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1 Introduction

Let (Ω,F , P ) be a complete probability space carrying a two-sided fractional Brownian

motion (BH
t )t∈R (FBM) with Hurst index H ∈ (0, 1), i.e., a centred Gaussian process

(t, ω) 7→ BH
t (ω), t ∈ R and ω ∈ Ω with locally Hölder continuous sample paths up to

every order α < H and covariance function

EBH
t B

H
s =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, s, t ∈ R . (1.1)

The process has stationary increments and it is selfsimilar, i.e. for all c ∈ R,

(BH
ct )

d
= |c|H(BH

t ) , t ∈ R ,

in particular, BH
0 = 0 with probability one.

Moreover, sample paths of BH are nowhere differentiable and its variation is always

infinite. A Hurst index of H = 1/2 corresponds to standard Brownian motion. As the

quadratic variation of BH is 0 for H > 1/2 and infinite for H < 1/2 FBM is for H 6= 1/2

not a semimartingale. The Itô integral with respect to FBM is therefore not defined for

any H 6= 1/2. Moreover, FBM exhibits short range dependence for H < 1/2 and long

range dependence for H > 1/2. Further properties can be found in Samorodnitsky and

Taqqu [15].

We want to use FBM as driving process of a SDE and start with an Ornstein-Uhlenbeck

model. For γ > 0, consider the stationary fractional Ornstein-Uhlenbeck process (FOUP),

i.e.,

OH,γ
t =

∫ t

−∞
e−γ(t−s)dBH

s , t ∈ R . (1.2)

This stochastic integral converges pathwisely as an improper Riemann-Stieltjes integral.

In this Riemann-Stieltjes sense OH,γ = (OH,γ
t )t∈R solves pathwise the SDE

O0 =

∫ 0

−∞
eγsdBH

s , dOt = −γOtdt+ dBH
t t > 0 . (1.3)

This SDE is called the Langevin equation, which has a long and successful history in

particular in physics; for details see Mikosch and Norvaisa [12].

In our paper we consider fractional integral equations of the type

Xt −Xs =

∫ t

s

µ(Xu) du+

∫ t

s

σ(Xu) dB
H
u , s ≤ t , (1.4)

where all integrals are interpreted pathwisely in the Riemann-Stieltjes sense. We ask what

functions µ and σ allow for a stationary solution X = (f(Ot))t∈R where f is a monotone
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transformation. We summarize relations on µ and σ in the concept of H-proper triples in

Section 3.

Our paper is organized as follows. In Section 2 we introduce the notation and summa-

rize the material regarding Riemann-Stieltjes integrals. Furthermore, we discuss and refine

(without proof) some results on the Langevin equation and FOUP as given in Cheridito,

Kawaguchi and Maejima [3]. Section 3 includes our main theorems and relates the con-

cepts of H-proper triples to the transformation f . Existence and uniqueness of the SDE

(1.4) has been studied by various authors. Our approach is mainly based on Zähle [17]

and Klingenhöfer and Zähle [10]. In Section 4 structural properties of H-proper triples are

analyzed in detail. Those results are applied in Section 5, where we discuss some examples

for µ and σ.

2 Preliminaries

Throughout this paper we use the convention
∫ α
β
g(x) dx = −

∫ β
α
g(x) dx for α < β. We

start with some smoothness and integrability conditions.

Definition 2.1. For M ⊆ R we define the following spaces of functions f : M → R.

(i) C(M) denotes the space of continuous functions.

(ii) If M ⊆ R is open and k ∈ N ∪ {∞}, we denote by Ck(M) the space of k-times

continuously differentiable functions.

(iii) For β > 0 denote by Cβ−(M) (Cβ+(M)) be the space of functions, such that, for all

compact intervals K ⊆ M , the restriction f : K → R is Hölder continuous of all orders

α < β (at least of some order α = α(K) > β).

(iv) For any Borel set M ⊆ R, we denote by LC(M) the set of measurable functions

g : M → R, which are locally integrable, i.e. the Lebesgue integral
∫
K
|g(t)| dt <∞ for all

compact K ⊆M .

(v) The set of locally absolutely continuous functions f : M → R is denoted by AC(M),

i.e., there exists g ∈ LC(M) such that f(y) = f(x) +
∫ y
x
g(z) dz for all [x, y] ⊆M . �

We summarize some well-known facts in the following Remark.

Remark 2.2. For M , N ⊆ R let f :N→R and g :M→N . For β > 0 and H ∈ (0, 1), the

following assertions hold.

(i) If f ∈ C((1−H)/H)+(N) and g ∈ CH−(M), then f ◦ g ∈ C(1−H)+(M).

(ii) If M is open and g ∈ C1(M) and f ∈ Cβ+(N), then f ◦ g ∈ Cβ+(M).
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(iii) If N is open and g ∈ Cβ−(M) and f ∈ C1(N), then f ◦ g ∈ Cβ−(M).

(iv) If M = R and g ∈ C1(R) with g′ ∈ Cβ+(R), where g : R → g(R) = N is strictly

increasing, then g−1 ∈ C1(N\g(Z(g′))) with (g−1)′ ∈ Cβ+(N\g(Z(g′))).

(v) If β ≥ 1 and g ∈ Cβ+(R), then g is constant. �

The following properties will be used throughout.

Remark 2.3. (i) Almost all sample paths of BH are elements of CH−(R) ∩ CH′+(R) for

all H ′ ∈ (0, H) and all H ∈ (0, 1); but recall that BH has Hölder continuous paths of

order α only strictly less than H (Decreuesefond and Üstünel [5], Theorem 3.1).

(ii) For H > 0 we define a Banach space of continuous functions by

VH := {g ∈ C(R) : ‖g‖H := sup
t∈R

|g(t)|
1 + |t|H L(|t|)

<∞} , (2.1)

where L(x) =
√

log log x for x ≥ e and L(x) = 0, otherwise. If H ∈ (0, 1), then almost all

sample paths of BH belong to VH by the law of iterated logarithm for FBM (Arcones [1],

Corollary 3.1).

(iii) Define Z(h) := {x ∈ M : h(x) = 0}, the set of zeros of h in M of a function

h : M → R. If M ⊆ R is an open interval, g ∈ LC(M) and f ∈ AC(M) is strictly

increasing with f(t) = f(s) +
∫ t
s
g(z) dz, then f−1 ∈ AC(f(M)) if and only if Z(g) has

Lebesgue measure zero. In this case, if h ∈ LC(f(M)) with f−1(y) = f−1(x) +
∫ y
x
h(z) dz

for all x, y ∈ f(M) then a.e.

h = 1/(g ◦ f−1) . �

The next proposition rephrases results on Riemann-Stieltjes (RS)- integration as given

in Zähle [17] (Theorems 4.2.1, 4.3.1, and 4.4.2) in terms of the Hölder spaces CH−(M)

and CH+(M). Assertion (i) was shown by Young in his classical paper ([16], Sections 8

and 10).

Proposition 2.4. Let H ∈ (0, 1) and M,N ⊆ R. Suppose that a ≤ b exist such that

[a, b] ⊆M .

(i) If f ∈ C(1−H)+(M) and g ∈ CH−(M), then
∫ b
a
f(x) dg(x) exists in the RS-sense.

(ii) (Chain rule). Suppose g ∈ CH−(M) and let f ∈ C1(N), where g(M) ⊆ N .

If f ′ ◦ g ∈ C(1−H)+(M), then in the RS-sense

f(g(y))− f(g(a)) =

∫ y

a

f ′(g(x)) dg(x) , a ≤ y ≤ b .

(iii) (Density formula). Let f, h ∈ C(1−H)+(M) and g ∈ CH−(M).
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Then

φ(y) :=

∫ y

a

h(x) dg(x) , a ≤ y ≤ b ,

exists in the RS-sense. Furthermore, φ ∈ CH−([a, b]) and it holds in the RS-sense∫ b

a

f(x)h(x) dg(x) =

∫ b

a

f(x) dφ(x) .

Throughout this paper all integrals
∫ t
s
σ(Xu) dB

H
t will be interpreted pathwisely in

the RS-sense. In our analysis we replace BH by sample paths g from a suitable subspace

of C(R). By Remark 2.3(ii), BH ∈ VH ∩ CH−(R) with probability one; it is therefore

convenient to work with functions g ∈ VH ∩ CH−(R). We need the following definition to

make our approach precise.

Definition 2.5. Let H ∈ (0, 1) and g ∈ VH ∩ CH−(R). Suppose that I ⊆ R is non-empty

and µ, σ ∈ C(I). We refer to x as a solution of

dx(t) = µ(x(t)) dt+ σ(x(t)) dg(t) , (2.2)

whenever x ∈ CH−(R) and x takes values in I such that for s ≤ t,

(S1) σ ◦ x is RS-integrable with respect to g on [s, t];

(S2) the following integral equation holds

x(t)− x(s) =

∫ t

s

µ(x(u)) du+

∫ t

s

σ(x(u)) dg(u) .

The space of all solutions x of (2.2) is denoted by SH(I, µ, σ). �

Remark 2.6. Under our assumptions on µ and g,
∫ t
s
µ(x(u)) du in (S2) always exists

as Riemann integral. If, additionally, σ ∈ C((1−H)/H)+
(I), then (S1) is satisfied by Re-

mark 2.2(i) and Proposition 2.4(i). However, the RS-integral may also exist under weaker

assumptions. Thus, we will not explicitly state such a condition on σ; see also Remark 5.4

below. �

For g ∈ VH and γ > 0, we define the (Ornstein-Uhlenbeck) operator Oγ by

Oγ
t (g) :=

∫ t

−∞
eγ(t−s) dg(s) := g(t)− γ

∫ t

−∞
eγ(t−s) g(u) du , t ∈ R . (2.3)

For all g ∈ VH , the right-hand integral exists as improper Riemann integral or Lebesgue

integral. Partial integration shows that the integral on the left-hand side converges as

improper RS-integral (e.g. Lang [11], Proposition X §1 1.4.). In particular, Oγ is well-

defined as an operator on VH . Furthermore, Remark 2.3(i,ii) imply that the pathwise

identity OH,γ = Oγ(BH) holds with probability one.

The next proposition summarizes properties of the operator Oγ.
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Proposition 2.7. Let H ∈ (0, 1) and γ > 0. The following assertions hold.

(i) Oγ : VH → VH defines a continuous linear operator.

(ii) Let g ∈ VH and H ′ ∈ (0, 1). Then

g ∈ CH′−(R) ⇔ Oγ(g) ∈ CH′−(R) ,

g ∈ CH′+(R) ⇔ Oγ(g) ∈ CH′+(R) .

Proof. (i) and (ii) are direct consequences of the second equality in (2.3).

Next we define for g ∈ VH , τ, y ∈ R and γ > 0

Oγ
t (g, τ, y) = Oγ

t (g)− e−γ(t−τ)Oγ
τ (g) + e−γ(t−τ)y , t ∈ R . (2.4)

Observe that Oγ
τ (g, τ, y) = y for all τ, y ∈ R; moreover,

Oγ(g, τ, Oγ
τ (g)) = Oγ(g) . (2.5)

The following theorem connects operators to solutions of (1.3). It is a refinement of

Proposition A.1 c) of Cheridito et al. [3]. The proof is omitted.

Theorem 2.8. Let H ∈ (0, 1), γ > 0 and g ∈ VH . Then the following assertions hold.

(i) If o ∈ C(R), then o = Oγ(g, τ, o(τ)) for all τ ∈ R if and only if

o(t)− o(s) = −γ
∫ t

s

o(u) du+ g(t)− g(s) , s ≤ t . (2.6)

(ii) If o ∈ VH is a solution of (2.6), then o = Oγ(g).

(iii) OH,γ = Oγ(BH) is the unique strictly stationary pathwise solution of

OH,γ
t −OH,γ

s = −γ
∫ t

s

OH,γ
u du+BH

t −BH
s , s ≤ t .

3 Stationary solutions via state space transforms

We start with a preliminary definition to be specified later.

Definition 3.1 (State Space Transform). A function f : R → R is called state

space transform (SST) , whenever it is continuous and strictly increasing; the open interval

I = f(R) is called state space.

As the FOUP process OH,γ as defined in (1.2) takes values in R and is stationary, any

process of the form f(OH,γ) has state space f(R) and strict stationarity is preserved under
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f . On the other hand, for any given interval I, a SST f with state space I exists and we can

construct a new stochastic process (Xt)t∈R with state space I by setting Xt := f(OH,γ
t ).

The concept of state space transforms is borrowed from the theory of regular diffusions

(e.g. Karlin and Taylor [9], Theorem 2.1). A standard tool in the theory of diffusions is the

concept of a scale function (e.g. Itô and McKean [8], Revuz and Yor [14]), which turns one-

dimensional diffusions into continuous local martingales. As we are dealing with neither

martingales nor Markov processes these concepts are only loosely connected to our work.

We aim at stationary solutions of integral equations (1.4) driven by fractional Brownian

motion. More precisely, we are interested in the existence of solutions X = f(OH,γ), where

f is a SST and γ > 0. We start with a simple example.

Example 3.2. [Fractional Vasicek model]

Define the SST f(x) = σx− α/β, x ∈ R, for β < 0, σ > 0 and α ∈ R. Set γ = −β. Then

the process Vt = f(Oγ
t ) = σ OH,γ

t − α/β, t ∈ R, inherits the stationary from the FOUP.

Moreover, the following calculation holds for all s ≤ t

Vt − Vs = −γ
∫ t

s

σ OH,γ
u du+ σ(BH

t −BH
s ) =

∫ t

s

(α + β Vu) du+ σ(BH
t −BH

s ) .

Hence, V is the solution of the SDE dVt = µ(Vt)dt + σdBH
t , where µ(x) = α + βx.

Obviously, V serves as natural extension of the usual Vasicek model driven by the Wiener

process to the fractional world. �

In order to generalize this approach, we introduce the following concept. Recall from

Remark 2.3(iii) the definition of Z(h).

Definition 3.3 (Proper Triple). A triple (I, µ, σ) is called proper, whenever the

following properties are satisfied:

(P1) I = (l, r) ⊆ R is an open non-empty interval and µ, σ ∈ C(I).

(P2) There exists ψ ∈ AC(I) strictly decreasing such that ψ = µ/σ on I\Z(σ) and

lim
x↑r

ψ(x) = − lim
x↓l

ψ(x) = −∞ . (3.1)

(P3) There exists γ > 0 such that σψ′ ≡ −γ Lebesgue-a.e. on I.

Let H ∈ (0, 1). A triple (I, µ, σ) is called H-proper, whenever (I, µ, σ) is proper and, in

addition, the following property holds

(P4) The inverse function ψ−1 : R → ψ−1(R) = I is differentiable with (ψ−1)′ ∈
C((1−H)/H)+(R).

Remark 3.4. (i) By (P2), ψ : I → ψ(I) = R is strictly decreasing and absolutely con-

tinuous. In particular, the additional property (P4) makes sense. Furthermore, ψ is a.e.
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differentiable on I with ψ′ ≤ 0; (P3) implies that both sets Z(σ) and Z(ψ′) have Lebesgue

measure zero. Furthermore, σ is non-negative and 1/σ ∈ LC(I). Additionally, I\Z(σ) is

dense in I and open by (P1). By continuity the equality µ = σψ extends to I. Conse-

quently, ψ and, therefore, γ are uniquely determined by µ and σ.

(ii) Let H ∈ (0, 1/2] and (I, µ, σ) be H-proper. By Remark 2.2, ψ′ ∈ C((1−H)/H)+
(R) im-

plies that ψ′ is constant. Thus, for some α, β ∈ R, ψ(x) = αx+β, x ∈ I. (P2) implies that

I = R and α < 0. By (P3) the function σ reduces to a non-negative constant; furthermore,

µ = σψ is affine. Thus, (I, µ, σ) is a Vasicek model as considered in Example 3.2. �

We summarize some notation in the following Definition.

Definition 3.5. Let (I, µ, σ) be proper.

(i) The interval I is called state space.

(ii) The (unique) γ > 0 in (P3) is called friction coefficient (FC) (for (I, µ, σ)).

(iii) The (unique) SST f :R→I = f(R), f(x) := ψ−1(−γx), is called SST (for (I, µ, σ)).

We introduce the concept of a center.

Definition 3.6. Let (l, r) ⊆ R be an open interval and h ∈ C((l, r)).

The (unique) number ξ ∈ (l, r) is called center for h, whenever h(x) is non-negative for

x ∈ (l, ξ) and non-positive for x ∈ (ξ, r), and Z(h) has Lebesgue measure zero.

Every proper triple (I, µ, σ) has a center for µ.

Lemma 3.7. If (I, µ, σ) is proper then there exists a center ξ for µ with the following

properties

Z(ψ) = {ξ} , f(0) = ξ , Z(µ) = Z(σ) ∪ {ξ} .

Proof. Note that there exists a unique ξ such that Z(ψ) = {ξ} as ψ : I → ψ(I) = R is

strictly decreasing and continuous by (P2). By (iii), f(0) = ξ is immediate by construction.

As ψ : I → R is strictly decreasing we obtain ψ(x) > 0 for all l < x < ξ whereas ψ(x) < 0

for all ξ < x < r. By Remark 3.4(i), the equality µ = σψ holds on the whole of I and

therefore Z(σ) ∪ {ξ} = Z(µ) is immediate. Since σ is non-negative on I, µ(x) is non-

negative for x ≤ ξ and non-positive for x ≥ ξ. Finally, as Z(σ) has Lebesgue measure

zero by Remark 3.4(i), the same holds for Z(µ); thus, ξ is a center for µ.

In the next two lemmas we present a differential equation for the corresponding SST

f which shows that f is determined by σ and the center ξ only. Furthermore, we give a

sufficient condition such that a proper triple is H-proper.
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Lemma 3.8. Suppose that (I, µ, σ) is proper with SST f . Let ξ be the center for µ. Then

the following assertions hold:

(i) f ∈ C1(R) with f ′ = σ ◦ f and f(0) = ξ. Furthermore, f−1 ∈ C1(I\Z(σ)) with

(f−1)′(x) = 1/σ(x) for all x ∈ I\Z(σ).

(ii) If g ∈ C1(R) is a SST with state space I such that g′ = σ ◦ g and g(0) = ξ, then

f(x) ≤ g(x) for all x ≤ 0 and f(x) ≥ g(x) for all x ≥ 0 .

Furthermore, f = g if and only if g−1 ∈ AC(I).

Proof. (i) By Definition 3.5, f(0) = ξ. Construction of f and Remark 3.4(i) guarantee

that 1/σ ∈ LC(I) and f−1 ∈ AC(I) with (f−1)′ = 1/σ a.e.. In particular, the set Z((f−1)′)

has Lebesgue measure zero. Thus, f ∈ AC(R) and, a.e.,

f ′ =
1

(f−1)′ ◦ f
= σ ◦ f . (3.2)

As the right-hand side is continuous we even obtain f ∈ C1(R). In particular, (3.2) extends

to the whole of R. Furthermore, (3.2) implies f ′◦f−1 = σ on I; consequently, (f−1)′ = 1/σ

on I\Z(σ). The set I\Z(σ) is open; thus, f−1 ∈ C1(I\Z(σ)).

(ii) Let g ∈ C1(R) be a SST with state space I, g(0) = ξ and g′ = σ ◦ g. Lebesgue’s

decomposition theorem states the existence of non-decreasing and continuous functions

h1, h2 ∈ C(I) such that g−1 = h1 +h2 where h1 ∈ AC(I) and h2 is the distribution function

of a positive σ-finite measure ρ singular to Lebesgue measure. Without loss of generality

suppose that h1(ξ) = 0 and h2(0) = 0. As g ∈ C1(R) and g′ = σ◦g we find g−1 differentiable

on I\Z(σ) with (g−1)′(x) = 1/σ(x) for all x ∈ I\Z(σ). As h1 is differentiable a.e. on I

and Z(σ) has Lebesgue measure zero by Remark 3.4(i), h2 = g−1−h1 is differentiable a.e.

on I with h′2 = 0 since ρ is singular to the Lebesgue measure. Thus, (f−1)′ = (g−1)′ = h′1
a.e. on I. Since h1(ξ) = 0 we obtain h1 = f−1 and therefore g−1 = f−1 + h2 on I.

The remaining part of the assertion is immediate.

Lemma 3.9. Let H ∈ (0, 1) and (I, µ, σ) be proper with SST f .

(i) (I, µ, σ) is H-proper if and only if f ∈ C1(R) and f ′ ∈ C((1−H)/H)+
(R).

(ii) If σ ∈ C((1−H)/H)+(I), then f ′ ∈ C((1−H)/H)+(R) and (I, µ, σ) is H-proper.

(iii) If (I, µ, σ) is H-proper, then both (f−1)′, σ ∈ C((1−H)/H)+(I\Z(σ)).

(iv) If Z(σ) = ∅, then (I, µ, σ) is H-proper if and only if σ ∈ C((1−H)/H)+(R).

Proof. (i) is immediate by definition. As f ′ = σ ◦ f , (ii) follows from Remark 2.2(ii) and

f ∈ C1(R). Furthermore, f ′ = σ ◦ f implies f(Z(f ′)) = Z(σ). As σ = f ′ ◦ f−1 holds on I

(iii) is implied by (i) and Remarks 2.2(ii) and (iv); (iv) follows from (ii) and (iii).
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If (I, µ, σ) is H-proper, then there exists a simple method to construct solutions of

(2.2) explicitly. For g ∈ VH , a SST f with state space I, FC γ > 0, τ ∈ R and z ∈ I, we

define Xf,γ(g, τ, z) : VH × R× I → C(R) by

Xf,γ
t (g, τ, z) := f(Oγ

t (g, τ, f−1(z))) , t ∈ R ,

with Oγ(g, τ, y) as in (2.4). By definition, for all τ, z ∈ R (cf. (2.5)), we have Xf,γ
τ (g, τ, z) =

z; moreover,

Xf,γ(g, τ, f(Oγ
τ )) = f(Oγ(g)) . (3.3)

Theorem 3.10. Let H ∈ (0, 1). Then following assertions hold:

(i) If (I, µ, σ) is H-proper with SST f and FC γ > 0, then, for all g ∈ VH ∩ CH−(R),

{Xf,γ(g, τ, z) : τ ∈ R, z ∈ I} ⊆ SH(I, µ, σ, g) . (3.4)

(ii) Let I ⊆ R be an open interval. Let γ > 0 and µ, σ ∈ C(I). Let f ∈ C1(R) be a SST

with state space I, where Z(f ′) has Lebesgue measure zero.

If (3.4) holds for all g ∈ VH ∩ CH−(R), then (I, µ, σ) is proper.

Proof. (i) Let γ > 0 be the FC and f the SST for (I, µ, σ). Fix g ∈ VH ∩ CH−(R) and

let τ ∈ R and z ∈ I. Set

o(t) := Oγ
t (g, τ, f−1(z)), x(t) := Xf,γ

t (g, τ, z) , t ∈ R .

We shall show that x ∈ SH(I, µ, σ, g).

By construction, x takes values in I. Proposition 2.7(ii) implies o ∈ CH−(R). Further-

more, f ∈ C1(R) and f ′ ∈ C((1−H)/H)+(R) by Lemma 3.9(i). Thus, f ′ ◦o ∈ C(1−H)+(R) and

x = f ◦ o ∈ CH−(R) by Remarks 2.2 (i) and (iii), respectively. Proposition 2.4(ii) applies

to f ◦ o, i.e.,

x(t)− x(s) = f(o(t))− f(o(s)) =

∫ t

s

f ′(o(u)) do(u) , s ≤ t , (3.5)

where the right-hand side exists as a RS-integral. As o is the solution of (2.6) we can

rewrite (3.5) to

o(u) = o(s)− γ
∫ u

s

o(v) dv + g(u)− g(s) , s ≤ u . (3.6)

Recall that the RS-integral is additive with respect to a sum of integrators, whenever the

RS-integrals exist separately for each of the integrators. Clearly, f ′◦o is RS-integrable with

respect to the constant functions u 7→ o(s) and u 7→ g(s). Furthermore, u 7→ −γ
∫ u
s
o(v) dv

10



is of bounded variation and f ′ ◦ o is continuous; thus, f ′ ◦ o is RS-integrable with respect

to u 7→ −γ
∫ u
s
o(v) dv. As g ∈ CH−(R) and f ′ ◦ o ∈ C(1−H)+(R) holds the existence of the

RS-integral of f ′ ◦ o with respect to g is ensured by Proposition 2.4(i). Thus, (3.5) and

(3.6) imply

x(t)− x(s) = −γ
∫ t

s

f ′(o(u)) d

∫ u

s

o(v) dv +

∫ t

s

f ′(o(u)) dg(u) , s ≤ t .

As u 7→
∫ u
s
o(v) dv is continuously differentiable and u 7→ f ′(o(u)) o(u) is continuous, we

obtain by the density formula for Riemann integrals

x(t)− x(s) = −γ
∫ t

s

f ′(o(u)) o(u) du+

∫ t

s

f ′(o(u)) dg(u) , s ≤ t .

Lemma 3.8(i) states f ′ = σ ◦ f ; hence σ ◦ x = f ′ ◦ o ∈ C(1−H)+(R). By Proposition 2.4(i),

σ ◦x is RS-integrable with respect to g ∈ CH−(R). Thus, x satisfies (S1) in Definition 2.5.

Invoking Remark 3.4(i) and Definition 3.5(iii), we observe that σ f−1 = −σ ψ/γ = −µ/γ.

Finally, (S2) is satisfied as

x(t)− x(s) = −γ
∫ t

s

σ(f(o(u))) o(u) du+

∫ t

s

σ(f(o(u))) dg(u)

=

∫ t

s

µ(x(u)) du+

∫ t

s

σ(x(u)) dg(u) .

Thus, x = Xf,γ(g, τ, z) ∈ SH(I, µ, σ, g).

(ii) For 0<α<1 set gα(t) := exp[γ α
1−α(t ∧ 1)], t ∈ R. We consider the family

T := {δ gα : δ ∈ R, α ∈ (0, 1)} ⊆ VH ∩ CH−(R) .

For 0 < α < 1 we obtain

g′α(t) =
αγ

1− α
gα(t), Oγ

t (gα) = α gα(t),
[
Oγ
t (gα)

]′
=

α2γ

1− α
gα(t) , t < 1 .

For g ∈ T arbitrary, as σ ∈ C(I) and, therefore, σ(f(Oγ(g))g′ ∈ C((−∞, 1)), the density

formula for Riemann-integrals applies, i.e.,∫ t

s

σ(Oγ
u(g))dg(u) =

∫ t

s

σ(Oγ
u(g))g′(u) du , s ≤ t < 1 , g ∈ T .

In particular, for all g ∈ T , we know from (3.3) that Xf,γ(g, 0, Oγ
0 (g)) = f(Oγ(g)) ∈

SH(I, µ, σ, g); hence, for g ∈ T ,

f(Oγ
t (g))− f(Oγ

s (g)) =

∫ t

s

µ(f(Oγ
u(g))) du+

∫ t

s

σ(f(Oγ
u(g))) g′(u) du , s ≤ t < 1 .
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As the integrands are continuous, we may differentiate both sides and obtain

f ′(Oγ
t (g))

[
Oγ
t (g)

]′
= µ(f(Oγ

t (g))) + σ(f(Oγ
t (g))) g′(t) , s ≤ t < 1 , g ∈ T.

Specifying g = δ gα for δ ∈ R and α ∈ (0, 1), this is equivalent to

α2δγ

1− α
gα(t) f ′(α δ gα(t)) = µ(f(α δ gα(t))) +

αδγ

1− α
gα(t)σ(f(α δ gα(t))) , s ≤ t < 1 .

For α ∈ (0, 1) and x ∈ R fixed, choose t < 1 and δ ∈ R such that x = α δgα(t); then this

implies

γ x f ′(x) =
1− α
α

µ(f(x)) +
γ

α
xσ(f(x)) , x ∈ R, 0 < α < 1 .

Specifying αi = 1/i, i = 2, 3, this generates a system of linear equations with non-

vanishing determinant. The unique solution is

µ(f(x)) = −γ x f ′(x) , γ xσ(f(x)) = γ x f ′(x) , x ∈ R .

By continuity, for all y ∈ I, we obtain the equivalent formulation

µ(y) = −γ f−1(y) f ′ ◦ f−1(y) , σ(y) = f ′ ◦ f−1(y) , y ∈ I .

It remains to show that (I, µ, σ) is proper. Clearly, (P1) holds. As f ∈ C1(R) and

Z(f ′) has Lebesgue measure zero, we have f−1 ∈ AC(I). Thus, ψ(x) := −γf−1(x) is

an absolutely continuous strictly decreasing extension of µ/σ to I where limx↑r ψ(x) =

− limx↓l ψ(x) = −∞. By Remark 2.3(iii), σψ′ = −γ σ/[f ′ ◦ f−1] = −γ a.e. on I; thus,

(P3) is satisfied.

If (I, µ, σ) is H-proper, then the solution of (2.2) is unique in the following sense.

Theorem 3.11. Let H ∈ (0, 1) and (I, µ, σ) be H-proper with SST f and FC γ > 0.

Suppose that g ∈ VH ∩ CH−(R). Then the following assertions hold.

(i) If Z(σ) = ∅, then

SH(I, µ, σ, g) = {Xf,γ(g, τ, z) : τ ∈ R, z ∈ I} . (3.7)

(ii) If (3.7) holds and g is not a constant function, then Z(σ) = ∅.

Proof. (i) Lemmas 3.8 and 3.9 state that f−1 ∈ C1(I) and (f−1)′ ∈ C(1−H)/H+(I), where

(f−1)′(z) = 1/σ(z) for all z ∈ I.

Let s ≤ t and x ∈ SH(I, µ, σ). By Definition 2.5, we have x ∈ CH−(R). Both Re-

mark 2.2(iv) and Lemma 3.8(i) apply, i.e.,

(1/σ) ◦ x = (f−1)′ ◦ x ∈ C(1−H)+(R) . (3.8)
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Therefore, Proposition 2.4(ii) applies to f−1 ◦ x and we obtain

f−1(x(t))− f−1(x(s)) =

∫ t

s

(f−1)′(x(u)) dx(u) =

∫ t

s

1

σ(x(u))
dx(u) , s ≤ t . (3.9)

On the other hand, x ∈ SH(I, µ, σ, g) satisfies (S1) and (S2) of Definition 2.5, i.e.,

x(u) = x(s) +

∫ u

s

µ(x(v)) dv +

∫ u

s

σ(x(v)) dg(v) , s ≤ u . (3.10)

We shall ensure that the RS-integral on the right-hand side in (3.9) is additive with

respect to the integrators in (3.10). This is guaranteed whenever the RS-integrals ex-

ist separately. As (1/σ) ◦ x is continuous, this obviously holds for the first two addends

in (3.10). Lemma 3.9(iv) states σ ∈ C((1−H)/H)+(I); thus, σ ◦ x ∈ C(1−H)+(R) by Re-

mark 2.2(i). As g ∈ CH−(R), Proposition 2.4(iii) applies to ψ(u) =
∫ u
s
σ(x(v)) dg(v), i.e.,

ψ ∈ CH−([s, t]). By (3.8), we have (1/σ)◦x ∈ C(1−H)+(R). Thus, (1/σ)◦x is RS-integrable

with respect to ψ. Thus, the RS-integral in (3.9) is additive with respect to the integra-

tors in (3.10). Furthermore, Proposition 2.4(iii) provides a density formula. The following

chain of equalities summarizes our reasoning,

f−1(x(t))− f−1(x(s))

=

∫ t

s

1

σ(x(u))
d

[ ∫ u

s

µ(x(v)) dv

]
+

∫ t

s

1

σ(x(u))
d

[ ∫ u

s

σ(x(v)) dg(v)

]

=

∫ t

s

µ(x(u))

σ(x(u))
du+ g(t)− g(s) , s ≤ t .

As (I, µ, σ) is proper, (P2) states ψ(z) = µ(z)/σ(z) for all z ∈ I; additionally, ψ = −γf−1

by Definition 3.5. Hence µ(z)/σ(z) = −γf−1(z) holds for all z ∈ I; therefore

f−1(x(t))− f−1(x(s)) = −γ
∫ t

s

(f−1)(x(u)) du+ g(t)− g(s) , s ≤ t .

Thus, f−1 ◦ x : R→ R is a solution of (2.6). Fix some τ ∈ R. For all t ∈ R, Theorem 2.8

states f−1(x(t)) = Oγ
t (g, τ, f−1(x(τ))); thus, x = Xf,γ(g, τ, x(τ)).

(ii) Contradicting the hypothesis, assume that, at the same time, Z(σ) 6= ∅ and (3.7)

holds. In particular, there exists z0 ∈ I such that σ(z0) = 0 and, therefore, µ(z0) = 0 by

Lemma 3.7. Observe that yz0 ∈ SH(I, µ, σ, g) where yz0 : R→ I, yz0(t) = z0.

By assumption, yz0 has form Xf,γ(g, τ, z) for some τ ∈ R and z ∈ I. Thus,

f−1(z0) = e−γ(t−τ)f−1(z)− e−γ(t−τ)Oγ
τ (g) +Oγ

t (g) , t ∈ R .

Set G := eγτf−1(z)− eγτOγ
τ (g). By partial integration, we obtain

g(t) = γ

∫ t

−∞
e−γ(t−s)g(s) ds−Ge−γt + f−1(z0) , t ∈ R .
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Thus, g ∈ C∞(R). Multiplying both sides by eγt and differentiating yields a linear dif-

ferential equation for h(t) = eγtg(t), namely, h′(t) = γh(t) + γeγtf−1(z0). Both h(t) =

eγt[h0 + γf−1(z0)t] and g(t) = e−γth(t) = h0 + γf−1(z0)t are uniquely determined up to

the choice of h0 ∈ R. As g is not a constant function we obtain f−1(z0) 6= 0. However, an

affine non-constant function is not an element of VH , contradicting our assumption.

We return to the probabilistic setting.

Theorem 3.12. Let H ∈ (0, 1) and (I, µ, σ) be H-proper with FC γ > 0 and SST f .

Let X = f(OH,γ). Then the following assertions hold.

(i) X is a strictly stationary pathwise solution of the stochastic integral equation

Xt −Xs =

∫ t

s

µ(Xu) du+

∫ t

s

σ(Xu) dB
H
u , s ≤ t . (3.11)

The distribution of Xt has a Lebesgue density p (Γ(·) denotes Euler’s gamma function)

where

p(·) =
γH√

π Γ(2H+1)σ(·)2
exp

[
− γ2H−2

Γ(2H+1)

(
µ(·)
σ(·)

)2 ]
a.e. on I . (3.12)

(ii) If Z(σ) = ∅ then X is the unique stationary pathwise solution of (3.11).

Proof. (i) Let f be the SST of the H-proper triple (I, µ, σ). Theorem 3.10 states that

X = Xf,γ(BH , 0, f(Oγ
0 (BH)) = f(OH,γ) is a pathwise solution of (3.11). Theorem 2.8(iii)

states that OH,γ is strictly stationary and so is X = f(OH,γ). The FOUP is a stationary

mean zero Gaussian process with variance E(OH,γ
t )2 = Γ(2H+1)/(2γ2H) (cf. Buchmann

and Klüppelberg [2], Lemma 2.1). By definition of f , the relation f−1 = −ψ/γ holds; thus

P (Xt ≤ x) = P (f(OH,γ(t) ≤ x) = Φ

[
−
√

2/Γ(2H+1)γH−1ψ(x)

]
, x ∈ I ,

where Φ(x) = (2π)−1/2
∫ x
−∞ e−y

2/2 dy, x ∈ R.

Therefore the distribution of Xt is absolutely continuous with respect to Lebesgue

measure. Formula (3.12) is verified by differentiating and (P3).

(ii) If Y is a pathwise solution, then Theorem 3.11 guarantees the existence of a random

variable G such that Yt = f(e−γtG+Oγ
t (BH)) a.s.. Additionally, if Y is strictly stationary

then G = 0 with probability one. Thus, Y = X.

We conclude this section with some remarks on the existing literature.
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Remark 3.13. Nualart and Răşcanu [13] also consider the case H > 1/2. They prove

existence and uniqueness for time dependent multivariate integral equations defined on

compact time intervals. They apply Banach’s fixpoint theorem which requires strong reg-

ularity conditions on µ and σ. Hairer [6] shows by a different method the existence of

stationary solution of (3.11) for constant σ > 0. Mikosch and Norvaĭsa [12] discuss linear

equations driven by FBM with Hurst index H ∈ (1/2, 1). They consider the coefficients

µ(t) and σ(t), t ∈ R+, of bounded α-variation for α > 1/H. Our work has mostly prof-

ited from Zähle [17]; in fact it is related to Klingenhöfer and Zähle [10], where drift and

volatility may depend on time and the level of the process. They take µ to be continuous

and σ ∈ C1. Our approach gives a constructive method to find stationary solutions of

integral equations under weakest possible conditions – only Hölder continuity – for drift

and volatility. �

4 Structural Properties

Construction of proper triples when σ is given

Suppose that I ⊆ R is an open interval and σ ∈ C(I) is non-negative. When does there

exist µ ∈ C(I) such that (I, µ, σ) is proper? Define

KI, σ = {(γ, µ) ∈ R+ × C(I) : (I, µ, σ) is proper with FC γ} . (4.1)

Recall that a subset M ⊆ C(I) is a cone, whenever αM ⊆ M for all α > 0. The next

proposition lists some important properties of KI, σ.

Proposition 4.1. Let I = (l, r) ⊆ R and σ ∈ C(I) be non-negative.

(i) The following assertions are equivalent:

(a) KI, σ 6= ∅.
(b) 1/σ ∈ LC(I) and for all x ∈ I∫ x

l

dz

σ(z)
=

∫ r

x

dz

σ(z)
=∞ . (4.2)

(ii) KI, σ is a cone. If (a) or (b) of (i) holds, then

KI, σ = {(γ, µ) ∈ R+ × C(I) : µ(x) = −γσ(x)

∫ x

ξ

dz

σ(z)
, ξ ∈ I } ,

where γ and ξ are uniquely determined by σ and µ.

Proof. (i) and (a) ⇒ (b) Suppose (γ, µ) ∈ KI,σ. Let ψ ∈ AC(I) be the function as in

(P2) and (P3). By Remark 3.4(i), 1/σ ∈ LC(I). As by Lemma 3.7 (I, µ, σ) defines a center
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ξ ∈ I for µ with ψ(ξ) = 0, (P3) implies ψ(x) = −γ
∫ x
ξ

1/σ(z) dz for all x ∈ I. By property

(P2),

lim
x↑r

γ

∫ x

ξ

dz

σ(z)
= − lim

x↑r
ψ(x) =∞ and lim

x↓l
γ

∫ ξ

x

dz

σ(z)
= lim

x↓l
ψ(x) =∞ .

(i) and (b) ⇒ (a) Let γ > 0, ξ ∈ I. Define µ(x) = −γ σ(x)
∫ x
ξ

1/σ(z) dz, x ∈ I.

We have to show that (I, µ, σ) is a proper triple with FC γ > 0. Property (P1) holds

by assumption. Define ψ(x) = −γ
∫ x
ξ

1/σ(z) dz, x ∈ I. Then ψ = µ/σ on I\Z(σ) and

ψ ∈ AC(I) is strictly decreasing. The limits in (3.1) are implied by (4.2). Therefore, (P2)

holds. Moreover, ψ′ = −γ/σ a.e on I. Hence (P3) is true. Thus, (γ, µ) ∈ KI, σ.

(ii) W.l.o.g. assume KI, σ 6= ∅. Let (γ, µ) ∈ KI,σ and α > 0. We shall show that (I, µ̃, σ)

is proper with FC γ̃ where µ̃ = αµ and γ̃ = αγ. (P1) is immediate. Let ψ ∈ AC(I) be

the extension of µ/σ to I. Obviously, ψ̃ = αψ ∈ AC(I) is a strictly decreasing extension

of µ̃/σ to I satisfying (P2). Property (P3) follows from ψ̃′ = αψ′ = −αγ/σ = −γ̃/σ.

Suppose that (a) or (b) of (i) holds. Let (γ, µ) ∈ KI, σ. Then (I, µ, σ) is a proper triple

with FC γ > 0 and center ξ ∈ I for µ. If ψ ∈ AC(I) is the extension of µ/σ from I\Z(σ)

to I, then as in the proof of (i) we obtain the representation

ψ(x) =

∫ x

ξ

ψ′(z) dz = −γ
∫ x

ξ

dz

σ(z)
, x ∈ I ,

thus, µ(x) = −γσ(x)
∫ x
ξ

1/σ(z) dz, x ∈ I. Uniqueness of γ and ξ follows from the con-

struction.

Construction of proper triples when µ is given

Suppose that I ⊆ R is an open interval and that µ ∈ C(I). When does there exist

a continuous non-negative function σ : I → R such that (I, µ, σ) is a proper tripel?

Combining (P2) and (P3) yields a differential equation for ψ in terms of µ, namely, a.e.,

ψ′ = −γ 1

σ
= −γψ

µ
. (4.3)

Every solution ψ of (4.3) defines a candidate σ by (P2), i.e., set σ = µ/ψ.

However, every proper triple has a center ξ ∈ I for µ; in particular, ψ(ξ) = 0. It is not

obvious that (4.3) leads to a continuous σ. We split the state space I into (l, ξ) and (ξ, r)

and (4.3) is solved on (l, ξ) and (ξ, r) separately. This yields two branches of a solution.

Their behaviour close to ξ has to be investigated more carefully. Before we do that we

state the following lemma.

Lemma 4.2. Let I = (l, r) ⊆ R and µ ∈ C(I). Suppose that there exists a center ξ ∈ I for

µ and that 1/µ ∈ LC(I\{ξ}).
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Let γ > 0, x ∈ (l, ξ) and y ∈ (ξ, r). Then ψx,y,γ : I\{ξ} → R is well-defined, where

ψx,y,γ(w) :=


exp

[
−γ
∫ w

x

dz

µ(z)

]
for w ∈ (l, ξ) ,

− exp

[
−γ
∫ w

y

dz

µ(z)

]
for w ∈ (ξ, r) .

(4.4)

Moreover, ψx,y,γ is the unique absolutely continuous solution of (4.3) on I\{ξ} with

ψx,y,γ(x) = −ψx,y,γ(y) = 1 .

Additionally, if ψx,y,γ extends continuously to I, then ψx,y,γ ∈ AC(I) and ψx,y,γ is strictly

increasing on I.

Proof. Clearly, ψ = ψx,y,γ is well-defined and ψ ∈ AC(I\{ξ}). Furthermore, it is a solution

of (4.3) with ψ(x) = −ψ(y) = 1. Suppose that ψ̄ ∈ AC(I\{ξ}) is another solution of (4.3)

on I\{ξ} with ψ̄(x) = −ψ̄(y) = 1. As ψ̄ is continuous there exists an open interval U

containing x such that ψ̄(z) > 0 for all z ∈ U ; thus, log ψ̄ ∈ AC(U). Analogously, ψ > 0

on (l, ξ); hence logψ ∈ AC((l, ξ)). Thus, a.e. on U ∩ (l, ξ)

(log ψ̄)′ =
ψ̄′

ψ̄
= −γ 1

µ
=
ψ′

ψ
= (logψ)′ .

Integrating both sides shows ψ̄ = ψ on U ∩ (l, ξ). As (l, ξ) is connected and ψ > 0 on (l, ξ)

we may proceed and obtain ψ̄ = ψ on (l, ξ). Analogous reasoning holds for (ξ, r).

Clearly, ψ′ < 0 a.e. on I by (4.3) and (4.4). Suppose that ψ extends continuously to I

and set ψ′(ξ) = 0. For all s ∈ (l, ξ), the monotone convergence theorem and continuity of

ψ imply

ψ(ξ)− ψ(s) = lim
z↑ξ

ψ(z)− ψ(s) = lim
z↑ξ

∫ z

s

ψ′(w) dw =

∫ ξ

s

ψ′(w) dw .

This shows ψ ∈ AC((l, ξ]). Analogous reasoning holds for [ξ, r). The extension ψ is strictly

decreasing as ψ′ < 0 a.e.

In the previous subsection, for σ given, we were able to choose the FC γ > 0 freely. In

general this is not possible, when µ is given. Therefore we shall treat γ and σ separately.

Firstly, we set

ΓI, µ := {γ ∈ R+ : ∃σ ∈ C(I) such that (I, µ, σ) is proper with FC γ } .

For γ ∈ ΓI, µ, we ask for the set of possible candidates for σ, i.e., we set

HI, µ, γ := {σ ∈ C(I) : (I, µ, σ) is proper with FC γ } .

Although the set of all pairs (γ, σ), where (I, µ, σ) is proper with FC γ, is no longer a

cone, an analogous property still holds for HI, µ, γ.
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Proposition 4.3. Let I ⊆ R be an open interval, µ ∈ C(I) and γ ∈ ΓI, µ. Then HI, µ, γ is

a cone.

Proof. Let σ ∈ HI, µ, γ and α > 0. We have to show that σ̃ = ασ ∈ HI, µ, γ. (P1) is obvious.

If ψ ∈ AC(I) is the strictly decreasing extension of µ/σ to I such that (P2) and (P3) are

satisfied then ψ̃ := ψ/α ∈ AC(I) is a strictly decreasing extension of µ/σ̃ to I such that

both (P2) and (P3) hold for I, µ, σ̃ and γ.

We are now ready to investigate ΓI, µ.

Proposition 4.4. Let I = (l, r) ⊆ R be an open interval. Let µ ∈ C(I). The following

assertions are equivalent:

(i) ΓI, µ 6= ∅.

(ii) There exists a center ξ ∈ I for µ such that

(a) 1/µ ∈ LC(I\{ξ}).

(b) For all l < x < ξ < y < r∫ x

l

dz

µ(z)
=

∫ r

y

dz

|µ(z)|
=

∫ ξ

x

dz

µ(z)
=

∫ y

ξ

dz

|µ(z)|
=∞ . (4.5)

(c) The set ΘI,µ is non-empty, where

ΘI, µ := {γ ∈ R+ : ∃x ∈ (l, ξ) ∃ y ∈ (ξ, r) lim
w↑ξ

µ(w)

ψx,y,γ(w)
= lim

w↓ξ

µ(w)

ψx,y,γ(w)
= 0 } .

Proof. (i) ⇒ (ii) Suppose ΓI, µ 6= ∅. By Lemma 3.7 there exists a center ξ ∈ I for µ. Let

γ ∈ ΓI, µ. Then there exists σ ∈ C(I) such that (I, µ, σ) is proper with FC γ > 0. Let

ψ ∈ AC(I) be the extension of µ/σ from I\Z(σ) to I. Lemma 3.7 states Z(ψ) = {ξ}. As

Z(µ) = {ξ} ∪ Z(σ) has Lebesgue measure zero, (P3) yields ψ′ = −γ/σ = −γ ψ/µ a.e. on

I.

As ψ ∈ C(I) is continuous and Z(ψ) = {ξ} holds, ψ is bounded away from zero on

compact subsets of I\{ξ}. By Remark 3.4(i), 1/σ ∈ LC(I) and thus 1/µ = 1/(ψσ) ∈
LC(I\{ξ}).

Next we shall prove (4.5). Recall that ψ : I→R is strictly decreasing and continuous.

As ψ(ξ) = 0 there exist x ∈ (l, ξ) and y ∈ (ξ, r) such that ψ(x) = −ψ(y) = 1. Lemma 4.2

applies to µ; thus, ψ(w) = ψx,y,γ(w) for all w ∈ I\{ξ}.
Formula (4.4) and (P2) yield

∞ = lim
w↓∞

ψ(w) = lim
w↓∞

ψx,y,γ(w) = lim
x↓l

exp

[
γ

∫ w

x

dz

µ(z)

]
.
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Analogously, continuity of ψ in ξ implies

0 = lim
w↑ξ

ψ(w) = lim
w↑ξ

ψx,y,γ(w) = lim
w↑ξ

exp

[
− γ

∫ w

x

dz

µ(z)

]
.

Finally, for any γ̃ ∈ (0, γ),

lim
w↑ξ

µ(w)

ψx,y,γ̃(w)
= lim

w↑ξ

µ(w)

ψ(w)
exp

[
(γ̃ − γ)

∫ w

x

dz

µ(z)

]
= lim

w↑ξ
σ(w) exp

[
(γ̃ − γ)

∫ w

x

dz

µ(z)

]
= 0 . (4.6)

Analogous reasoning for (ξ, r) shows that ΘI,µ 6= ∅.

(ii)⇒ (i) Let γ ∈ ΘI,µ,σ. As 1/µ ∈ LC(I\{ξ}), Proposition 4.2 applies to µ and γ. Thus,

there exist x ∈ (l, ξ) and y ∈ (ξ, r) such that

lim
w↑ξ

µ(w)

ψx,y,γ(w)
= lim

w↓ξ

µ(w)

ψx,y,γ(w)
= 0 ; (4.7)

additionally, ψx,y,γ is the unique solution of (4.3) on I\{ξ} with ψx,y,γ(x) = −ψx,y,γ(y) = 1.

By (4.4)) and (4.5), ψx,y,γ extends continuously on I by setting ψx,y,γ(ξ) := 0. Furthermore,

lim
w↓l

ψx,y,γ(w) = − lim
w↑r

ψx,y,γ(w) =∞ .

Lemma 4.2 states that ψx,y,γ ∈ AC(I) and that ψx,y,γ is strictly decreasing.

In particular, Z(ψx,y,γ) = {ξ}. Set σ(ξ) := 0 and σ(w) := µ(w)/ψx,y,γ(w) for w ∈
I\{ξ}. We shall show that (I, µ, σ) is proper. σ ∈ C(I\{ξ}) is immediate; continuity of

σ in ξ is a consequence of γ ∈ ΘI, µ. Consequently, (P1) holds. By definition, ψ = ψx,y,γ

is a function satisfying (P2). By (4.3), a.e. ψ′ = −γψ/µ = −γ/σ implying (P3). Thus,

(I, µ, σ) is proper and hence ΓI, µ is non-empty.

The next proposition investigates ΘI, µ in more detail. We denote

γI, µ := sup ΓI, µ .

Proposition 4.5. Suppose that I ⊆ R is an open interval and µ ∈ C(I). Let ΓI,µ 6= ∅
and let ξ ∈ I be the center of µ. Then (0, γI, µ) ⊆ ΘI, µ ⊆ ΓI, µ.

Furthermore, if γ ∈ ΘI, µ then

HI, µ, γ = {σ ∈ C(I) : ∃x ∈ (l, ξ) , ∃y ∈ (l, ξ) such that

σ(ξ) = 0 ∧ σ(w) =
µ(w)

ψx,y,γ(w)
∀w∈I\{ξ}} ,

where ψx,y,γ is given in (4.4) and x and y in the representation of σ ∈ HI, µ, γ are uniquely

determined by µ and σ.
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Proof. The proof is a refinement of the proof of Proposition 4.4. It relies on three ob-

servations. Firstly, (4.6) holds for all γ ∈ ΓI, µ and γ̃ ∈ (0, γ); this implies the chain of

inclusions. Secondly, whenever the limit in (4.7) exists and vanishes for some x ∈ (l, ξ)

and y ∈ (ξ, r) then it exists and vanishes for all x ∈ (l, ξ) and all y ∈ (ξ, r). This is a

consequence of formula (4.4). Finally, roots of ψ(x) = −ψ(y) = 1 are uniquely determined

for the extension ψ of µ/σ to I; consequently, uniqueness of the representation holds.

The remaining case to investigate concerns the situation, when γI, µ ∈ ΓI, µ but γI, µ /∈
ΘI, µ.

Proposition 4.6. Let I ⊆ R be an open interval and µ ∈ C(I) with center ξ. Suppose

that ΓI, µ is non-empty and bounded and that γI, µ /∈ ΘI, µ.

(i) The following assertions are equivalent:

(a) γI, µ ∈ ΓI, µ.

(b) ξ is an isolated point of Z(µ). For all x̄ ∈ (l, ξ) and all ȳ ∈ (ξ, r), the following

limits exist and it holds

lim
w↑ξ

lim
x↑ξ

µ(w)

µ(x)
ψw,ȳ,γI,µ(x) = lim

w↓ξ
lim
x↓ξ

µ(w)

µ(x)
|ψx̄,w,γI,µ(x)| = 1 . (4.8)

(ii) Suppose that either (a) or (b) of (i) holds. For x̄ ∈ (l, ξ) and ȳ ∈ (ξ, r), let

σγI,µ(w) =


lim
x↑ξ

µ(w)

µ(x)
ψw,ȳ,γI, µ(x) for x ∈ (l, ξ) ,

1 for x = ξ ,

lim
x↓ξ

µ(w)

µ(x)
|ψx̄,w,γI, µ(x)| for x ∈ (ξ, r) .

(4.9)

Then σγI,µ is well-defined and σγI,µ ∈ C(I). The representation does not depend on x̄ and

ȳ. Furthermore, HI,µ,γI, µ = {c σγI,µ : c ∈ R+ }.

Proof. (i) and (a) ⇒ (b). There exists σ ∈ C(I) such that (I, µ, σ) is proper with corre-

sponding FC γI, µ. Let ψ be the absolutely continuous extension of µ/σ to I. Analogously,

we find x̄ ∈ (l, ξ) and ȳ ∈ (ξ, r) such that ψ(w) = ψx̄,ȳ,γI, µ(w) for all w ∈ I\{ξ}.
Let w ≤ x < ξ. From (4.4) we conclude ψ(x) = ψx̄,ȳ,γI, µ(x) = ψ(w)ψw,ȳ,γI,µ(x). But

then

σ(ξ) = lim
x↑ξ, x/∈Z(σ)

σ(x) = lim
x↑ξ, x/∈Z(σ)

µ(x)

ψ(x)
=

1

ψ(w)
lim

x↑ξ, x/∈Z(σ)

µ(x)

ψw,ȳ,γI,µ(x)
. (4.10)

Thus, the inner limit on the left-hand side of (4.8) exists for x ↑ ξ where x ∈ I\Z(σ).

(P2) implies ψ(w) > 0 for all w ∈ (l, ξ). Moreover, γ /∈ ΘI, µ. By an observation made
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in the proof of Proposition 4.5, the limit on the right-hand side of (4.10) is necessarily

non-vanishing for all w ∈ (l, ξ) and ȳ ∈ (ξ, r). Consequently, σ(ξ) > 0.

As σ(ξ) is strictly positive and σ ∈ C(I), it is strictly positive in a neighborhood of

ξ. As Z(µ) = {ξ} ∪ Z(σ) by Lemma 3.7, ξ is an isolated point of Z(µ). Consequently,

there exists a neighborhood U of ξ in I such that µ(x) 6= 0 and ψ(x) = µ(x)/σ(x) for all

x ∈ U\{ξ}. Therefore, we can drop the condition x /∈ Z(σ) in all limits of (4.10). Directly

from (4.10)

lim
w↑ξ

lim
x↑ξ

µ(w)

µ(x)
ψw,ȳ,γI,µ(x) =

1

σ(ξ)
lim
w↑ξ

µ(w)

ψ(w)
=

1

σ(ξ)
lim
w↑ξ

σ(w) = 1 .

Therefore, (4.8) is established on (l, ξ) and the left-hand side does not depend on ȳ.

As the right-hand side limit in (4.10) is strictly positive, this implies that for all w ∈ (l, ξ)

1

ψ(w)
= σ(ξ) lim

x↑ξ

ψw,ȳ,γI,µ(x)

µ(x)
.

Therefore, the limit on the right-hand side is a continuous function in w ∈ (l, ξ).

Rewriting the last equation on I\Z(σ) yields

σ(w) = σ(ξ) lim
x↑ξ

µ(w)

µ(x)
ψw,ȳ,γI, µ(x) .

The set I\Z(σ) is dense and all functions are continuous in w on I\Z(σ). Consequently,

the identity extends to all w ∈ (l, ξ). Thus, σ has (necessarily) the form described in (ii).

The representation does not depend on the choice of ȳ.

As analogous reasoning holds for (ξ, r) we obtain HI,µ,γI, µ ⊆ {c σγI,µ : c ∈ R+ } for

σγI,µ given in (4.9).

(i) and (b) ⇒ (a) We show that (I, µ, σγI,µ) is proper with friction coefficient γI, µ. By

Proposition 4.3 HI, µ, γI ,µ is a cone; this completes also the proof of (ii), i.e.,

{cσγI,µ : c ∈ R+} ⊆ HI, µ, γI ,µ .

As 1/µ ∈ LC(I\{ξ}), ψx,y,γI,µ(z) is well-defined and non-vanishing for all z ∈ I\{ξ},
x ∈ I\{ξ}, y ∈ (ξ, r). Let x̄ ∈ (l, ξ) and ȳ ∈ (ξ, r). Set

ψ(w) = lim
x↑ξ

µ(x)

ψw,ȳ,γI,µ(x)
for w ∈ (l, ξ) , ψ(w) = lim

x↓ξ

µ(x)

|ψx̄,w,γI,µ(x)|
for w ∈ (ξ, r) .

Define ψ(ξ) = 0. Then ψ is well-defined. This is a consequence of (4.4) and (4.8). For

l < w1 ≤ w2 < ξ,

ψ(w2) = ψ(w1)ψw1,ȳ,γI, µ(w2) . (4.11)
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Consequently, ψ ∈ AC((l, ξ)) holds and ψ is strictly decreasing on (l, ξ) by (4.4). As

ΓI, µ 6= ∅ assertion (4.5) holds, by definition of ψw1,ȳ,γI, µ(w2) in (4.4),

lim
w1↓l

ψ(w1) = ψ(w2) exp

[
γI, µ

∫ w2

l

dz

µ(z)

]
= ∞ ,

lim
w2↑ξ

ψ(w2) = ψ(w1) exp

[
− γI, µ

∫ ξ

r

dz

µ(z)

]
= 0 .

The second line implies left-continuity of ψ in ξ; thus, ψ ∈ C((l, ξ]); the same argument

as in Lemma 4.2 yields ψ ∈ AC((l, ξ]).
By definition, σγI,µ = µ/ψ on (l, ξ). As ψ is strictly increasing on (l, ξ] we know that

ψ(w) > 0 for all w ∈ (l, ξ). Hence σγI,µ ∈ C(l, ξ). Left-continuity in ξ follows from (4.8)

and the definition of σγI,µ . Therefore (P1) is satisfied on (l, ξ].

Since σγI,µ(ξ) = 1 and µ(ξ) = 0 we obtain by definition ψ(ξ) = µ(ξ)/σγI,µ(ξ). As

σγI,µ = µ/ψ on (l, ξ) this implies ψ = µ/σI,γ on (l, ξ]\Z(σI,γ). Thus, ψ is a function such

that (P2) holds for µ and σγI, µ on (l, ξ]. To show (P3) observe that (4.11) implies a.e. on

(l, ξ]

ψ′ = −γI, µ
ψ

µ
= −γI, µ

1

σγI,µ
.

As analogous reasoning holds for [ξ, r), the tripel (I, µ, σγI,µ) is proper with corresponding

FC γI, µ.

5 Parametric models

In this section we present some new models given by proper triples and derive the sta-

tionary densities, respectively. In all models parameters are chosen from sets in finite

dimensional spaces.

Every proper triple (I, µ, σ) is complemented by a center ξ of µ, a SST f , a FC γ

(Definition 3.5, Lemma 3.7). If (I, µ, σ) is H-proper, then the stationary solution X =

f(OH,γ) of (1.4) has marginal density p given in (3.12).

Affine drift

In this subsection we apply the results of Propositions 4.4–4.6 to µ : R → R given by

µ(x) = α + βx for α, β ∈ R.

Proposition 5.1. Let µ : R → R be given by µ(x) = α + βx for α, β ∈ R. There exist

I ⊆ R and σ ∈ C(I) such that (I, µ, σ) is proper if and only if β < 0. In this case

I = R , ΓI, µ =
(
0, |β|

]
, ΘI,µ =

(
0, |β|

)
, ξ = −α

β
.
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Proof. We have to check the conditions of Proposition 4.4. There exists a center ξ for µ if

and only if β < 0. Thus, suppose that β < 0. The conditions (a) and (b) in Proposition 4.4

are satisfied for I = R and ξ = −α/β. They also imply that R is the minimal state

space. To obtain ΓI, µ, we have to calculate ΘI, µ; secondly, γI, µ ∈ ΓI, µ is verified if either

γI, µ ∈ ΘI, µ or γI, µ satisfies (4.8) of Proposition 4.6. For γ and x < ξ < y, we obtain from

(4.4)

µ(w)

ψx,y,γ(w)
= (α + βx)−γ/β (α + βw)1+γ/β for w < ξ ,

µ(w)

ψx,y,γ(w)
= −|α + βy|−γ/β |α + βw|1+γ/β for ξ < w . (5.1)

Thus, ΘI, µ = (0, |β|) and γI, µ = |β| by Proposition 4.5. The FC γI,µ is not an element of

ΘI, µ, but it satisfies (4.8) in Proposition 4.6. In particular, ΓI, µ = (0, |β|].

As ΘI, µ differs from ΓI, µ, two types of cones HR, µ, γ will appear – one-dimensional

two-dimensional ones.

Proposition 5.2. Let H ∈ (0, 1) and β < 0. Then every σ ∈ HR,µ,|β| leads to a Vasicek

model, i.e.,

HR,µ,|β| = {σ ∈ C(R) : σ(x) ≡ σ0 , x ∈ R σ0 > 0} .

Moreover,

(i) (I, µ, σ) is H-proper with SST f(x) = σ0x+ ξ = σ0x− α/β.

(ii) The stationary pathwise solution X of (1.4) is unique and a Gaussian process with

mean EXt = ξ and variance E(Xt − ξ)2 = 2−1 |β|−2H σ2
0 Γ(2H+1).

Proof. This is an application of Proposition 4.6, and it is verified by (4.9) there. For a

function σ ≡ σ0, we obtain ψ(x) = µ(x)/σ0 = α/σ0 + βx/σ0. The SST f has to be

calculated by f(x) = ψ−1(βx), whereas p is straightforward from (3.12). As f is affine,

(I, µ, σ) is always H-proper. Moreover, as X is the image of Oγ(BH) under an affine

mapping it is Gaussian. Clearly, Z(σ) is empty. Thus, X is the unique stationary pathwise

solution of (1.4).

Recall from Remark 3.4(ii) that H-proper pairs, which differ from the Vasicek model,

only occur for H ∈ (1/2, 1).

Proposition 5.3. Let β < 0 and δ ∈ (0, 1). Then (1−δ)|β| ∈ ΘI, µ and the following

assertions hold.
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(i) σ ∈ HR,µ,(1−δ)|β| if and only if there exist constants σ1, σ2 > 0 such that

σ(x) = σ1 |α + βx|δ for x < ξ , σ(x) = σ2 |α + βx|δ for x ≥ ξ . (5.2)

For such σ and fi = |β|δ/(1−δ) σ1/(1−δ)
i (1−δ)1/(1−δ), i = 1, 2, the SST f is given by

f(x) =

{
−f1|x|1/(1−δ) + ξ for x < 0 ,

f2|x|1/(1−δ) + ξ for x ≥ 0 .

(ii) (I, µ, σ) is H-proper if and only if δ ∈ (1−H, 1) and H ∈ (1/2, 1). In this case the

stationary density is given by

p(x) = p̄(x|σ1)1(−∞,ξ)(x) + p̄(x|σ2)1(ξ,∞)(x) ,

p̄(x|σi) =
|β|H−δ(1−δ)H√
π Γ(2H+1)σ2

i

|x−ξ|−δ exp

[
− |β|

2(H−δ)(1−δ)2H−2

σ2
i Γ(2H+1)

∣∣x−ξ∣∣2(1−δ)
]
.

Remark 5.4. By Lemma 3.9(ii), σ ∈ C((1−H)/H)+(I) implies that a proper triple is also

H-proper. In the situation of Proposition 5.3(i) this is satisfied, whenever δ > (1−H)/H

and H ∈ (1/2, 1). As stated in (ii) a triple is already H-proper, whenever δ > 1−H and

H ∈ (1/2, 1) which is clearly a weaker condition. This refers to Remark 2.6. �

Proof of Proposition 5.3. This is an application of Proposition 4.5 to γ = (1−δ)|β|. For

x̄ ∈ (−∞, ξ) and ȳ ∈ (ξ,∞, ξ), set

σx̄,ȳ,γ(x) =


|α + βx̄|−γ/β |α + βx|1+γ/β for x < ξ ,

0 for x = ξ ,

|α + βȳ|−γ/β |α + βx|1+γ/β for x > ξ .

By Proposition 4.5 and (5.1), HI, µ, γ = {σx̄,ȳ,γ : x̄ ∈ (−∞, ξ), ȳ ∈ (ξ,∞)}; furthermore,

the following mappings are bijections:

(−∞, ξ), (ξ,∞) 3 w 7→ σi = |α + βw|−γ/β ∈ R+, (0, |β|) 3 γ 7→ δ = 1 + γ/β ∈ (0, 1) .

HI, µ, γ is a cone; thus, σ ∈ HI ,µ, γ holds if and only if σ is of the form stated in (5.2). The

SST is calculated by f(x) = ψ−1(−(1−δ)|β|x), where ψ(x) = µ(x)/σ(x) for x 6= ξ and

ψ(ξ) = 0. The formula for p follows from (3.12).

For δ ∈ (0, 1), we find δ/(1−δ) > (1−H)/H if and only if δ > 1−H. By Remark 3.4(ii)

and Lemma 3.9(i) , (I, µ, σ) isH-proper if and only if f ′ ∈ C((1−H)/H)+(R) andH ∈ (1/2, 1);

this is true whenever δ > 1−H and H ∈ (1/2, 1). �
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Power volatility

We apply Proposition 4.1 to the function σ : R→ [0,∞) given by σ(x) = σ0|x|δ for σ0 > 0

and δ ∈ R.

Proposition 5.5. Let σ : R → [0,∞) be given by σ(x) = σ0|x|δ for σ0 > 0 and δ ∈ R.

We set σ(0) =∞ for δ < 0. There exist I ⊆ R and µ ∈ C(I) such that (I, µ, σ) is proper

if and only if δ ∈ [0, 1].

Proof. If δ < 0 then 1/σ ∈ LC(R); thus, I = R would be the minimal state space in this

case. However (P1) is violated as σ can not be extended to a continuous function on R. If

δ > 1 then 1/σ ∈ LC(R\{0}), but
∫ −ε
−∞ 1/σ(z) dz and

∫∞
ε

1/σ(z) dz are finite for all ε > 0,

violating (4.2) in Proposition 4.1. For δ ∈ [0, 1], there always exists a choice for a state

space I satisfying the conditions in Proposition 4.1(ii)(b).

Next we derive representations of the cones KI,σ for all δ ∈ [0, 1]. The choice of δ = 0

leads to a Vasicek model and was already discussed in Proposition 5.2.

Proposition 5.6. Let δ = 1.

(i) KI, σ is non-empty if and only if either I = (0,∞) or I = (−∞, 0).

(ii) If I = (0,∞) or I = (−∞, 0), then (I, µ, σ) is H-proper for all (γ, µ) ∈ KI, σ and

H ∈ (1/2, 1). In this case the stationary pathwise solution X of (1.4) is unique.

(iii) K(0,∞), σ has representation

K(0,∞),σ = {
(
|β|, µ

)
∈ R+× C(I) : µ(x) = αx + βx log x, α ∈ R, β < 0, x ∈ I } .

(iv) If µ(x) = αx + β x log x and µ ∈ K(0,∞), σ, then the following formulas hold for the

SST f , the center ξ and the stationary density p for ((0,∞), µ, σ).

f(x) = eσ0x−α/β , x ∈ (0,∞) ,

ξ = e−α/β ,

p(x) = π−1/2C x−1 exp
[
− C2

(
log x+

α

β

)2]
, x ∈ (0,∞) ,

C =
|β|H√

Γ(2H+1)σ2
0

.

p is the density of a lognormal random variable.

Analogous formulas hold for I = (−∞, 0).

Remark 5.7. A similar construction was used in Comte and Renault [4]. They define

a stationary process of the form Y H,γ
t =

∫ t
−∞ a

H,γ(t−s) dB1/2
s , t ∈ R, for γ > 0 and
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H ∈ (1/2, 1). This process is up to a norming constant equivalent to a FOUP (cf. formulas

(2.5) in Comte and Renault [4] and (6.1) in Hult [7], respectively). They consider a

model f(Y H,γ) for f = exp, which shows a certain similarity to the model defined in

Proposition 5.6. �

Proof of Proposition 5.6. Condition (b) in Proposition 4.1(i) is satisfied for both I = (0,∞)

and I = (−∞, 0). By Proposition 4.1, the cone K(0,∞), σ contains precisely the pairs (γ, µ),

where µ(x) = −γσ(x)
∫ x
ξ

1/σ(z) dz and γ > 0; ξ ∈ (0,∞) is the corresponding center of

µ. We calculate µ(x) = γx log ξ−γx log x for x, ξ, γ > 0. The mapping R+×R+ 3 (ξ, γ) 7→
(γ log(ξ),−γ) ∈ R × (−∞, 0) is a bijection; thus, K(0,∞), σ is precisely of the form stated

in (iii). The formulas for f and p are calculated from ψ = µ/σ and f(x) = ψ−1(−|β|x).

�

Proposition 5.8. Let δ ∈ (0, 1).

(i) KI, σ is non-empty if and only if I = R.

(ii) KR, σ has representation

KR, σ = {
(
(1−δ)|β|, µ

)
∈ R+× C(R) : µ(x) = α|x|δ+ βx, α ∈ R, β < 0, x ∈ R } .

(iii) If (γ, µ) ∈ KR, σ then (I, µ, σ) is H-proper if and only if δ ∈ (1−H, 1) and H ∈
(1/2, 1).

(iv) If µ(x) = α|x|δ + βx and µ ∈ KR, σ then the following formulas hold for the SST f ,

the center ξ and the stationary density p for (R, µ, σ).

f(x) = sign
[
σ0(1−δ)x− α/β

] ∣∣σ0(1−δ)x− α/β
∣∣1/(1−δ) , x ∈ R ,

ξ = sign(α)|α/β|1/(1−δ) ,
p(x) = C1|x|−δ exp(−C2(x|x|−δ + α/β)) , x ∈ R ,

where

C1 =
|β|H(1− δ)H√
πΓ(2H+1)σ2

0

, C2 =
|β|2H(1− δ)2H−2

σ2
0Γ(2H+1)

.

Proof. Condition (b) of Proposition 4.1(i) holds for I = R. For ξ ∈ R and γ > 0, we

obtain µ ∈ KR, σ by

µ(x) = −γ σ(x)

∫ x

ξ

dz

σ(z)
=

γ

1− δ
sign(ξ) |ξ|1−δ |x|δ − γ

1− δ
x , x ∈ R .

Analogous reasoning yields the formulas stated in (iv). A proper triple is H-proper if and

only if f ∈ C((1−H)/H)+(R) for the SST f ; this holds whenever δ ∈ (1−H, 1).
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Bounded state space

In this section we present two models with bounded state space I. According to Re-

mark 3.4(vii) such models exist only for H ∈ (1/2, 1).

Example 5.9. [Bounded State Space] We construct an H-proper triple with state space

I = (l, r), where r < l are finite real numbers. For x ∈ (l, r), set

σ(x) = σ0(x− l)(r − x) , µ(x) = σ0α(x− l)(r − x) + σ0β(x− l)(r − x) log

[
x− l
r − x

]
.

The triple (I, µ, σ) is H-proper. We obtain the following quantities. Note that f and ξ

are obtained by logistic convex combinations from l and r.

ξ =
1

1 + exp(−α/β)
l +

exp(−α/β)

1 + exp(−α/β)
r ,

γ = −βσ0

f(x) =
1

1 + exp(σ0x−α/β)
l +

exp(σ0x−α/β)

1 + exp(σ0x−α/β)
r , x ∈ (l, r) ,

p(x) = C1(H, β, σ0) (x− l)−1(r − x)−1

× exp

[
− C2(H, β, σ0)

(
α + β log

[
x− l
r − x

])2]
, x ∈ (l, r) .

where

C1(H, β, σ0) =
|β|HσH−1

0√
πΓ(2H+1)

, C2(H, β, σ0) =
|β|2H−2σ2H−2

0

Γ(2H+1)
�

Example 5.10. [Construction based on ψ] Let I = (−π/2, π/2). We start with γ > 0 and

define ψγ(x) = −γ tanx. Then ψγ ∈ C∞(I) is strictly decreasing satisfying (3.1) of (P2)

in I. We ask for functions µ, σ ∈ C(I) such that (I, µ, σ) is proper with FC γ. By (P3),

ψ′γ = −γ/σ; thus, σ(x) = cos2 x. Moreover, µ = σψγ, hence µ(x) = −γ cosx sin x. Then µ

has center ξ = 0 and the SST is f(x) = arctanx. Clearly, (I, µ, σ) is H-proper. Moreover,

X is the unique pathwise solution of (1.4) and we find

p(x) =
|γ|H√

πΓ(2H+1)

1

cos2 x
exp

[
− γ2H

Γ(2H+1)
tan2 x

]
, x ∈ I . �
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