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Abstract

In this paper, a new structure-preserving method for the reduction of linear port-Hamiltonian
systems with dissipation using Krylov subspaces is presented. It is shown how to choose the
projection matrices in order to guarantee the moment matching property and to obtain
a passive and thus stable reduced order model in port-Hamiltonian form. The method
is suitable for the reduction of large-scale systems as it employs the well-known Arnoldi
algorithm and matrix-vector multiplications to compute the reduced-order model.
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1 Introduction

Port-based modeling of physical systems leads to particularly structured models that can be
represented as port-Hamiltonian systems. This special structure, which inherits passivity and
therefore stability as key properties, is widely used to represent lumped-parameter as well as
spatially discretized distributed-parameter systems. Given a complex real-world problem, its
accurate modeling leads to large-scale systems having a high number of differential equations.
To investigate the dynamics of these high-dimensional models, or to design a controller, it is
aimed at replacing the original model with a low dimensional approximation. For this purpose,
well-established model reduction methods like Balancing and Truncation [1] and Krylov subspace
methods |2, 3| can be used.

However, these methods do not generally preserve the structure of the original system, which
means that properties like stability and passivity, or special matrix structures can be lost during
or after the reduction step. Since the original system is in port-Hamiltonian form, it is desired
to obtain a reduced system that retains this structure, and therefore preserves stability and
passivity. For instance, in [4], a truncated balanced realization technique, which is structure
preserving for a special class of port-Hamiltonian systems, is presented.

In this paper, a structure-preserving Krylov-based order reduction method for linear port-
Hamiltonian systems is introduced. By applying suitable state transformations to the original
port-Hamiltonian structure and employing the classical Krylov subspace method, a reduced-order
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model also in port-Hamiltonian form is obtained. Furthermore, integrating the state transfor-
mation into the computation of the projection matrices results in a computationally efficient and
numerically stable algorithm for the reduction of large-scale systems.

In the following section, the definition of port-Hamiltonian systems is presented. In section 3,
a short introduction into the theory of model reduction employing moment matching is given.
Based on an appropriate state transformation, the problem of structure preserving model re-
duction is solved in section 4. The paper is concluded by a summary of the results and an
outlook.

2 Port-Hamiltonian Systems

Consider the time invariant port-Hamiltonian system of the form

{a‘: = (J - R)VH(z) + Gu )

y=GTVH(zx),

where H(x) > 0 is the total stored energy called Hamiltonian, J € R™*" the skew-symmetric in-
terconnection matrix and R € R™*" the symmetric positive semi-definite dissipation or damping
matrix. J represents the exchange of energy between the storage elements (states € R™) of the
system while dissipation is characterized by R. The input matrix G € R™*™ and the gradient
VH(x) of the energy function define the collocated output y € R™, which together with the
input w € R™ constitutes the power port (u,y) of the system. From the energy balance

H(z) <y'u

the passivity of the port-Hamiltonian system is deduced. If H(x) is positive definite, Lyapunov
stability of the unforced system follows directly, however if H(x) is only semi-definite, zero-state
detectability is necessary in addition. Asymptotic stability of the port-Hamiltonian system can
be checked by the invariance principle of Krassowskij-LaSalle. A more detailed overview on
port-Hamiltonian systems can be found in [6].

In the case of linear port-Hamiltonian systems, the matrices J, R and G are constant matrices,
independent of the state vector . Additionally, the Hamiltonian is in fact a quadratic energy
function of the form

H(x) = %Q:TQQ:, (2)
with Q € R™™ symmetric and positive definite. The gradient of the Hamiltonian in this case is
VH(xz) = Qux, (3)
resulting in the following state space representation (SISO case):
z=(J—-R)Qx+gu
{ y=g"Quz,
with the constant vector g € R™.

Note that, in case the symmetry and definiteness properties of the matrices J, R and Q are
preserved while reducing the model order, the port-Hamiltonian form and therefore passivity
and stability will automatically be preserved.
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3 Order Reduction by Moment Matching

In this section, a common Krylov-based model order reduction scheme is presented very briefly.

Definition 1. Given a matrix M € R™" and a vector v € R", the gth Krylov subspace
Ky (M, v) is spanned by a sequence of ¢ column vectors called basic vectors as follows [2]:

ICq(M,v):span{v,Mv,...,Mq_lv}. (5)

The system (4) can be treated as a linear time invariant state space model of the form

Tz =Ax+bu
(o2
y=cx,
having the following transfer function:
H(s)=cl(sI—A)'b. (7)

The aim of moment matching is to find a reduced order model of order ¢ < n, whose moments
(which are defined as the negative coefficients of the Taylor series expansion of the transfer
function) around a certain point sy match some of those of the original one. One way to calculate
this reduced order model is by applying a projection € = Vx, to the original model as follows:

Vi'Vve, =VTAVz, + Vbu
Yy = cTV:cr,

(8)

with V' € R™*4. The projection matrix V is chosen to form a basis either of the input or of the
output Krylov subspaces K, (A_l, A_lb) or K, (A_T, A_TCT) respectively, leading to match-
ing the first ¢ moments around sy = 0. Matching the moments around zero preserves the low-
frequency behavior of the original system, whereas, in order to compute a reduced model that ap-
proximates the middle or high frequency behavior, matching a certain number of moments around
so # 0 is to be preferred. This is achieved by choosing V' as basis of the shifted input or out-

put Krylov subspace ICq ((A —so) 7' (A= soI) ! b) or g <(A —so)T (A= soI)™T cT>
respectively.

For the numerical calculation of V', the known Arnoldi algorithm can be used, which returns an
orthonormal basis V' (with VIV = I) of the required Krylov subspace.

4 Structure Preserving Model Order Reduction

Before reducing the original model, a state transformation z = QI/ r,x = Q_l/ 2 to the system
(4) is suggested:

A b

. 1/2 1/2 1/2
2=Q7”(J-R)Q"7”z+Q"*gu (9)
y=9"Q"z

—

=T

C
In order to match the first ¢ moments of the above model, the orthonormal matrix V* € R"*¢
of the projection z = V*z, is calculated using the standard input Krylov subspace!

Ky~ = span(zilg, .. ’qug) = (10)
— g { (@4 - RIQF) Q. . (QPU-RIQF) QMg ()

!The output subspace can be used instead.
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leading to the following state space representation of the reduced model:

2, =VTQ(J-R)QVV*z, + V*TQ"gu 12)
y=9"Q"V*z,
which is equivalent to
zZ,=(Jr —R})zr +giu
T (13)
Y=g, Zr.

Hence, the matrices of the reduced port-Hamiltonian model are defined as

J: _ V*TQl/ZJQl/zv*
R: _ V*TQl/zRQ1/2V*
Q =1

gr = V7Q"qg.

(
(
(
(

It can be seen that the interconnection matrix J of the reduced model is still skew-symmetric,
and the dissipation matrix R, symmetric and positive semi-definite. Furthermore, the matrix
Q; = I is clearly symmetric and positive definite. Therefore, the port-Hamiltonian structure of
the original model is preserved.

If Q is diagonal (which is often true), then the required matrix Q1/2 can be easily calculated. In
this case, applying the Arnoldi algorithm to (11) is the essential numerical effort in calculating
the reduced model (13)-(17).

If, however, Q is non-diagonal, then the calculation of Ql/ % can be costly and should be avoided.
Therefore, the above algorithm will be subsequently modified, resulting in a numerically efficient
reduction scheme for models with general matrices @ > 0. In a first step a new projection matrix

voq v, (1)

is introduced, corresponding to the following Krylov subspace:

Kv = span {Q—W [(QW(J “RIQ”) Q... (QPU-RQP) Ql/zg] } (19)
= span {(J-R)Q)'g. ..., (J-R)Q) g} (20)

By comparing (11) with (19), it can be seen that V* and Q?V span the same subspace. This
suggests the usage of the projection matrix V' (the calculation of which can be done using a
standard Arnoldi procedure), thereby avoiding the numerically expensive computation of Ql/ 2,
Note that, when calculating the matrix V* by

vV =Q"*V, (21)

its orthonormality property is lost, i.e. V*TV* £ I. Therefore, instead of (12) the reduced
model becomes

{ VIV*z, =V TQY2(J - R) QV*V*z, + VT QY2gu 22

Yy = gTQ1/2V*zT-
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Applying the transformation (21) to the system above results in

(23)

VviQvz, =viQ(J -R) QVz. +VIQgu
y=9"QVz,.

With a second state transformation &, = VI QVz,, z, = (VTQV)_1 x,, the reduced model
becomes

{ # =V'QJ-R)QV (VIQV) =, + V'Qgu ”

y=g"QV (VIQV) ' a,.

This model still matches the first ¢ moments of the original system, and is again in port-
Hamiltonian form, leading to the main result of this paper:

Theorem 1. Given a linear port-Hamiltonian system of the form

{d::(J—R)Qm—i—gu (25)

y=g'Qz.

Then, applying the projection x = Va, with the columns of V' forming a basis of the Krylov
subspace

Ky = span{(J-BQ)'g..... (J-R)Q) g}, (26)

results in the reduced port-Hamiltonian system

T, = ;JT - R,)Q,x, +g,u (27)
Y=g, Qrwﬁ
which matches the first ¢ moments of the original one, with the matrices
J, = viQiqQv (28)
R, = VIQRQV (29)
-1

Q, = (V'Qv) (30)
9, = V'Qg. (31)

Proof: The matching of the first ¢ moments is true, as the original system is projected
using QI/ *V spanning the same subspace as V*, for which the moment matching property is
guaranteed. The resulting system (24) preserves the port-Hamiltonian structure as it is well
known that if a square matrix F € R™™ is positive (negative) definite and T' € R"*? is of
maximum rank, then the matrix T7 FT is positive (negative) definite. In addition, the matrix
TTFT preserves the symmetry (skew-symmetry) of the matrix F'. ]

Remark 1. An alternative proof is to compare the moments of (25) and (27) directly.

Remark 2. The presented method can be easily generalized to the multi input, multi output
case (MIMO) and to moment matching around sy # 0. For the latter purpose, the matrix
(A — soI) has to be used instead of A in the calculation of the projection matrix, leading to

Ky = span {((J “RQ-sD)'g,....(J-R)Q - 501)*‘19} . (32)
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Remark 3. Note that the overall projection matrix can be easily shown to satisfy @, = V' Quz,
which gives a better insight into the new method, by directly connecting the original state x ()
to the reduced one x, (t).

Remark 4. By preserving the port-Hamiltonian structure, the method also preserves stability.
Thereby, the method offers in fact a solution to the general stability preservation problem in
Krylov subspace methods for linear dynamical systems, since every stable linear system & =
Ax + bu can be written in port-Hamiltonian form & = (J — R) Qx + gu [|5]. The approach is
feasible if the numerical effort for this conversion can be accepted. Note that the output y = ¢«
does not need to be converted into the form y = g7 Qx, since by using the input Krylov subspace
as suggested in Theorem 1, the definition of the output y does not affect the number of moments
matched.

5 Conclusion

A new structure-preserving order reduction method for linear port-Hamiltonian systems has
been presented. The main advantages of the new approach are that it allows matching the first
g moments of the original and reduced systems, preserves the port-Hamiltonian structure (and
thus passivity and stability), and is applicable for the reduction of large-scale systems.

Presently, we work on applying the method to the model of a heat transfer problem. The first
results are convincing and are intended to be presented soon.

Finally, it would be of interest to evaluate the benefits of the symmetric representation introduced
in (9) when combined with Balancing and Truncation, to profit for instance from the error bound
already existing.
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