drivers. The expected outsourcing rate is driven by the industry a company belongs

to. Electronic and Telecommunication companies show particularly high, Chemical / Pharma

companies low outsourcing shares. The number of employees has a strong negative, R&D costs

per employee a positive influence. Overdispersion, in terms of the predicted overdispersion factor

of the outsourcing shares, strongly depends on the industry as well. Engineering companies are

likely to have low overdispersion. Large companies with high R&D spending per employee are

predicted to have high overdispersion. Zero-probability (i.e. the probability of no outsourcing of

patent applications whatsoever) grows with the observation year. Low R&D breadth and high

R&D expenditures per patent have a positive influence on zero-probability.

Although correlations are low (see Figure 3), for a more complex model including a parameter

for time correlation see for instance Hausmann et al. (1984). Time dependency may also be

modelled through Generalized Estimating Equations (GEE) (see e.g. Hardin and Hilbe (2003))

or a Bayesian approach involving Markov Chain Monte Carlo (MCMC) based inference. Czado

and Song (2006) developed such a MCMC based inference for state space mixed models for

binomial observations without zero-inflation. These possible extensions will be the subject of

further research.

As an Associate Editor pointed out it is possible to apply a zero-inflated binomial mixed

model to the patent data (see e.g. Hall and Berenhaut (2002)). In this case the likelihood

does not have a closed form and involves multidimensional integration. Further Laplace-like

approximations to the log-likelihood or MCMC methods should here be utilized. These model

approaches are computationally demanding and therefore we prefer our ZIGP regression ap-

proach for the analysis of the patent data.
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Appendix

Hessian matrix and Fisher information

The Hessian matrix Hn(δ) in the ZIGP regression may be partitioned as

Hn(δ) =













∂ln(δ)

∂ββ
t

∂ln(δ)

∂βαt

∂ln(δ)

∂βγt

∂ln(δ)

∂αβ
t

∂ln(δ)
∂ααt

∂ln(δ)
∂αγt

∂ln(δ)

∂γβ
t

∂ln(δ)
∂γαt

∂ln(δ)
∂γγt













, (7.1)

where ∂ln(δ)

∂ββ
t ∈ R

(p+1)×(p+1), ∂ln(δ)

∂βαt
∈ R

(p+1)×(r+1), ∂ln(δ)

∂βγt
∈ R

(p+1)×(q+1), ∂ln(δ)
∂ααt ∈ R

(r+1)×(r+1),

∂ln(δ)
∂αγt ∈ R

(r+1)×(q+1) and ∂ln(δ)
∂γγt ∈ R

(q+1)×(q+1). Entries hlm(δ)’s can be computed easily. For

instance, entries of ∂ln(δ)

∂ββ
t are given by

hlm(δ) :=
∂ln(δ)

∂βlβm

= −
n
∑

i=1

1l{yi=0}xilximµi(β)

×−P 0
i (δ)2/ϕi(α) +

(

µi(β) − ϕi(α)
)

/ϕi(α)2P 0
i (δ)ki(γ)

(ki(γ) + P 0
i (δ))2

−
n
∑

i=1

1l{yi>0}xilximµi(β)

[

(ϕi(α) − 1)(yi − 1)yi

(µi(β) + (ϕi(α) − 1)yi)2
− 1

ϕi(α)

]

(7.2)

for l, m = 0, . . . , p.

Now set Hn(δ) := −Hn(δ). It is well known (see for example Mardia et al. (1979), p.98)

that under mild general regularity assumptions, which are satisfied here, the Fisher information

matrix F n(δ) is equal to EδHn(δ). Thus, entries of F n(δ) are given by

fl,m(δ) = fm,l(δ) = −
n
∑

i=1

xilximµi(β)

×
(

−P 0
i (δ)2/ϕi(α) +

(

µi(β) − ϕi(α)
)

/ϕi(α)2P 0
i (δ)ki(γ)

(ki(γ) + P 0
i (δ))(1 + ki(γ))

+
bi(α)µi(β)

ϕi(α)2(µi(β) − 2 + 2ϕi(α))(1 + ki(γ))
− 1 − P 0

i (δ)

ϕi(α)(1 + ki(γ))

)

,

for l, m = 0, . . . , p; (7.3)

fl,p+1+m(δ) = fp+1+m,l(δ) = −
n
∑

i=1

xilwimµi(β)bi(α)

×
(

−P 0
i (δ)/ϕi(α)3µi(β)ki(γ) + P 0

i (δ)/ϕi(α)2(ki(γ) + P 0
i (δ))

(ki(γ) + P 0
i (δ))(1 + ki(γ))

− µi(β)

ϕi(α)2(µi(β) − 2 + 2ϕi(α))(1 + ki(γ))
+

1 − P 0
i (δ)

ϕi(α)2(1 + ki(γ))

)

,

for l = 0, . . . , p, m = 0, . . . , r; (7.4)
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fl,p+2+m(δ) = fp+2+m,l(δ) = −
n
∑

i=1

xilzim
P 0

i (δ)/ϕi(α)µi(β)ki(γ)

(ki(γ) + P 0
i (δ))(1 + ki(γ))

,

for l = 0, . . . , p, m = 0, . . . , q; (7.5)

fp+1+l,p+1+m(δ) = fp+1+m,p+1+l(δ) = −
n
∑

i=1

bi(α) wil wim

×
(

P 0
i (δ)µi(β)

(ki(γ) + P 0
i (δ))(1 + ki(γ))

[

µi(β)bi(α)ki(γ)

ϕi(α)4

+

(

1

ϕi(α)2
− 2

bi(α)

ϕi(α)3

)

(

ki(γ) + P 0
i (δ)

)

]

+
µi(β)2

ϕi(α)2(µi(β) − 2 + 2ϕi(α))(1 + ki(γ))
+

µi(β)

1 + ki(γ)

×
[ −2

ϕi(α)2
+

ϕi(α) − P 0
i (δ)(1 − bi(α))

ϕi(α)3

])

,

for l, m = 0, . . . , r; (7.6)

fp+1+l,p+2+m(δ) = fp+2+m,p+1+l(δ)

= −
n
∑

i=1

wil zim bi(α)
−P 0

i (δ)/ϕi(α)2µi(β)ki(γ)

(ki(γ) + P 0
i (δ))(1 + ki(γ))

,

for l = 0, . . . , r, m = 0, . . . , q, and (7.7)

fp+2+l,p+2+m(δ) = fp+2+m,p+2+l(δ) = −
n
∑

i=1

zilzimki(γ)

×
(

P 0
i (δ)

(ki(γ) + P 0
i (δ))(1 + ki(γ))

− 1

(1 + ki(γ))2

)

,

for l, m = 0, . . . , q. (7.8)

Proof of Theorem 1

The proof of the Theorem follows Fahrmeir and Kaufmann (1985) and Czado and Min (2005).

For the reader familiar with German, a detailed version can be found in Erhardt (2006, Sec.

2.3). First we would like to recall that the GP distribution with parameters µ and ϕ does not

belong to the exponential family even if parameter ϕ is known. Therefore the score vector, the

Hessian matrix and the Fisher information matrix have a more complex structure compared to

the GLM case. Further a verification of the condition

max
δ∈Nn(ε)

‖V n(δ) − Ip+r+q+3‖ P→ 0 (7.9)

under Assumptions (A1)-(A3) and for all ε > 0 requires much more effort than in Fahrmeir and

Kaufmann (1985). Here V n(δ) := F
−1/2
n Hn(δ) F

−t/2
n denotes the normed information matrix.

To prove (7.9) we need to consider moments of V n(δ), i.e. moments of Hn(δ). However this

would involve moments of the form E(µi(β) + (ϕi(α) − 1)yi)
−k which are only well defined for

ϕi(α) > 1. This is another reason, why we restrict to the case of overdispersion.
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Let us sketch the verification of (7.9). It is not difficult to see that (7.9) follows now from

max
δ∈Nn(ε)

|hlm(δ) − Ehlm(δ)|
n

P−→ 0 (7.10)

and

max
δ∈Nn(ε)

|Ehlm(δ) − flm(δ)|
n

P−→ 0 (7.11)

for all l, m = 0, . . . , p+ r + q +2. Note that the Hessian matrix (7.1) and the Fisher information

matrix have 6 different entry types. We shall only illustrate (7.10) for hlm(δ)’s defined in

(7.2). The convergence result (7.11) can be shown analogously. Letting Zi := 1l{yi>0}Yi(Yi − 1),

Ui(β, α) := µi(β) + (ϕi(α) − 1)Yi, qi,p(δ) := x2
ipµi(β)(ϕi(α) − 1) and

vi,p(δ) := x2
ip µi(β)

− 1
ϕi(α) P 0

i (δ)2 + µi(δ)−ϕi(α)
ϕi(α)2

P 0
i (δ)ki(γ)

(ki(γ) + P 0
i (δ))2

it easy to see that (7.10) follows from

max
δ∈Nn(ε)
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)

∣

∣
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1
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(

Zi
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∣

∣

∣

∣

∣

P→ 0. (7.12)

Now we proceed as for the proof of Lemma 4 in Czado and Min (2005) to establish conver-

gence result (7.12).
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