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ABSTRACT

No-reference video quality metrics are becoming ever more popular,
as they are more useful in real-life applications compared to full-
reference metrics. Many proposed metrics extract features related
to human perception from the individual video frames. Hence the
video sequences have to be decoded first, before the metrics can
be applied. In order to avoid the decoding just for quality estima-
tion, we therefore present in this contribution a no-reference metric
for HDTV that uses features directly extracted from the H.264/AVC
bitstream. We combine these features with the results from subjec-
tive tests using a data analysis approach with partial least squares
regression to gain a prediction model for the visual quality. For ver-
ification, we performed a cross validation. Our results show that the
proposed no-reference metric outperforms other metrics and delivers
a correlation between the quality prediction and the actual quality of
0.93.

Index Terms— H.264/AVC, HDTV, 1080p25, subjective test-
ing, visual quality, video quality metric, no-reference metric.

1. INTRODUCTION

The current focus in the research on video quality metrics is shift-
ing more and more to no-reference metrics as in many practical ap-
plication scenarios undistorted references are not available due to
overall bitrate constraints. Quite a few no-reference metrics have
already been proposed so far to measure the visual quality of en-
coded video. Often, the aim is to develop a quality metric that works
independently of a specific coding technology. With appropriate no-
reference algorithms, features that describe certain visual properties
of the video sequences, like blocking or bluring, are extracted and
then combined in a no-reference metric. One example of such a
metric, especially for HDTV, is our previous contribution in [1].

Even though these metrics work quite well, they have the disad-
vantage that the encoded video needs to be decoded before feature
extraction algorithms can be used. This can lead for example to an
increased overall computational complexity in a network if the qual-
ity should not only be determined at the terminating devices, but
also at arbitrary points in between. Another approach is therefore to
avoid the complete decoding and directly extract useful features for
a video quality metric from the bitstream. Such metrics are of course
limited in their scope due to the necessary adaption to a certain cod-
ing technology and its bitstream format. While this may seem to be
a major shortcoming, one has to consider that in most of the current
practical applications for HDTV, H.264/AVC coding technology is
used predominantly.

In this contribution we will therefore present a no-reference
video quality metric for HDTV based on H.264/AVC bitstream fea-
tures. We use a data analysis approach with Partial Least Squares
Regression (PLSR) to design a video quality metric with features
extracted from the encoded H.264/AVC bitstream. We focus on the
HDTV 1080p25 format, representing progressive video sequences
in the full HDTV resolution of 1920× 1080 pixels at 25 frames per
second.

In related contributions to no-reference video quality metrics,
Eden estimates the PSNR of interlaced HDTV video sequences with
H.264/AVC bitstream features in [2] whereas Slanina et al. in [3]
estimate the PSNR for videos in CIF resolution. Rossholm and
Lövström not only estimate PSNR in [4], but also other video quality
metrics for videos in CIF resolution from the bitstream. In [5], Lee
et al. use bitrate, QP and deblocking filter parameters for quality pre-
diction of QCIF resolution videos, but no different coding structures
were considered. Another approach is the combination of bitstream
features and features extracted from the decoded video sequences in
hybrid metric as proposed for interlaced HDTV by Sugimoto et al.
in [6].

This contribution is organized as follows: firstly, we will discuss
the extraction of the features from the H.264/AVC bitstream, before
introducing how the metric is built using PLSR. Then we will shortly
describe the subjective testing. After presenting and discussing the
results, we will conclude with a short summary.

2. FEATURE EXTRACTION

In order to build our metric, we first need to extract features from
the H.264/AVC bitstream that describe the properties of the encoded
video sequence. We assume in the following that the byte stream
representing the Network Abstraction Layer (NAL) according to An-
nex B of the H.264/AVC standard is available and that any chan-
nel coding done for transmission has already been removed. Note
that we do not have to further decode and reconstruct each frame:
it is sufficient if we only reverse the entropy encoding of the bit-
stream, as we are not interested in the completely decoded frame, but
rather in the properties of the bitstream. We then parse those NAL
units (NALU) containing information about the coded frames, the
so-called Video Coding Layer (VCL). Each VCL-NALU describes
one slice of the current frame. A slice in turn is partitioned into mul-
tiple macroblocks, which again can be divided into submacroblocks.
Hence we parse three successive layers as shown in Fig. 1.

Before descending to the slice level, we extract the profile,
level and entropy encoding type for the complete video sequence.
Then we extract the following features for each slice in the video
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Fig. 1: H.264/AVC bitstream: overview over the different layers

sequence:

• bits per slice (BPS)

• average QP per slice (QPA)

• average, minimum and maximum motion vector length per
slice (MV, MVMin, MVMax)

• average and maximum motion vector error per slice (MVd,
MVdMax)

These features are then pooled temporally over all frames by cal-
culating the average, median, standard deviation, minimum, maxi-
mum 10% and 90% percentiles. We denote this for each feature f
as fAvg , fMed, fSD , fMin/Max and f10/90. Also we check if the
QP changed at the macroblock layer from the initial QP in a slice.
We then calculate the average difference qpdAvg between initial and
changed QP over all slices, but also the percentage of slices with
constant QP over all macroblocks (%qpd).

Furthermore, we determine the percentage of the different slice
types, but also of the different macroblock types and their subdivi-
sion over the whole video sequence:

• percentage of I-, P- and B-slices (%I,%P, %B)

• percentage of intra, inter and skip coded macroblocks (%In-
tra, %Inter, %Skip)

• percentage of intra macroblocks with 16×16, 8×8 and 4×4
subdivision (%I16x16, %I8x8, %I4x4)

• percentage of inter macroblocks with 8× 8 and 4× 4 subdi-
vision (%P8x8, %P4x4)

All in all, we thus get 64 different features from each video se-
quence. While the large number of extracted features seem to im-
ply an increased computational complexity, note that we only parsed
the intrinsic parameters of the H.264/AVC bitstream and temporally
pooled them. Some of these features were also used by Rossholm
and Lövström in [4]. For feature extraction, we used a modified de-
coder of the H.264/AVC reference software [7].

3. BUILDING THE METRIC USING DATA ANALYSIS

After extracting the features from the bitstream, we employ data
analysis methods to generate a model for predicting the perceived vi-
sual quality the features. In this approach, we do not assume a-priori
specific relationships between the features and the visual quality, but
rather gain the relationships by analyzing the available data. Firstly,
we construct a data matrix X, where the rows correspond to data
from individual sequences or data points and the columns represent
the features. The visual quality values that were determined in sub-
jective tests are represented by the n × 1 column vector y. With n

sequences and m features, X is a n×m matrix. In our example, the
matrix contains 64 features and 32 sequences. Our aim is to find the
unknown m× 1 weight vector b, mapping the features to the visual
quality

y = Xb. (1)

Although we extracted a large number of parameters, not all will
be useful in predicting the visual quality of a video sequence, as we
will see shortly. A principal overview of the model building with
data analysis is given in Fig. 2.

3.1. Partial Least Squares Regression

In this contribution we use the Partial Least Squares Regression
(PLSR) to estimate the weights b. PLSR is an extension of the
principal component regression method (PCR). For PCR, the data
matrix X is first subjected to a PCA, and then for selected principal
components (PC) a regression on y is done. The disadvantage of
PCR is that the PCs best suited to represent X, carrying the structure
of the videos, are not necessarily the same PCs best suited to explain
the variance in y, describing the quality variation of the videos.
Therefore, the modeling with PLSR is done simultaneously on X
and y, ensuring PCs that explain the variance in both X and y best.

By using PLSR, we obtain an estimation b̂ of the weight vector
b and thus can write the quality estimation ŷ for y as

ŷ = 1b̂0 +Xb̂+ e, (2)

where b̂0 describes the offset and e the estimation error of the model.
The video quality of unknown video sequences with a 1×m feature
vector xu can then be predicted as

ŷu = b̂0 + xub̂. (3)

For more information on PLSR, we refer to [8].

3.2. Cross Validation

It is important to use separate data sets for training and validation
of the designed metric. If we used the same data for training and
validation, it would lead to overly optimistic prediction models as
discussed in [1].

Therefore we perform a cross validation and split the available
data set into four different subsets and apply the PLSR on each of
these subsets. Each subset consists of all data sets excluding one data
set of the four video sequences introduced in the following section.
Consequently, we compute four different PLSR models, allowing us
to verify the results for each sequence using a model that did not
include this particular sequence during the calibration.



Fig. 2: Model building with bitstream features and PLSR

Table 1: Weights for selected features and different models

Feature CrowdRun(a) ParkJoy InToTree OldTownCross

QPASD -0.016 -0.011 -0.020 -0.029
MVd10 -0.018 -0.004 -0.005 -0.007
qpdAvg -0.041 -0.026 -0.043 -0.053
%Inter 0.003 0.001 0.003 0.003
(a) Video sequence left out during the model building step

The PLSR and cross validation on the four subsets reveal that
only 48 of the features are relevant for the model and thus m = 48,
as the weights of the other 12 do not have any significant influence
on the predicted quality. In particular, we can exclude the feature
MVMin completely. We determined an optimal number of 3 PCs to
efficiently describe the variance in both X and y at the same time.
Table 1 shows the weights for selected parameters.

3.3. Sigmoid Correction

On the extremes of the voting scale in subjective testing, at very good
or bad quality, the test results exhibit a nonlinear nature. Thus ratings
do not reach the boundaries of the scale, but saturate much earlier.
Therefore, we correct the prediction values ŷ slightly, using a fixed
sigmoid nonlinear correction in order to emulate this behavior [1].
The sigmoid correction of ŷ is given as

ŷS = 1.0/(1 + e(−(ŷ−0.5)/0.2)). (4)

This function is not adapted to the actual data, but is rather a fixed
part of the quality metric. Hence, ŷS represents the final prediction
result of our video quality metric.

4. SUBJECTIVE TESTING

For subjective testing we encoded four different video sequences
with the H.264/AVC reference encoder at multiple bitrates. We used
two significantly different encoder settings, each representing the

complexity of various devices and services. The first setting is cho-
sen to simulate a low complexity (LC) H.264/AVC encoder: many
tools that account for the high compression efficiency are disabled.
In contrast to this, we also used a high complexity (HC) setting that
aims at getting the maximum possible quality out of this coding tech-
nology. We used the H.264/AVC reference software [7] version 12.4.
Selected encoding settings are listed in Table 2. We used the test se-
quences CrowdRun, ParkJoy, InToTree and OldTownCross from the
SVT high definition multi format test set in the 1080p25 HDTV for-
mat. We selected four bitrates from 5.4 Mbit/s to 30 Mbit/s. This
resulted in a quality range from ‘not acceptable’ to ‘perfect’, corre-
sponding to mean opinion scores (MOS) between 0.19 and 0.96 on
a scale ranging from 0 to 1. In total, we have thus 32 different data
points. The tests were performed in the video quality evaluation lab-
oratory of the Institute for Data Processing at the Technische Uni-
versität München in a room compliant with recommendation ITU-
R BT.500 [9]. A professional, 24 inch LCD reference display with a
native resolution of 1920 × 1080 pixels was used. We used a varia-

Table 2: Selected encoder settings

LC HC

Encoder JM 12.4
Profile&Level Main, 4.0 High, 5.0
Slices per Frame 1 1
Reference Frames 2 5
R/D Optimization Fast Mode On
Search Range 32 128
B-Frames 2 5
Temporal Levels 2 4
Intra Period 500 ms
8x8 Transform Off On

tion of the DSCQS test method, the Double Stimulus Unknown Ref-
erence (DSUR) test method with a scale from 0 to 1, representing
the worst and best quality. For more details on the subjective testing,
we refer to [10].



Table 3: Performance of the quality prediction

Metric Pearson Spearman RMSE(a)

Proposed metric 0.93 0.95 0.08
No-reference metric [1] 0.91 0.85 0.09

PSNR 0.72 0.69 0.15
SSIM [11] 0.85 0.82 0.12
VQM Annex D of [12] 0.84 0.78 0.11
(a) After first order fitting for all comparison metrics, no fitting for

both no-reference metrics

5. RESULTS

The prediction results of our metric are presented in Fig. 3 and
Table 3. Besides the Pearson and Spearman rank order correlation
coefficents, we also provide the root mean squared error (RMSE)
between predicted and actual visual quality. For comparison, we
included the results of our no-reference metric presented in [1],
but also the results of two well-known full-reference video quality
metrics: SSIM [11] and the VQM according to Annex D of ITU-
T J.144 [12]. For the latter, the general model was used. SSIM was
evaluated on all three channels of the Y CBCR color space.

The results show that the proposed metric outperforms our pre-
vious no-reference metric in [1] slightly with respect to the Pear-
son correlation and the RMSE, but especially well with respect to
the Spearman rank order correlation. This is not surprising, as we
build our model only for H.264/AVC, compared to [1], where we
also considered alternative, wavelet-based coding technologies and
therefore the metric is not optimized only for H.264/AVC. Also, we
achieve better results than the metric in [5]. Moreover, our metric
outperformed all full-reference metrics. However, note in Fig. 3 that
the prediction quality is worse at the lower end of the quality scale,
caused by the lack of data points in the training set in this area.

6. CONCLUSION

We presented a no-reference video quality metric based on H.264/AVC
bitstream features for HDTV and used PLSR to build a prediction
model in combination with subjective tests.

Our results show that the metric not only outperforms common
full-reference metrics, but also our previously presented, more uni-
versal no-reference metric. Although this metric is only applicable
to H.264/AVC encoded video, it covers most practical applications.
Still, the metric can be further improved in future work by either in-
cluding a larger data set or by considering a larger set of different
encoding parameters.

The set of H.264/AVC bitstreams, the modified decoder for fea-
ture extraction and additional data is available at www.ldv.ei.
tum.de/videolab.
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Fig. 3: Prediction results of the proposed no-reference metric

[3] M. Slanina, V. Ricny, and R. Forchheimer, “A novel metric
for H.264/AVC no-reference quality assessment,” in EURASIP
Conference on Speech and Image Processing, Multimedia
Communications and Services, 2007, pp. 114 –117.
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