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Claudia Klüppelberg a

aCenter for Mathematical Sciences, Munich University of Technology, D-85747
Garching, Germany, http://www.ma.tum.de/stat/

Serguei Pergamenchtchikov b
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1 Introduction

We consider a q-dimensional stochastic recurrence equation

Yn = An Yn−1 + ζn , n ∈ N , (1.1)

for some iid sequence {(An, ζn)}n∈N of random q × q-matrices An and q-
dimensional vectors ζn. Let z∗ ∈ R

q be some fixed nonrandom vector with
Euclidean norm |z∗| = 1. Our goal is to describe the extremal behaviour of
the process yn = z′∗Yn, n ∈ N, where ′ denotes transposition, and throughout
the paper all vectors are column vectors. The extremal behaviour includes
besides the asymptotic behaviour of the running maxima

Mn = max
1≤j≤n

yj , n ∈ N ,

also a precise description of the limit behaviour of the point processes of
exceedances over high thresholds.

Our principal example is the random coefficient autoregressive process

yn = α1n yn−1 + · · · + αqn yn−q + ξn , n ∈ N , (1.2)

with random variables (rvs) αin = ai + σiηin, where ai ∈ R and σi ≥ 0 for
i = 1, . . . , q. Set

αn = (α1n, . . . , αqn)′ and ηn = (η1n, . . . , ηqn)′ .

We suppose that the sequences of coefficient vectors {ηn}n∈N and noise vari-
ables {ξn}n∈N are independent and that both sequences are iid with

E ξ1 = Eηi1 = 0 and Eξ2
1 = Eη2

i1 = 1 , i = 1, . . . , q . (1.3)

Setting Yn = (yn, . . . , yn−q+1)
′ it follows immediately from (1.2) that the mul-

tivariate process {Yn}n∈N satisfies the random recurrence equation (1.1) with

An =




α1n · · · αqn

Iq−1 0


 and ζn = (ξn, 0, . . . , 0)′ , (1.4)

where Iq−1 denotes the identity matrix of order q − 1. In this case yn = z′∗Yn

for z∗ = (1, 0, . . . , 0)′.

Solutions to random recurrence equations have usually Pareto-like tails, a fact,
which is based on seminal work by Kesten [12] and was further developed by
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Goldie [7] for the one-dimensional case, and by Le Page [18] and, more recently,
by Klüppelberg and Pergamenchtchikov [13], and De Sapporta, Guivarc’h and
Le Page [22] for the multivariate case. Applications of such results appear in
various areas, see e.g. Diaconis and Freedman [4] for an overview. Prominent
examples in the area of financial time series include the GARCH(1,1) model,
which was investigated by Mikosch and Starica [17]. In Klüppelberg and Perga-
menchtchikov [14] we investigated model (1.2). We presented conditions such
that the process {yn}n∈N allows for a stationary version, represented by a rv
y∞. We also proved that y∞ has, under natural conditions, a Pareto-like tail.

The extremal behaviour of solutions to random recurrence equations has been
investigated in the one-dimensional case for positive rvs An and ζn in de
Haan et al. [9]. The multivariate case has been studied in Basrak, Davis and
Mikosch [2] and Mikosch and Starica [17]. Prominent condition in all these
papers is that the matrix An in (1.1) has a.s. positive entries.

Our paper can be considered as an extension of results of de Haan et al. [9] and
Basrak et al. [2] to arbitrary matrices in R

q. De Haan et al. [9] considered the
univariate model (1.1) with positive random variables An and gave a precise
account of the extremal behaviour. In [2] the multivariate model (1.1) is con-
sidered with positive entry matrices An and its extremal behaviour is studied.
In that paper the authors show the existence of a limit process for the point
processes of exceedances and existence of an extremal index. In the present
paper we give a precise description of this limit process for model (1.1) with
general matrices An. The limit is a compound Poisson process, and besides
the Poisson intensity we also give a complete account of the jump distribution,
where jump sizes of the process correspond to the cluster sizes of extremes.
We also present an explicit form of the extremal index.

Our paper is organised as follows. In Section 2 we present results on the ex-
istence of a stationary solution of the process {yn}n∈N. Stationarity is a usual
prerequisite in extreme value theory and we shall work with the stationary
model. We also prove strong mixing of the process defined in (1.1), which
implies the weaker mixing conditions needed for our results on the extremal
behaviour of {yn}n∈N. In Section 3 we state our main results. Starting from the
fact that solutions to stochastic recurrence equations have usually Pareto-like
tails, we embed our model into the context of multivariate regular variation.
We describe the limit distribution of properly normalized running maxima.
Furthermore, results on the extremal behaviour of the stationary model in-
clude an explicit representation of the limit process of the point processes of
exceedances over high thresholds.

In Section 4 we present a new proof of the fact that for such models regular
variation of every linear combination of marginals implies multivariate regu-
lar variation. This new approach also extends results from Basrak et al. [1]
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to symmetric distributions, which will prove useful for our principal exam-
ple (1.2). In Section 5 we prove our main result from Section 3 and present
in Section 6 its consequences for the random coefficient autoregressive model.
Technical details are summarized in the Appendix.

2 Existence of a stationary solution and the strong mixing property

We consider the model (1.1) and use the following notation to formulate our
assumptions. The symbol ⊗ denotes the Kronecker product of matrices. Fur-
thermore, | · | denotes the Euclidean norm in R

q and |A|2 = trAA′ is the
corresponding matrix norm.

We make the following assumptions:

A1) The sequences {An}n∈N and {ζn}n∈N are both iid and independent of each
other, satisfying

E |A1|
2 < ∞ , E ζ1 = 0 and E |ζ1|

2 < ∞ .

A2) The Markov chain {Yn}n∈N defined in (1.1) is aperiodic and irreducible
with respect to some nontrivial measure in R

q.

Sufficient conditions on {(An, ζn)}n∈N
to ensure A2 are well-known in Markov

chain theory and, for instance, given in Feigin and Tweedie [6]. For example, it
suffices in the general model (1.1) that the random vectors ζn have a positive
Lebesgue density in R

q on the set {x ∈ R
q : |x| < R} for some R ∈ (0,∞].

In the context of random recurrence equations there exist necessary and suf-
ficient conditions for stationarity, going back to Kesten’s seminal work on the
subject; see Kesten [12], also Goldie and Maller [8]. Such conditions involve a
negative Lyapunov exponent, a condition, which is in general difficult to ver-
ify. Because of the structure of our model we can give an equivalent condition
based on the eigenvalues of a certain matrix.

Assume that the following condition holds:

A3) The eigenvalues of the matrix

EA1 ⊗ A1 (2.1)

have moduli less than one.

As stated in Remark 2.2(ii) of [14], since E ((A1 · · ·An) ⊗ (A1 · · ·An)) =
(E (A1 ⊗ A1))

n, condition A3 guarantees that for some constants c∗, γ > 0,
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E |A1 · · ·An|
2 ≤ c∗ e−γn . (2.2)

Classical Markov chain theory ensures that under A1 and A3 the Yn converge
in distribution to its stationary distribution given by the random vector

Y∞ = ζ1 +
∞∑

k=2

A1 · · ·Ak−1ζk (2.3)

satisfying E |Y∞|2 < ∞. We denote by π the distribution of Y∞ in R
q and by

Pn(x, ·) the transition probability

Pn(x, Γ) = P(Yn ∈ Γ |Y0 = x) , x ∈ R
q ,

for every measurable Γ ⊆ R
q.

Moreover, for some function v : R
q → [1,∞) we define (see p. 383 in Meyn

and Tweedie [16])

|||Pn − π |||v = sup
x∈R

q

‖Pn(x, ·) − π(·)‖v

v(x)
,

where

‖Pn(x, ·) − π(·)‖v = sup
0≤f≤v

|
∫

R
q

f(z)Pn(x, dz) −
∫

R
q

f(z) π(dz)| .

We need the following definitions.

Definition 2.1 (a) A Markov chain {Yn}n∈N is called v-uniformly geometric
ergodic if there exist R > 0 and 0 < ρ < 1 such that for every n ∈ N

|||Pn − π |||v ≤ R ρn .

(b) For the stationary process {Yn}n∈N the mixing coefficient is for k ∈ N

defined as

α∗
k

= sup
f,h

|E f(.., Y−1, Y0) h(Yk, Yk+1, ..) − E f(.., Y−1, Y0)Eh(Yk, Yk+1, ..)| , (2.4)

where the supremum is taken over all measurable functions f and h satisfying
|f |, |h| ≤ 1.

Note that Theorem 3 in Feigin and Tweedie [6] and Theorem 16.1.2 in Meyn
and Tweedie [16] imply part (a) of the following result, part (b) is proved in
the Appendix.
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Theorem 2.2 Let {Yn}n∈N be as defined in (1.3) such that A1 − A3 hold.

(a) {Yn}n∈N is v-uniformly geometric ergodic with v(x) = 1 + x′Tx, x ∈ R
q,

for some fixed positive definite q × q-matrix T .

(b) The stationary process (1.1) is strongly mixing with geometric rate, i.e.
for some positive constant C∗,

α∗
k
≤ C∗ ρk , k ∈ N . (2.5)

Remark 2.3 Consider two sequences {Yn(Y∞)}n≥0 and {Yn(Y )}n≥0 given by
the same recursion (1.1), but with different initial vectors Y∞ and Y , where
Y∞ is supposed to have the stationary distribution and that E |Y |2 < ∞.
Both vectors Y∞ and Y are supposed to be independent of the future values
{(An, ζn)}n∈N. For the initial vector Y we have the recursion

Yn(Y ) = An · · ·A1 Y +
n∑

k=1

An · · ·Ak+1 ζk , n ∈ N ,

where AnAn+1 = Iq, and analogously for initial vector Y∞. By independence
of the matrices An for all n ∈ N and the vectors Y , Y∞ we obtain, invoking
inequality (2.2),

E |Yn(Y ) − Yn(Y∞)|2 ≤E
n∏

j=1

|Aj |
2 E |Y − Y∞|2 ≤ c∗ E |Y − Y∞|2 e−γn . (2.6)

Therefore, E |Yn(Y ) − Yn(Y∞)|2 tends to 0 exponentially fast as n → ∞ for
any initial vector Y with E |Y |2 < ∞. 2

3 Extremal behaviour

The main goal of this paper is the investigation of the extremal behaviour of
model (1.1). We introduce the unit sphere S in R

q, i.e. S = {x ∈ R
q : |x| = 1}.

We assume that the vector (2.3) satifies the following condition

H0) There exists λ > 0 such that

lim
t→∞

tλ P(z′Y∞ > t) = h(z) , z ∈ S ,

for some strictly positive continuous function h on S.

Remark 3.1 We call condition H0 regular variation of the vector Y∞ in the
Kesten sense, see for example, [12], Remark 4 on p. 245. Indeed, it means that
every linear combination of Y∞ is one-dimensional regularly varying, where the
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slowly varying function is a positive constant. Regular variation in the Kesten
sense is not necessarily equivalent to multivariate regular variation, which is
defined as follows (see Resnick [19, 20] for details). The q-dimensional random
vector Y is called regularly varying with index α ≥ 0, if there exists a random
vector Θ with values on the unit sphere S in R

q such that for all t > 0

P(|Y | > tx , Y/|Y | ∈ ·)

P(|Y | > x)
v
→ t−αP(Θ ∈ ·) , x → ∞ , (3.1)

where
v
→ means vague convergence of measures. We shall show in Section 4

that under weak conditions the finite dimensional distributions of {yn}n∈N are
multivariate regularly varying in the sense of (3.1). 2

Condition H0 implies that for y∞ = z′∗Y∞

lim
n→∞

nP(y∞ > un) = h∗ x−λ , x > 0 , (3.2)

where un = n1/λ x and h∗ = h(z∗).

This Poisson condition implies for the so-called associated iid sequence {ŷk}k∈N

with the same distribution as y∞ that the partial maxima M̂n = max1≤k≤n ŷk,
n ∈ N, satisfy

lim
n→∞

P(n−1/λM̂n ≤ x) = exp(−h∗ x−λ) , x > 0 . (3.3)

This is classical extreme value theory and can be found in any textbook on
this topic; see e.g. Embrechts, Klüppelberg and Mikosch [5].

For the extremal behaviour of model (1.1) we expect that the running maxima
of {yn}n∈N have a limit of the same type as (3.3), but with different norming
constants. Loosely speaking, large values of {yn}n∈N have a tendency to cluster,
which implies that the maximum of Mn behaves as the maximum of θn iid rvs
with the same distribution. The constant θ ∈ (0, 1] is called extremal index of
{yk}k∈N. It is a measure of local dependence amongst the exceedances over a
high threshold by the process {yk}k∈N and has a natural interpretation as the
reciprocal of the mean cluster size.

To describe the extremal behaviour in more detail we shall also study the
point processes of exceedances of {yn}n∈N over high thresholds. We denote by
ǫ the Dirac measure and define for n ∈ N and appropriate thresholds un the
time normalized point process of exceedances on the Borel sets of [0,∞)
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Nn(·) =
n∑

j=1

ǫj/n(·)1{yj>un} . (3.4)

We show that the sequences Nn converge for n → ∞ and un ↑ ∞ weakly
to a compound Poisson process N . Moreover, we derive for the limit process
N the intensity and cluster size distribution, which is a discrete distribution,
denoted by {νj}j∈N. Whereas the intensity describes the frequency of threshold
exceedances, the cluster size distribution gives the distribution of the cluster
sizes over thresholds. For further background we refer to Leadbetter, Lindgren
and Rootzén [15], Section 3.7, and Rootzén [21], see also Embrechts et al. [5],
Chapter 5 and Section 8.1.

Before stating our main results, we prove an analogue of Remark 2.3 for partial
maxima.

Remark 3.2 (a) Recall that Mn = max{y1, . . . , yn} = max{z′∗Y1, . . . , z
′
∗Yn},

where the vector (Y1, . . . , Yn) depends on the initial vector Y and we indi-
cate this by writing Mn(Y ). Taking into account that |max ak − max bk| ≤
max |ak − bk| we obtain for every δ > 0

P(|Mn(Y ) − Mn(Y∞)| > δ n1/λ) ≤ P( max
1≤k≤n

|z′∗ Yk(Y ) − z′∗ Yk(Y∞)| > δ n1/λ)

≤ P( max
1≤k≤n

|Yk(Y ) − Yk(Y∞)| > δ n1/λ)

≤
1

δ n1/λ

n∑

k=1

E |Yk(Y ) − Yk(Y∞)| .

Now inequality (2.6) implies that the right hand side tends to 0, i.e.

n−1/λ (Mn(Y ) − Mn(Y∞))
P
→ 0 , n → ∞ ,

for any initial vector Y with E |Y |2 < ∞. Therefore the weak limit of partial
maxima Mn is independent of the initial vector Y .

(b) To show that the point process convergence is independent of the initial
vector Y we need to assume condition H0. For n ∈ N we set un = xn1/λ for
some x > 0 and denote by

NY
n (·) =

n∑

j=1

ǫj/n(·)1{z′∗Yj(Y )>un}

the point process of exceedances over un corresponding to the process {Yj}j∈N

with initial vector Y . For arbitrary 0 < ε < 1 we define Γn,ε = {max1≤j≤n |z′∗Yj(Y )−
z′∗Yj(Y∞)| ≤ ε un}, then
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P(|NY
n (·) − NY∞

n (·)| > 0) ≤ P(
n∑

j=1

|1{z′∗Yj(Y )>un} − 1{z′∗Yj(Y∞)>un}| > 0)

≤P(
n∑

j=1

|1{z′∗Yj(Y )>un} − 1{z′∗Yj(Y∞)>un}| > 0 , Γn,ε) + P(Γc
n,ε

)

≤
n∑

j=1

P(un(1 − ε) ≤ z′∗Yj(Y∞) ≤ (1 + ε) un) + P(Γc
n,ε

)

= nP(un(1 − ε) ≤ z′∗Y∞ ≤ (1 + ε)un) + P(Γc
n,ε

) ,

By definition, limn→∞ P(Γc
n,ε

) = 0 and condition H0 implies that

NY
n (·) − NY∞

n (·)
P
→ 0 , n → ∞ ,

for any initial vector Y with E |Y |2 < ∞. Thus the weak limit of Nn(·) is
independent of the initial vector Y . 2

The extremal index θ and the cluster size distribution {νj}j∈N can be repre-
sented by the limit measure Q of the following measures on R

q:

Qt(Γ) = P(t−1 Y∞ ∈ Γ | t−1Y∞ ∈ Wz∗
) =

P(t−1Y∞ ∈ Γ ∩ Wz∗
)

P(t−1 Y∞ ∈ Wz∗
)

, (3.5)

for t → ∞, where Wz = {y ∈ R
q : z′ y > 1} for z ∈ R

q.

Theorem 3.3 Assume that condition H0 holds. If the positive exponent λ in
this condition is non-integer, then there exists a weak limit Q of the family
{Qt}t≥1 of measures (3.5) as t → ∞. It satisfies for measurable Γ ⊂ R

q

Q(Γ) = µ(Γ ∩ Wz∗
) , (3.6)

where µ is some positive σ-finite measure on R
q \ {0} with µ(Wz∗

) = 1.

In our principal example (1.2) with Gaussian rvs {ξn}n∈N the stationary dis-
tribution given by the vector (2.3) is symmetric. For such cases we can prove
a stronger result.

Theorem 3.4 Assume that condition H0 holds and Y∞ has a symmetric dis-

tribution on R
q; i.e. that Y

d
= −Y . If the positive exponent λ in condition H0

is non-even, then the assertion of Theorem 3.3 holds.

We shall prove this result in Section 4. The measure Q plays an important role
in the description of the joint distribution of the stationary vector (y1, . . . , yk)
for every k ∈ N on high levels. In this sense it is not surprising that Q describes
the partial maxima of {yn}n∈N and the limit behaviour of point processes of
exceedances.

9



We set

ς(y) =
∞∑

j=1

1{z′
∗

Πj y > 1} with Πj = Aj · · ·A1 . (3.7)

and define the following technical conditions :

H1) P(ς(y) = 0) > 0 for every y ∈ Wz∗
.

H2) P(z′∗Πj y = 1) = 0 for every y ∈ Wz∗
and j ∈ N.

H1 and H2 are conditions on the distribution of the sequence (An)n∈N
. Condi-

tion H1 implies that maxj∈N
z′∗Πjy falls with positive probability in the interval

[−1, 1]. Condition H2 is for example satisfied, if the random variables z′∗Πjy
have a density in R for every y ∈ Wz∗

and every j ∈ N. In Lemma 6.5 with
proof in Section 6.2 we shall check these conditions for the random coefficient
autoregressive model (1.2).

The following result describes the extremal behaviour of any process with
multivariate random recurrence state space representation under natural con-
ditions.

Theorem 3.5 Assume that the conditions A1−A3 and H0−H2 hold. More-
over, let the exponent λ in condition H0 be non-even, if Y∞ is symmetric, and
non-integer otherwise.

(a) Then

lim
n→∞

P(n−1/λ Mn ≤ x) = e−θ h∗ x−λ

, x > 0 ,

where h∗ = h(z∗) and the extremal index θ is defined as

θ =
∫

Rq
g(y) Q(dy) > 0 . (3.8)

The probability measure Q(·) is the weak limit of the family (3.5) as t → ∞
and

g(y) = P(ς(y) = 0) , y ∈ Wz∗
, (3.9)

with the function ς(·) defined in (3.7).

(b) For n ∈ N let Nn be the point process of exceedances over the threshold
un = n1/λ x for x > 0 given by (3.4). Then

Nn
d

−→ N , n → ∞ ,

10



where N is a compound Poisson process with intensity θ τ (τ = h∗x
−λ) and

the cluster size probabilities

νk = θ−1(θk − θk+1) , k ∈ N ,

satisfying θ1 = θ ≥ θ2 ≥ θ3 ≥ . . . ≥ 0 with

θk =
∫

Rq
gk(y) Q(dy) and gk(y) = P(ς(y) = k − 1) , y ∈ Wz∗

, (3.10)

for k ∈ N with g1(y) = g(y) as defined in (3.9).

Remark 3.6 (a) In Appendix B we shall show that H2 implies that all gk

are continuous.
(b) For q = 1 the limit measure Q has a Lebesgue density, more precisely,

Q(dy) = λ y−λ−1 1{y≥1}dy .

In this case the extremal index has representation

θ = λ
∫ ∞

1
P

(
max
k∈N

Ak · · ·A1 ≤ y−1
)
y−λ−1 dy .

This result has been obtained in Borkovec [3]. 2

4 Properties of the measures Qt - multivariate regular variation

In this section we come back to Remark 3.1. Basrak et al. [1] investigate the
various notions of regular variation and their relationships, in particular the
relationship between regular variation in the Kesten sense and in the sense of
(3.1). They proved in their Theorem 1.1 that for non-integer λ > 0 regular
variation in the Kesten sense implies (3.1). They also proved this result for
λ an odd integer and vectors Y in R

q
+. As an important class of models is

symmetric - also our principal model (1.2) is in the important Gaussian case
symmetric - we reconsider the problem in this context. We present a new proof
of Theorem 1.1 of [1], together with an extension of this result for symmetric
models.

We follow the point process theory as presented in Kallenberg [11]. Set R =
R∪{−∞, +∞} and consider in what follows E = R

q
\ {0} as the state space

of the point processes.

We study the properties of the family of measures defined in (3.5). Define
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mt(Γ) =
P(Y∞ ∈ t Γ)

P(Y∞ ∈ t Wz∗
)
, t ≥ 1 , (4.1)

for any measurable Γ ⊆ R
q and notice that Qt(Γ) = mt(Γ ∩ Wz1

).

Remark 4.1 (a) Regular variation in the Kesten sense as given in H0 can
be rewritten as

lim
t→∞

P (z′Y∞ > t)

P (z′∗Y∞ > t)
= h̃(z) , z ∈ S , (4.2)

where h̃(·) = h(·)/h∗. Moreover, the function h̃ satisfies for every t > 0,

h̃(tz) = tλh̃(z) , z ∈ S ,

where λ is defined in H0. This means that for all z 6= 0 the rv z′Y∞ is regularly
varying with index λ.

(b) The limit relation (4.2) is equivalent to

lim
t→∞

P (Y∞ ∈ t Wz)

P (Y∞ ∈ t Wz∗
)

= h̃(z) , z ∈ S . (4.3)

2

Now define

ρ0(x, y) =

∣∣∣∣∣
1

x+ + 1
−

1

y+ + 1

∣∣∣∣∣ +

∣∣∣∣∣
1

x− + 1
−

1

y− + 1

∣∣∣∣∣ , x, y ∈ R ,

were we denoted x+ = max(x, 0) and x− = −min(x, 0). With this notation
we introduce the following metric on E

ρ(x, y) =
q∑

j=1

ρ0(xj, yj) +

∣∣∣∣∣
1

|x|
−

1

|y|

∣∣∣∣∣ , x, y ∈ E .

Then (E , ρ) is a separable and complete metric space. Moreover, for every
δ > 0 the set {x ∈ E : |x| ≥ δ} is compact in this space, and bounded sets
are those that are bounded away from 0 ∈ R

q. The topolgie on E is discussed
in more detail in Resnick [20].

We are interested in vague convergence of measures (4.1) in (E , ρ), i.e. condi-
tions for which there exists a measure m in E such that mt

v
→ m as t → ∞.

We recall that mt
v
→ m means vague convergence of mt to m; i.e.

lim
t→∞

∫

E
f(y) mt(dy) =

∫

E
f(y) m(dy)
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for all continuous functions f with compact support in (E , ρ). We shall use
the following results.

Theorem 4.2 [Basrak, Davis and Mikosch [1], Theorem 1.1(ii)]
Let condition H0 hold for non-integer λ > 0. Then the family (4.1) of measures
has a vague limit in (E , ρ). Moreover, Y∞ is multivariate regularly varying in
the sense of (3.1).

The following result is essential for this investigation, in particular, for our
principal example (1.2).

Theorem 4.3 Assume that Y∞ has a symmetric distribution on R
q. Let con-

dition H0 hold for non-even λ > 0. Then the family (4.1) of measures has a
vague limit in (E , ρ). Moreover, Y∞ is multivariate regularly varying in the
sense of (3.1).

Remark 4.4 Note that this theorem does not hold in general for even in-
tegers λ. This follows directly from the counterexample given in Hult and
Lindskog [10]: take on p. 136 above e.g. fθ = 1/(2π).

We shall use the following lemma, whose proof is given in Appendix C. To
formulate the result we recall the definition of a subsequential vague limit.
The measure µ is called a subsequential vague limit of mt, if there exists a
sequence tn → ∞ such that mtn

v
→ µ.

Lemma 4.5 Assume that condition H0 holds. If µ is a subsequential vague
limit of {mt}t≥1, then for every u > 0 we have

µ(y ∈ R
q : z′y > u) = u−λ h̃(z) , z ∈ S . (4.4)

Moreover, setting ĥ(z) = h̃(z) + h̃(−z), we obtain for u > 0 and 0 < ν < λ

∫

|z′y|>u
|z′y|ν µ(dy) =

λ

λ − ν
uν−λ ĥ(z) , z ∈ S , (4.5)

and for ν > λ

∫

|z′y|<u
|z′y|ν µ(dy) =

λ

ν − λ
uν−λ ĥ(z) , z ∈ S . (4.6)

Proof of Theorem 4.3 We first show that the family (4.1) is relatively
compact; i.e. that supt≥1 mt(B) < ∞ for all bounded Borel sets B in E (see
Kallenberg [11], Theorem 15.7.5). To see this recall that in the space E bounded
sets are those that are bounded away from 0 ∈ R

q, i.e. for every bounded B
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there exist non-zero vectors x1, . . . , xk in R
q\{0} such that

B ⊆
k⋃

j=1

Wxj
∪ (R

q
\Rq)

and, hence, by (4.3)

sup
t≥1

mt(B) ≤ sup
t≥1

k∑

j=1

P(Y∞ ∈ t Wxj
)

P(Y∞ ∈ t Wz∗
)

< ∞ .

This implies that the family {mt}t≥1 has a subsequential vague limit.

To complete the proof it suffices to show that any two such limits, µ1 and µ2,
are identical. First we suppose that λ is non-integer, i.e. λ ∈ (l−1, l) for some
l ∈ N. Let µ1 and µ2 be two subsequential vague limits.

First note now that (4.4) implies that

µ1(x ∈ E : |x| = ∞) = µ2(x ∈ E : |x| = ∞) = 0 .

Therefore, for the identity of the measures µ1 and µ2 it suffices to show that

∫

Rq
f(x) µ1(dx) =

∫

Rq
f(x) µ2(dx) (4.7)

for every continuous bounded function f satisfying

f(x) = 0 if |x| ≤ r (4.8)

for some positive r. W.l.o.g. we can assume that f is infinitely often differen-
tiable and periodic (with period 2L) in every component of x. Hence, f has a
representation as Fourier series

f(x) =
∑

k∈Nq

ck ei(zk,x) , x ∈ R
q , (4.9)

where zk = π k/L and (zk, x) = z′k x. Now note that condition (4.8) implies
for all d ∈ N0 ∑

k∈Nq

ck (zk, y)d = 0 , y ∈ R
q , (4.10)

which implies that f has representation

f(x) =
∑

k∈Nq

ck ∆l−1((zk, x)) , x ∈ R
q ,

where

∆l((zk, x)) = ei(zk,x) −
l∑

j=0

(i(zk, x))j

j!
, x ∈ R

q .
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Recall from standard analysis that

|∆l(x)| ≤ min

(
|x|l+1

(l + 1)!
,
2|x|l

l!

)
, x ∈ R

q . (4.11)

Moreover, we can represent the function f as

f(x) = Hl−1(x) + Ĥl−1(x) , x ∈ R
q ,

where, setting z = z/|z|,

Hl(x) =
∑

k∈Nq

ck ∆l((zk, x))1{|(zk,x)|≥1} , Ĥl(x) =
∑

k∈Nq

ck ∆l((zk, x))1{|(zk,x)|<1} .

Taking (4.5) and (4.11) into account we obtain

∫

Rq
Hl−1(x) µ1(dx) =

∑

k∈Nq

ck

∫

{|(zk,x)|≥1}
∆l−1((zk, x)) µ1(dx)

=
∑

k∈Nq

ck

∫

{|(zk,x)|≥1}
∆l−1((zk, x)) µ2(dx)

=
∫

Rq
Hl−1(x) µ2(dx) .

We have used that the integrals on the right-hand side are finite by Lemma 4.5,
which also justifies the interchange of summation and integral. Equality of
both integrals follows from the integrands’ dependence on the inner products
(zk, x) only. Analogously, from (4.6) and (4.11) we obtain

∫

Rq
Ĥl−1(x) µ1(dx) =

∫

Rq
Ĥl−1(x) µ2(dx) .

We show now equality of µ1 and µ2 for odd integers l = λ = 2p + 1 for some
p ∈ N0. For such l we represent the function (4.9) as

f(x) = Hl−1(x) + Ĥl(x) −
il

l!
Pl(x) , x ∈ R

q ,

where Pl(x) =
∑

k∈Nq ck (zk, x)l 1{|(zk,x)|<1}. From the calculations above fol-
lows that (4.7) holds, if

∫

Rq
Pl(x) µ1(dx) =

∫

Rq
Pl(x) µ2(dx) .

From the definition of the measures µ1 and µ2 follows the existence of se-
quences {r1n}n∈N and {r2n}n∈N such that mrin

→ µi as n → ∞ for i = 1, 2.
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Let DPl
be the set of discontinuity points of the function Pl, which is given by

DPl
=

⋃

k∈N
q

{x ∈ R
q : |(zk, x)| = 1} .

In Appendix C we prove that µi(DPl
) = 0 for i = 1, 2. Moreover, for every

x ∈ R
q

|Pl(x)| ≤
∑

k∈Nq

|ck| < ∞ ,

i.e. Pl is bounded, since the function (4.9) is infinitely often differentiable.
Furthermore, if x ∈ R

q with |x| < 1 then |(zk, x)| ≤ |zk||x| < 1 for every
k ∈ N

q. Thus (4.10) implies

Pl(x) =
∑

k∈Nq

ck (zk, x)l 1{|(zk,x)|<1} =
∑

k∈Nq

ck (zk, x)l = 0 , |x| < 1 ,

i.e. this function has bounded support {x ∈ R
q : |x| ≥ 1}. Therefore, by

Theorem 15.7.3 of Kallenberg [11] we can write

∫

Rq
Pl(x) µ1(dx) = lim

n→∞

∫

Rq
Pl(x) mr1n

(dx)

= lim
n→∞

1

P(Y∞ ∈ r1n Wz∗
)
EPl(Y∞/r1n)

= lim
n→∞

1

rl
1nP(z′1Y∞ > r1n)

∑

k∈Nq

ck |zk|
l E (zk, Y∞)l 1{|(zk,Y∞)|<r1n}

= 0 ,

by symmetry of Y∞. Analogously we obtain
∫
Rq Pl(x) µ2(dx) = 0. Hence, (4.1)

converges to a limit µ. 2

Proof of Theorem 3.3 and Theorem 3.4
We denote by µ the vague limit of the measures (4.1). From (4.4) follows
directly that µ(∂Wz1

) = 0. Therefore, the family (3.5) has also a vague limit
Q (see Kallenberg [11], Theorem 15.7.3), which satisfies (3.6). Moreover, by
definition, for every t ≥ 1,

Qt(R
q) = Qt(Wz1

) = 1 = Q(Wz1
) = Q(Rq) .

Thus, Theorem 15.7.6 of [11] guarantees weak convergence of the family (3.5)
to Q. 2
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5 The existence of an extremal index and point process conver-
gence

5.1 Definitions and existing results

We consider a stationary process {yk}k∈N such that for every τ > 0 there exists
a sequence {un(τ)}n∈N for which

lim
n→∞

nP (y1 > un(τ)) = τ . (5.1)

The conditions D(un(τ)) and ∆(un(τ)) are extreme mixing conditions (for
the definitions see for example Rootzen [21], p. 379), which are both implied
by strong mixing; i.e. they follow immediately from Theorem 2.2 for every
appropriate sequence {un}n∈N.

Definition 5.1 (Extremal index)
Assume that there exists a constant 0 < θ ≤ 1 such that for every τ > 0

lim
n→∞

P( max
1≤k≤n

yk ≤ un(τ)) = e−θτ .

Then θ is called the extremal index of the sequence {yk}k∈N.

Theorem 5.2 (Rootzen [21], Theorem 4.1(i))
Suppose that condition D(un(τ)) holds for each τ > 0. Then {yk}k∈N has
extremal index θ > 0 if and only if

lim
ǫ→0

lim sup
n→∞

|P(M[ǫn] ≤ un | y0 > un) − θ| = 0 (5.2)

for un = un(τ0) for some τ0 > 0.

We consider now the point process of exeedances for the process {yk}k∈N de-
fined as

Nn,τ (·) =
n∑

j=1

ǫj/n(·)1{yj>un(τ)} ,

where the sequence {un(τ)} is given in (5.1).

To study the asymptotic properties of these processes we apply the following
criterion.

Theorem 5.3 (Rootzen [21], Theorem 4.1(ii))
Suppose that {yk}k∈N has extremal index 0 < θ ≤ 1 and the condition ∆(un(τ))
holds for each τ > 0. If for every k ≥ 2 and some τ0 > 0
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lim
ǫ→0

lim sup
n→∞

|P(Nn,τ0
((0, ǫ]) = k − 1 | y0 > un) − θk| = 0 , (5.3)

then the sequence {θk}k∈N is decreasing, i.e. θ1 = θ ≥ θ2 ≥ θ3 ≥ . . . , and for
every τ > 0 the point processes Nn,τ converge weakly to a compound Poisson
process N with intensity θ τ and cluster size probabilities νk = θ−1(θk − θk+1),
k ∈ N.

5.2 Proof of Theorem 3.5

In view of Remarks 2.3 and 3.2 we prove this theorem for the stationary

process (1.1), i.e. the process starts with initial vector Y0
d
= Y∞ as in (2.3).

5.2.1 Extremal index

In this section we prove Theorem 3.5(a). We apply Rootzén’s criterion (The-
orem 5.2) based on mixing properties of the process (1.1) which immediately
follow from Theorem 2.2(b). The most important issue will be representation
(3.8) for the extremal index.

First of all, note that condition H1 implies that θ as defined in (3.8) is strictly
positive. We verify property (5.2) for {yk}k∈N with un = n1/λ x for arbitrary
x > 0. Denoting again Πk = Ak · · ·A1 we define the auxiliary process

Ỹ0 = Y0 , Ỹk = Πk Y0 , k ∈ N ,

which obviously satisfies

Ỹk = Ak Ỹk−1 .

Hence the difference process Vk = Yk − Ỹk, k ∈ N, satisfies equation (1.1)
with initial value zero. Define ỹj = z′∗Ỹj, m = [ǫn] for some ǫ > 0, and
V ∗

m = sup1≤k≤m |Vk|. To check condition (5.2) notice that for every 0 < δ < 1

P(Mm ≤ un | y0 > un) = P( max
1≤k≤m

(ỹk + z′∗ Vk) ≤ un | y0 > un)

≤ P( max
1≤k≤m

ỹk ≤ (1 + δ)un | y0 > un) + P( V ∗
m > δ un)

≤
∫

Rq
g(

y

1 + δ
) Qun

(dy) + ∆1(n) + ∆2(n) ,

where g is as in (3.9), the measure Qt(·) is defined in (3.5) and

∆1(n) = P(max
k>m

ỹk > (1 + δ)un | y0 > un) and ∆2(n) = P( V ∗
m > δ un) .(5.4)
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By Lemma B.1 the function g(·) = g1(·) is continuous. Moreover, Theo-
rems 3.3-3.4 imply that there exists a weak limit Q for the family {Qt}t≥1.
Therefore,

lim
t→∞

∫

Rq
g(

y

1 + δ
) Qt(dy) =

∫

Rq
g(

y

1 + δ
) Q(dy) .

Next we show

lim
n→∞

∆1(n) = 0 . (5.5)

Indeed, for every L > 0 we have

∆1(n) =
P(maxk>m z′∗ Πk Y0 > (1 + δ)un , z′∗ Y0 > un)

P(z′∗ Y0 > un)

≤ P
(

max
k>m

|Πk| >
1 + δ

L

)
+

P(|Y0| > Lun , z′∗ Y0 > un)

P(z′1 Y0 > un)

≤
∑

k>m

P
(
|Πk| >

1 + δ

L

)
+

P(|Y0| > Lun)

P(z′∗ Y0 > un)
.

From (2.2) and Chebyshev’s inequality we conclude

P
(
|Πk| >

1 + δ

L

)
≤

L2

(1 + δ)2
E |Πk|

2 ≤
L2

(1 + δ)2
c∗ e−γk .

Therefore, condition H0 yields for every L > 0

lim sup
n→∞

∆1(n) ≤ const L−λ .

Taking now L → ∞ implies (5.5).

Next we consider the second term in (5.4). We shall show that

∆∗
2 = lim sup

n→∞
∆2(n) ≤ const ǫ . (5.6)

Indeed, we have

∆2(n) ≤
∑

1≤k≤m

P(|Vk| > δ un)

≤
∑

1≤k≤m

P(|Yk| > δ un/2) +
∑

1≤k≤m

P(|Ỹk| > δ un/2)

≤ mP(|Y1| > δ un/2) +
4E |Y0|

2

δ2u2
n

∞∑

k=1

E |Πk|
2

≤ ǫnP(|Y1| > δ un/2) + 4c∗
E |Y0|

2

δ2u2
n

∞∑

k=1

e−γk .
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The last inequality implies (5.6). Taking into account that g(r y) → g(y) as
r → 1 for each y ∈ R

q, we obtain the following upper bound

lim sup
n→∞

P(Mm ≤ un | y0 > un) ≤ θ + const ǫ

for every ǫ > 0. Analogously, we obtain the lower bound

P(Mm ≤ un|y0 > un) = P( max
1≤k≤m

(ỹk + z′∗Vk) ≤ un | y0 > un)

≥ P( max
1≤k≤m

ỹk ≤ (1 − δ)un , V ∗
m ≤ δ un | y0 > un)

≥ P( max
1≤k≤m

z′∗ Πk Y0 ≤ (1 − δ)un | y0 > un) − ∆2(n)

≥ P(max
k∈N

z′∗ Πk Y0 ≤ (1 − δ) un | z′∗ Y0 > un) − ∆2(n)

=
∫

Rq
g(

y

1 − δ
) Qun

(dy) − ∆2(n) .

This implies for every ǫ > 0

lim inf
n→∞

P(Mm ≤ un | y0 > un) ≥ θ − const ǫ .

These bounds imply (5.2), i.e. Theorem 3.5(a). 2

5.2.2 Point process convergence

In this section we prove Theorem 3.5(b). We invoke Theorem 5.3, which char-
acterizes point process convergence of Nn to a compound Poisson process.
As mentioned above the mixing condition ∆(un) immediately follows from
Theorem 2.2(b). We verify property (5.3) for {yk}k∈N. As in the proof of The-
orem 3.5(a) we set m = [ǫn] for some ǫ > 0 and ỹj = z′∗Ỹj for j ∈ N. For every
0 < δ < 1 we get

P(Nn((0, ǫ]) = k − 1 | y0 > un) = P




m∑

j=1

1{yj > un}
= k − 1

∣∣∣∣∣∣
y0 > un




≤ P




m∑

j=1

1{yj>un}
= k − 1 , V ∗

m ≤ δ un

∣∣∣∣∣∣
y0 > un


 + ∆2(n)

≤ In,δ + Dn,δ + ∆2(n) , (5.7)

where

In,δ = P




m∑

j=1

1{ỹj > (1−δ)un}
= k − 1

∣∣∣∣∣∣
y0 > un


 ,

Dn,δ = P




m∑

j=1

(
1{ỹj > (1−δ) un}

− 1{yj > un}

)
≥ 1 , V ∗

m ≤ δ un

∣∣∣∣∣∣
y0 > un
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and ∆2(n) is defined in (5.4). We estimate In,δ first.

In,δ ≤P




m∑

j=1

1{ỹj > (1−δ)un}
= k − 1 , max

j>m
ỹj ≤ (1 − δ)un

∣∣∣∣∣∣
y0 > un




+P
(

max
j>m

ỹj > (1 − δ)un

∣∣∣∣ y0 > un

)

≤P




∞∑

j=1

1{z′
∗

Πj Y0 > (1−δ)un}
= k − 1

∣∣∣∣∣∣
z′∗ Y0 > un




+P
(

max
j>m

ỹj > (1 − δ)un

∣∣∣∣ y0 > un

)

=
∫

R
q

gk(
y

1 − δ
) Qun

(dy) + ∆′
1(n) ,

where

∆′
1(n) = P

(
max
j>m

ỹj > (1 − δ)un

∣∣∣∣ y0 > un

)
.

Notice that similarly to (5.5) we obtain limn→∞ ∆′
1(n) = 0. Next we estimate

Dn,δ. For fixed l ∈ N, 1 ≤ l ≤ m we can write

Dn,δ =P




m∑

j=1

1{yj ≤un , ỹj > (1−δ) un}
≥ 1 , V ∗

m ≤ δ un

∣∣∣∣∣∣
y0 > un




=P




m⋃

j=1

{yj ≤ un , ỹj > (1 − δ) un} , V ∗
m ≤ δ un

∣∣∣∣∣∣
y0 > un




≤
l∑

j=1

P ( yj ≤ un , ỹj > (1 − δ) un , V ∗
m ≤ δ un | y0 > un)

+P




m⋃

j=l+1

{yj ≤ un , ỹj > (1 − δ) un} , V ∗
m ≤ δ un

∣∣∣∣∣∣
y0 > un


 .

Moreover, setting Γn =
⋃m

j=l+1
{ỹj > (1 − δ) un} we obtain

Dn,δ ≤
l∑

j=1

P( (1 − 2δ)un < yj ≤ un)

P( y0 > un )
+ P (Γn | y0 > un)

= l
P( (1 − 2δ)un < y0 ≤ un)

P( y0 > un )
+ P (Γn | y0 > un) .

Taking into account that for every fixed L > 0

Γn ∩ {|Y0| ≤ Lun} ⊆
m⋃

j=l+1

{|Πj| > L−1(1 − δ) }

and that {Aj}j∈N is independent of Y0, we deduce
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P (Γn | y0 > un)

≤P ( Γn , |Y0| ≤ Lun | y0 > un) + P ( |Y0| > Lun | y0 > un)

≤
m∑

j=l+1

P
(
|Πj| >

1 − δ

L

)
+

P( |Y0| > Lun )

P( y0 > un)

≤
L

1 − δ

∞∑

j=l+1

E |Πj| +
P( |Y0| > Lun )

P( y0 > un)
.

Hence inequality (2.2) yields

P (Γn | y0 > un) ≤
L c∗
1 − δ

∞∑

j=l+1

e−γj +
P( |Y0| > Lun )

P( y0 > un)
.

Thus we obtain the following upper bound :

Dn,δ ≤ l
P( (1 − 2δ)un < y0 ≤ un)

P( y0 > un )
+

L c∗
1 − δ

∞∑

j=l+1

e−γj +
P( |Y0| > Lun )

P( y0 > un)
.

By condition H0 there exists some universal constant c > 0 such that for every
δ > 0, l ≥ 1 and L > 0

lim sup
n→∞

Dn,δ ≤ l
(

1

(1 − 2δ)λ
− 1

)
+

L c∗
1 − δ

∞∑

j=l+1

e−γj + c L−λ .

Taking in this inequality the limits limL→∞ liml→∞ limδ→0 implies

lim
δ→0

lim sup
n→∞

Dn,δ = 0 .

Therefore, by (5.7) we get the following upper bound

P(Nn((0, ǫ]) = k − 1 | y0 > un)

≤
∫

R
q

gk(
y

1 − δ
) Qun

(dy) + ∆′
1(n) + ∆2(n) + Dn,δ .

Analogously, we obtain a lower bound

P(Nn((0, ǫ]) = k − 1 | y0 > un)

≥
∫

R
q

gk(
y

1 − δ
) Qun

(dy) − ∆′
1(n) − ∆2(n) − Dn,δ .

This concludes the proof of Theorem 3.5(b). 2
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6 The random coefficient autoregressive model

6.1 Extreme behaviour

In this section we consider model (1.2) satisfying (1.3). We can represent this
process in the form (1.1) with the sequences {An}n∈N and {ζn}n∈N defined in
(1.4). We suppose that {An}n∈N satisfies condition A3.

Example 6.1 We start with an example satisfying A3. Consider model (1.2)
for q = 2 with a1 = 0 and σ2 = 0. In this case the corresponding matrix (1.4)
has the following form:

An =




σ1η1n a2

1 0


 and EA1 ⊗ A1 =




σ2
1 0 0 a2

2

0 0 a2 0

0 a2 0 0

1 0 0 0




.

The eigenvalues of this matrix can be calculated as

z1 = a2 , z2 = −a2 , z3 =
σ2

1

2
+

√
σ4

1

4
+ a2

2 , z4 =
σ2

1

2
−

√
σ4

1

4
+ a2

2 .

Hence, condition A3 holds, if σ2
1 + a2

2 < 1. 2

Theorem 3 in Feigin and Tweedie [6] in combination with Theorem 2.2(a) and
(b) imply immediately the following result.

Theorem 6.2 Consider model (1.2)-(1.3). We assume that ξ1 has a positive
Lebesgue density on (−R,R) for some R ∈ (0,∞]. If A3 holds, then Yn =
(yn, . . . , yn−q+1) converges in distribution to the random vector Y∞ in (2.3)
for which E |Y∞|2 < ∞. The process {Yn}n∈N is v-uniformly geometric ergodic,
where v(x) = 1+x′Tx, x ∈ R

q, for some positive definite matrix T . Moreover,
{Yn}n∈N is strongly mixing with geometric rate.

To derive the tail behaviour of the stationary rv y∞ = z′∗Y∞ for z∗ = (1, 0, . . . , 0)′

we require the following additional conditions for the distributions of the co-
efficient vectors {ηin}n∈N and the noise variables {ξn}n∈N in model (1.2).

D1) The rvs {ηin , 1 ≤ i ≤ q , n ∈ N} are iid with symmetric continuous
positive density φ(·) which is non-increasing on R+ and moments of all order
exist.

D2) For some m ∈ N we assume that E(α11 − a1)
2m = σ2m

1 Eη2m
11 ∈ (1,∞).
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In particular, σ1 > 0.

D3) E|ξ1|
m < ∞ for all m ≥ 2.

D4) For every real sequence {ck}k∈N with 0 <
∑∞

k=1 |ck| < ∞, the rv τ =∑∞
k=1 ck ξk has a symmetric density, which is non-increasing on R+.

As stated in Proposition 2.3 of [14] condition D4 is satisfied, if the following
simpler condition holds:
D′

4) The rv ξ1 has bounded symmetric density f , which is continuously differ-
entiable with bounded derivative f ′ ≤ 0 on [0,∞).

An important example is the following.

Example 6.3 [Gaussian model]
Recall from Proposition 2.6 of [14] that for ηi1, i = 1, . . . , q, and ξ1 Gaussian
rvs and σ1 > 0 the conditions D1 − D4 hold. We call this model Gaussian
linear random coefficient model or simply Gaussian model. As was shown in
Lemma 2.7 of [14], this model is equivalent in distribution to an autoregressive
model (with deterministic coefficients ai) and ARCH(q) error term. 2

A first step in studying the extremal behaviour of any stationary time series
model is the tail behaviour of the stationary distribution.

Theorem 6.4 (Klüppelberg and Pergamenchtchikov [14], Theorem 2.4)
Consider model (1.1) and (1.4). We assume that the sequences {ηin , 1 ≤ i ≤
q}n∈N and {ξn}n∈N are independent, that conditions A3 and D1 − D4 hold,
and that a2

q + σ2
q > 0. Then the distribution of the vector (2.3) satisfies

lim
t→∞

tλP(z′Y∞ > t) = h(z) , z ∈ S .

The function h(·) is strictly positive and continuous on S and the parameter
λ is given as the unique positive solution of

κ(λ) = 1 , (6.1)

where for some probability measure ν on S

κ(λ) := lim
n→∞

(
E|A1 · · ·An|

λ
)1/n

=
∫

S
E |x′A1|

λ ν(dx) ,

and the solution of (6.1) satisfies λ > 2.

For the stationary process (1.1) this means that for every marginal rv yk =
z′∗Yk with z∗ = (1, 0, . . . , 0)′
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lim
t→∞

tλ P(yk > t) = h(z∗) =: h∗ .

Thus Theorem 6.4 implies condition H0 for the model (1.2). The following
Lemma guarantees H1 and H2; its proof can be found in Section 6.2.

Lemma 6.5 Assume that condition D1 holds and that σ2
1 > 0. Then the

sequence of matrices {An}n∈N given in (1.4) satisfies H1 and H2.

Thus Theorem 3.4 implies immediately the following result.

Theorem 6.6 Consider model (1.2)-(1.3). Assume that conditions A3 and
D1 − D4 hold and that σ2

1 > 0 and a2
q + σ2

q > 0. Assume, furthermore, that
the positive solution λ of (6.1) is non-even. Then Theorem 3.4 holds for the
process (1.2).

Example 6.7 [Continuation of Example 6.3]
We derive sufficient conditions for the coefficients in the Gaussian model (1.1)
such that the solution λ of equation (6.1) is non-even. To this end we calculate
κ(4). For every matrix we denote its elements by < · >. This yields Πn =
An · · ·A1 = (< Πn >ij)1≤i,j≤q. We represent the (1, 1)-element of this matrix
by its recurrence form

< Πn >11= σ1 η1n < Πn−1 >11 +mn−1 ,

where mn−1 = a1 < Πn−1 >11 +
∑q

j=2 αjn < Πn−1 >j1 is independent of η1n.
Therefore, from the Newton formula we get for n ∈ N

E (< Πn >11)
4 =E (σ1 η1n < Πn−1 >11 +mn−1)

4

≥σ4
1 E (η1n)4 E (< Πn−1 >11)

4

= 3 σ4
1 E (< Πn−1 >11)

4 .

This implies that E (< Πn >11)
4 ≥ (3 σ4

1)
n for all n ∈ N. Then it is easy to

show that κ(4) ≥ 3 σ4
1 > 1 for all σ1 > σ∗ = 3−1/4 ≈ 0.76. From Theorem 6.4

we know that λ > 2, therefore, for σ1 > 3−1/4 the value λ is non-even. 2

6.2 Distributional properties of the random coefficient autoregressive model

In this section we prove Lemma 6.5. Condition D1 ensures that the rv η11

has symmetric positive density φ with certain additional properties. In the
following lemma we show that this implies that ρq(y) = Πq y has also a density,
which can be given explicitly in terms of φ. As before we denote by < · > the
components of the corresponding vector.
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Lemma 6.8 Assume that condition D1 holds and σ1 > 0. Then for y =
(y1, . . . , yq) ∈ Γ0 = {y ∈ R

q : y1 6= 0} the vector ρq(y) = (< Πqy >1, . . . , <
Πqy >q)

′ has a density given by

p(x, y) = p(x1, . . . , xq, y)

= ϕ(xq, y)
q−1∏

j=1

1{xj+1 6=0} ϕ(xj,mj+1(x, y)) , x ∈ R
q , (6.2)

where mj(x, y) = (xj, . . . , xq, y1, . . . , yj−1)
′ and

ϕ(v, y) =
1

σ1|y1|
Eφ

(
v − a1y1 −

∑q
i=2 αj1 yj

σ1|y1|

)
, v ∈ R , y = (y1, . . . , yq) ∈ R

q .

Proof. The special form (1.4) of the matrices Aj implies that for j = 1, . . . , q
the vector ρj(y) ∈ R

q has the following components:

ρj(y) = (< Aj · · ·A1y >1, . . . , < A1y >1, y1, . . . , yq−j)
′ .

In particular,

ρq(y) = (< Aq · · ·A1y >1, . . . , < A1y >1)
′ . (6.3)

Notice now that for k ∈ N every linear combination
∑q

j=1 αjk yj with y1 6= 0
has the density ϕ(v, y). Moreover, for j ≥ 2 the rv < Πj y >1 has a conditional
(conditioned on A1, . . . , Aj−1) density

1{<Πj−1y>1 6=0} ϕ(v, ρj−1(y)) .

Here we took into account that P(< Πj−1y >1= 0) = 0 for j ≥ 2. Now it is easy
to show by induction on j that the random vector (< A1y >1, . . . , < Πjy >1)

′

has for every y ∈ Γ0 the following density on R
j

fj(z1, . . . , zj, y) = ϕ(z1, y)
j∏

i=2

1{zj−1 6=0} ϕ(zj, ϑj−1(z, y)) ,

where
ϑj(z, y) = (zj, . . . , z1, y1, . . . , yq−j)

′ .

Therefore,
p(x1, . . . , xq, y) = fq(xq, . . . , x1, y)

and we obtain (6.2). 2

Next we prove H1: Notice that for z∗ = (1, 0, . . . , 0)′ we have Wz∗
⊂ Γ0,

where Γ0 is defined in Lemma 6.8. Define Π∗(y) = sup
j∈N

z′∗ Πj y. We shall
show by contradiction that for every y ∈ Γ0
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P(ς(y) = 0) = P(Π∗(y) ≤ 1) > 0 . (6.4)

So assume that P(ς(y) = 0) = 0 for some y ∈ Γ0. Then, immediately,
P(Π∗(y) > 1) = 1. Now note that for the matrixes {An}n∈N of type (1.4)
the vector ρq(y) = Πq y has the form (6.3), i.e. ρq(y) = (z′∗Πq y, . . . , z′∗Π1 y)′.
Therefore,

P(Π∗(y) > 1) = EP(Π∗(y) > 1 | ρq(y)) = EF (ρq(y)) ,

where the function F is defined as

F (x) = P
(
(max
1≤j≤q

xj) ∨ Π∗(x) > 1
)

, x = (x1, . . . , xq)
′ ∈ R

q ,

with a ∨ b = max(a, b). Moreover, for |x| ≤ 1 by (2.2)

F (x) =P(Π∗(x) > 1) ≤
∞∑

j=1

P (z′1 Πj x > 1)

≤
∞∑

j=1

E |Πj x|2 ≤ c∗
∞∑

j=1

e−γ j |x|2 .

This implies that there exists 0 < r < 1 such that F (x) ≤ 1/2 on the set
Br = {x ∈ R

q : |x| ≤ r}. But by our assumption above we get

1 = P(Π∗(y) > 1) = EF (ρq(y)) =
∫

Rq
F (x) p(x, y) dx , (6.5)

where the density p(x, y) is defined in (6.2) and, therefore,

∫

Br

p(x, y) dx > 0 .

Hence, the right hand side of equality (6.5) is strictly less than 1. This con-
tradiction proves for all y ∈ Γ0 inequality (6.4), which implies condition H1.

Finally, we check condition H2. By condition D1 and σ2
1 > 0 the rv z′∗A1y

has a density for all y ∈ Γ0, thus P(z′∗A1y = a) = 0 for a ∈ R. Suppose for
some j ∈ N that P(z′∗Πj y = a) = 0 for every a ∈ R. Then for a ∈ R,

P(z′∗Πj+1 y = a)

≤P(z′∗Aj+1Πj y = a , z′∗Πjy = 0) + P(z′∗Aj+1Πj y = a , z′∗Πjy 6= 0)

≤P(z′∗Πjy = 0) +
∫

Γ0

P(z′∗Aj+1 x = a )P(Πjy ∈ dx)

=P(z′∗Πjy = 0) +
∫

Γ0

P(z′∗A1 x = a )P(Πjy ∈ dx) .
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The first probability is equal to zero by assumption. The second term is equal
to zero as the rv z′∗A1 x has a density for every x ∈ Γ0. This means that for
all j ∈ N and all a ∈ R we have P(z′∗Πj y = a) = 0. This implies H2.

This concludes the proof of Lemma 6.5. 2

Appendix

A Proof of Theorem 2.2(b)

For a stationary Markov process we have for functions f and h as in Defini-
tion 2.1,

E [f(..., Y−1, Y0) h(Yk, Yk+1, ...)]

=E [f(..., Y−1, Y0)E [h(Yk, Yk+1, ...) | Yj , j ≤ k]]

=E [f(..., Y−1, Y0) H(Yk)]

=E
[
f(..., Y−1, Y0)EY0

H(Yk)
]

,

where Ex denotes the expectation, given the process starts in x, and

Eh(Yk, Yk+1, ...) =EH(Yk) = EH(Y∞) ,

where H(y) = Ey h(y, Y1, ...). Thus

|E f(..., Y−1, Y0) h(Yk, Yk+1, ...) − E f(..., Y−1, Y0)Eh(Yk, Yk+1, ...)|

= |E
[
f(..., Y−1, Y0) (EY0

H(Yk) − EH(Y∞))
]
|

≤E |EY0
H(Yk) − EH(Y∞)|

≤R ρk E v(Y0) = R ρk E v(Y∞) ≤ R ρk (1 + |T |E |Y∞|2) ,

and this implies inequality (2.5) with C∗ = R (1 + |T |E |Y∞|2) < ∞. 2

B Properties of the functions gk

Recall the functions gk from (3.10).

Lemma B.1 Under condition H2 the functions gk(·) are continuous for all
k ∈ N.

Proof. By the definition of ς in (3.7) we have for every k ∈ N

|gk(y) − gk(y0)| ≤ 2P(ν(y, y0) ≥ 1) , y, y0 ∈ Wz∗ ,
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where ν(y, y0) =
∑∞

j=1
|1{ξj(y) > 1}−1{ξj(y0)≥ 1}| and ξj(y) = z′∗ Πj y. Therefore,

it suffices to show that

lim
y→y0

P(ν(y, y0) ≥ 1) = 0 . (B.1)

For every fixed 0 < ε < 1/2 we set Γε =
⋂∞

j=1
{|ξj(y) − ξj(y0)| ≤ ε)}. Taking

into account that

{ν(y, y0) ≥ 1} ∩ Γε ⊆
∞⋃

j=1

{1 − ε ≤ ξj(y0) ≤ 1 + ε}

we get

P(ν(y, y0) ≥ 1) ≤ P(ν(y, y0) ≥ 1 , Γε) + P(Γc
ε
)

≤P
(
∪∞

j=1 {1 − ε ≤ ξj(y0) ≤ 1 + ε}
)

+ P(Γc
ε
)

≤
l∑

j=1

P(1 − ε ≤ ξj(y0) ≤ 1 + ε) +
∞∑

j=l+1

P(ξj(y0) ≥ 1/2) + P(Γc
ε
)

≤
l∑

j=1

P(1 − ε ≤ ξj(y0) ≤ 1 + ε) + 4
∞∑

j=l+1

E |ξj(y0)|
2 + P(Γc

ε
) .

Moreover, by Chebyshev’s inequality and (2.2) we can estimate the last prob-
ability as

P(Γc
ε
) ≤

∞∑

j=1

P(|ξj(y) − ξj(y0)| > ε) ≤
1

ε2

∞∑

j=1

E |ξj(y) − ξj(y0)|
2

≤
1

ε2
|y − y0|

2
∞∑

j=1

E |Πj|
2 ≤

c∗
ε2

|y − y0|
2

∞∑

j=1

e−γj .

Therefore,

P(ν(y, y0) ≥ 1)≤
l∑

j=1

P(1 − ε ≤ ξj(y0) ≤ 1 + ε)

+ 4 c∗ |y0|
2

∞∑

j=l+1

e−γj +
c∗
ε2

|y − y0|
2

∞∑

j=1

e−γj .

By condition H2 and taking here limits y → y0, ε → 0 and l → ∞ we obtain
(B.1). 2
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C Proof of Lemma 4.5

Let µ be a subsequential vague limit, i.e. if there exists a sequence tn → ∞
such that mtn

v
→ µ, then µ(∂Bu,x) = 0 for the set Bu,x = uWx for every u > 0

and x ∈ R
q \ {0}. Indeed, in this case

∂Bu,x = {y ∈ E : (x, y) = u} ⊂ {y ∈ E : (1− δ)u < (x, y) < (1 + δ)u} =: Gδ

for all 0 < δ < 1. Therefore, by the property of vague convergence (see Kallen-
berg [11], Theorem 15.7.2(iii)) and the limiting relationship (4.3) we have for
every 0 < δ < u and Gδ as above,

µ(∂Bu,x) ≤ µ(Gδ) ≤ lim inf
n→∞

mtn(Gδ)

= lim
tn→∞

P(x′Y∞ > tn(1 − δ)u) − P(x′Y∞ ≥ tn(1 + δ)u)

P(z′∗Y∞ > tn)

= lim
tn→∞

P(x′Y∞ > (1 − δ)utn) − P(x′Y∞ ≥ (1 + δ)utn)

P(z′∗Y∞ > tn)

= h̃(x) u−λ
(
(1 − δ)−λ − (1 + δ)−λ

)
.

Taking the limit for δ → 0 implies that µ(∂Bu,x) = 0. By Theorem 15.7.2(ii)
of Kallenberg [11] and condition H0 we get (4.4). Next we show (4.5). An
application of (4.4) yields

∫

|z′y|>u
|z′y|ν µ(dy) = ν

∫ ∞

0
tν−1 µ(y ∈ R

q : |z′y| > max(u, t)) dt

= uν µ(y ∈ R
q : |z′y| > u) + ν

∫ ∞

u
tν−1 µ(y ∈ R

q : |z′y| > t) dt

= ĥ(z) uν−λ + ĥ(z) ν
∫ ∞

u
tν−λ−1 dt .

This implies (4.5). Analogous reasoning yields (4.6). 2
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