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Abstract

Large insurance losses happen infrequently, but they happen. In this paper

we present the standard distribution models used in fire, wind–storm or flood

insurance. We also present the classical Cramér-Lundberg model for the total

claim amount and some more recent extensions. The classical insurance risk

measure is the ruin probability and we give a full account of the ruin event in

such models. Finally, we present some results for an integrated insurance risk

model, where also investment risk is taken into account.

Keywords: Cramér-Lundberg model, integrated risk process, integrated tail distribu-

tion function, Pollaczek-Khinchine formula, quintuple law, regular variation, renewal

measure, risk model, ruin probability, sample path leading to ruin, subexponential

distribution

1 Subexponential Distribution Functions

Subexponential distribution functions (d.f.s) are a special class of heavy–tailed d.f.s.

The name arises from one of their properties, that their right tail decreases more

slowly than any exponential tail; see (1.1). This implies that large values can occur

in a sample with non–negligible probability, which proposes the subexponential d.f.s

as natural candidates for situations, where extremely large values occur in a sample

compared to the mean size of the data. Such a pattern is often seen in insurance data,

for instance in fire, wind–storm or flood insurance (collectively known as catastrophe

insurance), but also in financial and environmental data. Subexponential claims

can account for large fluctuations in the risk process of a company. Moreover, the
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subexponential concept has just the right level of generality for risk measurement

in insurance and finance models.

Various review papers have appeared on subexponentials; see e.g. [20, 24, 43];

textbook accounts are in [1, 2, 12, 31, 37, 38]. We present two defining properties of

subexponential d.f.s.

Definition 1.1 (Subexponential distribution functions) Let (Xi)i∈N be i. i. d.

positive random variables with d.f. F such that F (x) < 1 for all x > 0. Denote by

F (x) = 1 − F (x) for x ≥ 0, the tail of F , and for n ∈ N,

F n∗(x) = 1 − F n∗(x) = P(X1 + · · · +Xn > x) , x ≥ 0 ,

the tail of the n–fold convolution of F . F is a subexponential d.f. (F ∈ S) if one of

the following equivalent conditions holds:

(a) lim
x→∞

F n∗(x)

F (x)
= n for some (all) n ≥ 2 ,

(b) lim
x→∞

P(X1 + · · · +Xn > x)

P(max(X1, . . . , Xn) > x)
= 1 for some (all) n ≥ 2.

Remark 1.2 (i) A proof of the equivalence is based on (∼ means that the quotient

of the left hand side and the right hand side tends to 1 as x→ ∞)

P(X1 + · · · +Xn > x)

P(max(X1, . . . , Xn) > x)
∼
F n∗(x)

nF (x)

x→∞
−→ 1 ⇐⇒ F ∈ S .

(ii) In much of the present discussion we are dealing only with the right tail of a

d.f. This concept can be formalized by denoting two d.f.s F and G with support

unbounded to the right tail–equivalent if limx→∞ F (x)/G(x) = c ∈ (0,∞) . From

Definition (a) and the fact that S is closed with respect to tail–equivalence follows

that S is closed with respect to taking sums and maxima of i. i. d. random variables.

Subexponential d.f.s can also be defined on R by requiring that F restricted to

(0,∞) is subexponential; see [33].

(iii) The heavy–tailedness of F ∈ S is demonstrated by the implications

F ∈ S =⇒ lim
x→∞

F (x− y)

F (x)
= 1 ∀ y ∈ R =⇒ F (x)/e−εx x→∞

−→ ∞ ∀ ε > 0 . (1.1)

�

A famous subclass of S is the class of d.f.s with regularly varying tails; see [4].
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Example 1.3 (Distribution functions with regularly varying tails) For a

positive measurable function f we write f ∈ R(α) for α ∈ R (f is regularly varying

with index α) if

lim
x→∞

f(tx)

f(x)
= tα ∀ t > 0 . (1.2)

Let F ∈ R(−α) for α ≥ 0, then it has the representation

F (x) = x−αℓ(x) , x > 0 ,

for some ℓ ∈ R(0). To check Definition 1.1 (a) for n = 2 split the convolution

integral and use partial integration to obtain

F 2∗(x)

F (x)
= 2

∫ x/2

0

F (x− y)

F (x)
dF (y) +

(F (x/2))2

F (x)
, x > 0 .

Immediately, by (1.2), the last term tends to 0. The integrand satisfies F (x −

y)/F (x) ≤ F (x/2)/F (x) for 0 ≤ y ≤ x/2; hence, Lebesgue dominated convergence

applies and, since F satisfies (1.1), the integral on the right hand side tends to 1

as x → ∞. Examples of d.f.s with regularly varying tail include the Pareto, Burr,

transformed beta (also called generalized F ), log–gamma and stable d.f.s (see [12]).

�

Example 1.4 (Further subexponential distributions) Apart from the d.f.s in

Example 1.3 also the lognormal, the two Benktander families and the heavy-tailed

Weibull (shape parameter less than 1) belong to S. The integrated tail d.f.s (see

(2.2)) of all of these d.f.s are also in S provided they have a finite mean; see Ta-

ble 1.2.6 in [12]. �

2 Insurance Risk Models

2.1 The Cramér-Lundberg Model

The classical insurance risk model is the Cramér-Lundberg model (cf. [12, 31, 38]),

where the claim times constitute a Poisson process, i. e. the interclaim times (Tn)n∈N

are i. i. d. exponential random variables with parameter λ > 0. Furthermore, the

claim sizes (Xk)k∈N (independent of the claims arrival process) are i. i. d. positive

random variables with d.f. F and E(X1) = µ < ∞. The risk process is for initial

reserve u ≥ 0 and premium rate c > 0 defined as

R(t) = u+ ct−

N(t)∑

k=1

Xk , t ≥ 0 , (2.1)
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where (with the convention
∑0

i=1 ai = 0) N(0) = 0 and N(t) = sup{k ≥ 0 :∑k
i=1 Ti ≤ t} for t > 0. We denote the ruin time by

τ(u) = inf{t > 0 : u+ ct−

N(t)∑

k=1

Xk < 0} , u ≥ 0 .

The ruin probability in infinite time is defined as

ψ(u) = P(R(t) < 0 for some 0 ≤ t <∞ | R(0) = u) = P(τ(u) <∞) , u ≥ 0 .

By definition of the risk process, ruin can occur only at the claim times (see also

Figure 1), hence for u ≥ 0,

ψ(u) = P(R(t) < 0 for some t ≥ 0 | R(0) = u)

= P

(
u+

n∑

k=1

(cTk −Xk) < 0 for some n ∈ N

)
.

Provided that E(cT1 − X1) = c/λ − µ > 0, then (R(t))t≥0 has a positive drift and

hence, R(t) → +∞ a. s. as t→ ∞.

A ladder height analysis shows that the integrated tail distribution function

FI(x) =
1

µ

∫ x

0

F (y)dy , x ≥ 0 , (2.2)

of F is the d.f. of the first undershoot of R(t)− u below 0 under the condition that

R(t) falls below u in finite time. Setting ρ = λµ/c < 1, the number Ñ of times,

where R(t) achieves a new local minimum in finite time plus 1, is geometrically

distributed with parameter (1−ρ), i. e. P(Ñ = n) = (1−ρ)ρn, n ∈ N0. As (R(t))t≥0

is a Markov process its sample path splits into i. i. d. cycles, each starting with a

new partial minimum of the risk process. Combining these findings we obtain the

following representation of the ruin probability.

Theorem 2.1 (Pollacek-Khinchine formula) Consider the risk process (2.1) in

the Cramér-Lundberg model with ρ = λµ/c < 1. Let FI be as in (2.2). Then the

ruin probability is given by

ψ(u) = (1 − ρ)

∞∑

n=1

ρnF n∗
I (u) , u ≥ 0 .

We are interested in the ruin event represented by a probabilistic description of

the last cycle before ruin, i. e. the quantities:

R(τ(u)) the level of the risk process at ruin,

R(τ(u)−) the level of the risk process just before ruin,

inf0≤t<τ(u)R(t) the infimum of the risk process before ruin.

The following result holds.
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Figure 1: Sample path of a risk process in the Cramér-Lundberg model

Theorem 2.2 Consider the risk process (2.1) in the Cramér-Lundberg model with

ρ = λµ/c < 1. Define the renewal measure of the descending ladder height process

of (ct−
∑N(t)

k=1 Xk)t≥0 given by

V (u) =
1

c

∞∑

n=0

ρnF n∗
I (u) , u ≥ 0,

where FI is as in (2.2). Then for x > 0, v ≥ y and y ∈ [0, u],

P(−R(τ(u)) ∈ dx,R(τ(u)−) ∈ dv, inf
0≤t<τ(u)

R(t) ∈ dy) = λF (dx+ v)V (u− dy) dv.

2.2 The Lévy Risk Model

A natural and useful generalization of the Cramér-Lundberg model as in (2.1)

is to replace the compound Poisson process (
∑N(t)

k=1 Xk)t≥0 by a general subordi-

nator (S(t))t≥0. A subordinator is an increasing Lévy process, i. e. it starts in

0, has independent and stationary increments, and has a. s. increasing sample

paths. A subordinator can be characterized by its Lévy-Khinchine representation

E(exp(ivS(t))) = exp(tϕ(v)) for t ≥ 0, v ∈ R with

ϕ(v) =

∫

R+

(
eivx − 1

)
ν(dx),

where ν is a measure on R+ := (0,∞), called Lévy measure, satisfying
∫

R+
(1 ∧

|x|) ν(dx) < ∞; see the monographs [3, 29, 39, 42] for more details on Lévy pro-

cesses. The upward movement of the subordinator represents the total claim amount

process, extending the compound Poisson model by modelling many small claims

between more severe claims at Poisson times.
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On top of this already rather general model, uncertainty in the aggregated claims

and in the premium income can be modelled by a Brownian motion (B(t))t≥0 giving

the risk process

R(t) = u+ ct− S(t) + σB(t) , t ≥ 0, (2.3)

where u and c are as in the Cramér-Lundberg model and σ ≥ 0. More general Lévy

insurance models are investigated in [7,22,25,26]; see also the monograph [29]. More

about the Cramér-Lundberg model perturbed by a Brownian motion can be found

in [8, 16–18, 44] and perturbed by an α-stable Lévy motion in [14, 40]. The class of

Γ-subordinators with and without perturbation by a Brownian motion have been

investigated in [9, 46].

In this model the ruin time is defined as

τ(u) = inf{t > 0 : u+ ct− S(t) + σB(t) < 0} , u ≥ 0 ,

and the ruin probability by ψ(u) = P(τ(u) <∞).

Again we have to assume that R(t) → +∞ a. s. as t → ∞, which is implied by

ρ := E(S(1))/c < 1, i. e. the premium income outweighs the expected total claims.

Analogously to (2.2) we define the integrated tail d.f. of ν as

νI(x) =
1

E(S(1))

∫ x

0

ν(y,∞) dy, x ≥ 0. (2.4)

In the Cramér-Lundberg model ν(y,∞) = λF (y) and E(S(1)) = λµ, hence we get

back νI = FI and ρ = λµ/c.

To present the results in this general set-up we also require the exponential d.f.

G(x) = 1 − exp(−2cx/σ2) 1{σ>0} , x ≥ 0 , (2.5)

which is the d.f. of (supt≥0{−ct−σB(t)})t≥0. Finally, we have to build convolutions

of νI with itself and with convolution powers of G. As an explaining example we

recall that

G ∗ νI(x) =

∫ x

0

G(x− y)dνI(y) =
1

E(S(1))

∫ x

0

G(x− y)ν(y,∞)dy , x ≥ 0 .

Then the ruin probability satisfies the following equation (see [22], Theorem 3.1).

Theorem 2.3 (Pollaczek-Khinchine Formula) Consider the risk process (2.3)

in the Lévy risk model with ρ = E(S(1))/c < 1. Let νI be as in (2.4) and G as in

(2.5). Then the ruin probability can be represented as

ψ(u) = (1 − ρ)
∞∑

n=1

ρnG(n+1)∗ ∗ νn∗
I (u) , u ≥ 0 .
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The quintuple-law in [7] is again based on a ladder height analysis:

Theorem 2.4 Consider the risk process (2.3) in the Lévy risk model with ρ =

E(S(1))/c < 1. Define the renewal measure of the descending ladder height process

of (ct− S(t) + σB(t))t≥0 given by

V (u) =
1

c

∞∑

n=0

ρn (G(n+1)∗ ∗ νn∗
I )(u) , u ≥ 0 ,

where νI is as in (2.4) and G as in (2.5). Then for x > 0, v ≥ y and y ∈ [0, u],

P(−R(τ(u)) ∈ dx,R(τ(u)−) ∈ dv, inf
0≤t<τ(u)

R(t) ∈ dy) = ν(dx+ v)V (u− dy) dv.

3 Risk Theory in the Presence of Heavy Tails

3.1 Asymptotic Ruin Theory

In this section we investigate the occurrence of large, possibly ruinous claims mod-

elled by νI ∈ S, which translates in the Cramér-Lundberg model to FI ∈ S. We

refer to [25, 26] for more details on the results of this section; these papers include

also more general Lévy insurance risk models. The results for the Cramér-Lundberg

model can also be found in [1].

The following part (a) of Proposition 3.1 is [11], Proposition 1. The result (b)

can partly be found already in [2]. Its present form goes back to [10, 11] and [6].

Proposition 3.1 (a) Let H = G ∗ F be the convolution of two d.f.s on (0,∞). If

F ∈ S and G(x) = o(F (x)) as x→ ∞, then H ∈ S.

(b) Suppose (pn)n≥0 defines a probability measure on N0 such that
∑∞

n=0 pn(1 +

ε)n <∞ for some ε > 0 and pk > 0 for some k ≥ 2. Let

K(x) =

∞∑

n=0

pnH
n∗(x) , x ≥ 0 .

Then

H ∈ S ⇐⇒ lim
x→∞

K(x)

H(x)
=

∞∑

n=1

npn ⇐⇒ K ∈ S and H(x) 6= o(K(x)) .

For the ruin probability this Proposition implies with the Pollaczek-Khinchine

formula (Theorem 2.3) the following result.
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Theorem 3.2 (Ruin Probability) Consider the risk process (2.3) in the Lévy

risk model with ρ = E(S(1))/c < 1. If νI ∈ S, then

ψ(u) ∼
ρ

1 − ρ
νI(u) =

1

c− E(S(1))

∫ ∞

u

ν(y,∞)dy , as u→ ∞.

3.2 Sample Path Leading to Ruin

Not surprisingly, the asymptotic behavior of the quantities in Theorem 2.4 are con-

sequences of extreme value theory; see [12] or any other book on extreme value

theory for background. As shown in [21], under weak regularity conditions a subex-

ponential d.f. F belongs to the maximum domain of attraction of an extreme value

d.f. Gα, α ∈ (0,∞] (we write F ∈ MDA(Gα)), where

Gα(x) = Φα(x) = exp(−x−α) 1{x>0} , α <∞ , and G∞(x) = Λ(x) = exp(−e−x) .

The meaning of F ∈ MDA(Gα) is that there exist sequences of constants an > 0,

bn ∈ R such that

lim
n→∞

nF (anx+ bn) = − logGα(x) ∀x ∈

{
(0,∞) if α ∈ (0,∞),

R if α = ∞.

The following result describes the behavior of the process at ruin, and the upcrossing

event itself; see [25].

Theorem 3.3 (Sample Path Leading to Ruin) Consider the risk process (2.3)

in the Lévy risk model with ρ = E(S(1))/c < 1. Define ν̃(x) := ν(1, x)/ν(1,∞)

for x > 1 and assume that ν̃ ∈ MDA(Gα+1) for α ∈ (0,∞]. Define a(·) =

νI(·,∞)/ν(·,∞). Then, in P(· | τ(u) <∞)–distribution,
(
R(τ(u)−) − u

a(u)
,
−R(τ(u))

a(u)

)
−→ (Vα, Tα) , as u→ ∞.

Vα and Tα are positive random variables with d.f. satisfying for x, y > 0

P(Vα > x, Tα > y) =





(
1 +

x+ y

α

)−α

if α ∈ (0,∞) ,

e−(x+y) if α = ∞.

Remark 3.4 Extreme value theory and Theorem 2.4 is the basis of this result:

recall first that ν̃ ∈ MDA(Φα+1) is equivalent to ν(·,∞) ∈ R(−(α+ 1)) and, hence,

to νI ∈ MDA(Φα) by Karamata’s theorem. The normalizing function a(u) tends

in the subexponential case to infinity as u → ∞. For ν(·,∞) ∈ R(−(α + 1))

Karamata’s theorem gives a(u) ∼ u/α as u→ ∞. �
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4 Insurance Risk Models with Investment

The following extension of the insurance risk process has attracted attention over

the last years. It is based on the simple fact that an insurance company not only

deals with the risk coming from insurance claims, but also invests capital at a large

scale into financial markets.

To keep the level of sophistication moderate we assume that the insurance risk

process (R(t))t≥0 is the Cramér-Lundberg model as defined in (2.1). We suppose

that the insurance company invests its reserve into a Black-Scholes type market

consisting of a riskless bond and a risky stock modelled by an exponential Lévy

process. Their price processes follow the equations

P0(t) = eδt and P1(t) = eL(t) , t ≥ 0.

The constant δ > 0 is the riskless interest rate, (L(t))t≥0 denotes a Lévy process

characterized by its Lévy-Khinchine representation E(exp(ivL(t))) = exp(tϕ(v)) for

t ≥ 0, v ∈ R, with

ϕ(v) = ivm−
1

2
v2σ2 +

∫

R

(
eivx − 1 − ivx1[−1,1](x)

)
ν(dx).

The quantities (m, σ2, ν) are called the generating triplet of the Lévy process L. Here

m ∈ R, σ2 ≥ 0 and ν is a Lévy measure satisfying ν({0}) = 0 and
∫

R
(1∧|x|2) ν(dx) <

∞. We assume that

0 < E(L(1)) <∞ and either σ > 0 or ν(−∞, 0) > 0 (4.1)

such that L(t) is negative with positive probability and hence, P1(t) is less than one

with positive probability.

We denote by θ ∈ (0, 1] the investment strategy, which is the fraction of the

reserve invested into the risky asset. For details and more background on this

model we refer to [27]. Then the investment process is the solution of the stochastic

differential equation

dPθ(t) = Pθ(t−) d((1 − θ)δt+ θL̂(t)) , t ≥ 0, (4.2)

where (L̂(t))t≥0 is a Lévy process satisfying E(L̂(t)) = exp(L(t)) and E denotes the

stochastic exponential (cf. [36]). The solution of (4.2) is given by

Pθ(t) = eLθ(t) , t ≥ 0,

where Lθ is such that E((1 − θ)δt+ θL̂(t)) = exp(Lθ(t)).
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The integrated risk process of the insurance company is given by

Iθ(t) = eLθ(t)

(
u+

∫ t

0

e−Lθ(v)(c dv − dS(v))

)
, t ≥ 0. (4.3)

In this model we are interested in the ruin probability

ψθ(u) = P(Iθ(t) < 0 for some t ≥ 0 | Iθ(0) = u) , u ≥ 0 .

To find the asymptotic ruin probability for such models there exist two approaches.

The first one is analytic and derives an integro-differential equation for the ruin

probability, whose asymptotic solution can in certain cases be found. This works

in particular for the case, where the investment process is a geometric Brownian

motion with drift, and has been considered in [13, 15, 41, 45]; see also [34] for an

overview.

This method breaks down for general exponential Lévy investment processes.

But equation (4.3) can be viewed as a continuous time random recurrence equation,

often called a generalized Ornstein-Uhlenbeck process, cf. [30] and references therein.

Splitting up the integral in an appropriate way, asymptotic theory for discrete ran-

dom recurrence equations can be applied. The theoretical basis for this approach

can be found in [32] and is based on the seminal paper [19]. This approach is applied

in [23, 35].

Common starting point is the process (Iθ(t))t≥0 as defined in (4.3), which is the

same as the process (2.1) in [35]. We present Theorem 3.2 (a) of [35] below and

formulate the necessary conditions in our terminology.

The Laplace exponent of Lθ is denoted by φθ(v) = log E(e−vLθ(1)). If we assume

that

V∞ := {v ≥ 0 : E(e−vL1) <∞} is right open, (4.4)

then (cf. e. g. Lemma 4.1 of [27]) there exists a unique κ(θ) such that

φθ(κ(θ)) = 0. (4.5)

Theorem 4.1 (Ruin probability) We consider the integrated risk process

(Iθ(t))t≥0 as in (4.3) satisfying (4.1) and (4.4). Furthermore, we assume for the

claim size variable X that E(Xmax{1,κ(θ)+ǫ}) <∞ for some ǫ > 0, where κ(θ) is given

in (4.5), and we assume that φθ(2) < ∞. Let U be uniformly distributed on [0, 1]

and independent of (Lθ(t))t≥0. Assume that the d.f. of Lθ(U) has an absolutely

continuous component. Then there exists a constant C1 > 0 such that

ψθ(u) ∼ C1u
−κ(θ) , as u → ∞.
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Remark 4.2 If the insurance company invests its money in a classical Black-Scholes

model, where L(t) = γt + σ2W (t), t ≥ 0, is a Brownian motion with drift γ > 0,

variance σ2 > 0 and (W (t))t≥0 is a standard Brownian motion, then (Lθ(t))t≥0 is

again a Brownian motion with drift γθ = θγ+(1−θ)(δ+ σ2

2
θ) and variance σ2

θ = θ2σ2.

Since

φθ(s) = −γθs+
σ2

θ

2
s2, s ≥ 0 ,

we obtain κ(θ) = 2γθ/σ
2
θ . Hence, if E(Xmax{1,κ(θ)+ǫ}) < ∞ for some ǫ > 0, Theo-

rem 4.1 applies. �

Whereas the ruin probability is indeed the classical insurance risk measure, other

risk measures have been suggested for investment risk. The discounted net loss

process

Vθ(t) =

∫ t

0

e−Lθ(v) (dS(v) − cdv) , t ≥ 0 , (4.6)

converges a. s. to V ∗
θ when φθ(1) < λ, and measures the risk of the insurance

company, since, in particular, the relation

P(Iθ(t) < 0 | Iθ(0) = u) = P(Vθ(t) > u), t, u ≥ 0 ,

holds. This fact has been exploited in [27] to review this model from the point of

view of the investing risk manager. Invoking the Value-at-Risk as alternative risk

measure to the ruin probability they derived the tail behavior of V ∗
θ . For heavy-

tailed as well as for light-tailed claim sizes V ∗
θ has right Pareto tail indicating again

the riskiness of investment. See also [5, 28] for further insight into this problem.
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