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Abstract

Starting from the moving average integral representation of fractional Brownian mo-
tion (FBM) the class of fractional Lévy processes (FLP) is introduced by replacing the
Brownian motion by a general Lévy process with zero mean, finite variance and no Brow-
nian component. We present different methods to construct fractional Lévy processes and
study second order and sample path properties. FLPs have the same second order struc-
ture as FBM and, depending on the Lévy measure, they are not always semimartingales.
We consider integrals with respect to FLPs and moving average (MA) processes with the
long memory property. In particular, we show that the Lévy-driven MA process with
fractionally integrated kernel coincides with the MA process with the corresponding (not
fractionally integrated) kernel and driven by the corresponding FLP.
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1 Introduction

In this paper we consider fractional Lévy processes. The name “fractional Lévy process” already
suggests that it can be regarded as a generalization of fractional Brownian motion (FBM). Let us
recall that fractional Brownian motion is the Gaussian stochastic process { By (t)}+>0 satisfying
Bp(0) =0, E[Br(t)] =0 for all ¢ > 0 and

E[Bu(t)Bu(s)] = 5 (It — |t — s +[s*"), (L.1)

DN | =

for all s,t > 0, where 0 < H < 1. The parameter H is also referred to as the Hurst coefficient.
FBM is the only self-similar Gaussian process with stationary increments. We can define a
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parametric family of FBMs in terms of the stochastic Weyl integral (see e.g. Doukhan et al.
(2003), part A or Samorodnitsky & Taqqu (1994), chapter 7.2). For any a,b € R,

{Br(t)hier < (1.2)
H-1 H-—L H—1 H-1
[{ale=9tF — ol Hrpie-9"F - (9" My ape)
R teR
where uy = max(u,0), u— = max(—u,0) and {B(t)}+cr is a standard Brownian motion. If

H =1/2, it is clear that {By/2(t)}ter = {B(t)}icr-

If we choose a = \/T(2H + 1)sin(rH)/T(H +1/2) and b =0 in (1.2) then {By () }1er is a
FBM satisfying (1.1).

In this paper we are interested in fractionally integrated processes. Therefore, we will work
with the fractional integration parameter d := H — 1/2 € (—0.5,0.5) rather than the Hurst
parameter. Moreover, we restrict ourselves to 0 < d < 0.5 as we are interested in the long

memory case.

The integral representation of FBM was generalized to a fractional Lévy motion by Benassi
et al. (2004), who started with the so-called “well-balanced” FBM with a = b = 1 in (1.2).
Their approach is the basis of our definition of a FLP since, like them, we replace the Brownian
motion B in the moving average representation (1.2) by a two-sided Lévy process. However,
we will go into further detail and also consider integrals with respect to FLPs. Furthermore,
like Mandelbrot & Van Ness (1968) for FBM, we choose a = 1/T'(H + 1/2) = 1/T(d + 1)
and b = 0 in (1.2). This choice will simplify calculations when we apply our results to long
memory moving average processes. Long memory processes are models in which the decay of
the autocorrelations follows a power law:

Definition 1.1 (Long Memory Process) Let X = {X;}icr be a stationary stochastic pro-
cess and yx (h) = cov(Xitn, Xt), b € R be its autocovariance function. If there exist0 < d < 0.5
and a constant ¢, > 0 such that

7x (h)

lim W = CV,

h—o00

(1.3)

then X is a stationary process with long memory.

The subject of long memory has sparked considerable research interest over the last few
years. A good survey of the present state of the art is Doukhan et al. (2003).

The remainder of the paper is organized as follows. Section 2 contains the preliminaries.
We review elementary properties of Lévy processes in Section 2.1 and consider Lévy-driven
stochastic integrals in Section 2.2. In Section 3 we present different methods of constructing a
FLP. We introduce an L?-approach in Section 3.1, where a FLP is defined as an integral with
respect to a Poisson random measure. In Section 3.2 we obtain a continuous modification of
a FLP by showing that almost surely the integral is equal to an improper Riemann integral.
Furthermore, in Section 3.3 we construct FLPs using series representations for Lévy processes.
Section 4 is devoted to the second order and sample path properties of FLPs. They have almost
the same second order structure as FBMs and have stationary increments which exhibit long
memory. Moreover, FLPs are Holder continuous of every order 8 < d and for a broad class of
Lévy processes cannot be semimartingales. Since any FLP has stationary increments and the

long memory property, it is, like FBM, a suitable model for driving noise in various applications.
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Therefore one needs to define a stochastic calculus with respect to FLPs. However, since in
general a FLP is not a semimartingale, we cannot use the It6 calculus. In Section 5 we define
integrals with respect to FLPs and focus in Section 6 on moving average (MA) processes with the
long memory property. Our main result of Section 6 states that the Lévy-driven long memory
MA process with fractionally integrated kernel has a moving average integral representation
where the integrand is not fractionally integrated and the driving process is a FLP.

The following notation will be used throughout this paper. We denote the distribution of
the random variable X by £(X). £ denotes equality in (all finite-dimensional) distribution(s)
and L—2> denotes L?-convergence. Moreover, p—lim stands for the limit in probability and d —lim
is the limit in distribution for all finite dimensional margins. Furthermore, we set Ry := R\ {0}
and write a.s. if something holds almost surely. Finally, we assume as given an underlying
complete, filtered probability space (2, F, (Ft)¢>0, P) with right continuous filtration (F;)¢>o.

2 Preliminaries

2.1 Basic Facts on Lévy Processes

We state some elementary properties of Lévy processes that will be needed below. For a more
general treatment and proofs we refer to Protter (2004) and Sato (1999).

Throughout this paper we consider a Lévy process L = {L(t)}t>0 in R without Brownian
component. Like every Lévy process, L is determined by its characteristic function in the
Lévy-Khinchine form Elexp{iuL(t)}] = exp{t¥(u)}, t >0, where

P(u) = iyu + /(ei’”” — 1 —idurly<;)v(dr), u€ER, (2.4)
R

where v € R and v is a measure on R that satisfies

v({0}) =0 and /(|917|2 A1) v(dz) < 0. (2.5)
R

The measure v is referred to as the Lévy measure of L. We always assume that v satisfies

additionally
/ |z|?v(dx) < oco. (2.6)
|z|>1

This is a necessary and sufficient condition (Sato (1999, Example 25.12)) for L to have finite
mean and variance given by var(L(t)) = tvar(L(1)) = ¢ [, #’v(dz), t > 0.
Furthermore, we restrict ourselves to the case where F[L(1)] = 0. Then v = — fl
and (2.4) reduces to

zv(dz)

z|>1

Y(u) = /(e"““c —1—iuz)v(dz), uelR (2.7)
R
It is a well-known fact that to every cadlag Lévy process L on R one can associate a random
measure J on Ry X R describing the jumps of L. For any measurable set B C Ry X R, J(B) =
fH{seR: (L(s) — L(s—),s) € B}.
The jump measure J is a Poisson random measure on Ry x R (see e.g. Definition 2.18 in
Cont & Tankov (2004)) with intensity measure n(dz,ds) = v(dz)ds. Then by the Lévy-Ito
decomposition we can rewrite L a.s. as
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t
L(t) = //a:j(da:,ds), > 0. (2.8)
0 R
Here J(dz,ds) = J(dzx,ds) — v(dz) ds is the compensated jump measure of L. Moreover, L is a
martingale.

Throughout this paper we will work with a two-sided Lévy process L = {L(t)}ter con-
structed by taking two independent copies {L1(t)}:>0,{L2(t)}¢>0 of a one-sided Lévy process
and setting

Ly (t) ift>0

L(t) = (2.9)
—Ly(—t—) ift <O.

2.2 Stochastic Integrals with Respect to Lévy Processes

In this section we consider the stochastic process X = {X (¢)}+er in R given by

X(t):/f(t,s)L(ds), teR, (2.10)
R

where f : R x R — R is a measurable function and L = {L(t)}:er is a Lévy process without
Brownian component. Again, we would like to stress that throughout this work we assume a
two-sided Lévy process L with zero mean and finite variance, i.e. L can be represented as in
(2.8) together with (2.9).

It has been shown by Rajput & Rosinski (1989) that (2.10) is well-defined as a limit in
probability of integrals of step functions approximating f under specified conditions. These
conditions are formulated in terms of the kernel function f and the generating triplet (v, 02, v)
of the driving Lévy process. In particular, if L can be represented by (2.8), the process X can
be rewritten as

X(t) = / f(t,s)z J(dz,ds), teR, (2.11)
R xRg
where J(dx,ds) = J(dz,ds)—v(dz) ds is the compensated jump measure of L. Then a necessary
and sufficient condition for the existence of the stochastic integral (2.11) is that

//(|f(t,s)a:|2 AF(t, $)2]) v(de) ds < 0o, Vi€ R (2.12)

R Ry

If (2.12) holds the integral (2.11) may be defined as a limit in probability of elementary integrals
J fRo fn(t, s)x J(dz,ds), where the f, are bounded with compact support such that |f,| < |f|
and f, — f. Observe that the integral is independent of the choice of approximating functions
frn (Kallenberg (1998, Theorem 10.5)).

Moreover, the law of X (¢) is for all ¢ € R infinitely divisible with characteristic function
(Rajput & Rosinski (1989))

Elexp {iuX (t)}] = ex 9T 1 _juf(t,s)z) v(dz)ds y, ueR (2.13)
exp exp R/ R/ ( )

The following proposition shows that the integral (2.10) or (2.11), respectively, may be
well-defined in an L?-sense.
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Proposition 2.1 If f(t,-) € L?(R), the stochastic integral (2.11) and hence (2.10), exists as
an L?(Q, P)-limit of approzimating step functions and does not depend on the choice of the
approximating sequence. Moreover,

E[X(t)") = E[LA)?]I f(t,) [i2), t€R (2.14)

Proof. Applying Rajput & Rosinski (1989, Theorem 3.3) it follows that (2.10) is well-defined
and E | [ fdL|* < oo if and only if

/ ft,s)y+ /f(tas)x[l{\f(t,smg} — Lfja<1ylv(de) + /(f(taé’)l“)QV(dﬂf) ds < o0o. (2.15)
R R R

Since we have y = — [ zwv(dz), (2.15) is implied by
|z|>1

//f(t,s)xl{w,s)zm}y(dx)ds+//(f(t,s)x)2u(dx)ds
R R R R

§2//fmﬁﬂ%M@%=2ﬂMDﬂHﬂhﬂ@mﬁal
R R

It follows from Rajput & Rosinski (1989, Theorem 3.4) that the mapping f — [, fdL is an
isomorphism from L?(R) to L?(, P). To prove (2.14) we consider for fixed ¢t € R step functions

n—1
S) = Z akl(sk,sk+1](5)
k=0

where ag,...a,_1 € R, n € Nand —00 < s < ... < 8, < 00. Then we define

[ 5t Lids) = 3 anlEsk10) = Lo
R k=0

It is easy to check that

/fntS (ds)| =FE ]R/f L,L]s ://ftsxudx)d

EILD?] | fu(t,?) 72g)

This isometry property is preserved when we approximate f(,-) by a sequence of step functions

(fn(t,-)) satisfying f, L f (observe that the step functions are dense in L?(R)). O

3 Construction of Fractional Lévy Processes

3.1 The L?*-approach

We are now in a position to introduce a fractional Lévy process (FLP) as a natural counterpart
to fractional Brownian motion (FBM). Based on the moving average representation (1.2) of
FBM we define a FLP as follows.



Fractional Lévy Processes 6

Definition 3.1 (Fractional Lévy Process) Let L = {L(t)}icr be a two-sided Lévy process
on R with E[L(1)] = 0, E[L(1)?] < oo and without Brownian component. For fractional inte-

gration parameter 0 < d < 0.5 a stochastic process

M) = ey [ (6= = (o] L, tem (3.16)

is called a fractional Lévy process (FLP).

Remark 3.2 The general Lévy-Ito representation (see e.g. Sato (1999, Theorem 19.2)) guar-
antees that every Lévy process can be decomposed into a linear term, a Brownian and a jump
component which is independent of the Brownian part. However, the Brownian part induces a
FBM which has already been extensively studied (see e.g. Doukhan et al. (2003) or Samorodnit-
sky & Taqqu (1994)). Therefore we have assumed a Lévy process without Brownian component.

Before we spend a closer look at the integral (3.16), we summarize the following two impor-
tant properties of the kernel function

1 d

fi(s) := T [(t—s)] — (—s)1], s€eR, (3.17)

(1+d)
that can be shown by simple calculus.
Proposition 3.3 For 0 < d < 0.5 and for each t € R the kernel function (3.17) is bounded.
Moreover, f; € LP(R) for p > (1 —d)~t. In particular, f; € L*(R) but f; ¢ L*(R) for t # 0.
Proposition 3.4 The function t — (t — s)1 — (=s)4 is locally Holder continuous of every
order § < d and for an order § > d it is not Hélder continuous on any interval containing s.

Furthermore, the total variation is finite on compacts.
The following theorem makes precise the meaning of (3.16).

Theorem 3.5 (Fractional Lévy Process in L2-sense) Let L = {L(t)}icr be a Lévy process
without Brownian component satisfying E[L(1)] = 0, E[L(1)?] < oo and J(ds, du) = J(ds, du)—
dsv(du) be the compensated jump measure of L. For t € R let the kernel function f; be defined
as in (3.17). Then for every t € R, Mq(t) = [ fe(s) L(ds) ezists as an L*(, P)-limit of
approzrimating step functions in the sense that

My(t) = / fils)z J(dw,ds), teR (3.18)

ROXR

Moreover, for all t € R the distribution of My(t) is infinitely divisible and
BMy) =l fi ll12®) BIL(1)?], teR (3.19)

Let uy,...,um € R, —00 < t1 < ... <ty < 00 and m € N. Then the finite dimensional
distributions of the process My have the characteristic functions

Elexp{iuy My(ty) + ... + ittyy My(t;)}] = exp / U Y uife(s) | dsy, (3.20)
R j=1

where Y is given as in (2.7).
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Proof. The assertions are direct consequences of the results of Section 2.2, since f; € L?(R).
(3.20) follows from (2.13) when we write

S uiMa(ty) = Sy [ i) Lids) = [ S usf, (5) L)
j=1 j=1 R

d
Remark 3.6 As a consequence of (3.20) the generating triplet of M(t) is (74, 0,v%,), where

/ $)x1{f,(s)a|>13 V(dx) ds  and
R
1p dr)ds, B € B(R). (3.21)

“f
=] [

We have seen that (3.16) can be understood as L?-limit and we can now apply the Kolmo-

||
B

gorov-Centsov Theorem to obtain a continuous modification of {My(t)}+er (see Theorem 4.4 (i)
below). However, we can also show that {My(t)}+cr has a continuous modification by proving

in the following section that M (t) is a.s. equal to an improper Riemann integral for all ¢t € R.

3.2 The improper Riemann Integral

We give here a pathwise construction of a FLP as an improper Riemann integral.

Theorem 3.7 Let L = {L(t)}tcr be a Lévy process without Brownian component satisfying
E[L(1)] =0 and E[L(1 )2] < 0. Fort € R define the kernel function f; as in (3.17). Then for
all t € R, My(t) fR ft(s) L(ds) has a modification which is equal to the improper Riemann

integral
Ma(#) :ﬁ/[(t— 9t (—e) Y L(s)ds, teR (3.22)
R

Moreover, (3.22) is continuous in t.

Proof. We assume t > 0. For t < 0 the proof is analogous. For a Lévy process L on R
that satisfies E[L(1)] = 0 and E[L(1)?] < oo we have a generalization of the law of the iterated
logarithm of random walks (Sato (1999), Proposition 48.9), that is,

. |L(#)] 211/2
1 ————— = (E[L(1 .S.
i (2tloglogt)t/2 (BILA)D ™ as

Moreover, (t — s)% — (=s)% ~ td(—s)¢~' as s — —oo and therefore,

lim L(s)[(t —s)—(—5) =0 a.s.

§——00

If g is a continuously differentiable function on [a,b] C R it is always possible to use the

integration by parts formula to define f; g(s) L(ds) as a Riemann integral by

/g(S)L(dS)Zg(b)L(b)—g(a)L(a)— / L(s) dg(s). (3.23)

[a,b] la,b]
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(see e.g. Eberlein & Raible (1999, Lemma 2.1)). Since we have,

M) = gy tim [ =) = (=12 + s [ (=) L),
[a,0] [0,¢]
it follows by (3.23),
1 . 1
Mq(t) = m[o t] (t—s)"t L(s)ds — T+ D) Mim {L(a)[(t — a) —a)}
+ F(d1+ 1) Jm ¢ d / [(t =)' = (=s)" "] L(s)

1 —1 —1
:mk/[(t—s)i —(~9)" Y L(s)ds, teR

To show that (3.22) is continuous in ¢ we define for ¢ > 0, g:(s) = (t — ) ' L(s)1pp4(s),
s € R. Then for all T > 0 the family {g;};c[o,7] is uniformly integrable with respect to the
Lebesgue measure and the continuity of fot (t — )41 L(s) ds follows from Theorem 5, chapter
I1.6 of Shiryaev (1996). Furthermore, by Lebesgue’s dominated convergence theorem

fEm[(t —5)?=1 — (=s)971] L(s) ds is continuous in ¢. O

3.3 Series Representations of Fractional Lévy Processes

The results in this section are based on the series representation of Lévy processes summarized
in Rosinski (2001).

Theorem 3.8 Let L = {L(t)}tcr be a Lévy process without Brownian component satisfying
E[L(1)] = 0 and E[L(1)?] < co and for t € R define the kernel function f; as in (3.17). Suppose
the Lévy measure v of L is symmetric. Set v (s) = inf{z > 0: v((z,00)) < s}, s > 0, the
right continuous inverse of x — v((z,00)). Let A be an arbitrary probability measure on R
with nowhere vanishing density p. Moreover, let {T;}i=1,2,... and {U;}i=12,.. be independent
sequences of random variables, such that {T;}i=12, .. is a sequence of independent indentically
distributed (i.i.d.) standard exponential random variables and {U;}i=12... is a sequence of i.i.d.
random variables with distribution A. Put 7o =0 and 7; = 22:1 T;, i =1,2,.... Furthermore,
let {€;}i=1,2... be an i.i.d. sequence of random variables with P(e; = —1) = P(g; = 1) = %
Then for every t € R the series

Zsl 7ip(U) f+ (U3) (3.24)

converges a.s. and
{Ma(t)hier £ {X(8)}ser (3.25)

Proof. As v is symmetric, we have

Ele™Ma] = exp // [e“‘zft —-1- wa:ft(s)] v(dz)ds
R

= 2/7cos uzfi(s)) — 1 v(dz) ds
R 0
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Therefore, the assertion is an immediate consequence of Rosinski (1989, Proposition 2). d
If v is not symmetric we obtain a similar result by taking into account the left continuous
inverse of v.

Theorem 3.9 Let L = {L(t)}tcr be a Lévy process without Brownian component satisfying
E[L(1)] = 0 and E[L(1)?] < oco. Set v (s) = inf{z > 0 : v((z,00)) < s}, s > 0, and
v (s) = sup{z < 0: v((—o0,z)) < s}, s > 0, the right and left continuous inverse of v,
respectively. Define A and the sequences {T;},{U;} and {7;} as in Theorem 3.8. Then for every
t € R the series

o0

X(t) =Y AW (mpU)) + v (1ip(U))] fo(Us) = Ci(m)} (3.26)

i=1

i

converges a.s., where Cy(1;) = [ [ [v= (1p(w)) + v (Tp(w))] fi (u) dr p(u) du.

R Ti—1
Moreover, {My(t)}ter L {X (t)}ter-

Proof. X (t) in (3.26) is a generalized shot noise series which converges a.s. if we show that
for B € B(R)

Gt(B):://I{B\{O}}(Ht(T,’u,)) dTA(d’LL) ://I{B\{O}}(Ht(r,u))drp(u) du
R O R O

defines a Lévy measure, where
Hi(r,u) =[v" (tp(w)) + v (mp(w))]fe(uw), 7>0,t,ueR
(see Rosinski (1990, Theorem 2.4)). Observe that for every z > 0, u € R,
Leb({r > 0: v (rp(u)) > x}) = Leb({r > 0: v (1) > z})/p(u) = v((x,0))/p(u)

and thus

/701{3\{0}}('/“(7/)@))}”% ) dr p(u //1{3\{0}} 2 f;(w) v(dz) du
R O

Analogously, for every z < 0 and u € R, Leb({r > 0: v (7p(u)) < z}) = v((—o0,x))/p(u),
which yields

//1{3\{0}} (rp(w)) fi(w)) dr p(u //1{3\{0}} zfy(u) v(dz) du

Therefore,
GH(B) = / / Lo (2o (w)) v(de) du.
R R
From (3.21) follows that G = v, is the Lévy measure of an infinitely divisible random
variable. Furthermore, it follows from Theorem 3.1(iii), Rosinski (1990) and its proof that X (¢)

has characteristic function given by

E[eiuX(t)] — exp { [eiuft(s)x — 1 —iufi(s)z] v(dz) dS} ,
/]
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ie. X(t) 4 M,(t). Finally, repeating the same arguments for E;nzl wjHy, (T,u), where m € N,

t1,...,tm € Rand wy,...,w, € R, we obtain that the finite dimensional distributions of X are
identical to those of Mj.
d

The series representation (3.25) can be used for simulations of FLPs. Of course, for practical
simulations the series must be truncated. However, simulation from it is not so easy since the
inverse of the tail mass of the Lévy measure is rarely known in closed form. Recently an
alternative generalized shot noise representation for fractional fields was developed by Cohen
et al. (2005).

4 Second Order and Sample Path Properties

As the isometry property (3.19) of a FLP is the same as that of a fractional Brownian motion, it
is obvious that up to a constant FLPs have the same second order structure as FBM. Therefore,

we omit the proofs of the following two theorems.

Theorem 4.1 (Autocovariance Function) For s,t € R the autocovariance function of a
FLP My = {M(t)}+cr is given by

BIL(1)%]

cov(Ma(t), Ma(s)) = 9T (2d + 2) sin(x[d + 1])

[P — |t — sP9H! 4 5271 (4.27)

Theorem 4.2 (Covariance between two Increments) Let h > 0 and the FLP My be given
as in (3.18). The covariance between two increments Mq(t+h) — My(t) and Mq(s+h) — Ma(s),
where s + h <t andt— s =nh is

5a(n) = E[L(1)?]
2T (2d + 2) sin(w[d + 1])

_ E[L(1)Yd2d +1)

~ [(2d + 2) sin(n[d + 1))

h2d+1 [(n + 1)2d+1 + (TL _ 1)2d+1 _ 2n2d+1]

R IR2=1 1 O(n?472), n — oo. (4.28)

Remark 4.3 As a consequence of (4.28) the increments of a FLP exhibit long memory in the
sense of Definition 1.1. It is this long memory property allowing us in section 5 to construct
long memory moving average processes without a fractional integration of the kernel.

We also note that for a martingale X with zero expectation the covariance function must

be indentical zero, since

cov(X(h) — X(h—1),X(h+n)—X(h+n-1))
=E[(X(h) —X(h—1)E[X(h+n)—X(h+n—1)| Fren-1]] =0.

This shows that M, cannot be a martingale. We will prove later that for a fairly large class of

Lévy processes, My is neither a semimartingale.
Before, we consider sample path properties of FLPs.

Theorem 4.4 (Sample Path Properties) Let My = {My(t)}ter be a FLP.
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(i) Holder Continuity. For every 8 < d there exists a continuous modification of My and there

ezist an a.s. positive random variable H, and a constant 6 > 0 such that

P =1

weN: sup
0<h<H(w)

(Md(t + h,a;)ﬁ— Md(tv@) <4

This means that the sample paths of FLPs are a.s. locally Hélder continuous of any
order f < d. Moreover, for every modificaton of My and for every f > d, P({w € Q :
My(-,w) & CPla,b]}) > 0, where C*[a,b] is the space of Hélder continuous functions on
[a,b]. Furthermore, if v(R) = oo then P({w € Q: My(-,w) & CPa,b]}) = 1.

(ii) Stationary Increments. My is a process with stationary increments.
d
(iii) Symmetry. {Ma(—t)}ier = {—Ma(t) }rer.

Proof. (i) The first assertion follows directly from (4.27) and an application of the Kolmo-
gorov-Centsov Theorem (see e.g. Loeve (1960), p.519). Furthermore, from Proposition 3.4 we
know that ¢ > (t — )% — (—s)? & CP[a,b] for every B8 > d. Therefore, the proof of the second
part is analogous to the proof of Proposition 3.3. in Benassi et al. (2004).

(ii) For any s,t € R, s <t we have

Malt) = Mu(s) = gy [ 16— = s =] Efew
R

d 1 p .

£ m/[(t—S—v)+ — (=v){] L(dv) = My(t — s),
R

where equality in distribution follows from the stationarity of the increments of L.

(i) Ma(—t) = Ma(~t) = Ma(0) £ Ma(0) = Ma(t) = —Ma(2). 0
Theorem 4.5 (Self-Similarity) A FLP My cannot be self-similar.

Proof. Assume that My is self-similar with index H, i.e. H € [0.5,00). Then we have for all
c>0,
{Ma(ct)}er £ T {Ma(t) }rex. (4.29)

The generating triplet of My(t) is (v4,,0,7%,) (see (3.21)). Define for r > 0 the transfor-
mation 7). of measures v on R by (T,.v)(B) = v(r 'B), B € B(R). Then the Lévy measure
of c=HMy(ct) is given by c(Tyvh,) with b = c?=H. Therefore, if My is self-similar, by the
uniqueness of the generating triplet vt, = b=/ (F=)(Tyut ), for all b > 0. Then by Sato (1999,
Theorem 14.3 (ii)) and its proof it follows that '~ < 2 and that v}, is the Lévy measure of
an a-stable process with a = 1/(H — d). Hence, E[My(t)?] = oo, contradicting (4.27). O

Remark 4.6 In order to define a fractional stable process one has to choose a different kernel
function for the process to be well-defined. If L is a-stable a possible choice is f;(s) =

|t — s|H-1t/e —|s|H-1/ where H is the Hurst parameter and a denotes the index of stability
(see Samorodnitsky & Taqqu (1994), chapter 7.4).
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Theorem 4.7 Define for 1 < a < 2 the paramter H by H = d +é such that 0 < H < 1.
Assume that v(dz) = g(x) dx, where g : R — Ry is measurable and satisfies

g(x) ~ [2[77% @0,
glz) < Clz| " foral z€R, (4.30)

with a constant C > 0. Then My is locally self-similar with paramter H, i.e. for every fized
teR,

d~lim { Myt + eff); — My(t) }IGR L 1Y (2)}ock (4.31)

Here Y is a moving average fractional stable motion with representation
1 A-1 -1
Valt) = g [ 16 =97 = (=91 Lafas),
R

where Ly, is a symmetric a-stable Lévy process (see e.g. Samorodnitsky & Taqqu (1994)).

Proof. Since My has stationary increments it is enough to show the convergence for ¢ = 0.
For ui,...,up ER, —0c0o <t; <...<t, <ooandn €N, we have by (3.20)

exp {ZZULMEH)}]
k=1 €
= // lexp {mzukﬂt’“—és)} - l—inukatkIés)] v(dz)ds
R R k=1 ‘ ‘
// lexp{ e~ HZukftk } -1 —med_gZukftk (v)] ev(dzr) dv
o oo} o onio] e

For any y # 0 the asymptotic behavior of g yields

log E

ev(edy) = eg(ey)e Ay ~ I Y| T Ay = [y| Ty, € — 0,

which is the Lévy measure of a symmetric a-stable Lévy process. By (4.30) we have |G| < F
for all € > 0, where G.(y,v) = [exp {iy Sy, up fu, (v)} — 1 — iy Sp_y up fu, (v)] eg(e”~y)ef 1

and
exp {iyzukftk (U)} -1- Zyzukftk
k=1

It can be shown that F' € L'(R?). Hence, it follows, by dominated convergence,

exp {z Z U 7Md(;tk) }]

k=1 €

exp {zy > ufy, (v)} —1—iy > urf, (v)] ly|~'~ dy dv
k=1 k=1

)| Clyl~ 72

F(y,v) =

lim log E
clo 8

/]
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_ /7 [2 cos <y zn: i fo, (v)) - 2] [~ dy dv

R
[ee]
=/ 2 2 gy = d
- COS - ] Zukftk l‘1+a v = Zukftk v,
R 0 R
where C(a) = 2 [[cos(z) — 1]-%-. Since,
0
n n @
log E |exp {iZukYﬁ(etk)}] =C(a Zukftk(v) dv
k=1 k=1
(see Samorodnitsky & Taqqu (1994, p.114)), the proof is complete. d

In the following let Vary, ;j(Mg) denote the total variation of the sample paths of My on
the interval [a,b] C R.

Theorem 4.8 (Total Variation) If v is given as in Theorem 4.7, the sample paths of My are
a.s. of infinite total variation on compacts, i.e. Varjap(Mg) = 0o a.s. If v(R) < oo, they are

of finite total variation.

Proof. We know from (4.31) that

Ma(t + h) — My(t) o

d— 1}:?01 Y Y (£1)
Thus,
|Ma(t £ h) — My(t)| a
= |Ya(£ .8. .
d— hlw NG Yg(£1)| >0 a.s (4.32)

As Y5 (£1)] > 0 a.s., for all Q" C Q with P(©2) > 0 it follows

Ma(t £ h) — My(t
lim E {19, | Malt £ ) — Ma ”] > 0. (4.33)
o B
In fact, let Q' C Q with P(Q') > 0. Then %iﬁ)l P(|Y;(£1)] < d) — 0. Choose § > 0 small enough

such that ¢ is a continuity point of the distribution function of |Y;(£1)| and P(|Y5(£1)| <
9) < P(f ) which implies by (4.32)

. |Ma(t £ h) — Ma(t)] . i P(Q)
gﬁp( ST sQ—Pm%&MSﬁs oy

Hence, there exists ¢; > 0 such that

_ !
. <|Md(t +|Z|)ﬁ1 Ma()] 5) < P(;)) for all b # 0, |h| < €.

This yields

i !
P (Q’ N { | Mat +|Z|)f'f Ma®)l 5}) < PO rah 20, B < e

and hence

— !
P (Q n { [Mat +|Z|)H Ma®)] 5}) > PO £0, |h| < e
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Therefore,
B [19, [Ma(t +h) — Md(t)|]
s
Q,ﬂ{\Md(tt:rgMdunsa} |h|H
|Ma(t + h) — Ma(?)]
+E IQ,Q{ \Md(i‘*"zl);?Md(iN >5} |h|iI
My(t+ h) — My(t)|

> = ! | d =
>0+ FE lsm{ |Md(t+|:‘);_1Md(t)‘ >5}6 0P <Q N { N >0

Py
> (2 )6, for all h # 0, |h| < €.

This shows (4.33).
Now, assume that P(Var,,(Mg) < 0o) > 0. Then there exist Q' C Q, P(©') > 0 and
K > 0 such that Vary, 4(Mq) < K on Q. Hence,

E |:1Q’ Var[a,b](Md)] S K. (434)

We lead this to a contradiction:

For any sequence a <ty < t; < ...<b, we have

E 1o Vary ) (Ma)] > E |1o Y |Ma(tiva) — Ma(t:)|| = > E Lo/ [Ma(tisr) — Ma(t:)]].
=0 =0

(4.35)

Fix [a,b'] C [a,b], a < b' < b. We construct a sequence a < tg < t1 < ... < tp < b <itpp1 <b
for some n with

2K
0<i<n. (4.36)

E[lo[Ma(tiy1) = Ma(8)[] 2 (tisr = ti) o=, 0<

Since H < 1, (4.33) yields

lim B |1, [Ma(E D) — M‘i(t)'} —lim BB [19, [Ma(t£h) = Ma®)] _ (37
hl0 h hl0 hiH
Thus, for any t € [a,b], we find 0 < ¢, < b—b" with
2K
E[lo/|Ma(t +h) — Ma(t)[] > |h|ma V h,|h| <e. (4.38)

Now, (]t — €,t + €[) is an open covering of [a,b'] and thus we find a finite covering (]t2; —
€to;s 12i + €ty D, to < ta < ... < tom, tom + €tn,, = toms1 > b’. Now we choose toi+1 €
It2is t2it€ry; [N )t2i42 =€ty oy t2iy2[. Then by (4.38) in fact (4.36) holds for all i, 0 < i < 2m =:n.
Now summation of (4.36) gives together with (4.35)

n n

2K

Ello Vargy(Ma)] > Y Ellor [Ma(tir) = Ma(t)[] > > [tigr — til
=0 i=0

2K
= (tny1 — to)m > 2K.
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This is a contradiction to (4.34). Consequently, Vary, ) (Mg) = oo a.s.

It remains to show Varp, (M) < oo, if ¥(R) < oo. The proof is elementary and based
on the series representation of FLPs, we skip the details: For simplicity assume that the Lévy
measure v of the driving Lévy process L is symmetric. Now, consider the series representation
(3.24). Since v(R) < oo, there is only a finite number n € N of jumps 7; on every interval [a, b].
Now, we divide the interval [a,b] into subintervals |71, 7;[, ¢ = 1,...,n — 1. Since the total
variation of the function ¢ — (t —s)% — (—s)4 is finite on every interval [r;_1,7;] and since there
are only finitely many 7;, we can conclude (by an interchange of sumation) that the sample
paths of M, have finite variation on compacts.

If v is not symmetric the proof uses the series representation (3.26) and the same arguments.
d

Remark 4.9 Observe that as a consequence of Theorem 4.8, the FLP M, is a semimartingale
if v(R) < 0.

Theorem 4.10 (Semimartingale) If the Lévy measure v is given as in Theorem 4.7, the

corresponding fractional Lévy process My is not a semimartingale.

Proof. Let 0 =t < ... < t" =t,n € N be a partition of [0, ¢] such that Jnax |tl+1 -t =0

as n — 0o. Assume that My is a semimartingale. Then its quadratic varlatlon [My, Mg): =

n—1
p— lim Z | Mg (t?, ) — Mq(t")]? exists for all t € [0,T], T > 0. Hence, there exists a refining

subsequence {¢;"* } such that Z |Ma(tit)—Mqa(t7*)|* — [My, Ma); a.s.as k — oo. Therefore

we can apply Fatou’s Lemma and obtain together with Theorem 4.1,

E[Mg, Mg); = E | lim kz [Mq(t2F) — Md(t?k)F] (4.39)
i=0
< liminf & ; [Ma(ti,) — Md(t?k)]Q]

nkfl

lim inf ZO: E[Mq(t7) — Ma(t7))?

ng—1

var(Ly) o
= \ f $_gne2dtl
I'(2d + 2) sin(w[d + 1]) o ; |ty — &7

It follows from M4(0) = 0 a.s., (4.39) and Protter (2004, Theorem I1.22 (ii)) that [My4, My]; =
0 as. forallt e [0,T], T > 0. If [Mg, Mg]: is identically zero, the semimartingale My with
continuous sample paths is known to be of finite variation (Protter (2004, Theorem II.27)).
However, by Theorem 4.8, M, is not of finite variation if v is of the form given in Theorem 4.7,
leading to a contradiction. d

5 Integrals with respect to Fractional Lévy Processes

In this section we define integrals with respect to fractional Lévy processes. As pointed out in
Theorem 4.10 a FLP is not always a semimartingale. Therefore, classical Ito integration theory
cannot be applied. Recently, integration with respect to FBMs has been studied extensively
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and various approaches have been made to define a stochastic integral with respect to FBM
(see Nualart (2003) for a survey). For instance Z#hle (1998) introduced a pathwise stochastic
integral using fractional integrals and derivatives. If the integrand is S-Hdolder continuous with
B > 1 — H, then the integral with respect to FBM can be interpreted as a Riemann-Stieltjes
integral. Other approaches use the Gaussianity and define a Wiener integral or they apply
Malliavin calculus to obtain Skorohod-like integrals with respect to FBM (see e.g. Decreusefond
& Ustiinel (1999) and the references therein). Malliavin calculus was also used by Decreusefond
& Savy (2004) to construct a stochastic calculus for filtered Poisson processes. A new integral
of It6 type with zero mean defined by means of Wick product was introduced in Duncan et al.
(2000) who give some It6 formulae (see also Bender (2003)).

In this section we consider the special case of a deterministic integrand which is sufficient
for our present purposes and turns out to be easy to handle. We give a general definition
of integrals with respect to FLPs which is closely related to the integral with respect to FBM
defined in Pipiras & Taqqu (2000). First we introduce the Riemann-Liouville fractional integrals
and derivatives. For details see Samko et al. (1993).

For 0 < a < 1 the Riemann-Liouville fractional integrals I are defined by

D@ = Fo [ 1OE=-2" (5.40)
1NE = Fa [ IOE=-0"a (5.41)

if the integrals exist for almost all 2 € R. In fact, fractional integrals I are defined for functions
felPR)if0<a<landl<p<1l/a (Samko et al. (1993, p.94)). We refer to the integrals
I® and IY as right-sided and left-sided, respectively. Fractional differentiation was introduced
as the inverse operation. Let 0 < a < 1, 1 < p < 1/a and denote by I¢(LP) the class of
functions ¢ € LP(R) which may be represented as an I¢-integral of some function f € LP(R).
If ¢ € I$(LP), there exists a unique function f € LP(R) such that ¢ = I f and f agrees with
the Riemann-Liouville derivative D of ¢ of order o defined by

P20e) = ~Frma s | A -2 "

D@ = Fromas | HOE -

where the convergence of the integrals at the singularity ¢ = x holds pointwise for almost all x
if p=1 and in the LP-sense if p > 1.
Observe that we can rewrite
Milt) = [ (I10.0)(5) L(09).
R

For g € L*(R) consider the right-sided Riemann-Liouville fractional integral I%g of order d
and denote by H the set of functions g : R — R, g € L'(R) such that

[e)

/ (1% 9)?(u) du < 0. (5.42)

— 00



Fractional Lévy Processes 17

Proposition 5.1 If g € L'(R) N L2(R), then g € H.

Proof. Starting from the fact that (I%g) € L*(R) if and only if [, [h(u)(I%g)(u)|du <
C||h||;2 for all h € L*(R), it is sufficient to show that for all h € L*(R),

//|h(u)sd_lg(s+u)|dsdu < Clh|ly2- (5.43)
R 0
Now (5 43) holds if Iy = [, [ |h(u)s?'g(s +u)|ds du < C||h| 2 and I, =
Je fo |h(w Lg(s+u)|dsdu < Clhl| . Applymg Fubini’s Theorem and the Hélder inequality

we obtain for I,

1
/ -1 / Ih(w)g(s + w)| duds < / Sl gl ds = 4 gl 1A
0

Furthermore, setting t = s + u and using Fubini’s Theorem and Hélder’s inequality,

o 1/2

L= / l9(0)] / It — ) dsdr < / T / 2@ gs | g de
R 1 R

1

1
= / 1Al 2 ——=—==lg(t)| dt < (1 —2d)"""*||g]| ||l -
Vv1-2d
R

We define the space H as the completion of L'(R) N L?(R) with respect to the norm

1/2
g = | ELL()] / (14 9)(u) du
R

If follows from Pipiras & Taqqu (2000, Theorem 3.2) that || - ||z defines in fact a norm. Then
from the proof of Proposition 5.1 we know that for g € L'(R) N L?(R)

lglla< Clllglle + 1 gllee] (5.44)
To construct the integral Ing,(g) := [ 9(s) My(ds) for g € H we proceed as follows. Let
n—1

¢ : R — R be a simple function, i.e. 45(3) = > ail(s,,,,1(5), where a; € R, i = 1,...,n and
i=1
—00 < 81 < 82 < ... < 8 < 00. Notice that ¢ € H. Define

Nia(@) = [ 606) Ma(ds) = 3 ailMa(sisn) - Mol
R

1
i=1
Obviously, Iz, is linear in the simple functions.

Proposition 5.2 Let ¢ : R — R be a simple function. Then

/ 8(5) Ma(ds) = / (I 6)(u) L(du) (5.45)
R R

and ¢ — Ing, (@) = [, d(s) My(ds) is an isometry between H and L*(9, P).
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Proof. Tt is sufficient to show (5.45) for indicator functions ¢(s) = 1j9,4(s), t > 0. In fact,
[ o) Matds) = [ 100.0(5) Matd) = Mt
R R

and for the r.h.s. of (5.45) we obtain,

/(Iﬂb)( )L Zﬁ// s —u)d” 11(”](5)d5L(du)
R u
d+1 R/ [(t —w)t — (—u)] L(du) = My(t).

Moreover, for all simple functions ¢ it follows from (2.14),

| Da(6) 2oy = B { / <Ii¢><u>L(du>} = BLOP) [(t6Pw) du=] 61 . (540)

R R
a

Theorem 5.3 Let My = {My(t)}+er be a fractional Lévy process and let the function g € H.
Then there are simple functions ¢, : R — R, k € N, satisfying || or — g ||H—> 0as k >
such that Ing,(¢r) converges in L*(Q, P) towards a limit denoted as In,(g9) = [5 g(s) Ma(ds)

and In,(g) is independent of the approzimating sequence ¢y,. Moreover,

I Taz (9) 1220,y =1 9 117 - (5.47)

Proof. The simple functions are dense in H. This follows from the fact that the simple
functions are dense in L*(R) N L*(R), that L'(R) N L?(R) is dense in H by construction and
(5.44). Hence, there exists a sequence (@) of simple functions such that || ¢ — g [|[F— O
as k — oo. It follows from the isometry property (5.46) that [;, dx(s) My(ds) converges in
L?(Q, P) towards a limit denoted as Jg 9(s) My(ds) and the isometry property is preserved in
this procedure. Last but not least (5.47) implies that the integral [, g(s) Mqy(ds) is the same

for all sequences of simple functions converging to g. 0

Corollary 5.4 If My is a semimartingale, then fR s) My(ds) is well-defined as a limit in
probability of elementary integrals. Observe that, since the limit in probability is unique, this
limit is then equal to the limit Ipnr,(g) of Theorem 5.3.

Using (5.45) and Theorem 5.3 the next proposition is obvious.

Proposition 5.5 Let g € H. Then

/ g(s) My(ds) = / (1) (u) L(du), (5.48)

R R

where the equality holds in the L?-sense.

Remark 5.6 Notice that our conditions on the integrand g differ from those imposed in the
work by Zahle (1998). In particular we do not require the function g to be Holder continuous
of order greater than 1 — d. Furthermore, if the function g is Holder continuous and g is defined
on a compact interval, then g € L'(R) N L?(R). Hence, g € H.
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The second order properties of integrals which are driven by FLPs follow by direct calcula-
tion. As E[L(1)] = 0, first note that we have for g € H,

E /g(t)Md(dt) =F ﬁ//(s—u)d_lg(s)dslz(du) =0.
R u

R

Proposition 5.7 Let |f|,|g| € H. Then

_ 2 o0 o0
B {/ F(t) My(dt) /g(u) Md(du)-l - mr( 2d)B[L(1)7] / / FOg(w)lt — u2 dt du.
IJR R J —00 —
(5.49)
Proof. Tt is a well-known fact that (Gripenberg & Norros (1996), p.405),
o T'(d)T(1 — 2d
(t—s) Y (u—s)"lds = |t — u|2dl%, u,t € R
Hence, by the isometry (5.47),
/ £ Matde) [ g(u) Malat)
R
E 1 [o.oluNe ele o]
= T @) ///f w)(t — ) Hu — )L dtduds
1 0o 0o min(u,t)
Toa) / / f@) / (t — )4 (u — s)"  ds dt du
(- 2d w2 [T .
- At / / F@)g()le = uP* de du
where we have used Fubini’s theorem. d

6 Long Memory Moving Average Processes

In discrete time, moving average (MA) processes are very popular in classical time series analysis
and are widely used in applications in engineering, physics and metrology.

We consider the continuous time version of a MA process. Continuous time MA processes
play an important role since they are very flexible models, e.g. MA processes can capture volatil-
ity jumps or exhibit long memory properties. Typical examples are the stochastic volatility
models by Barndorff-Nielsen & Shephard (2001) which are based on Ornstein-Uhlenbeck pro-
cesses, the CARMA processes (Brockwell (2001)), the FICARMA processes (Brockwell (2004))
or the stable MA processes (Samorodnitsky & Taqqu (1994)). Recently extremes of Lévy-driven
MA processes were studied by Fasen (2004).

We construct a special class of MA processes, the long memory MA processes. Throughout
we assume as always that L is a Lévy process without Brownian component satisfying E[L(1)] =
0 and E[L(1)?] < cc.
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6.1 Lévy-driven Long Memory MA Processes

Definition 6.1 (Stationary MA Process) A stationary continuous time moving average-
(MA) process is a process of the form

o0

Y (t) = / gt —u) L(du), tER, (6.50)

— 00

where g : R — R, called kernel function, is measurable and the driving process L = {L(t) }+er is
a Lévy process on R.

Every MA process is well-defined if the kernel g and the generating triplet (vyr,,0%,vr) of
the driving Lévy process L satisfy (2.12).
We first consider short memory causal MA processes. Therefore we assume that the kernel

g satisfies the following two conditions:
(M1) g¢(t) =0 for all t < 0 (causality),
(M2) |g(t)] < Ce ¢t for some constants C' > 0 and ¢ > 0 (short memory).

From now on, if not stated otherwise, a MA process means a short memory causal MA process,
i.e. g satisfies (M1) and (M2) which imply g € L!(R).

Remark 6.2 Substituting (M2) in (2.12) we see that a short memory MA process is well-
defined if
/ log || vz (dz) < co. (6.51)

Jz|>1

Now we can use a short memory MA process to construct a long memory MA process.
For this aim we calculate the left-sided Riemann-Liouville fractional integral of the kernel g in
(6.50), where we only consider functions g € H. Then we obtain for 0 < d < 0.5 the fractionally
integrated kernel

t
d—1

ga(t) == (I{g)(t) = /g(t - S)SF(d) ds, telR (6.52)
0

From (M1) follows that g4(t) = 0 for t < 0. Furthermore, g4 € L?>(R) as g € H. We can
now define a fractionally integrated MA process by replacing the kernel g by the kernel gg4.

Definition 6.3 (FIMA Process) Let 0 < d < 0.5. Then the fractionally integrated moving
average (FIMA) process Yq = {Y4(t)}ter driven by the Lévy process L with E[L(1)] = 0 and
E[L(1)?] < oo is defined by

Ya(t) = / 9a(t — u) L(du), teR, (6.53)

where the fractionally integrated kernel gq is given in (6.52).
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Theorem 6.4 (Stationarity, Infinite Divisibility) The FIMA process (6.53) is well-defined
and stationary. For all t € R the distribution of Yy(t) is infinitely divisible with characteristic
triplet (v4-,0,v%.), where

t
/ /a:gd t = 8)1{|ga(t—s)z|>1} Vr(dx)ds and (6.54)
—oco R

¢

/ /1B galt — $)z) vi(dz) ds, B € B(R). (6.55)

Here (v1,,0,vr1,) denotes the characteristic triplet of L.

Proof. Since g4 € L?(R) we can apply Proposition 2.1 to Yy(0) and obtain that Yy is well-
defined. Now let u1,...,u, € Rand —co < t; < ... <t, < oo, n € N. Then by the stationarity
of the increments of L,

tr+h
wYg(ti +h) + ... +upYy(tn + h) = Zuk / a(tr + h — s) L(ds)
4 Zuk / galts — 3) L(ds) = urYa(t) + - -+ unYa(ty). (6.56)

— 00

The characteristic functions of the left and the right hand side of (6.56) coincide. Hence, by
the Cramér Wold device Yj is stationary. d

So far we constructed a FIMA process by fractional integration of the corresponding short
memory kernel g. The next theorem states that we can also construct a FIMA process by
replacing in the short memory MA process (6.50) the driving Lévy process by the corresponding
fractional Lévy process. The resulting process coincides in L? with the process (6.53).

Theorem 6.5 Suppose Yy = {Y4(t) }ter to be the FIMA process Yy(t) = ffoo ga(t—s) L(ds), t €
R, with g4 € L*(R) such that g4 € I$(L?). Then Yy can be represented as

t

Vi) = / gt — ) My(ds), t € R, with (6.57)
o0 = Fgs | wee—9 s aeR

0

i.e. g is the Riemann-Liouwville derivative D% % ga of the kernel gq.
On the other hand, if Yy is given by (6.57) with g € H, then Yy can be rewritten as Yy(t) =

fioo ga(t —s) L(ds), t € R, where gq(z) = (Ij_g)(x).

Proof. For every t € R it holds a.s.

o0

Ya(t) = /tg(t_S)MddS —Fi/t /S—u 'g(t — s)ds | L(du)

u

t 00

:ﬁ/ /sd Ly(t —u— s)ds | L(du) = /tgd(t—u)L(du).

0 0 —00
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O
Using representation (6.57) of a FIMA process it is easy to show that this class of processes
has long memory properties.

Theorem 6.6 (Long Memory) A FIMA process Yy = {Yy(t)}ter is a long memory MA
process.

Proof. Since Yy can be expressed as (6.57), we have from Proposition 5.7 for h > 0,

Yyy(h) = cov(Ya(t + h), Ya(t))
I'(1 — 2d) )2 2d—1
—7EL gt +h—u)g(t—v) du dv
T =) [L(1)7] |u— vl
R R
~ 2020y [ [ st it
“T@ri-d )] g(s — s+ 3 dsds.
R R
It follows,
2
I'(1—2d) 2 2d—1
wxm~rwwu_®Ewm1(/mmmg B, as b oo,
R
Hence, -y, satisfies condition (1.3) and Y} is a long memory process. O

6.2 Second Order and Sample Path Properties of FIMA Processes

Theorem 6.7 (Autocovariance Function) Let 0 < d < 0.5. The autocovariance function
~vq of a FIMA process Yy is

va(h) = BIL(1)?] /gd(u +|hDga(u) du, h € R, (6.58)
R

where gq is the fractionally integrated kernel given in (6.52).

Proof. Let h > 0. Then from representation (6.53),

Ya(h) = cov(Ya(t + h), Ya(t)) = var(L(1)) / ga(t +h —s)ga(t — s)ds

oo

d/wu+hw (u) du ﬂMUﬂ/wW+MwWW%
R

0

since gq(t) = 0 for ¢ < 0. O

Theorem 6.8 (Spectral Density) The spectral density fq of a FIMA process Yy equals

BIL(1)"]

5 |GaWFF, AeR (6.59)

fa(\) =

where Ga(\) = fR e "Agy(u) du, X € R, is the Fourier transform of the kernel function gq given
in (6.52).
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Proof. The assertion follows from (6.58), since the spectral density of a stationary process
is the inverse Fourier transform of the autocovariance function. 0

To obtain some insight into the behaviour of the sample paths of a FIMA process we exclude
path properties that do not hold. In fact, Rosinski (1989) provides immediately verifiable
necessary conditions for interesting sample path properties.

Proposition 6.9 (p-Variation) Let p > 0. If the kernel t — gq(t — s) is of unbounded p-
variation then P({w € Q : Yy(-,w) & Cyla,b]}) > 0, where Cpla,b] is the space of functions of

bounded p-variation on [a,b].

Proof. The assertion follows by an application of Theorem 4 of Rosinski (1989), where we
use the symmetrisation argument of section 5 in Rosinski (1989), if vy, is not already symmetric.
a

We noted in Theorem 6.4 that a FIMA process Y; has infinitely divisible margins. Moreover,
since E[L(1)] = 0, E[L(1)?] < oo and the Lévy-Ito representation (2.8) of L is given by L(t;) —
L(tz) = fRox(tth] xJ(dz,ds), we can write

Valt) = / [ wate = 5) Jds,ds)

— 00 RO
Therefore we can apply the results of Marcus & Rosinski (2005) to determine the continuity
of Yd.

Proposition 6.10 (Continuity) Let g; € C}(R). Then the FIMA process Yy has a continu-

ous version on every bounded interval I of R.

Proof. Applying Theorem 2.5, Marcus & Rosinski (2005), we obtain that Y, has a continuous
version on I C R, if g4(0) = 0 and if for some € > 0,

1/2+€
sup | log —— u) — gq(v)| < oo.
Mg}( g|u_v|> |9a(u) — ga(v)]
We have |ga(u) — ga(v)| < |g5(E)|Jlu —v| < Clu —v|, u <& <w, £ € I. Therefore,

1/2+4€
sup (log —> 19a(w) — ga(w)| < sup Clt](~ log |¢)/>+¢ = supm(2),
w,wel lu — vl tel’ tel’

where m(t) = C|t|(=log|t|)!/>tc < C|t|(-=log|t|]) — 0 as t — 0F. Moreover m is continuous

and assumes its maximum on any compact interval. Hence, sup m(t) < oo. a
tel

Remark 6.11 If the process L has paths of bounded variation then

Ya(t) = / galt — s) L(ds) = (ga* L)(8), teR,

is the convolution of the kernel g; with the jumps of L, taken pathwise. In this case, as g4 is

continuous, it is obvious that Y; is continuous.
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Remark 6.12 Finally, we remark that, like a FLP, a FIMA process has a generalized shot
noise representation (3.25) with the kernel function f(-) replaced by the kernel g4(t — - ) given
in (6.52).

The results of this section can be applied to CARMA and FICARMA processes, which
are the continuous time analogues of the well-known autoregressive moving average (ARMA)
and fractionally integrated ARMA processes, respectively. Details on CARMA and FICARMA
processes can be found in Brockwell (2001), Brockwell (2004) and Brockwell & Marquardt
(2005). Due to the slow decay of the fractionally integrated kernel g4, simulation algorithms
for FICARMA processes have been very slow and expensive. The rapid decay of the kernel g
in the new representation (6.57) allows much more efficient simulation of these processes.

The results of the simulation of FICARMA processes will be available at
http://www-m4.ma.tum.de/pers/marquardt/
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