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1 Introduction

The precise modelling of electron correlations continues to constitute the major obstacle in developing high-
accuracy, low-cost methods for electronic structure computations in molecules and solids. In this article
we shed new light on the longstanding problem of how to accurately incorporate electron correlation into
density functional theory (DFT), by deriving and analyzing the semiclassical limit of the exact Hohenberg-
Kohn functional with the single-particle density ρ held fixed. In this limit, we find that the exact functional
reduces formally to a very interesting functional of novel form which depends on an optimal transport map
T associated with a given density ρ. Our work thereby links DFT, which is a large and very active research
area in physics and chemistry [PY95, FNM03, Ra09], for the first time to optimal transportation theory,
which has recently become a very active area in mathematics [GM96, Ru96, Vill09].

In optimal transportation theory the goal is to transport “mass” from an initial density ρA to a target density
ρB in such a way that the “cost” c(x, y) for transporting mass from x to y is minimized. Mathematically,
this means that one minimizes a cost functional

∫
c(x, y)dγ(x, y) over a set of joint measures γ (in physics

terminology: pair densities) subject to fixed marginals (single-particle densities). See below for a precise
formulation. The main mathematical novelty of the optimal transportation problem arising from DFT,

Minimize

∫

R6

1

|x− y|dγ(x, y) subject to equal marginals ρ, (1.1)

is that the cost, which is given by the Coulomb law c(x, y) = 1/|x− y|, decreases rather than increases with
distance and has a singularity on the diagonal.

Our goals in this paper are

(i) to prove that for any given single-particle density ρ, the optimal transportation problem with Coulomb
cost possesses a unique minimizer which is given by an optimal transport map Tρ associated with ρ. (It is
well known that uniqueness is false for the seemingly simpler cost function c(x, y) = |x− y|.)
(ii) to derive an explicit formula for the optimal map in the case when ρ is radially symmetric. (Note that
in physics, radial densities arise as atomic ground state densities for many elements such as He, Li, N, Ne,
Na, Mg, Cu.)

(iii) to prove that DFT with electron interaction energy given by the optimal transportation cost EOT [ρ]
(defined as the minimum cost in (1.1)) is the semiclassical limit of exact Hohenberg-Kohn DFT in case of
two electrons, and establish basic properties such as that it is a rigorous lower bound to exact DFT for any
number of electrons.

We do not know whether our semiclassical limit result remains true for a general number of electrons.
As explained in Section 5, this question is related to the representability problem for two-particle density
matrices [CY02].

To prove (i) and (ii) we adapt geometric methods as developed in [GM96], [Ru96], and [SK92], for cost
functions that increase with distance. In our case of decreasing cost functions, one can still geometrically
construct a potential which specifies both in which direction and how far to move the mass of ρA which sits
near x. To prove (iii) we will need to make modifications to the optimal transport plan which yields EOT [ρ],
since any wave function whose pair density is given by the optimal plan has infinite kinetic energy. The main
technical idea here is a construction to re-instate the original marginals after smoothing.

The optimal transportation functional EOT [ρ] which emerges as a limit of the Hohenberg-Kohn functional
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should be viewed as a natural “opposite” of the well known mean field functional J [ρ] = 1
2

∫

R6

ρ(x) ρ(y)
|x−y| dx dy:

it arises in a strongly correlated rather than a de-correlated limit, thereby yielding valuable qualitative
insight into electron correlations. We also believe that EOT [ρ] has a role to play in the design of quantitative
competitors to existing exchange-correlation functionals: it provides an alternative starting point of novel
functional form for designing approximations, and – just like the mean field functional – could be incorporated
as an ingredient into hybrid functionals. Basic quantitative issues are addressed in the companion paper
[CFK11].

This paper is structured as follows. In Section 2 we discuss density functional theory from a mathematical
perspective. In section 3 we introduce optimal transport theory, prove in Theorem 3.6 the main result of
the section, the uniqueness of the optimal transport map, and establish some of its general properties. In
section 4 we give in Theorem 4.10 an explicit formula for the optimal map for equal, radially symmetric
marginals. In section 5 we compare the optimal transportation cost EOT [ρ] to the exact Hohenberg-Kohn
functional, and show that it is its semiclassical limit in the case of two electrons (Theorem 5.2), as well as a
lower bound for any number of electrons (Theorem 5.1).

2 Density functional theory

Density functional theory (DFT) was introduced by Hohenberg, Kohn and Sham in the 1960s in two fun-
damental papers [HK64, KS65], as an approximate computational method for solving the many-electron
Schrödinger equation whose computational cost remains feasible even for large systems. In this theory, one
only computes the single-particle density instead of the full wave function. In order to obtain a closed equa-
tion, a closure assumption is needed which expresses the pair density in terms of the single-particle density.
A simple “independence” ansatz has turned out to be far too crude in practice. A huge effort has gone into
developing corrections which account for the failure of independence [PY95, FNM03, Ra09].

Our goal in this section is to discuss DFT from a mathematical perspective.

The key quantity DFT aims to predict is the ground state energy E0 of a molecule as a function of the
atomic positions. From this, further properties can be readily extracted, for instance, in order to determine
a molecule’s stable equilibrium shapes one minimizes E0 (locally or globally) over atomic positions.

Starting point for developing DFT models is the “exact” (non-relativistic, Born-Oppenheimer) quantum

mechanical ground state energy EQM0 . The definition contains some details which may look a bit complicated
to readers not familiar with many-particle quantum theory, but the basic mathematical structure relevant
to developing DFT models is simple. EQM0 is the minimum value of a suitable energy functional E over a
suitable class of functions A.

2.1 Exact ground state energy

The detailed definition is as follows. Consider a molecule with atomic nuclei at positions R1, .., RM ∈ R3,
with charges Z1, .., ZM ∈ N (Z = 1 means hydrogen, Z = 2 Helium, Z = 3 Lithium, Z = 4 Beryllium,
Z = 5 Boron, Z = 6 Carbon, Z = 7 Nitrogen, Z = 8 Oxygen, and so on), and with N electrons. The energy
functional depends on the positions and charges of the nuclei only through the ensuing Coulomb potential

v(x) = −
M∑

α=1

Zα
|x−Rα|

, x ∈ R
3. (2.1)

For the discussion below, the potential v can more generally be any function in the space L3/2(R3)+L∞(R3) =
{v1 + v2 | v1 ∈ L3/2(R3), v2 ∈ L∞(R3)}. The class of functions A is given by

A = {Ψ ∈ L2((R3 × Z2)
N ; C) | ∇Ψ ∈ L2, Ψ antisymmetric, ||Ψ||L2 = 1}. (2.2)

(Here antisymmetric means Ψ(zσ(1), .., zσ(N)) = sgn(σ)Ψ(z1, .., zN) for all permutations σ, where z1, ..., zN ∈
R3 × Z2 are space-spin-coordinates for the N electrons. Spin will not play a big role in the sequel, but the
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fact that the functions Ψ depend on all the positions of all the electrons is important. It leads to the fact that
we will have to deal with “N-point distributions”.) Elements of A are called (N-electron) wave functions.

The energy functional is given by

EQM [Ψ] = T [Ψ] + Vne[Ψ] + Vee[Ψ] (2.3)

where (employing the notation zi = (xi, si) ∈ R3 × Z2,
∫
dzi =

∑

si∈Z2

∫

R3 dxi)

T [Ψ] =
1

2

∫

...

∫ N∑

i=1

|∇xiΨ(x1, s1, .., xN , sN)|2dz1..dzN

is the kinetic energy,

Vne[Ψ] =

∫

...

∫ N∑

i=1

v(xi)|Ψ(x1, s1, .., xN , sN )|2dz1..dzN

is the electron-nuclei interaction energy, and

Vee[Ψ] =

∫

...

∫
∑

1≤i<j≤N

1

|xi − xj |
|Ψ(x1, s1, .., xN , sN)|2dz1..dzN

is the electron-electron interaction energy.

The quantum mechanical ground state energy is defined as

EQM0 = inf
Ψ∈A

EQM [Ψ]. (2.4)

In the usual case where v is given by (2.1) and N =
∑M

α=1 Zα (neutral molecules), it is a basic theorem due
to Zhislin that the infimum is attained. For a simple proof see [Fr03].

Since the energy functional is a quadratic form, we could equivalently have defined EQM0 as the lowest

eigenvalue of the corresponding linear partial differential operator − 1
2

∑N
i=1 ∆xi +

∑N
i=1 v(xi)+

∑

i<j
1

|xi−xj|
.

This formulation is useful for many other purposes, but – unlike (2.4) – does not play an important role in
DFT.

2.2 Probabilistic interpretation; marginals

The absolute value squared of Ψ can be interpreted as an N -point probability distribution,

|Ψ(x1, s1, .., xN , sN )|2 = probability density that the electrons are at positions xi with spins si.

In quantum mechanics this is known as the Born interpretation. Note that the above function is nonnegative
and integrates to 1, due to the requirement that Ψ has L2 norm 1. (In fact this was the physical motivation
for this requirement.)

Various partial marginals will play an important role. First, by integrating out the spins we obtain the
N -point position density:

ρΨ
N (x1, .., xN ) =

∑

s1,..,sN∈Z2

|Ψ(x1, s1, .., xN , sN )|2. (2.5)

Next, by integrating out all but two respectively one electron positions we obtain the pair density and the
single particle density:

ρΨ
2 (x1, x2) =

(
N

2

)∫

R3(N−2)

ρΨ
N(x1, .., xN )dx3..dxN , (2.6)

ρΨ(x1) = N

∫

R3(N−1)

ρΨ
N (x1, .., xN )dx2..dxN . (2.7)
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For the rest of this section, we drop the superscript Ψ from ρΨ and ρΨ
2 .

The normalization factors are a convention in quantum mechanics so that ρ integrates to the number of
particles and ρ2 to the number of pairs in the system. (In Section 3 we find it convenient to work with the
corresponding probability densities, normalized so as to integrate to 1.) With the above conventions, the
important fact that ρ is a marginal distribution of ρ2 takes the form

N
(
N
2

)

∫

ρ2(x, y) dy = ρ(x),
N
(
N
2

)

∫

ρ2(x, y) dx = ρ(y). (2.8)

The relevance of ρ and ρ2 for determining the ground state energy (2.4) come from the fact that the electron-
nuclei energy Vne and the electron-electron energy Vee in (2.3) depend only on these.

Lemma 2.1. With the above definitions, for any Ψ ∈ A we have

Vne[Ψ] =

∫

R3

v(x)ρ(x) dx, Vee[Ψ] =

∫

R6

1

|x− y|ρ2(x, y) dx dy. (2.9)

Proof. This follows from definitions (2.6), (2.7) and the fact that due to the antisymmetry of Ψ, |Ψ(z1, .., zN)|2
is a symmetric function of the zi.

In the sequel we write Vne[ρ], Vee[ρ2] instead of Vne[Ψ], Vee[Ψ].

Also, we note that the space of densities arising from functions Ψ ∈ A,

R := {ρ : R
3 → R | ρ is the density (2.7) of some Ψ ∈ A}, (2.10)

is known explicitly: by a result of Lieb [Li83],

R = {ρ : R
3 → R | ρ ≥ 0,

√
ρ ∈ H1(R3),

∫

R3

ρ(x) dx = N}, (2.11)

where H1(R3) is the usual Sobolev space {u ∈ L2(R3) | ∇u ∈ L2(R3)}.

2.3 Universal Hohenberg-Kohn functional

The expression for Vne derived in Lemma 2.1 leads to the following well known partitioning of the minimiza-
tion (2.4) into a double minimization (first minimize over Ψ subject to fixed ρ, then over ρ):

EQM0 = inf
ρ∈R

{

FHK [ρ] +

∫

R3

v(x) ρ(x)dx
}

(2.12)

with
FHK [ρ] := inf

Ψ∈A,Ψ 7→ρ

{

T [Ψ] + Vee[ρ2]
}

. (2.13)

Here and below, the notation Ψ 7→ ρ means that Ψ has single-particle density ρ. Note that FHK is a
universal functional of ρ, in the sense that it does not depend on the external potential v, and is called
the Hohenberg-Kohn functional. It is defined on the admissible set (2.10). The above constrained-search
definition of FHK is due to Levy and Lieb [Le79, Li83]; in the original Hohenberg-Kohn paper [HK64] the
functional was constructed in a more indirect and slightly less general way, requiring that ρ be the density
of some Ψ which is a non-degenerate ground state of EQM for some potential v.
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2.4 Exchange-correlation functionals

The problem with definition (2.4) of EQM0 , as well as definition (2.13) of the ‘exact’ density functional FHK ,
is that it is unfeasible in practice except when the number N of particles is very small. This is due to the
so-called problem of exponential scaling: the functions over which one minimizes are functions on R3N and
the discretization of R3N requires a KN -point grid if the single-particle space R3 is discretized by a K-point
grid.

This problem would disappear if we could accurately approximate Vee in the variational principle (2.4) by a
functional Ṽee of ρ instead of ρ2,

Vee[ρ2] ≈ Ṽee[ρ]. (2.14)

(Why this is so is not completely trivial, since there remains T to deal with, but see eq. (2.17) below.) Thus

in DFT one approximates the variational principle for the ground state energy EQM0 by:

EDFT0 = inf
Ψ∈A

{

T [Ψ] + Vne[ρ] + Ṽee[ρ]
}

. (2.15)

Physically, this means (in the light of Lemma 2.1) that in DFT, interactions of electrons with an external
environment, such as the Coulomb forces exerted by an array of atomic nuclei, are included exactly, but
electron-electron interactions have to be suitably “modelled”. By partitioning the minimization in (2.15)
analogously to (2.12), (2.13), EDFT0 can be obtained by minimization of a functional of ρ alone,

EDFT0 = inf
ρ∈R

{

TQM [ρ] + Vne[ρ] + Ṽee[ρ]
}

, TQM [ρ] := inf
Ψ∈A,Ψ 7→ρ

T [Ψ]. (2.16)

The minimization over the “large” space A of functions on (R3 × Z2)
N in (2.16) can now be replaced by

a minimization over a much “smaller” space. As can be shown with the help of reduced density matrices
[CY02], and abbreviating

∫
=
∑

s∈Z2

∫

R3 ,

inf
Ψ∈A,Ψ 7→ρ

T [Ψ] = inf
{ ∞∑

i=1

λi
2

∫

|∇φi|2 | 0 ≤ λi ≤ 1,
∞∑

i=1

λi = N,

φi ∈ H1(R3 × Z2),

∫

φiφj = δij ,

∞∑

i=1

∑

s∈Z2

|φi(x, s)|2 = ρ(x)
}

.

(2.17)

After truncating the sum after an appropriate number imax of terms (the standard truncation being imax =
N , yielding the Kohn-Sham kinetic energy functional [KS65]) and discretizing R3 by a K-point grid, the
number of degrees of freedom of the right hand side scales linearly instead of exponentially in N .

By means of this fact, the task of eliminating the exponential complexity of (2.4) is reduced to the following

Fundamental problem of DFT Design accurate approximations of the form (2.14). In other words,
approximate a simple explicit functional of the pair density ρ2, a function on R

6, by a functional of its
joint right and left marginal ρ, a function on R3. Note that the approximations only need to be accurate for
single-particle densities and pair densities of ground states of molecules, not arbitrary states. Elsewhere it
suffices that the approximations give a reasonably good lower bound so as to avoid spurious minimizers.

Example 2.2. (statistical independence) The simplest idea would be to assume statistical independence,

ρ2(x, y) ≈
1

2
ρ(x)ρ(y) (2.18)

(the factor 1/2 coming from the normalization factors in (2.7), (2.6)), and substitute this ansatz into the
formula for Vee derived in Lemma 2.1. This leads to taking

Ṽee[ρ] =
1

2

∫

R6

1

|x− y|ρ(x)ρ(y) dx dy =: J [ρ], (2.19)
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i.e. Vee is replaced by the Coulomb self-repulsion of the single-particle density. The above mean field
functional appears, for instance, in Thomas-Fermi-theory.

In modern DFT, the very naive ansatz (2.18) was never used, but – without this being natural from a
probabilistic point of view – the convention is to include corrections to it additively, i.e. one makes an ansatz

Ṽee[ρ] = J [ρ] + Exc[ρ], (2.20)

the additive correction being called an exchange-correlation functional. This notational convention should
not, of course, prevent us from contemplating non-additive modifications of (2.18) and (2.19). 2

Example 2.3. (correctly normalized mean field) Let ρ2 =
(
N
2

)
γ and ρ = Nµ, so that γ and µ have integral

1. Then

γ ≈ µ⊗ µ⇔ ρ2
(
N
2

) ≈ ρ⊗ ρ

N2
,

which is equivalent to

ρ2 ≈ 1

2

(

1 − 1

N

)

ρ⊗ ρ,

where here and below we use the notation (ρ⊗ ρ′)(x, y) = ρ(x)ρ′(y), corresponding to the product measure
when interpreting ρ, ρ′ as measures.

Note that physicists and chemists use

ρ2 ≈ 1

2
ρ⊗ ρ,

which is justified in the context of macroscopic systems such as an electron gas (where one has taken a limit
N → ∞), but less natural in the context of DFT for atoms and molecules. 2

Example 2.4. (local density approximation) In a model system, the so-called free electron gas, the pair
density can be determined explicitly [Fr97]. In this case the single-particle density is a constant,

ρ(x) ≡ ρ, (2.21)

and the pair density can be determined to be

ρ2(x, y) =
1

2
ρ2
(

1 − 1

q
h
(

(3ρπ2)1/3|x− y|
)2)

, (2.22)

where

h(s) =
3(sin s− s cos s)

s3
.

In particular, at long range |x− y| → ∞ statistical independence is correct, but at short range |x− y| → 0,
ρ2 tends to zero in the case of a single spin state, i.e. it vanishes on the diagonal x = y, and to half the size
of a statistically independent sample in the (physical) case of two spin states. Substituting the result (2.22)
into the formula for Vee[ρ2] leads to the so-called local density approximation

Ṽee[ρ] = J [ρ] − cx

∫

R3

ρ(y)4/3dy, (2.23)

where cx = 3
4 ( 3
π )1/3. As a heuristic approximation to Vee, this formula goes back to Dirac and Bloch (for a

rigorous justification see [Fr97]). It was widely used in the early days of DFT, following [KS65]. 2

Example 2.5. (B3LYP) Current functionals used in practice, e.g. the ‘B3LYP’ functional of Becke, Lee,
Yang and Parr [Be93, LYP88], rely on – from a mathematical point of view questionable – guesses of
functional forms (e.g. local in ρ, or local in ρ and ∇ρ), additional terms depending non-locally on the
orbitals in (2.17), and careful fitting of parameters to experimental or high-accuracy-computational data.
The resulting expressions are a little too complicated to write down here. They have led to an accuracy
improvement for EQM0 over the local density approximation of an order of magnitude or so, but not more,
with little progress in the last decade despite continuing effort. 2
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3 Optimal transportation for DFT

We begin with a basic observation. The weight factor in front of ρ2 in Vee in (2.9) is always positive, and
largest on the diagonal x = y, so even “complete anticorrelation” might be a better ansatz than independence
(keeping in mind that the states on which the ansatz needs to be good are the minimizers of a functional
which includes Vee).

In fact, such a complete anticorrelation is exactly what emerges when one starts from the exact Hohenberg-
Kohn functional FHK , inserts a semiclassical factor ~2 in front of the kinetic energy functional T in (2.13)
and passes to the semiclassical limit ~ → 0. In this limit, the Hohenberg-Kohn functional FHK reduces to
the following functional obtained by a minimization over pair densities instead of wave functions,

F̃ [ρ] = inf
ρ2∈R2, ρ2 7→ρ

∫

R6

1

|x− y| ρ2(x, y) dx dy. (3.1)

Here ρ2 7→ ρ means that ρ2 satisfies eq. (2.8), i.e. it has right and left marginal ρ, and the set R2 of
admissbile pair densities is the image of A under the map Ψ 7→ ρ2. Unlike the corresponding admissible set
of single-particle densities, R2 is not known explicitly (this is a variant of the representability problem for
two-particle density matrices [CY02]).

Formally, ignoring this point and discarding in particular the smoothness restriction (which can be proved
analogously to the proof in [Li83] of (2.11)) that

ρ2 ∈ R2 =⇒ √
ρ2 ∈ H1(R6), (3.2)

the above functional F̃ reduces to the functional

EOT [ρ] = inf
ρ2∈M+, ρ2 7→ρ

C[ρ2], C[ρ2] :=

∫

R6

1

|x− y|dρ2(x, y), (3.3)

where M+ denotes the set of (nonnegative) Radon measures on R6. For a rigorous justification that (3.3) is
indeed the correct semiclassical limit of FHK in case N = 2 see section 5.

The variational problem that has appeared here, to minimize a “cost functional” C over a set of joint
measures on R6 subject to fixed marginals, is an optimal transport problem. This type of problem, with
“cost functions” such as |x − y| or |x − y|2 instead of |x − y|−1, dates back to Monge in 1781 and has a
famous history, which is nicely summarized in the very readable paper [GM96], which was our main source
when studying the problem (3.3).

Before formulating our particular problem we give some notations and definitions.

For a set Z ⊂ R
d, we denote by P(Z) the set of probability measures on Z. If Z is a closed subset of R

d

and γ ∈ P(Z), then the support of γ is the smallest closed set supp γ ⊂ Z of full mass, that is such that
γ(supp γ) = γ(Z) = 1.

Suppose X,Y ⊂ Rd are closed sets. If µ ∈ P(X) and ν ∈ P(Y ), we denote by Γ(µ, ν) the joint probability
measures γ on R

d × R
d which have µ and ν as their marginals, that is with µ(U) = γ(U × R

d) and
ν(U) = γ(Rd × U) for Borel U ⊂ Rd. In fact, if γ ∈ Γ(µ, ν), then supp γ ⊂ X × Y . Typically µ has density
u1 and ν has density u2, where u1, u2 are L1 functions, in which case we write Γ(u1, u2).

Remark 3.1. In this section it is convenient to eliminate the prefactors in ρ2 and ρ, and to consider the
cost functional C on probability measures γ, with equal marginals µ (which are again probability measures),
with ρ2 in (3.3) corresponding to

(
N
2

)
γ and ρ corresponding to Nµ as in Example 2.3.

We first formulate the general problem, which is now called the Kantorovich problem. For some cost function
c : Rd × Rd → R ∪ {+∞} we are interested in minimizing the transport cost

C[γ] :=

∫

c(x, y)dγ(x, y), (3.4)
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among joint measures γ ∈ Γ(µ, ν), called transport plans, to obtain

inf
γ∈Γ(µ,ν)

C[γ]. (3.5)

Let T (µ, ν) be the set of Borel maps T : Ω ⊂ Rd → Rd that push µ forward to ν, i.e. T#µ[V ] := µ(T−1(V )) =
ν(V ) for Borel V ⊂ Rd. The so-called Monge problem is to minimize

I[T ] =

∫

Rd

c(x, T (x))dµ(x) (3.6)

over maps T in T (µ, ν), called transport maps, to obtain

inf
T#µ=ν

I[T ]. (3.7)

There is a natural embedding which associates to each transport map T ∈ T (µ, ν) a transport map γT :=
(id× T )#µ ∈ Γ(µ, ν) or, in physics notation, γT (x, y) := δT (x)(y)µ(x), where id: R → R is the identity map.
Since C[γT ] = I[T ], we conclude that

inf
γ∈Γ(µ,ν)

C[γ] ≤ inf
T∈T (µ,ν)

I[T ]. (3.8)

Let R̄ := R ∪ {±∞} and endow R̄ with the usual topology so that c ∈ C(Rd × Rd, R̄) means that
lim(x,y)→(x̄,ȳ) c(x, y) = c(x̄, ȳ). In particular, if c(x̄, ȳ) = +∞, then c(x, y) tends to +∞ as (x, y) tends
to (x̄, ȳ), and similarly for limit −∞.

Throughout we will work with cost functions c such that c(x, y) = h(x − y) for all x, y ∈ Rd. We recall
the definition of the dual of a convex function and refer to Rockafellar [Ro72] for standard definitions and
further background.

Definition 3.2. The dual (or Legendre transform) h∗ : Rd → R ∪ {+∞} of a convex function h : Rd →
R ∪ {+∞} is given by

h∗(y) := sup
x∈Rd

{< x, y > −h(x)}. (3.9)

Since our cost functions of interest are not convex, we need to work with the following more subtle definition
of Legendre transform.

Definition 3.3. (generalized Legendre transform) Suppose that l : R → R∪ {+∞} is lower semi-continuous
and convex. Define k : R → R ∪ {+∞} by k(λ) = l(λ) if λ ≥ 0 and k(λ) = +∞ otherwise. Define
h∗ : Rd → R ∪ {+∞} by

h∗(x) = k∗(−|x|) := sup
β∈R

{−β|x| − k(|x|)}, x ∈ R
d. (3.10)

We define l◦(λ) = k∗(−|λ|) for λ ∈ R.

Definition 3.4. A function ψ : Rd → R ∪ {−∞}, not identically −∞, is said to be c-concave if it is the
infimum of a family of translates and shifts of h(x): i.e, there is a set A ⊂ Rd × R such that

ψ(x) := inf
(y,λ)∈A

{c(x, y) + λ}, x ∈ R
d. (3.11)

Let ∆ := {(x, x) | x ∈ R
d} and c : R

d × R
d → R ∪ {+∞} be such that c(x, y) := h(x − y) := l(|x − y|) ≥ 0

and with c and l such that

(A1) l : [0,∞] → [0,∞] is strictly convex, strictly decreasing and C1 on (0,∞);

(A2) c ∈ C1(Rd × Rd \ ∆,R);
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(A3) c : Rd × Rd → [0,+∞] is lower semi-continuous;

(A4) for every x0 ∈ Rd, c(x0, x0) = +∞.

Remark 3.5. Note that [GM96] only assume that l is continuous and not C1; using their arguments, we
could replace (A1) and (A2) by

(A1’) l : [0,∞] → [0,∞] is strictly convex, decreasing and continuous on (0,∞);

(A2’) c ∈ C(Rd × Rd \ ∆,R).

The main result of this section, obtained by combining the results from Theorems 3.25 and 3.27, is

Theorem 3.6. Assume that c and l satisfy (A1)-(A4), and let µ, ν ∈ P(Rd) be absolutely continuous with
respect to the Lebesgue measure. Then there exists a unique minimizer γ ∈ Γ(µ, ν) of the functional C
defined in (3.4), and a unique transport map T pushing µ forward to ν such that γ = (id, T )#µ (or, in
physics notation, γ(x, y) = δT (x)(y)µ(y)). This map is of the form T (x) = x − ∇h∗(∇ψ(x)) for some

c-concave function ψ on Rd.

We next give a simple example, which illustrates the emergence of such an optimal map T when the marginals
consist of two Dirac delta functions, and explicitly compute the function h∗ appearing above for our cost
function of interest.

Example 3.7. Let a, b ∈ R. For c and l as in (A1)-(A4) we are interested in minimizing
∫

c(x, y)dγ(x, y), (3.12)

subject to ∫

γ(x, y)dx = δa(y) + δb(y ) and

∫

γ(x, y)dy = δa(x) + δb(x), (3.13)

where δa is the Dirac function such that, for all Borel subsets of R, we have
∫

Ω
δa(y) = 1 if a ∈ Ω, and

∫

Ω δa(y) = 0 otherwise. We claim that the minimum in (3.13) is attained for

γ(x, y) = δa(x)δb(y) + δb(x)δa(y) =: γ0(x, y). (3.14)

To show this, note first that

γ(x, y) = caaδa(x)δa(y) + cabδa(x)δb(y) + cbaδb(x)δa(y) + cbbδb(x)δb(y),

with caa, cab, cba, cbb ≥ 0 and caa + cab + cba + cbb = 2. Due to the constraints on γ from (3.13) we have
cba = cab and caa = cbb. Hence

γ(x, y) = α (δa(x)δa(y) + δb(x)δb(y)) + β (δa(x)δb(y) + δb(x)δa(y)) , with α, β ≥ 0 and α+ β = 1.

Minimizing (3.12) subject to (3.13) is then equivalent to the following problem:

Minimize 2α l(0) + 2β l(|b− a|) subject to the constraints α, β ≥ 0, α+ β = 1.

Since by (A1) we have l(0) > l(|a − b|), the minimum in the above is attained for α = 0 and β = 1, which
proves the claim.

Formula (3.14) for the minimizer admits a very interesting interpretation which motivates the notion of
optimal transport map and foresees the structure of general minimizers as given in Theorem 4.8. Denote the
single-particle density δa(x)+δb(x) in (3.13) by ρ(x), and introduce the map T : {a, b} → {a, b} which maps
a to b and b to a. Then T pushes ρ forward to ρ, and the optimal measure γ0 has the form

γ0(x, y) = δT (x)(y)ρ(x),

or, in measure-theoretic notation,
γ0 = (id, T )#ρ.

2
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Example 3.8. (generalized Legendre transform for Coulomb cost) Let h(x) = k(|x−y|) with k(λ) = λ−1 for
λ > 0 and +∞ for λ ≤ 0. Note that k : R → R∪ {+∞} is lower semi-continuous and convex. The ordinary
Legendre transform of k is given by k∗(s) = supβ∈R

{βs−k(β)}. Since k(β) = +∞ for β ≤ 0, negative values
of β do not contribute to the above supremum (the term in brackets then being −∞). Consequently,

k∗(s) = sup
β>0

{βs− k(β)}.

When s > 0, we infer k∗(s) = +∞. It thus remains to calculate

k∗(−s) = sup
β>0

{−βs− k(β)}, s ≥ 0.

Recall now that k(β) = 1/β. The elementary calculus problem of maximising the function in brackets on
(0,∞) has the unique solution β = 1/

√
s, whence k∗(−s) = −2

√
s for s ≥ 0. Altogether it follows that the

generalized Legendre transform of h is

h∗(x) = −2
√

|x|, x ∈ R
d. (3.15)

Consequently, if c(x, y) = 1
|x−y| then the optimal map T in Theorem 3.6 is of the form T (x) = x+ ∇ψ(x)

|∇ψ(x)|3/2 .
2

Subsections 3.1-3.4 are devoted to the proof of Theorem 3.6. The proofs follow partially the proofs in [GM96],
[KM07], [GM95] and [GO07]. In the final subsection, 3.5, we derive some general properties of the unique
optimal measure and the optimal cost under the assumption of equal marginals, µ = ν.

3.1 Definitions and notation

In the following we present some definitions which are needed throughout the remainder of the section.

Definition 3.9. (1) Let V ⊂ Rd. A c-concave function ψ : Rd → R ∪ {−∞} is said to be the c-transform
on V of a function φ if (3.11) holds with A ⊂ V × R. Moreover,

ψ(x) = inf
y∈V

{c(x, y) − φ(y)},

for some function φ : V → R ∪ {−∞}.

(2) The c-transform of a function ψ : Rd → R ∪ {−∞} is the function ψc : Rd → R ∪ {−∞} defined by

ψc(y) = inf
x∈Rd

{c(x, y) − ψ(x)}.

(3) A subset S ⊂ X ×Y is called c-cyclically monotone, if for any finite number of points (xj , yj) ∈ S, j =
1, . . . , n and permutations σ : {1, .., n} → {1, .., n}

n∑

j=1

c(xj , yj) ≤
n∑

j=1

c(xσ(j), yj). (3.16)

Remark 3.10. Remark 3.4 of [GO07] proves the following: If ψ : Rd → R ∪ {−∞} is not identically −∞,
and is given by (3.11), then we have
(i) ψ(y) ≥ −λ > −∞ for all (y, λ) ∈ A, where A is the set in (3.11). Hence, ψc is not identically −∞.
(ii) ψcc = ψ.

Theorem 3.11 (optimal measures have c-cyclically monotone support: Proposition 3.2 of [GO07]). Assume
that X,Y ∈ Rd are closed sets, that µ ∈ P(X), ν ∈ P(Y ) and that c ≥ 0 is lower semicontinuous on X × Y .
Then the following hold:
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(a) There is at least one optimal measure γ ∈ Γ(µ, ν).

(b) Suppose that in addition c ∈ C(X × Y, R̄). Unless C ≡ +∞ throughout Γ(µ, ν), there is a c-cyclically
monotone set S ⊂ Rd × Rd containing the support of all optimal measures in Γ(µ, ν).

Definition 3.12. (1) A function ψ : Rd → R ∪ {−∞} is superdifferentiable at x ∈ Rd, if ψ(x) is finite
and there exists y ∈ Rd such that

ψ(x+ z) ≤ ψ(x)+ < z, y > +o(|z|) as |z| → 0; (3.17)

here o(λ) means terms η(λ) such that η(λ)/λ tends to zero with λ.

(2) A pair (x, y) belongs to the superdifferential ∂·ψ ⊂ Rd ×Rd of ψ, if ψ(x) is finite and (3.17) holds, in
which case y is called a supergradient of ψ at x. Such supergradients y comprise the set ∂·ψ(x) ⊂ Rd,
while for V ⊂ Rd we define ∂·ψ(V ) := ∪x∈V ∂·ψ(x).

(3) The analogous notions of subdifferentiability, subgradients and the subdifferential ∂·ψ are defined by
reversing inequality (3.17).

(4) A real-valued function ψ will be differentiabale at x precisely if it is both super- and subdifferentiable
there; then

∂·ψ(x) = ∂·ψ(x) = {∇ψ(x)}.

Definition 3.13. The c-superdifferential ∂cψ of ψ : Rd → R ∪ {−∞}, not identical −∞, consists of the
pairs (x, y) ∈ R

d × R
d for which c(x, y) − ψ(x) ≤ c(z, y) − ψ(z) for all z ∈ R

d.

Lemma 3.14 (relating c-superdifferentials to subdifferentials: Lemma 3.1 of [GM96]). Let h : Rd → Rd and
ψ : Rd → R ∪ {−∞}. If c(x, y) = h(x − y), then (x, y) ∈ ∂cψ implies ∂.ψ(x) ⊂ ∂.h(x − y). When h and ψ
are differentiable, then ∇ψ(x) = ∇h(x− y).

Definition 3.15. A function ψ : Rd → R ∪ {−∞} is said to be locally semi-concave (locally semi-convex)
at p ∈ R

d, if there is a constant λ < ∞, which makes ψ(x) − λ|x|2 concave (convex) on some (small) open
ball centered at p.

Remark 3.16. Suppose that µ ∈ P(X) and ν ∈ P(Y ) have no atoms and that γ∗ minimizes C[γ] over
Γ(µ, ν) and that C(γ∗) <∞. Then γ∗(∆) = 0 and so, supp γ∗\∆ contains at least one element, say (x0, y0).
Also γ∗(E) = 0, where E = (x0 ×Y )∪ (X × y0). Hence the set X×Y \ (E ∩∆) is non-empty, so it contains
an element (x̄0, ȳ0). Note that x0, y0 /∈ {x̄0, ȳ0}.

We will need the non-atomic property of the marginal measures µ and ν (and the resulting remark above)
from the uniqueness section 3.3 onwards, as a means to bypass the singularity of c on the diagonal. We will
use Remark 3.16 in Lemma 3.20 and in Lemma 3.21 below.

Remark 3.17. Suppose that S ⊂ X × Y is c-cyclically monotone and contains two pairs (x0, y0), (x̄0, ȳ0)
such that x0 6= y0, x̄0 6= ȳ0 and x̄0, ȳ0 /∈ {x0, y0}. Then for all (x, y) ∈ S, we have x 6= y.

Proof. Let us assume that (x, y) ∈ S, with x = y. There are the following possibilities to consider: x = y =
x0, x = y = y0, x = y = x̄0 x = y = ȳ0 and x, y /∈ {x0, y0, x̄0, ȳ0}.
We present a proof for one of the cases, the other cases being treated analogously. Consider x = y = y0.
Then x, y /∈ {x0, x̄0, ȳ0} and from (3.16), we get

c(x, y) ≤ c(x, ȳ0) + c(x0, y) + c(x̄0, y0) − c(x0, y0) − c(x̄0, ȳ0) < +∞,

which leads to a contradiction as c(x, y) = +∞.
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3.2 Existence of an optimal measure with c-cyclical monotone support

The main issue in this section is not the existence of an optimal measure, as the existence of an optimal
measure is assured by Theorem 3.11 (a), but the existence of an optimal measure with c-cyclical monotone
support. In order to use Theorem 3.11 (b) and construct such an optimal measure, we need to first construct
a joint measure γ, with marginals µ and ν and with C[γ] <∞. This is done in the Lemma below.

Lemma 3.18. Suppose that µ, ν ∈ P(Rd) and are absolutely continuous with respect to the Lebesgue measure.
Then there exists γ ∈ Γ(µ, ν) and ε > 0 such that for all (x, y) ∈ supp γ,

|x− y| > ε

Proof. The proof follows similar arguments as the proof of Proposition 4.1 from [GO07] adapted to our
situation.

Let b, c ∈ R+ and let S(0; b) := {x ∈ Rd : |x| ≤ b}, Sc(0; b) := {x ∈ Rd : |x| > b} and S(b; c) := {x ∈ Rd :
b < |x| ≤ c}. Since µ and ν are absolutely continuous with respect to the Lebesgue measure, the functions

t 7→ µ|S(0;t), t 7→ ν|S(0;t), t 7→ µ|Sc(0;t), t 7→ ν|Sc(0;t) (3.18)

are continuous.
Step 1. We assume first that there exists b ∈ R+ such that supp µ ⊂ S(0; b) and supp ν ⊂ Sc(0; b). Then,
because of (3.18), we may choose ε1, ε2 > 0 such that

µ(S(0; b− ε1)) = ν(S(b; b+ ε2)) =
1

2
with ε1 < b.

Let
µ− = µ|S(0;b−ε1), µ

+ = µ|S(b−ε1;b), ν
− = ν|S(b:b+ε2) and ν+ = ν|Sc(0;b+ε2).

Set
γ := 2(µ− ⊗ ν− + µ+ ⊗ ν+).

Note that γ ∈ Γ(µ, ν) and for all (x, y) ∈ supp γ, we have

|x− y| ≥ min{ε1, ε2} > 0.

Step 2. Assume that µ and ν are arbitrary in P(Rd). We use (3.18) to choose b ∈ R+ such that

µ(S(0; b)) = ν(Sc(0; b)) = m. (3.19)

If m = 0, then we reduce the discussion to Step 1. Similarly if m = 1. We can therefore assume that
0 < m < 1. More precisely, if we denote by f(b) := µ(S(0; b)) − ν(Sc(0; b)) for all b ∈ R+, then f(b) is an
increasing and continuous function of b, going from negative values to positive ones as b goes from 0 to +∞.
Therefore, there exists b0 ∈ R+ such that f(b0) = 0, which is equivalent to µ(S(0; b0)) = ν(Sc(0; b0)). Set

µ− = µ|S(0;b0), µ
+ = µ|Sc(0;b0), ν

− = ν|S(0;b0) and ν+ = ν|Sc(0;b0).

By (3.19), µ
−

m and ν+

m are probability measures. They satisfy

supp µ− ⊂ S(0; b0) and supp ν+ ⊂ Sc(0; b0).

Therefore, they satisfy the assumptions of Step 1, so there exists δ1 > 0 and γ1 ∈ Γ(µ
−

m , ν
+

m ) such that for
all (x, y) ∈ supp γ1, we have

|x− y| > δ1.

Similarly, there exists δ2 > 0 and γ2 ∈ Γ( µ+

1−m ,
ν−

1−m ) such that for all (x, y) ∈ supp γ2, we have

|x− y| > δ2.
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Set γ := mγ1 + (1 −m)γ2. Then γ ∈ Γ(µ, ν) and for all (x, y) ∈ supp Γ(µ, ν), we have

|x− y| ≥ min{δ1, δ2}.

Theorem 3.19 (existence of optimal measure with c-cyclical monotone support). Assume that c(x, y) =
h(x − y) := l(|x − y|) satisfies (A1)–(A4) and let µ, ν ∈ P(Rd) be absolutely continuous with respect to the
Lebesgue measure. Then there exists a measure γ0 with c-cyclically monotone support which minimizes the
functional C(γ) introduced in (3.4) over Γ(µ, ν).

Proof. By Lemma 3.18, there exists γ ∈ Γ(µ, ν) and ε > 0 such that

|x− y| > ε (3.20)

for all x, y ∈ supp γ. Since l is strictly decreasing on (0,∞), (3.20) together with (A1) ensure that c is
uniformly bounded from above on supp γ by l(ε). This proves that C[γ] < ∞. The statement follows now
immediately from Theorem 3.11.

3.3 Geometrical characterization of the optimal measure

It is well known that a set is cyclically monotone if and only if it is contained in the subdifferential of a
c-concave function; this result was proved for general cost functions c : X ×Y → R in [SK92]. The following
theorem is a further extension that is needed to deal with cost functions which satisfy (A1)-(A3) (and are
allowed to take the value +∞ somewhere).

Lemma 3.20. Suppose that X,Y ⊂ Rd are closed sets.

(1) For S ⊂ X × Y to be c-cyclically monotone, it is necessary and sufficient that S ⊂ ∂cψ for some
c-concave ψ : X → R ∪ {−∞}.

(2) Suppose that S ⊂ X × Y is c-cyclically monotone and contains two pairs (x0, y0), (x̄0, ȳ0) such that
x̄0, ȳ0 /∈ {x0, y0}. Let ψ : R

d → R ∪ {−∞} be the c-concave function from (1). Then

(2a) ψ(x0) and ψ(x̄0) are finite,

(2b) whenever (x, y) ∈ ∂cψ, we have that ψ(x) > −∞ and x 6= y,

(2c) we have µ-a.e.
ψ(x) = inf

y∈Y
{c(x, y) − ψc(y), x 6= y}, x ∈ X.

Proof. Part (1) has been proved in Theorem 2.7 of [GM96] or Lemma 2.1 of [Ru96].
(2) As in the proof of Lemma 2.1 in [Ru96], we define

ψ(x) = inf
n∈N

inf
{(xj ,yj)}n

j=0⊂S






c(x, yn) +

n−1∑

j=0

c(xj+1, yj) −
n∑

j=0

c(xj , yj)






, x ∈ X. (3.21)

(2a) The construction above yields a c-concave ψ on X with S ⊂ ∂cψ. Standard arguments (see for example
[Ru96]) give that ∂cψ is c-cyclically monotone in the sense that

n∑

j=0

c(xj , yj) ≤
n−1∑

j=0

c(xn+1, yn) + c(xn+1, yn) with xn+1 = x0. (3.22)

and so ψ(x0) ≥ 0. Taking n = 1, x1 = x̄0 and y1 = ȳ1 in (3.21) gives that ψ(x0) ≤ 0. We conclude that
ψ(x0) = 0 and so ψ is finite and not identically −∞. Note that by construction, ψ is the c-concave function
from (1). Recall now that (x, y) ∈ ∂cψ is equivalent to

c(x, y) − ψ(x) ≤ c(z, y) − ψ(z), z ∈ X. (3.23)
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Now recall Remark 3.16. Setting (x, y) = (x̄0, ȳ0), z = x0 in (3.23), using the fact that ψ(x0) = 0 and that
x0 6= ȳ0, we obtain that ψ(x̄0) is finite.
(2b) Next, if (u0, y) ∈ S, setting z = u0, we have that

c(x, y) − ψ(x) ≤ c(u0, y) − ψ(u0). (3.24)

If y 6= x0, we set u0 = x0 in (3.24) to obtain the claim. If y = x0, we set u0 = x̄0 and we use the fact that
ψ(x̄0) is finite, to obtain the claim.
(2c) This representation is a simple consequence of the construction.

We have proved the following. If we define

∂c0ψ := {(x, y) ∈ ∂cψ | x 6= y} and ∂c0ψ(x) := ∂cψ(x) \ {x}, (3.25)

then ∂c0ψ = ∂cψ µ-a.e. and we will focus on the off-diagonal elements from now on. We also assume for the
rest of this chapter that X = Y = Rd.

Lemma 3.21 (µ-a.e. differentiability of c-transforms). Let c and l satisfy (A1)-(A4). Then the function ψ
from Lemma 3.20 is µ-a.e. differentiable on Rd.

Proof. Recall that
ψ(x) = inf

y∈Rd
{c(x, y) − ψc(y), x 6= y}.

We will prove that ψ is µ-a.e. differentiable on Rd.
Step 0. Let r > 0 be such that ψ takes finite values at two or more points in S(0; r) (this is possible due
to Remark 3.16 and Lemma 3.20). Let 0 < a < r arbitrarily fixed, which means that S(0; a) ⊂ S(0; r). We
will show in Steps 1 − 3 below that ψ is µ-a.e. differentiable on S(0; a), from which we will derive in Step
4 the corresponding property on Rd. The reason for the choice of an 0 < a < r such that S(0; a) ⊂ S(0; r),
will become apparent in Step 2 below.

In order to prove that ψ is µ-a.e. differentiable on S(0; a), take x ∈ S(0; a) arbitrarily fixed. Then

ψ(x) = min{ψ1(x), ψ2(x)},

where

ψ1(x) = inf
y∈S(0;r)

{c(x, y) − ψc(y), x 6= y} and ψ2(x) = inf
y∈Sc(0;r)

{c(x, y) − ψc(y), x 6= y}.

Due to the fact that ψ takes finite values at two or more points in S(0; r), it follows from the definition that
ψ1 and ψ2 also take finite values at two or more points in S(0; r).

Step 1. ψ1 is locally Lipschitz and semi-concave on S(0; a):

As ψ1 takes finite values at two or more points, the proof follows the same reasoning as the proof of
Proposition A.6 in [KM07] and will be omitted. Note also that by Proposition C.6 of [GM96], differentiability
of ψ1 can only fail on a set of µ-measure zero.

Step 2. ψ2 is locally Lipschitz and µ-a.e. differentiable on S(0; a):

Let δ := r − a > 0. Define ξ ≤ 0 by using the right derivative 2δξ := l′(δ+) of l at δ. Then the function
lδ(λ) = l(λ) − ξλ2 is strictly convex on [δ,∞) and non-decreasing since l′δ(δ

+) = 0. Extend this function to
λ ≤ δ by making lδ(λ) constant-valued there. Then hδ(x) := lδ(|x|) will be convex on Rd: taking x, y ∈ Rd

and 0 < t < 1 implies

hδ((1 − t)x+ ty) ≤ lδ((1 − t)|x| + t|y|) ≤ (1 − t)hδ(x) + thδ(y). (3.26)

Note that h(x) = hδ(x) + ξ|x|2 whenever |x| ≥ δ. Take x ∈ S(0; a) and y ∈ Sc(0; r); then |x − y| ≥ δ and
the definition of ψ2 yields

ψ2(x) − ξ|x|2 = inf
y∈Sc(0;r)

{

hδ(x− y) + 2ξ < x, y > +ξy2 − ψc(y)
}

.
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Note now that hδ satisfies conditions (H1)-(H3) of [GM96]. Since l is continuous on (0,∞), we can apply
Theorem 3.3 of [GM96] to hδ and ψ2 (see also Proposition C.2 in [GM96]) and thus, ψ2(x) − ξ|x|2 will be
locally Lipschitz. Using the fact that ψ2(x) − ξ|x|2 is locally Lipschitz, Rademacher’s theorem shows that
the gradient ∇ψ2 is defined µ-a.e. everywhere on S(0; r).

Step 3. ψ is µ-a.e. differentiable on S(0;a):

Since ψ(x) = min (ψ1(x), ψ2(x)), the µ-a.e. differentiability of ψ on S(0; a) follows immediately as ψ is the
minimum of two µ-a.e. differentiable functions.

Step 4. ψ is µ-a.e. differentiable on Rd:

Let (an)n∈N be an increasing sequence of positive real numbers tending to infinity as n → ∞ and Rd =
∪n∈NS(0; an). Let A := {x ∈ Rd : ψ is differentiable at x}. Then µ(A) = limn→∞ µ(A ∩ S(0; an)). The
statement follows now immediately by means of Step 3.

The following is a version of Lemma 5.2 of [GM96] for strictly convex and decreasing l.

Lemma 3.22 (the c-superdifferential lies in the graph of a map). Let c satisfy (A1)-(A4). Suppose that
ψ : Rd → R is differentiable at some x ∈ Rd. Then y ∈ ∂c0ψ(x) implies that h∗ is differentiable at ∇ψ(x)
and that y = x−∇h∗(∇ψ(x)).

Proof. We recall first that by (A1), ∇h is injective off the diagonal; the injectivity of ∇h off the diagonal
is crucial for the argument of this lemma, as will become apparent below. The proof follows similar steps
as the proof of Lemma 5.2 in [GM96]. Let y ∈ ∂c0ψ(x). Then x 6= y, so h is differentiable at x − y. From
Lemma 3.14 (see also Lemma 3.1 of [GM96]) we have that ∂·ψ(x) ∈ ∇h(x − y). As ψ is differentiable at x,
we have ∂·ψ(x) = ∇ψ(x) and ∇ψ(x) = ∇h(x − y). Since x 6= y and since l is strictly convex and strictly
decreasing, the gradient ∇ψ(x) does not vanish µ-a.e. Lemma A.4 (ii)-(iii) implies both (∇ψ(x), x−y) ∈ ∂·h

∗

and differentiability of h∗ at ∇ψ(x), whence ∇h∗(∇ψ(x)) = x− y.

Lemma 3.23. Let c and l satisfy (A1)-(A4) and let µ, ν ∈ P(Rd). Suppose that a joint measure γ ∈ Γ(µ, ν)
has supp γ ⊂ ∂c0ψ = ∂cψ, where ψ : Rd → R is the c-transform of a function on supp ν. The map
T (x) := x−∇h∗(∇ψ(x)) pushes µ forward to ν. In fact, γ = (id, T )#µ and T#µ = ν.

Proof. The proof follows the same steps of Theorem 5.4 from [GM96]. For the reader’s convenience, we
provide the reasoning below.

To begin, one would like to know that the map T (·) is Borel and defined µ-a.e.. By Lemma 3.21, differentia-
bility of ψ can only fail on a set N of µ-measure zero in Rd. Thus µ(N ) = 0, γ(N × Y ) = 0 and so the map
∇ψ is defined µ-a.e.. Since by Remark 3.16, γ(∆) = 0 and since supp γ ⊂ ∂cψ = ∂c0ψ, we have γ(∂c0ψ) = 1.
Therefore, define S := {(x, y) ∈ ∂c0ψ|x ∈ dom∇ψ}, where dom∇ψ denotes the subset of Rd on which ψ is
differentiable. Lemma 3.21 shows that ψ is µ-a.e. differentiable on dom ψ. Since its gradient is obtained as
the pointwise limit of a sequence of continuous approximants (finite differences), ∇ψ is Borel measurable on
the (Borel) set dom ∇ψ where it can be defined. Lemma A.4 shows that ∇h∗ is a Borel map. For (x, y) ∈ S,
Lemma 3.22 implies that T is defined at x and y = T (x). Thus T is defined on the projection of S onto
Rd by π(x, y) := x; it is a Borel map since ∇ψ and ∇h∗ are. Moreover, the set π(S) is Borel and has full
measure for µ: both ∂c0ψ and π(∂c0ψ) are σ-compact, so π(S) = π(∂c0ψ) ∩ dom∇ψ is the intersection of two
Borel sets with full measure. Thus γ(Z∩S) = γ(Z) for Z ⊂ Rd×Rd. It remains to check that (id, T )#µ = γ,
from which T#µ = ν follows immediately.

It suffices now to show that the measure (id, T )#µ coincides with γ on products U×V of Borel sets U, V ∈ Rd;
the semi-algebra of such products generates all Borel sets in Rd×Rd. Define S := {(x, y) ∈ ∂c0ψ|x ∈ dom∇ψ}.
Therefore, since y = T (x) if (x, y) ∈ S, we have

(U × V ) ∩ S = ((U ∩ T−1(V )) × R
d) ∩ S. (3.27)

Being the intersection of two sets having full measure for γ – the closed set ∂c0ψ and the Borel set dom ∇ψ×Rd

– the set S is Borel with full measure. Thus γ(Z ∩S) = γ(Z) for Z ⊂ Rd×Rd. Applied to (3.27), this yields

γ(U × V ) = γ((U ∩ T−1(V )) × R
d) = µ(U ∩ T−1(V )) = (id, T )#µ(U × V ).
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γ ∈ Γ(µ, ν) implies the second equation, Definition 3.6 implies the third.

Remark 3.24. Note that by Lemma 3.20 and Lemma 3.22, we have

µ({x ∈ R
d : T (x) = x}) = 0.

Theorem 3.25 (geometric representation of optimal solution). Assume that c and l satisfy (A1)-(A4), and
let µ, ν ∈ P(Rd) be absolutely continuous with respect to the Lebesgue measure. Then the following hold:

(a) There exists an optimal measure γ ∈ Γ(µ, ν) with c-cyclical monotone support;

(b) For any such γ, there is a function ψ : R
d → R which is the c-transform of some function on supp γ

such that the map T := id−∇h∗(∇ψ) pushes µ forward to ν and satisfies γ = (id, T )#µ.

(c) γ := (S × id)#ν for some inverse map S : Rd → Rd.

(d) S(T (x)) = x µ-a.e., while T (S(y)) = y ν-a.e.

Proof. For completeness, we sketch the arguments used in [GM96].

(a) and (b) The existence of an optimal γ with c-cyclical monotone support is guaranteed by Theorem 3.19.
Then supp γ ⊂ ∂c0ψ. The map π(x, y) = x on Rd × Rd pushes γ forward to µ = π#γ while projecting the
closed set ∂c0ψ to a σ-compact set of full measure for µ. From Lemma 3.21, we know that ψ is differentiable
µ-a.e. Lemma 3.23 shows that T (·) pushes µ forward to ν while γ coincides with the measure (id, T )#µ.
The proofs of (c) and (d) follow the same reasoning as the proofs of (iv) and (v) from Theorem 4.6 in [GM96]
and will be omitted.

3.4 Uniqueness of the optimal measure

Lemma 3.26 (c-superdifferentiability of c-transforms). Let c and l satisfy (A1)-(A4) and let V ⊂ Rd be a
closed set. Let ψ : Rd → R be the c-transform of a function on V and suppose that T := id−∇h∗(∇ψ) can
be defined at some p ∈ R

d (i.e., ψ is differentiable at p and ∇h∗ exists at ∇ψ(p)). Then ∂c0ψ(p) = {T (p)}.

Proof. The proof follows similar arguments as the proof of Proposition 6.1 of [GM96]. From Lemma 3.22,
it is clear that ∂c0ψ(p) ⊂ {T (p)}. Therefore, we only need to prove that ∂c0ψ(p) is non-empty. Assume that
T (p) is defined for some p ∈ Rd. By c-concavity of ψ, there is a sequence (yn, αn)

∞
n=1 ⊂ A ⊂ V × R such

that
ψ(p) = lim

n→+∞
[c(p, yn) + αn]. (3.28)

As is shown below, (|yn|)∞n=1 must be bounded. We first assume this bound to complete the proof. Since
(yn)

∞
n=1 is bounded, a subsequence must converge to a limit yn → y in the closed set V. On the other hand,

y ∈ ∂c0ψ(p) since for all x ∈ Rd, (3.11) and (3.28) imply

ψ(x) ≤ inf
n∈N

{c(x, yn) + αn} ≤ c(x, y) + ψ(p) − c(p, y),

with both ψ(x), ψ(p) > −∞, as shown by Lemma 3.20 (2b). Thus, p 6= y and y ∈ ∂c0ψ(p). It remains only
to prove that the sequence (|yn|)∞n=1 is bounded, which means that we can extract a convergent subsequence
that converges to a point y ∈ Y . To produce a contradiction, suppose that a subsequence diverges in a
direction ŷn → ŷ. Then |p− yn| is bounded away from zero by δ > 0. Since for each arbitrary small x ∈ Rd

we have |p − yn − x| > 0, it follows that ∇h exists at p − yn − x. More precisely, for each n the uniform
subdifferentiability in Lemma A.3 gives

h(p− yn) ≥ h(p− yn − x)− < x,wn(x) > +Oδ(|x|2), where wn(x) =
p− yn − x

|p− yn − x| l
′(|p− yn − x|) (3.29)
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for arbitrary small x ∈ Rd and Oδ(|x|2) independent of n. We re-write

< x,wn(x) >=< x,
p− yn
|p− yn|

>
|p− yn|

|p− yn − x| l
′(|p− yn − x|)− < x, x >

l′(|p− yn − x|)
|p− yn − x| .

Equation (3.29) now becomes

h(p−yn) ≥ h(p−yn−x)− < x,
p− yn
|p− yn|

>
|p− yn|

|p− yn − x| l
′(|p−yn−x|)−

1

δ
|x|2l′(|p−yn−x|)+Oδ(|x|2). (3.30)

Recall now that the derivative of l is negative and increasing and, therefore, |l′(|p− yn− x|)| ≤ |l′((δ+ |x|)).
The sequence (|yn|)∞n=1 can only diverge if |l′(|p − yn − x|)| tends to |l′(∞)| := infλ |l′(λ)|. Therefore,
|p−yn|

|p−yn−x| l
′(|p− yn − x|) → l′(∞). Taking a subsequence if necessary ensures that p−yn

|p−yn| converge to a limit

w ∈ Rd, with |w| = 1. Thus p−yn

|p−yn−x| l
′(|p − yn − x|) converges to wl′(∞), which is independent of x.

Combining (3.30) with the definition of a c-concave function, this yields

ψ(p) ≥ ψ(p− x)− < x,w > l′(∞) +Oδ(|x|),
where the large n limit has been taken using (3.28). By taking z = −x in the above equation, we get

ψ(p)+ < z,w1 > +Oδ(|x|) ≥ ψ(p+ z), where w1 := −wl′(∞) and |w1| = |l′(∞)|.
Thus w1 ∈ ∂.ψ(p). On the other hand, differentiability of ψ at p implies ∂.ψ(p) = {∇ψ(p)}, whence
w1 = ∇ψ(p). Now (w1, p− T (p)) ∈ ∂.h

∗ follows from the definition of T (p). Assume now that p = T (p). It
follows that (w1, 0) ∈ ∂.h

∗. If h∗ is non-constant, Lemma A.2 gives (−|y|, 0) ∈ ∂.l – a result which is obvious
when h∗ is constant. Thus (−|y|, 0) ∈ ∂.l) by Lemma A.1 (i). This conclusion contradicts the fact that l is not
differentiable at 0. Therefore T (p) 6= p and (∇h)(p−T (p)) = w1. Lemma A.2 gives (|p−T (p)|,−|w1|) ∈ ∂.l.
Since l is strictly convex, |w1| > |l′(∞)|, which produces a contradiction. Therefore, the sequence (yn)

∞
n=1 is

bounded.

Theorem 3.27 (uniqueness of the optimal map). Assume that c and l satisfy (A1)-(A4) and let µ, ν ∈
P(Rd) be such that they are absolutely continuous with respect to the Lebesgue measure. Then an optimal
map T pushing µ forward to ν is uniquely determined µ-a.e. by the requirement that it is of the form
T (x) = x−∇h∗(∇ψ(x)) for some c-concave ψ on Rd.

Proof. For completeness’ sake, we will sketch the main idea of the proof, as given in Theorem 4.4 of [GM96].

We will prove by contradiction that T is unique. That is, we assume that there exists, in addition to T and
ψ, a second c-concave function ψ′ for which T ′(x) := x−∇h∗(∇ψ′(x)) pushes µ forward to T#µ = T ′

#µ = ν.
Recall now that ψ and ψ′ are µ-a.e. differentiable. T and T ′ are defined µ-almost everywhere, and unless
they coincide, there exists some p ∈ R

d at which both ψ and ψ′ are differentiable but T (p) 6= T ′(p). From
this, it is clear that ∇ψ(p) 6= ∇ψ′(p).

Let U := {x ∈ Rd|ψ(p) > ψ′(p)}. A contradiction will be derived by showing that the push-forwards T#µ = ν
and T ′

#µ = ν–alleged to coincide–must differ on V := ∂cψ(U). We will show that

µ(T−1(V )) < µ(U) ≤ µ(T ′−1(V )).

The main ingredient necessary to prove the last equation is the fact that ∂c0ψ(p) = {T (p)}, which is proved
in Lemma 3.26. By using this together with the fact that µ is absolutely continuous with respect to the
Lebesgue measure, the proof follows via the same arguments as Theorem 4.4 from [GM96] and will be
omitted.

3.5 Some general properties of the optimal measure and the optimal cost for

equal marginals

We will investigate in this subsection the case of equal marginals µ = ν with common density ρ, and assume
throughout that the cost function c satisfies conditions (A1)-(A4). We also introduce the optimal cost

EnormOT [ρ] := inf
γ∈Γ(ρ,ρ)

C[γ].
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EnormOT [ρ] corresponds to the non-normalized functional EOT introduced in Section 3 via

EnormOT [ρ] =
1
(
N
2

)EOT [Nρ].

For the proof of Theorem 3.29 below, we will need the following lemma.

Lemma 3.28. For any marginals µ and ν, and any map T which pushes µ forward to ν, µ, ν and T satisfy
the following equation

µ(x) = ν(T (x))|det DT (x))|,
where DT is the approximate gradient of T (for a definition see for example Definition 10.2 of [Vill09]).

Proof. We have that µ(T−1(A)) = ν(A) for all Borel sets A ⊆ Rd. Then for any such A we have

∫

y∈T (A)

dν(y) =

∫

x∈A

dµ(x). (3.31)

With the change of variables y = T (x) the left-hand side of (3.31) becomes

∫

y∈T (A)

dν(y) =

∫

y∈A

|det DT (x)|ν(T (x))dx. (3.32)

From (3.31) and (3.32), the claim follows.

Theorem 3.29. Assume that µ = ν with common density ρ. Then

(a) The optimal measure γT which minimizes C[γ] is symmetric, that is

γT (A×B) = γT (B ×A) for all Borel A,B ∈ R
d.

(b) The optimal cost EnormOT [ρ] is strictly convex in ρ.

(c) Let c(x, y) = 1/|x− y|. Then for all α > 0 we have the following dilation behaviour

EnormOT [αdρ(α·)] = αEnormOT [ρ(·)].

Proof. (a) Recall from Theorem 3.25 that γT = (id, T )#µ, where T is the optimal map which pushes µ
forward to ν, i.e. µ(T−1(A)) = ν(A) for all A ∈ B(Rd). Then γT (x, y) = µ

(
(id, T )−1(x, y)

)
= δT (x)(y)µ(x).

Using this we get

γT (A×B) =

∫

x∈A

∫

y∈B

δT (x)(y)µ(dx) =

∫

x∈A

χB(T (x))µ(dx), (3.33)

where χ denotes the indicator function. We now use Lemma 3.28 and the fact that µ = ν, then the right
hand-side of (3.33) becomes

∫

x∈A

χB(T (x))µ(dx) =

∫

x∈A

χB(T (x))µ(T (x))|det DT (x)|dx =

∫

y∈T−1(A)

χB(y)µ(y)dy

=

∫

y∈B

χT−1(A)(y)µ(y)dy =

∫

y∈B

χA(T (y))µ(y)dy

= γT (B ×A).
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(b) The convexity is immediate from the definition of EnormOT [ρ], and strict convexity follows from uniqueness.
(c) Fix any α > 0. Then

EnormOT [αdρ(α·)] = inf
γ̃∈Γ(αdρ(α·),αdρ(α·))

∫
1

|x− y| γ̃(x, y)dxdy

= inf
α2dγ(αx,αy):γ∈Γ(ρ,ρ)

∫
1

|x− y|α
2dγ(αx, αy)dxdy

= inf
γ∈Γ(ρ,ρ)

∫
1

|x− y|α
2dγ(αx, αy)dxdy

= inf
γ∈Γ(ρ,ρ)

α

∫
1

|x− y|γ(x
′, y′)dx′dy′

= αEnormOT [ρ(·)],
where for the second equality we used the fact that for γ ∈ Γ(ρ, ρ) we have

∫
α2dγ(αx, αy)dy = αdρ(αx) and

for the penultimate equality we used the change of variables x′ = αdx, y′ = αdy.

Remark 3.30. (0) Trivially, the statements in Theorem 3.29 also hold for the non-normalized functional
EOT .

(1) Recall from Lemma 2.1 that the exact energy interaction is of form

Vee[Ψ] =

∫

R6

1

|x− y|ρ2(x, y) dx dy,

with the exact pair density ρ2 being symmetric due to the antisymmetry condition on the underlying Ψ in
(2.2). Property (a) of Theorem 3.29 shows that the approximate interaction energy

EOT [ρ] =

∫

R6

ρopt2 (x, y)

|x− y| dx dy,

is of the same form, with the arising ρopt2 being automatically symmetric as a consequence of optimality
coupled with the weaker symmetry condition that ρopt2 has equal marginals.

(2) Property (c) of Theorem 3.29 is a scaling property of the exact electron-electron energy Vee not shared by
many approximate density functionals used in the physics literature, such as the local density approximation
(2.23).

(3) The dilation behaviour of EOT equals that of the exact Vee, as well as that of approximations like (2.23).

4 Explicit example - equal radially symmetric marginals

As in the last subsection, we continue to investigate the case of equal marginals µ = ν with common density
ρ : Rd → [0,∞). Moreover, we assume that ρ(x) > 0 for all x ∈ supp µ. We will also assume throughout
that the cost function c satisfies conditions (A1)-(A4).

Throughout this section, for any dimension d ∈ N we will denote the optimal map by T (d). In subsection 4.1
we will explicitly compute T (1), and in subsection 4.2 we use the one-dimensional analysis to explicitly
compute T (d) when ρ is radially symmetric, that is to say when ρ(x) = λ(|x|) for all x ∈ Rd and some
function λ.

As turns out, in the above situations the optimal map is universal with respect to all cost functions satisfying
(A1)-(A4), but the fact that c(x, y) decreases with the distance |x− y| is essential.

4.1 Explicit solution for equal marginals in one dimension

Let µ = ν ∈ P(R) be equal marginals on R. Moreover, we define I := supp µ. Recall from Theorem 3.11
that the unique optimal measure has c-cyclically monotone support. This will help us to characterize the
optimal map T (1) in the following lemmas.
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Figure 1: Configurations excluded by Lemma 4.1
.

Lemma 4.1. Let (x1, y1) and (x2, y2) be two points in the support of the optimal map γ, that is y1 = T (1)(x1)
and y2 = T (1)(x2). The possible configurations (not counting the symmetries between (x1, y1) and (x2, y2))
are: x1 < x2 ≤ y1 ≤ y2, x1 ≤ y2 ≤ y1 ≤ x2, y1 ≤ x2 < x1 ≤ y2, y1 ≤ y2 ≤ x1 < x2, x1 ≤ y2 ≤ x2 ≤ y1,
y1 ≤ x2 ≤ y2 ≤ x1, x1 ≤ y1 ≤ x2 ≤ y2 and y1 ≤ x1 ≤ y2 ≤ x2 (see also Figure 1 for the excluded
configurations).

Proof. If (x1, y1) and (x2, y2) are two points in the support of the optimal map γ, then

c(x1, y1) + c(x2, y2) ≤ c(x1, y2) + c(x2, y1).

Let us consider the excluded cases one by one.

(i) x1 ≤ y1 < y2 ≤ x2.

Then, due to the fact that l is strictly decreasing, it follows that

c(x1, y1) + c(x2, y2) > c(x1, y2) + c(x2, y1),

which contradicts the c-cyclically monotonicity property of the optimal solution.

(ii) y1 ≤ x1 < x2 ≤ y2.

Similar to (i).

(iii) x1 < x2 ≤ y2 < y1.

We have y2 − x2 < y2 − x1 < y1 − x1. Therefore, y2 − x1 = t(y2 − x2) + (1 − t)(y1 − x1) and
y1 − x2 = (1 − t)(y2 − x2) + t(y1 − x1), where t ∈ [0, 1]. Thus, using the strict convexity of h, we have

c(x2, y1) + c(x1, y2) < tc(x2, y2) + (1 − t)c(x1, y1) + (1 − t)c(x2, y2) + tc(x1, y1) = c(x1, y1) + c(x2, y2),

which contradicts the c-cyclically monotonicity property of the optimal solution.

(iv) y1 < y2 ≤ x2 < x1

Similar to (iii).

Lemma 4.2. Assume (x1, y1), (x2, y2) ∈ supp γ are such that one of the following four configurations holds:
x1 < y2 < x2 < y1 or y1 < x2 < y2 < x1 or x1 < y1 < x2 < y2 or y1 < x1 < y2 < x2. Then, if (x3, y3) is
another point in the supp γ, none of the following configurations are possible: xi < xk < yj < xj < yk < yi,
xi < yk < yj < xj < xk < yi, yi < xk < xj < yj < yk < xi, yi < yk < xj < yj < xk < xi,
xi < yi < xj < yj < xk < yk and yi < xi < yj < xj < yk < xk, where i, j, k ∈ {1, 2, 3} (see also Figure 2).
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x1 x2y1 y2 x3 y3

Figure 2: Example of configurations excluded by Lemma 4.2
.

x1 x2 y1 y2

x1 x2y1y2

x1 x2y1 y2

x1x2y1 y2

x1 x2 y1y2 x1x2y1 y2

Figure 3: Possible configurations by Remark 4.4

Proof. Note that the first 4 configurations are immediately excluded by Lemma 4.1. Let us focus on the
penultimate configuration. From the c-cyclically monotonicity property, we have that

c(x1, y1) + c(x2, y2) + c(x3, y3) ≤ c(xj , yk) + c(xi, yj) + c(xk, yi).

But due to the fact that h is strictly decreasing, we have that c(xi, yi) > c(xi, yj), c(xj , yj) > c(xk, yi) and
c(xk, yk) > c(xj , yk), which gives rise to a contradiction. The last configuration can be dealt with in a similar
way.

Remark 4.3. Note that by Lemma 4.1, if (x1, y1), (x2, y2) and (x3, y3) ∈ supp γ, with x1 < x2 < x3 the
following configurations are also not possible: x1 < y2 < y1 < x2 < x3 < y3 and x1 < y2 < y1 < y3 < x2 <
x3. Similarly, the configurations y1 < x1 < x2 < y3 < y2 < x3 and x1 < x2 < y1 < y3 < y2 < x3 are not
possible.

Remark 4.4. From Lemma 4.1, Lemma 4.2 and Remark 4.3, it follows that the configurations µ-a.e.
possible are of form: x1 < x2 < y1 < y2, x1 < y2 < y1 < x2, y1 < y2 < x1 < x2, y1 < x2 < x1 < y2,
x1 ≤ y2 < x2 ≤ y1 and y1 ≤ x2 < y2 ≤ x1 (see also Figure 3).

Definition 4.5. We say that T (1) has no points of decrease on A ⊆ I if µ({x ∈ A : ∃x′ ∈ A, x′ >
x, T (1)(x) > T (1)(x′)}) = 0. We say that T (1) has points of decrease on A with positive measure if µ({x ∈
A : ∃x′ ∈ A, x′ > x, T (1)(x) > T (1)(x′)}) > 0. We say that T (1) is µ-a.e. decreasing on A ⊆ I if
µ({x ∈ A : ∃x′ ∈ A, x′ > x, T (1)(x) > T (1)(x′)}) = 1. We define similarly for T (1) the notions of points of
increase on A and µ-increasing on A.

Note that we can assume that the set B of such x′ above such that T (1) has points of decrease (respectively
points of increase) on A with positive measure, is also a set of positive measure. Otherwise, if the set of
such x′ is of µ-measure zero, we may consider the set A \B, on which T (1) is µ-a.e. decreasing (respectively
µ-a.e. increasing).
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Figure 4: Optimal map configurations

Lemma 4.6. The map T (1) cannot be µ-a.e. decreasing on any subset A ⊆ I.

Proof. Asssume that T (1) is µ-a.e. decreasing on a subset A ⊆ I. Let (xi, yi)
3
i=1 = (xi, T

(1)(xi))
3
i=1, where

xi ∈ A for i ∈ {1, 2, 3}. Recall now from Remark 4.4 the possible configurations by which T (1) is decreasing.

Assume first that x1 < y2 < x2 < y1. Then the possibilities for (x3, y3) such that T (1) is strictly decreasing,
are: x3 < x1 < y2 < x2 < y1 < y3, x1 < x3 < y2 < y3 < x2 < y1, x1 < y2 < y3 < x3 < x2 < y1,
x1 < y2 < x3 < y3 < x2 ≤ y1, y3 < x1 < y2 < x2 < x3 < y1, x1 < y3 < y2 < x2 < x3 < y1,
y3 < x1 < y2 < x2 < y1 < x3 and x1 < y3 < y2 < x2 < y1 < x3. In view of Lemmas 4.1 and 4.2, each
these possibilities can only happen on a set of µ-a.e. measure 0. The case y1 < x2 < y2 < x1 can be treated
similarly.

Assume next that x1 < y2 < y1 < x2. Then the possibilities for (x3, y3) such that T (1) is strictly decreasing,
are: x3 < x1 < y2 < y1 < y3 < x2, x3 < x1 < y2 < y1 < x2 < y3, x1 < x3 < y2 < y3 < y1 < x2,
x1 < y2 < x3 < y3 < y1 < x2, x1 < y2 < y3 < x3 < y1 < x2, x1 < y2 < y3 < y1 < x3 < x2,
y3 < x1 < y2 < y1 < x2 < x3 and x1 < y3 < y2 < y1 < x2 < x3. In view of Lemmas 4.1 and 4.2, each these
possibilities can only happen on a set of µ-a.e. measure 0. The case y1 < x2 < x1 < y2 can be treated in a
similar way.

Remark 4.7. We have supp γ = I × I; in particular, Im(T (1)) = I, where we denoted by Im(T (1)) the
image of T (1).

Proof. Note first that γ(I × I) = γ(I × R) = µ(I) = 1. Let us now assume that supp γ = I × J , with
I, J ⊆ R and J ⊂ I, with µ(I \ J) > 0. Then 1 = γ(I × J) = γ(I × R) = µ(I) = γ(R × J) = µ(J), which
contradicts the definition of the support I of the marginals.

For the proof of the next theorem, we will use the results of Theorems 3.25 and 3.27; in particular, we will
use the properties of the map T (1), as given in those two theorems.

Theorem 4.8. Let α, β ∈ R with α < β and let I = [α, β]. There exists a ∈ I such that T (1) is µ-
a.e. increasing on [α, a) and µ-a.e. increasing on (a, β], with T (1)(α) = T (1)(β) = a, T (1)(a−) = β and
T (1)(a+) = α, with discontinuity at a. Except on a set of µ-measure zero, we have

(a) For all x1, x
′
1 ∈ (α, a) with x1 < x′1, we have x1 < x′1 < T (1)(x1) < T (1)(x′1), with T (1)(x) ∈ (a, β);

(b) For all x2, x
′
2 ∈ (a, β) with x2 < x′2, we have T (1)(x2) < T (1)(x′2) < x2 < x′2, with T (1)(x) ∈ (α, a);

(c) For every interval (l1l2) ⊆ I, we have T ((l1, l2)) = (r1, r2) ⊆ I.

Moreover, a is such that µ([α, a]) = µ([a, β]) = 1
2 (see also Figure 4).

Proof. Recall first from Remark 3.24 that

µ({x ∈ R
d : T (1)(x) = x}) = 0.

Recall also from Theorem 3.25 that T is a bijective map; in particular, µ(x ∈ I : ∃y ∈ I \ {x}, T (1)(x) =
T (1)(y)) = 0.
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Step 1. T (1) cannot be µ-a.e. increasing on I:

Assume that T (1) is µ-a.e. increasing on I. Then T (1) is µ-a.e. strictly increasing and it can only be
increasing as described in Remark 4.4. Suppose first that for µ-a.e. all x1, x2 ∈ I, we have x1 < x2 <
T (1)(x1) < T (1)(x2). Then for each x ∈ [α, β], we have two possibilities: T (1)(α, x) = (α, T (1)(x)) or
T (1)(α, x) ⊆ (c, T (1)(x)), with α < c. If T (1)(α, x) = (α, T (1)(x)), using µ = µ ◦ (T (1))−1 and the fact that
ρ > 0, we get that T (1)(x) = x µ-a.e., which contradicts Remark 3.24. If T (1)(α, x) ⊆ (c, T (1)(x)), then
T (1)(α, β) ⊆ (c, T (1)(β)). Using again µ = µ◦ (T (1))−1, we get that µ(α, β) = 1 ≤ µ(c, T (1)(β)), where α < c,
which would contradict the definition of supp µ = [α, β]. The case with T (1)(x1) < T (1)(x2) < x1 < x2 for
µ-a.e. all x1, x2 ∈ I, can be discounted the same way.

Step 2. T (1) cannot have both points of increase and points of decrease on every interval A ⊆ I

with positive measure:

Assume that there exists an interval A ⊆ I, such that T (1) has both points of increase and points of
decrease on A with positive measure. Take an arbitray point x1 ∈ A such that ∃x′1 ∈ A, x′1 > x1 and
T (1)(x′1) > T (1)(x1). By assumption, for a subset of such x1 (and for a subset of x′1) in A of positive measure,
∃x2, x

′
2 ∈ (x1, x

′
1) with x′2 > x2 and T (1)(x′2) < T (1)(x2). Assume now that x1 < x′1 < T (1)(x1) < T (1)(x′1).

Due to the µ-a.e. possible configurations as given by Remark 4.4, x′2 is such that T (1)(x′2) < x′2. Then the
c-cyclical monotonicity of the optimal support fails for (x′1, T

(1)(x′1)) and (x′2, T
(1)(x′2)). If we denote by B

the set of such x′1, we have γ(B, T (1)(B)) = µ(B) > 0, which contradicts the assumption on the optimal
support. The case with T (1)(x1) < T (1)(x′1) < x1 < x′1 can be treated similarly so its proof will be omitted.

Step 3. There exists (α, α1), (β1, β) ⊂ I, with α1 ≤ β1, such that µ-a.e. for all x1 ∈ (α, α1) we
have T (1)(x1) > x1 and µ-a.e. for all x2 ∈ (β1, β) we have T (1)(x2) < x2:

Recall first the possible configurations, as given by Remark 4.4. Note now that in view of Step 1, Step 2
and of Lemma 4.6, there exists (α, α1), (β1, β) ⊂ I, with α1 ≤ β1 on which T (1) is an increasing function. It
remains to show that the optimal map can only be such that µ-a.e. for all x1 ∈ (α, α1), we have T (1)(x1) > x1

and µ-a.e. for all x2 ∈ (β1, β), we have T (1)(x2) < x2.

Let us consider the alternatives one by one. Suppose to begin with that µ(x1 ∈ (α, α1) : T (1)(x1) < x1) > 0
and µ(x2 ∈ (β1, β) : x2 < T (1)(x2)) > 0. By Lemma 4.1, if x1 ∈ (α, α1) with T (1)(x1) < x1 and x2 ∈ (β1, β)
with x2 < T (1)(x2)), c-cyclical monotonicity of the support fails for (x1, T

(1)(x1)) and (x2, T
(1)(x2)). Assume

next that µ(x1 ∈ (α, α1) : T (1)(x1) < x1) > 0 and µ(x2 ∈ (β1, β) : T (1)(x2) < x2) > 0. In view of Step 1,
of Lemma 4.6 and of Lemma 4.7, there exists then some subset (α′

1, β
′
1) ⊆ (α1, β1) such that with positive

measure, T (1) has both points of increase and points of decrease on (α′
1, β

′
1). But this contradicts the

conclusion of Step 2 and therefore our assumption has to be wrong. The case with µ(x1 ∈ (α, α1) : x1 <
T (1)(x1)) > 0 and µ(x2 ∈ (β1, β) : x2 < T (1)(x2)) > 0 can be reasoned similarly, so its proof will be omitted.

Step 4. T (1)(α) ≥ T (1)(β):

Assume that T (1)(α) < T (1)(β). By Step 3, there exist (α, α′) ⊂ (α, T (1)(α)) and (β′, β) ⊂ (T (1)(β), β) on
which T (1) is as described in (a) and (b). Then, if x1 ∈ (α, α′) and x2 ∈ (β′, β), c-cyclical monotonicity
of supp γ would fail for (x1, T

(1)(x1)) and (x2, T
(1)(x2)), as shown in Lemma 4.1 (i). Therefore, T (1)(α) ≥

T (1)(β).

Step 5. There exists b ∈ I such that T (1) is as described in (a) and (b), for (α, b) ⊂ I and for
(b, β) ⊂ I, respectively:

Note that by Lemma 4.6, Step 1 and Step 2, T (1) has to be µ-a.e. increasing on a certain number of sub-
intervals of (α1, β1). On any such sub-intervals, either T (1)(x) < x µ-a.e. or T (1)(x) > x µ-a.e. In both these
cases, due to the form of T (1) on (α, α1) and (α, α1), as proved in Step 3, the c-cyclical monotonicity of the
support would fail on a set of positive measure unless µ((α1, β1)) = 0.

Step 6. For every interval (l1l2) ⊆ I, we have T ((l1, l2)) = (r1, r2) ⊆ I:

This is a simple consequence of Step 5 and of Remark 4.7.

Step 7. b = T (1)(α) = T (1)(β), T (1)(b−) = β and T (1)(b+) = α:

Note first that T (1)(b−) = β and T (1)(b+) = α or else (α, a) and (a, β) will be mapped into a smaller interval
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than I, which contradicts Remark 4.7. By Step 4, we have T (1)(α) ≥ T (1)(β). It remains to prove that b =
T (1)(α) = T (1)(β). If this does not hold, the alternatives are: T (1)(α) ≥ b > T (1)(β), T (1)(α) > T (1)(β) ≥ b
and T (1)(β) < T (1)(α) ≤ b. We will only show the reasoning for the case T (1)(α) ≥ b > T (1)(β), as the other
two possibilities can be dealt with in a similar way. In this first case, we map (α, b) to (T (1)(α), β) and (b, β)
to (α, T (1)(β)). Therefore, supp γ ⊂ I × ((α, T (1)(β)) ∪ (T (1)(α), β) 6= I × I, which contradicts Remark 4.7.

Step 8. µ([α, a]) = µ([a, β]) = 1
2
:

(α, a) is mapped into (a, β) and (a, β) is mapped into (α, a). Therefore

γ((α, a) × (a, β)) + γ((a, β) × (α, a)) = 1.

But
γ((α, a) × (a, β)) = γ((α, a) × I) = µ((α, a)),

as γ((α, a) × (α, a)) = 0. Similarly,

γ((a, β) × (α, a)) = µ((α, a)).

It follows that 2µ((α, a)) = 1 or µ((α, a)) = 1
2 .

Theorem 4.9. Assume that µ = ν with density ρ(x) > 0 on I = [α, β], where α, β ∈ R ∪ {±∞}. Let
µ1(x) := µ((α, x)), µ̄1 := µ((x, a)) for x ∈ (α, a), µ2(x) := µ((x, β)) and µ̄2 := µ((a, x)), for x ∈ (a, β). If
x ∈ (α, a), we have T (1)(x) = µ̄−1

2 (µ1(x)) and if x ∈ (a, β), we have T (1)(x) = µ̄−1
1 (µ2(x)).

Proof. We will use the fact that µ ◦T (1) = µ to find T (1). Let x ∈ (α, a). Then due to the properties of T (1)

from Theorem 4.8, it follows that T (1)((α, x) = (a, T (1)(x)). Therefore,

µ1(x) = µ((α, x)) = µ((a, T (1)(x)) = µ̄2(T
(1)(x)).

We know that ρ(x) > 0. Due to the fact that T (1)(x) is increasing on (α, a) and with T (1)(a−) = β,
µ2(T

(1)(x) is a a strictly increasing function. We can take inverses and have

T (1)(x) = µ̄−1
2 (µ1(x)).

A similar reasoning holds for x ∈ (a, β).

4.2 Equal radially symmetric marginals in dimension d

We assume in this subsection that the marginals µ and ν are radially symmetric and in P(Rd). As before,
we suppose that the cost function is given by c(x, y) = `(|x− y|) ≥ 0, with c and ` satisfying (A1)–(A4).

Theorem 4.10. Suppose that µ = ν, with common density ρ(x) = λ(|x|) for all x ∈ supp µ. Moreover, we
assume that ρ(x) > 0 for all x ∈ supp µ. Then the optimal transport map T (d) has to be radially symmetric
itself, that is

T (d)(x) = g(|x|) x|x| , x ∈ R
d, (4.1)

for some function g : [0,∞) → R. Moreover g ≤ 0, and g is an increasing function with g(0+) = −∞ and
g(+∞) = 0.

Proof. Step 1. T (Rx) = RT (x) for all R ∈ O(d) and all x ∈ supp µ: (Here O(d) denotes the group
of orthogonal d× d matrices):

Let γT be a minimizer of C on Γ(ρ, ρ). Then (R × R)]γ is also a minimizer, for any R ∈ O(n), since it
belongs to Γ(ρ, ρ) by the radial symmetry of ρ, and has the same cost C as γT by the invariance of the cost
function c(x, y) under (x, y) 7→ (R−1x,R−1y). Hence by uniqueness, γT = (R × R)]γT . But an elementary
calculation shows that the latter is equivalent to T (z) = RT (R−1z) for all z ∈ supp µ. Left, respectively right
hand side, evaluated on a set A×B give

∫
χA(x)χB(T (x))ρ(x)dx respectively

∫
χA(Rx)χB(RT (x))ρ(x)dx.
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A change of variables together with the radial symmetry of ρ shows that the latter expression equals
∫
χA(z)χB(RT (R−1z))ρ(z)dz. Comparing with the former expression yields the assertion.

Step 2. T is radial and direction reversing, i.e. T (x) = g(|x|) x

|x|
for some g ≤ 0:

Let e1 be a fixed unit vector in Rd and r > 0. By Step 1, for all R ∈ O(n) we have

T (Rre1) = RT (re1) = Rf(r)v(r) with f(r) := |T (re1)| and v(r) := T (re1)/|T (re1)|. (4.2)

Hence

I[T ] =

∫

`(|x− T (x)|)ρ(x) dx =

∫

`
(
|x|e1 − f(|x|)v(|x|)

)
ρ(x) dx.

But ` is by assumption strictly decreasing and |re1 − f(r)v(r)| is maximized among unit vectors v(r) if and
only if v(r) = −e1. Hence, since T minimizes I, v(r) = −e1. Substituting into (4.2) yields the assertion,
with g(r) = −f(r) = −|T (re1)|.
Step 3. g solves a one-dimensional mass transportation problem:

For any Borel map T on Rd, abbreviate Iµ[T ] :=
∫
`(|x− T (x)|)ρ(x)dx (Monge functional with map T and

equal marginals ρ(x) = λ(|x|)). If T is a radial map, i.e. of form T (x) = g(|x|) x
|x| for some Borel g : [0,∞) →

R, and g̃ denotes the antisymmetric extension of g to R, such that, in particular, T (x, 0, 0) = (g̃(x), 0, 0) for
all x ∈ R, then using polar coordinates (with |Sd−1| denoting the Hausdorff measure of the unit sphere in
Rd)

Iρ[T ] =

∫ ∞

r=0

`(|r − g(r)|)|Sd−1|rd−1λ(r)dr

=

∫ ∞

s=−∞

`(|s− g̃(s)|) 1
2 |Sd−1||s|d−1λ(|s|)
︸ ︷︷ ︸

=:ρ1(s)

ds = Iρ1 [T ].

Hence the d-dimensional Monge problem of minimizing Iρ over radial maps is equivalent to the one-
dimensional Monge problem of minimizing Iρ1 over antisymmetric maps, and – because of Step 1 (with
d=1 and R = −I) – to the one-dimensional Monge problem of minimizing Iρ1 over arbitrary maps. It
follows that the function g in (4.1), antisymmetrically extended to R, is a minimizer of Iρ1 . The asserted
properties of g now follow immediately from Theorem 4.8 and the fact that ρ1 (being symmetric) has median
0.

Corollary 4.11. Suppose that µ = ν are as in Theorem 4.10. Let t ∈ (0,∞) and denote by

F1(t) = |Sd−1|
∫ t

0

λ(s)sd−1ds and F2(−t) = |Sd−1|
∫ ∞

t

λ(s)sd−1ds.

Then the function g in (4.1) is given by

g(t) = F−1
2 (F1(t)).

Proof. We have already shown that g, antisymmetrically extended to R, minimizes the one-dimensional
functional Iρ1 , with ρ1 as in Step 3 above. The assertion is now a direct consequence of the representation
formula given in Theorem 4.9.

Example 4.12. (exponential radially symmetric distribution) Assume now that ρ(x) = 1
Z e

−|x| for x =

(x1,2 , x3) ∈ R3, where Z is the normalizing constant, that is, Z =
∫
e−|x|dx1dx2dx3. Then for t ∈ (0,∞),

we have

F1(t) = 1 −
(

1 + t+
t2

2

)

e−t, F2(−t) = e−t
(

1 + t+
t2

2

)

and g(t) = F−1
2 (F1(t)).

2
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Figure 5: Optimal transport map T for the
density ρ(x) = const × e−|x|. As shown in
the text, T leaves lines through the origin
invariant, e.g. T (x, 0, 0) = (g̃(x), 0, 0) for
all x, and the figure shows the function g̃.

Figure 6: Optimal transport map T for the
density ρ(x) = const× e−|x|2/2.

Example 4.13. (normal radially symmetric distribution) Assume now that ρ(x) = 1
Z e

−|x|2/2 for x ∈ R3,
where Z is the normalizing constant. Then for t ∈ (0,∞), we have

F1(t) =
1√
2π

∫ t

0

e−s
2/2s2ds, F2(−t) =

1√
2π

∫ ∞

t

e−s
2/2s2ds and g(t) = F−1

2 (F1(t)).

2

5 Asymptotic exactness of the optimal transport functional in the

semiclassical limit

Our goal in this section is to compare the exact quantum mechanical ground state energy to the approximate
DFT ground state energy obtained by replacing Vee by the optimal transportation functional. Recall from
(2.3) and (2.4)) that the exact ground state energy of an N -electron system is defined as

EQM0 = inf
Ψ∈A

{

T [Ψ] + Vne[ρ
Ψ] + Vee[ρ

Ψ
2 ]
}

(5.1)

and the approximate ground state energy is (recall the DFT formalism in (2.15), (2.16))

EDFT−OT
0 = inf

Ψ∈A

{

T [Ψ] + Vne[ρ
Ψ] + EOT [ρΨ]

}

= inf
ρ∈R

{

TQM [ρ] + Vne[ρ] + EOT [ρ]
}

. (5.2)

In the above, ρΨ
2 and ρΨ denote the pair density, respectively the single particle density of Ψ (see (2.5), (2.6)

and (2.7)), and EOT is the optimal transportation functional with Coulomb cost from (3.3)

EOT [ρ] = inf
γ∈Γ(ρ,ρ)

∫

R6

1

|x− y|dγ(x, y). (5.3)

Due to the fact that ρΨ is the marginal of ρΨ
2 , we have

Vee[ρ
Ψ
2 ] ≥ EOT [ρΨ] for every Ψ ∈ A. (5.4)

Taking the infimum over Ψ gives

Theorem 5.1. For every N , and any potential v ∈ L3/2(R3)+L∞(R3), the density functional with electron-
electron interaction energy given by the mass transportation functional is a rigorous lower bound:

EQM0 ≥ EDFT−OT
0 .
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Now consider the kinetic energy functional T [Ψ] from Section 2.1 with physical constants inserted,

T~[Ψ] =
~

2

2m

∫

...

∫ N∑

i=1

|∇xiΨ(x1, s1, .., xN , sN )|2dz1..dzN . (5.5)

Here m is the mass of the electron and ~ is Planck’s constant h divided by 2π. We are interested in the limit
~ → 0 (semiclassical limit). Define now EQM0 (h̄) and EDFT−OT

0 (h̄) as in (5.1) and (5.2), but with T [Ψ]
replaced by T~[Ψ]. Note now that the statement

EQM0 (~)

EDFT−OT
0 (~)

→ 1 as ~ → 0 (5.6)

is in general false. The reason is that when ~ gets small, then (for typical Vne) the ground state densities of
both models contract, and the approximation is not uniformly good on families of contracting densities.

This has nothing particular to do with the use of EOT , but (5.6) fails for any DFT model (2.15) whose
electron interaction functional Ṽee has the correct scaling under dilations,

Ṽee[α
3ρ(α·)] = αṼee[ρ(·)], (5.7)

such as the mean field functional (2.18) or the local density approximation (2.23). A counterexample is
already given by atoms, v(x) = −Z/|x| (eq. (2.1) in Section 2, with α = 1). Very remarkably, in this case

EQM0 (~) =
EQM0 (1)

~2
and EDFT−OT

0 (~) =
EDFT−OT

0 (1)

~2
, (5.8)

and hence the quotient EQM0 (~)/EDFT−OT
0 (~) is independent of ~! To prove this, use that the four functionals

involved, T, Vne, Vee, and Ṽee, all have a definite scaling behaviour with respect to dilations. For a given
Ψ ∈ A, consider its L2-norm-preserving dilation

Ψ~(x1, .., xN ) := (~2)−3N/2Ψ(~−2x1, .., ~
−2xN ).

Then (with T~ being the kinetic energy with prefactor ~2/2m from (5.5))

(T~ + Vne + Vee)[Ψ~] = ~
−2(T1 + Vne + Vee)[Ψ].

Taking the infimum over Ψ gives the first assertion in (5.8). The second assertion follows analogously after
noting that

ρΨ~(x) = (~2)−3ρΨ(~−2x), EOT [ρΨ~ ] = ~
−2EOT [ρΨ]

(or more generally Ṽee[ρ
Ψ~ ] = ~−2Ṽee[ρ

Ψ~ ] for every Ṽee satisfying (5.7)).

What we can prove is the following “pointwise” statement in which we only minimize out Ψ at fixed ρ:

Theorem 5.2. Let N = 2. Then

lim
~→0

FHK [ρ] = EOT [ρ] for every ρ ∈ R.

Here R is the natural class of densities given by the image of A under the map Ψ 7→ ρ (R is defined in
(2.11)), and FHK is the Hohenberg-Kohn functional (2.13) with kinetic energy functional T~ in place of T .

This case for N = 2 already contains the main analytic issue, namely that the optimal transport measure
γ is singular and so its square root fails to be in L2 and fails to have an L2 gradient. But the case allows
to avoid the quantum mechanical issues of spin and antisymmetry, which would enter on top of this when
N ≥ 3.

An interesting challenge raised by the above theorem is to derive higher order corrections to EOT in the
semiclassical limit.
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5.1 Re-instating the constraint

In order to show that lim~→0 FHK [ρ] = EOT [ρ], we will need to make modifications to the optimal plan γ
which yields EOT [ρ], since any Ψ which represents γ has T [Ψ] = +∞. Therefore we cannot use these Ψ′s
as trial states in the variational principle for FHK [ρ]. Hence, we will need to modify the optimal γ. But the
modifications that one would like to use, e.g. smoothing, lead to modified marginals.

Hence we need to be able to control the change in EOT [ρ] induced by a small change in ρ. This is not trivial,
due to the rigid infinite-dimensional constraint in the variational principle for EOT that the trial states must
have marginals exactly equal to ρ, and is achieved in Theorem 5.3 below.

The main technical idea behind this theorem is the following construction to “re-instate the constraint”,
i.e. to deform a given trial plan into a nearby one with prescribed marginals. Suppose we are given an
arbitrary transport plan γA→A with equal marginals ρA, and an arbitrary second density ρB. We assume
that ρA, ρB ∈ L1 ∩ L3(R3), ρA, ρB ≥ 0, and

∫

R3 ρA(x) dx =
∫

R3 ρB(x) dx = 1. Our interest is in the case
when ρB is near ρA, but the construction works for general ρB.

Intuitively, the plan γB→B with equal marginals ρB we have in mind is the following.

• First transport ρB to ρA by a transport plan γB→A that does not move much mass around when ρB
is close to ρA.

• Then apply the plan γA→A.

• Finally transport ρA back to ρB.

First, let us construct a suitable plan γB→A. Let f(x) := min{ρA(x), ρB(x)}. Take fA := (ρA − f)+ and
fB := (ρB − f)+. Then ρA = f + fA and ρB = f + fB.

On f we “do nothing”, i.e. we let:
γf→f (x, y) = f(x)δx(y).

On fA we transport to fB via a convenient plan which allows simple estimates (note that
∫

R3 fA(x) dx =
∫

R3 fB(x) dx, due to the fact that
∫

R3 ρA(x) dx =
∫

R3 ρB(x) dx):

γfA→fB (x, y) =
fA(x)fB(y)
∫

R3 fB(x) dx
.

We then set

γA→B(x, y) = γf→f (x, y) + γfA→fB (x, y) = f(x)δx(y) +
fA(x)fB(y)
∫

R3 fB(y) dy
. (5.9)

Note that
∫

R3 γA→B(x, y) dy = f(x) + fA(x) = ρA(x) and
∫
γA→B(x, y) dx = f(y) + fB(y)

∫

R3 fA(x) dx
∫

R3 fB(x) dx
=

f(y) + fB(y) = ρB(y), as required. We will also need the reverse plan

γB→A(x, y) = f(x)δx(y) +
fB(x)fA(y)
∫

R3 fA(y) dy
, (5.10)

which satisfies
∫

R3 γB→A(x, y) dy = ρB(x) and
∫

R3 γB→A(x, y) dx = ρA(y). Finally we introduce the com-
bined plan

P (x,w) :=

∫

R3

∫

R3

γB→A(x, y)
χρA>0(y)

ρA(y)
γoptA→A(y, z)

χρA>0(z)

ρA(z)
γA→B(z, w) dy dz. (5.11)

We now claim that ∫

R3

P (x,w) dw = ρB(x) and

∫

R3

P (x,w) dx = ρB(w). (5.12)

To prove the first claim, we begin by integrating over w. This yields
∫

R3

P (x,w) dw =

∫

R3

∫

R3

γB→A(x, y)
χρA>0(y)

ρA(y)
γoptA→A(y, z)

χρA>0(z)

ρA(z)
ρA(z) dy dz.
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Noting that
χρA>0(z)

ρA(z) ρA(z) = 1 whenever γoptA→A(y, z) > 0 and recalling that
∫

R3 γ
opt
A→A(y, z) dz = ρA(y),

integrating over z yields
∫

R3

P (x,w) dw =

∫

R3

γB→A(x, y)
χρA>0(y)

ρA(y)
ρA(y) dy.

Since
χρA>0(y)

ρA(y) ρA(y) = 1 whenever γB→A(x, y) > 0 and since
∫

R3 γB→A(x, y) dy = ρB(x), the right hand side

becomes equal to ρB(x) after integrating over y. The second marginal condition can be derived analogously.

5.2 Continuity of the optimal transport functional

By combining the techique introduced above with appropriate estimates, we are able to control the change
in EOT [ρ] induced by a small change in ρ.

Theorem 5.3. There exists a c∗ > 0 such that for any ρA, ρB ∈ L1 ∩ L3(R3), with ρA, ρB ≥ 0 and
∫

R3 ρA(x) dx =
∫

R3 ρA(x) dx = 1, the optimal transport functional with Coulomb cost (5.3) satisfies

|EOT [ρA] − EOT [ρB]| ≤ c∗
(
||ρA||L1∩L3(R3) + ||ρB ||L1∩L3(R3)

)
||ρA − ρB||L1(R3)∩L3(R3),

where ||ρi||L1∩L3(R3) := max{||ρi||L1(R3), ||ρi||L3(R3)} for i ∈ {A,B}.

Proof. Fix arbitrarily two marginals ρA, ρB ∈ L1∩L3(R3), with ρA, ρB ≥ 0 and
∫

R3 ρA(x) dx =
∫

R3 ρA(x) dx =

1. Let γA→A = γoptA→A be an optimal transport plan of C subject to the constraint that γA→A has equal
marginals ρA. The main idea is to consider the associated plan γB→B = P introduced in (5.11) and show
that

C(γB→B) ≤ C(γoptA→A) + c∗
(
||ρA||L1∩L3(R3) + ||ρB||L1∩L3(R3)

)
||ρA − ρB||L1(R3)∩L3(R3). (5.13)

By the variational principle for EOT [ρB] and the optimality of γoptA→A this implies

EOT [ρB] ≤ EOT [ρA] + c∗
(
||ρA||L1∩L3(R3) + ||ρB||L1∩L3(R3)

)
||ρA − ρB||L1(R3)∩L3(R3),

as required.

Step 1: C(P ) ≤ C(γoptA→A) + 3M with M = supy∈R3

∫

R3 c(y, w)fB(w) dw:

By substituting the expressions (5.9) and (5.10) into (5.11), we get

C(P ) =

∫

R3

∫

R3

∫

R3

∫

R3

c(x,w)

[

f(x)δx(y) +
fB(x)fA(y)
∫

R3 fA(y) dy

]
χρA>0(y)

ρA(y)
γoptA→A(y, z)

χρA>0(z)

ρA(z)
[

f(z)δz(w) +
fA(z)fB(w)
∫

R3 fB(w) dw

]

dx dy dz dw. (5.14)

This is a sum of four terms, which arise by picking one term from each square bracket and carrying out the
integrals over the delta functions:

W1 =

∫

R3

∫

R3

c(y, z)f(y)
χρA>0(y)

ρA(y)
γoptA→A(y, z)

χρA>0(z)

ρA(z)
f(z) dy dz,

W2 =

∫

R3

∫

R3

∫

R3

c(y, w)f(y)
χρA>0(y)

ρA(y)
γoptA→A(y, z)

χρA>0(z)

ρA(z)

fA(z)fB(w)
∫

R3 fB(w) dw
dy dz dw,

W3 =

∫

R3

∫

R3

∫

R3

c(x, z)
fB(x)fA(y)
∫

R3 fA(y) dy

χρA>0(y)

ρA(y)
γoptA→A(y, z)

χρA>0(z)

ρA(z)
f(z) dx dy dz

and

W4 =

∫

R3

∫

R3

∫

R3

∫

R3

c(x,w)
fB(x)fA(y)
∫

R3 fA(y) dy

χρA>0(y)

ρA(y)
γoptA→A(y, z)

χρA>0(z)

ρA(z)

fA(z)fB(w)
∫

R3 fB(w) dw
dxdy dz dw.
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Next, we will estimate each of these four terms. For the first term, we use the simple estimate that fχρA>0 ≤
ρA, which gives

W1 ≤
∫

R3

∫

R3

c(y, z) γoptA→A(y, z) dy dz = C(γoptA→A).

For the second term, we estimate
∫

R3 c(y, w) dw by the constant M defined in Step 2 and f(y)
χρA>0(y)

ρA(y) by

1, and we get

W2 ≤ M
∫

R3 fB(w) dw

∫

R3

∫

R3

γoptA→A(y, z)
χρA>0(z)

ρA(z)
fA(z) dy dz

=
M

∫

R3 fB(w) dw

∫

R3

χρA>0(z)fA(z) dz = M.

Analogously, by the change of variables (y, z, w) 7→ (z, y, x) we have

W3 = W2 ≤M.

Finally, to bound W4 we estimate
∫

R3 c(x,w)fB(w) dw by M and fA(y)
χρA>0(y)

ρA(y) by 1, and we obtain

W4 ≤ M
(∫

R3 fB(w) dw
)2

∫

R3

∫

R3

∫

R3

fB(x) γoptA→A(y, z)fA(z)
χρA>0(z)

ρA(z)
dx dy dz

≤ M
(∫

R3 fB(w) dw
)2

[∫

R3

fB(x) dx

] [∫

R3

∫

R3

γoptA→A(y, z) dyfA(z)
χρA>0(z)

ρA(z)
dz

]

= M.

Plugging the above bounds for W1,W2,W3,W4 into (5.14) yields the assertion.

Step 2. For g ∈ L1 ∩ L2(R3), we have:

sup
x∈R3

∣
∣
∣
∣

∫

R3

1

|x− y|g(y) dy
∣
∣
∣
∣
≤ c0 max{||g||L1(R3), ||g||L3(R3)}, (5.15)

with c0 = 2
(

8π
3

)1/3
.

To prove this, we split 1
|x−y| into a short-range and a long-range part,

1

|z| =
χ|z|<a

|z| +
χ|z|≥a

|z| =: hs(z) + hl(z),

with the obvious definitions for hs and hl, and with cut-off parameter a > 0 to be chosen later. Note that
hs ∈ L3/2(R3) and hl ∈ L∞(R3). By Hölder’s inequality we have

∣
∣
∣
∣

∫

R3

1

|x− y|g(y) dy
∣
∣
∣
∣
=

∣
∣
∣
∣

∫

R3

hs(x− y)g(y) dy +

∫

R3

hl(x− y)g(y) dy

∣
∣
∣
∣
≤ ||hs||L3/2(R3)||g||L3(R3)

+ ||hl||L∞(R3)||g||L1(R3) ≤ ||g||L1∩L3(R3)

(
||hs||L3/2(R3) + ||hl||L∞(R3)

)
.

Explicitly,

||hs||L3/2(R3) + ||hl||L∞(R3) =

(

4π

∫ a

0

r2
1

r3/2
dr

)2/3

+
1

a
=

(
8π

3

)2/3

a+
1

a
.

Minimizing over a in the above gives a =
(

8π
3

)−1/3
, leading to the value of c0 in the assertion.

Step 3. Putting it all together:

By Steps 1 and 2 we have
C(P ) ≤ C(γoptA→A) + 3c0||fB||L1∩L3(R3).

But 0 ≤ fB ≤ |ρA − ρB|, so ||fB||L1∩L3(R3) ≤ ||ρA − ρB ||L1∩L3(R3). This establishes (5.13) and Theorem 5.3,

with c∗ = 3c0 = 6(8π
3 )1/3.
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5.3 Finiteness of kinetic energy

In this section we investigate the behaviour of derivatives of the combined plan γB→B = P introduced in
(5.11) when the original plan γA→A is differentiable.

Recall that γA→A is a transport plan of C subject to the constraint of equal marginals ρA, γA→B was defined
in (5.9), and γB→A is the reverse plan (5.10). Unlike in the previous section, here γA→A does not need to be
optimal. Due to the fact that wave functions correspond, up to integrating out variables, to square roots of

pair densities, and the kinetic energy of a wave function is h2

2

∫
|∇Ψ|2, we have to show that ∇√

γB→B ∈ L2,
in order to be able to construct an admissible trial function with pair density γ in the variational definition
of the Hohenberg-Kohn density functional FHK . The following result gives hypotheses under which this is
true. Before stating the result we introduce the following notion which we call strong positivity.

Definition 5.4. A transportation plan γ ∈ P(R2d) with marginals µ, ν ∈ P(Rd) is called strongly positive
if there exists a constant β > 0 such that

γ ≥ βµ⊗ ν.

We note that strong positivity implies, in particular, that the support of γ is the product of the supports of
its marginals, supp γ = supp µ× supp ν.

Theorem 5.5. Suppose that ρA, ρB ≥ 0,
√
ρA,

√
ρB ∈ H1(R3), and assume that γA→A belongs to the set

M+(R6) (see Section 3) and has equal marginals ρA.

(i)
√

γoptA→A ∈ H1(R3) (smoothness);

(ii) γoptA→A ≥ βρA ⊗ ρA for some constant β > 0 (strong positivity).

Then the plan γB→B = P defined in (5.11) satisfies
√
P ∈ H1(R6).

Proof. Plugging formula (5.10) for γB→A into (5.11) and using that ρA, ρB ≥ 0 and that
∫

R3 fA(y) dy =
∫

R3 fB(y) dy, we have

P (x,w) =
f(x)

ρA(x)

∫

R3

γoptA→A(x, z))
γA→B(z, w)

ρA(z)
dz +

fB(x)
∫

R3 fB(y) dy

∫

R3

∫

R3

fA(y)
γoptA→A(y, z)

ρA(y)ρA(z)
γA→B(z, w) dy dz.

Consequently,

∇
√

P (x,w) =
1

2
√

P (x,w)
[∇f(x)

ρA(x)

∫

R3

γoptA→A(x, z))
γA→B(z, w)

ρA(z)
dz − f(x)

ρA(x)

∇ρA(x)

ρA(x)

∫

R3

γoptA→A(x, z))
γA→B(z, w)

ρA(z)
dz

+
f(x)

ρA(x)

∫

R3

∇xγ
opt
A→A(x, z))

γA→B(z, w)

ρA(z)
dz +

∇fB(x)
∫

R3 fB(y) dy

∫

R3

∫

R3

fA(y)
γoptA→A(y, z)

ρA(y)ρA(z)
γA→B(z, w) dy dz

]

= : W̃1 + W̃2 + W̃3 + W̃4,

with the obvious definitions for W̃1, W̃2, W̃3 and W̃4. We have to show that
∫

R3 |W̃i(·, w)|2 dw ∈ L1(R3) for
i = 1, . . . , 4. To estimate the first two terms, we use the following lower bound on P which neglects the
contribution from fB(x) in P (x,w).

P (x,w) ≥ f(x)

ρA(x)

∫

R3

γoptA→A(x, z))
γA→B(z, w)

ρA(z)
dz =:

f(x)

ρA(x)
g(x,w). (5.16)

It follows that

|W̃1(x,w)| ≤ 1

2

√

ρA(x)

f(x)g(x,w)

∇f(x)

ρA(x)
g(x,w) and |W̃2(x,w)| ≤ 1

2

√

ρA(x)

f(x)g(x,w)

(

− f(x)

ρA(x)

∇ρA(x)

ρA(x)

)

g(x,w)
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and hence

|W̃1(x,w)|2 ≤ 1

4

|∇f(x)|2
f(x)ρA(x)

g(x,w) and |W̃2(x,w)|2 ≤ 1

4

|∇ρA(x)|2f(x)

ρA(x)3
g(x,w).

Next, due to
∫

R3 γA→B(z, w)dw = ρA(z), we have that

∫

R3

g(x,w) dw =

∫

R3

γoptA→A(x, z)

ρA(z)

∫

R3

γA→B(z, w) dw =

∫

R3

γoptA→A(x, z) dz = ρA(x).

Consequently, using the fact that |∇√
a|2 = 1

4
|∇a|2

a for any function a, we have

∫

R3

|W̃1(x,w)|dw ≤ 1

4

|∇f(x)|
f(x)

= |∇
√

f |2 and

∫

R3

|W̃2(x,w)|dw ≤ 1

4

f(x)

ρA(x)

|∇ρA(x)|2
ρA(x)

≤ |∇√
ρA|2, (5.17)

where in the last inequality we have used f ≤ ρA. Since
√
f = min{√ρA,√ρB}, and

√
ρA,

√
ρB ∈ H1(R3),

by a standard fact concerning Sobolev functions we have
√
f ∈ H1(R3) and

∇
√

f = χρA>ρB∇
√
ρB + χρA≤ρB∇

√
ρA a.e..

Consequently, ∫

R3

|W̃1(x,w)dw ≤ |∇
√

f |2 ≤ |∇√
ρB|2 + |∇√

ρA|2. (5.18)

Next we analyze W̃3. To this end, we make use of the identity

∇xγ
opt
A→A(x, z) = ∇x

(√

γA→A(x, z)
)2

= 2

√

γoptA→A(x, z) ∇x

√

γoptA→A(x, z).

Together with (5.16) this yields

|W̃3| ≤
√

ρA(x)

f(x)g(x,w)

f(x)

ρA(x)

∣
∣
∣
∣

∫

R3

√

γoptA→A(x, z) ∇x

√

γoptA→A(x, z)
γA→B(z, w)

ρA(z)
dz

∣
∣
∣
∣
.

To estimate the integral over z in the formula above, we write

γA→B(z, w)

ρA(z)
=

√

γA→B(z, w)

ρA(z)

√

γA→B(z, w)

ρA(z)
,

group one of these factors with
√

γoptA→A(x, z) and one with ∇x

√

γoptA→A(x, z), and apply the Cauchy-Schwarz

inequality. This yields

|W̃3| ≤
√

f(x)

ρA(x)g(x,w)

√

g(x,w)

√
∫

R3

∣
∣
∣
∣
∇x

√

γoptA→A(x, z)

∣
∣
∣
∣

2
γA→B(z, w)

ρA(z)
dz

and hence

|W̃3|2 ≤ f(x)

ρA(x)

∫

R3

∣
∣
∣
∣
∇x

√

γoptA→A(x, z)

∣
∣
∣
∣

2
γA→B(z, w)

ρA(z)
dz.

Integrating over w and using that
∫

R3

γA→B(z,w)
ρA(z) dw = 1 gives

∫

R3

|W̃3(x,w)|2 dw ≤ f(x)

ρA(x)

∫

R3

∣
∣
∣
∣
∇x

√

γoptA→A(x, z)

∣
∣
∣
∣

2

dz ≤
∫

R3

∣
∣
∣
∣
∇x

√

γoptA→A(x, z)

∣
∣
∣
∣

2

dz. (5.19)

Finally for W̃4 is is natural to use a different lower bound for P than the one in (5.16), obtained by neglecting
the first instead of the second term in P (x,w).

P (x,w) ≥ fB(x)
∫

R3 fB(y) dy

∫

R3

∫

R3

fA(y)
γoptA→A(y, z)

ρA(y)ρA(z)
γA→B(z, w) dy dz =:

fB(x)
∫

R3 fB(y) dy
g̃(w). (5.20)
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Substituting this estimate into the definition for W̃4 immediately gives

|W̃4| ≤
1

2

|∇fB(x)|
√

fB(x)

√

g̃(w)
∫

R3 fB(y) dy

and, after squaring, integrating over w, and using
∫

R3 g̃(w) dw =
∫

R3 fB(y) dy, we get

∫

R3

|W̃4(x,w)| dw ≤ 1

4

|∇fB(x)|2
fB(x)

= |∇
√

fB|2. (5.21)

But unlike the analogous bounds on W̃1, W̃2, W̃3, this estimate is insufficient to infer W̃4 ∈ H1(R6) since√
ρA,

√
ρB ∈ H1(R3) do not imply that the function

√

fB =
√

χρB>ρA(ρB − ρA)

belongs to H1. In fact, even when
√
ρA,

√
ρB are positive and belong to C∞,

√
f need not be in H1

loc.

Example 5.6. Let ρA(x) = (1−x+x2)e−x
2

and ρB(x) = (1+x+x2)e−x
2

. Because 1±x+x2 ≥ 1
2 (1+x2)

is bounded away from zero, we have
√
ρA,

√
ρB ∈ H1(R), but

√

χρB>ρA(ρB − ρA) = χ(0,∞)(x)
√

2xe−x
2/2 /∈

H1(R) since |∇
√

χρB>ρA(ρB − ρA)|2 = χ(0,∞)(x)
(

1
2x − 2x+ 2x3

)
e−x

2

/∈ L1(R). 2

Note that this example captures the generic behaviour of f near a point where any two smooth functions ρA
and ρB cross. This effect is the reason why the additional assumption (ii) was made in Theorem 5.5. This
assumption, together with (5.16), yields the following alternative lower bound on P

P (x,w) ≥ f(x)

ρA(x)

∫

R3

βρA(x)ρA(z)
γA→B(z, w)

ρA(z)
dz = βf(x)ρB(w). (5.22)

We fix a number δ ∈ (0, 1) and we use the lower bounds (5.20) or (5.22), depending on whether fB(x) ≥
δρB(x) or fB(x) < δρB(x).

Region 1: Assume fB(x) ≥ δρB(x). Via (5.20) and (5.21) we obtain

χfB≥δρB

∫

R3

|W̃4(·, w)|2dw ≤ 1

4δ

|∇fB|2
ρB

≤ 1

2δ
χρB>ρA

|∇ρA|2 + |∇ρB|2
ρB

≤ 1

2δ
χρB>ρA

( |∇ρA|2
ρA

+
|∇ρB|2
ρB

)

≤ 2

δ

(
|∇√

ρA|2 + |∇√
ρB |2

)
. (5.23)

Region 2: Assume fB(x) ≤ δρB(x). First of all, note that whenever fB(x) > 0, i.e. ρB(x) > ρA(x), we
have the following equivalences

fB(x) ≤ δρB(x) ⇔ ρB(x) − ρA(x) ≤ δρB(x) ⇔ ρB(x)(1 − δ) ≤ ρA(x) = min{ρA(x), ρB(x)} = f(x).

Via (5.22) we have

|W̃4| ≤
1

2
√

βf(x)ρB(w)

|∇fB(x)|
∫

R3 fB(y) dy
g̃(w).

We split the factor g̃(w) into
√

g̃(w)
√

g̃(w) and estimate one of the factors via the elementary inequality
fA(y) ≤ ρA(y), so as to eliminate the bad factor

√
ρB from the denominator:

√

g̃(w) =

(
∫

R3

∫

R3

fA(y)

ρA(y)

γoptA→A(y, z)

ρA(z)
γA→B(z, w)dydz

)1/2

≤
(∫

R3

∫

R3

γoptA→A(y, z)dy
γA→B(z, w)

ρA(z)
dz

)1/2

=

(∫

R3

ρA(z)
γA→B(z, w)

ρA(z)
dz

)1/2

=
√

ρB(w).
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Consequently,

|W̃4| ≤
1

2
√

βf(x)

|∇fB(x)|
∫

R3 fB(y)dy

√

g̃(w).

Squaring, integrating over w and using
∫

R3 g̃(w)dw =
∫

R3 fB(y)dy yields

∫

R3

|W̃4(x,w)|2dw ≤ 1

4β

|∇fB(x)|2
f(x)

1
∫

R3 f2(y)dy
. (5.24)

But in the region {x | fB(x) > 0} = {x | ρB(x) > ρA(x)}, as shown above we have f = ρA ≥ (1 − δ)ρB, and
consequently,

χfB≤δρB

∫

R3

|W̃4(·, w)|2dw ≤ 1

2β

|∇ρA|2 + |∇ρB |2
f

1
∫

R3 fB(y)dy

≤ 1

2β

( |∇ρA|2
ρA

+
1

1 − δ

|∇ρB|2
ρB

)
1

∫

R3 fB(y)dy

=
2

β

(

|∇√
ρA|2 +

1

1 − δ
|∇√

ρB|2
)

1
∫

R3 fB(y)dy
. (5.25)

Combining (5.17), (5.18), (5.19), (5.23) and (5.25) establishes the theorem.

Remark 5.7. In region 1, the factor 1
f(x) appearing in (5.24) is uncontrollably bad. In region 2, the factor

1
fB(x) appearing in (5.21) is uncontrollably bad.

5.4 Smoothing

The third ingredient needed in the proof of Theorem 5.2 lies in the fact that the Coulomb cost functional
C[γ] =

∫
|x − y|−1dγ(x, y) is well behaved under smoothing of γ, despite the fact that the cost function

|x− y|−1 is discontinuous and hence does not belong to the dual of the space of probability measures on R
6.

Let ρ ∈ R (see (2.11)), and let γ ∈ Γ(ρ, ρ) be a minimizer of C[γ] =
∫
|x− y|−1dγ(x, y) so that

C[γ] = EOT [ρ].

We now introduce a standard mollification of γ, as follows. Let φ : R3 → R belong to the Schwartz space
S(R3) of smooth, rapidly decaying functions, and assume that φ > 0,

∫

R3 φ = 1, φ radially symmetric. E.g.,

the choice φ(x) = π−3/2e−|x|2 will do. Let

φε(x) =
1

ε3
φ(
x

ε
),

and let γε = (φε ⊗ φε) ∗ γ, that is to say

γε(x, y) =

∫

R6

φε(x− x′)φε(y − y′)dγ(x′, y′). (5.26)

Proposition 5.8. The mollified pair density γε introduced in (5.26) satisfies

(a) γε ∈ C∞(R6), γε > 0

(b)
∫
γε(x, y) dx = ρε(y),

∫
γε(x, y) dy = ρε(x), where ρε is the mollified marginal (φε ∗ ρ)(x) =

∫

R3 φε(x−
x′)ρ(x′)dx′.

(c) C[γε] ≤ C[γ].
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Proof. (a): Smoothness is a standard fact concerning mollification of Radon measures, and positivity is
obvious from the positivity of φ.

(b): This follows from the elementary calculation
∫

γε(x, y) dx =

∫ ∫ ∫

φε(x− x′)φε(y − y′)dγ(x′, y′) dx

=

∫ ∫

φε(y − y′) dγ(x′, y′) =

∫

φε(y − y′)ρ(y′)dy′.

(c): First, we claim that the cost functional evaluated at the mollified transport plan, C[γε], can be interpreted
as a cost functional with modified cost function evaluated at the original transport plan. Indeed, by Fubini’s
theorem

C[γε] =

∫ ∫

c(x, y)
[∫ ∫

φε(x− x′)φε(y − y′) dγ(x′, y′)
]

dx dy

=

∫ ∫ [∫ ∫

φε(x − x′)φε(y − y′)c(x, y) dx dy

︸ ︷︷ ︸

=:c̃(x′,y′)

]

dγ(x′, y′).

The modified cost function c̃(x′, y′) appearing here has an interesting physical meaning which we will exploit
to establish (c), namely it is the electrostatic repulsion between the two charge distributions φε(· − x′) and
φε(· − y′) (i.e., the charge distributions centered at x′ respectively y′ whose profile is given by the mollifier
φε). Now it is a standard fact going back to Newton that the electrostatic potential exerted by a radial
charge distribution on a point outside it equals the potential exerted by the same amount of charge placed
at the centre,

1

|Sr|

∫

Sr

1

|x− a|dH
2(x) =

1

max{|a|, r} ,

where Sr denotes the sphere of radius r around 0, H2 is the Hausdorff measure (area element) on the
sphere, and |Sr|(= 4πr2) is the total area of the sphere. This together with the radial symmetry of φε (i.e.,
φε(x) = φ̃ε(|x|) for some function φ̃ε) gives

∫

R3

φε(x)
1

|x − a|dx =

∫ ∞

r=0

∫

x∈Sr

φ̃ε(r)
1

|x − a|dH
2(x) =

∫ ∞

0

|Sr| φ̃ε(r)
1

max{|a|, r}dr

≤
(∫ ∞

0

|Sr|φε(r) dr
) 1

|a| =
1

|a| . (5.27)

Hence by repeated application of (5.27)

c̃(x′, y′) =

∫ ∫

φε(x)φε(y)
1

|x+ x′ − (y + y′)|dx dy (5.28)

≤
∫

φε(y)
1

|x′ − (y + y′)|dy =

∫

φε(y)
1

|y − (x′ − y′)|dy (5.29)

≤ 1

|x′ − y′| . (5.30)

This establishes (c).

5.5 Passage to the limit

We are now in a position to give the

Proof of Theorem 5.2. Let ρ be any density in R. Recall that ρ ∈ R implies that
√
ρ, ∇√

ρ ∈ L2(R3) and
hence, by the Sobolev embedding theorem,

√
ρ ∈ L6(R3), whence ρ ∈ L1 ∩ L3(R3).

We have to show that lim~→0 FHK [ρ] = EOT [ρ]. We will do so via the following strategy:
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• Start from an optimal transport plan γ with marginals ρ.

• Smooth it.

• Make it strongly positive (see Definition 5.4), by mixing in a small amount of the mean field (i.e.,
tensor product) plan.

• Re-instate the marginal constraint, via the technique introduced in Section 5.1.

• Infer from Theorem 5.5 that, unlike the original optimal transport plan γ, the so-obtained modified
plan P is the pair density (2.6) of a wave function Ψ with square-integrable gradient.

• Pass to the semiclassical limit, by careful error estimates on the three modification steps listed above
(smoothing, achieving strong positivity, re-instating the constraint).

We now implement this strategy in detail. Let γ be an optimal transport plan of the Coulomb cost functional
C subject to equal marginals ρ. (Of course we know from Section 3 that γ is unique, but uniqueness is not
needed here.) For ε > 0, let γε be its mollification (5.26). By Proposition 5.8, its right and left marginals
are given by the mollification ρε = φε ∗ ρ of the density ρ. Finally we introduce the “strong positivization”

γ̃ε,β := (1 − β)γε + βρε ⊗ ρε,

where β ∈ (0, 1). Note that γ̃ε,β has the same marginals as γε, regardless of the value of β.

Observe now that the transportation plan γ̃ε,β and the densities ρε, ρ satisfy the assumptions of Theorem 5.5.
Consequently, by Theorem 5.5 there exists a transportation plan Pε,β with marginals ρ (i.e., with re-instated
constraint) whose square root belongs to H1(R6).

Now comes the only step where we use the assumption N = 2. In this case we can achieve the (otherwise
highly nontrivial) antisymmetry condition on Ψ appearing in (2.2) purely by means of an antisymmetric spin
part. More precisely we define Ψ : (R3 × Z2)

2 → C by

Ψ(x, s, y, t) :=
√

Pε,β(x, y)
α(s)β(t) − β(s)α(t)√

2
,

where α, β : Z2 = {± 1
2} → C are given by α(s) = δ1/2(s), β(s) = δ−1/2(s). Then it is straightforward to

check that Ψ belongs to the admissible set A defined in (2.2) and its pair density, density, and kinetic energy
are

ρΨ
B = Pε,β, ρΨ = ρ, T~[Ψ] =

~2

2m

∫

R6

|∇
√

Pε,β |2.

It follows that
lim
~→0

FHK [ρ] ≤ lim
~→0

(

T~(Ψ) + Vee(Ψ)
)

= Vee(Ψ) = C(Pε,β). (5.31)

Next, (5.13) yields

C[Pε,β ] ≤ C[γ̃ε,β] + c∗

(

||ρ||L1∩L3 + ||ρε||L1∩L3

)

||ρ− ρε||L1∩L3 . (5.32)

Next, we claim that

C[γ̃ε,β] = (1 − β)C[γε] + βC(ρε ⊗ ρε) ≤ C[γε] + c0β||ρε||L1 ||ρε||L1∩L3 . (5.33)

This is immediate from the estimate

|C[f ⊗ g]| ≤ c0||f ||L1 ||g||L1∩L3 for any f, g ∈ L1 ∩ L3,

which follows by applying (5.15), multiplying by f , and integrating over x.

Finally, we will need the following bound which was established in Proposition 5.8:

C[γε] ≤ C[γ]. (5.34)
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Combining the estimates (5.31)–(5.34) yields

lim
~→0

FHK [ρ] ≤ C[γ] +
c∗
3

[

β||ρε||L1 ||ρε||L1∩L3 + (||ρ||L1∩L3 + ||ρε||L1∩L3)||ρ− ρε||L1∩L3

]

.

Letting β and ε tend to zero and using that ρε, being the mollification φε ∗ ρ of ρ, tends to ρ in L1 ∩ L3 as
ε→ 0 yields

lim
~→0

FHK [ρ] ≤ C[γ] = EOT [ρ].

The reverse inequality is immediate from (5.4) and the positivity of T~. This completes the proof of Theo-
rem 5.2.

A Appendix

Lemma A.1 (Legendre transforms on the line). Let l : R → R ∪ {+∞} be lower semi-continuous and
convex. Define its dual function l◦ by (3.10). Then l◦ satisfies the same hypotheses as l, and

(a) (λ, ξ) ∈ ∂·l if and only if (ξ, λ) ∈ ∂·l
◦;

(b) the dual function of l◦ is l, that is l = l◦◦;

(c) strict convexity of l implies l◦ differentiable, where it is subdifferentiable;

(iv) l◦(ξ) is non-increasing if and only if l(λ) = ∞ for all λ > 0.

Proof. (a)-(c) follow from the corresponding statements in Theorem A.1 in [GM96]. Assertion (d) is easily
proved similarly to Theorem A.3 (iv) in [GM96]. To verify the only if implication, suppose that l(λ) is finite
at some λ > 0; we shall show that l◦ increases somewhere. Being convex, l must be subdifferentiable at λ (or
some nearby point): (λ, ξ) ∈ ∂·l. Then (i) implies that l◦ is finite at ξ and increasing: l◦(ξ + ε) ≥ l◦(ξ) + λε
for some ε > 0.

To prove the converse, suppose that l◦ increases somewhere. Then one has (ξ, λ) ∈ ∂·l
◦ for some ξ ∈ R and

λ > 0. Invoking once again (i) gives (λ, ξ) ∈ ∂·l, from which one concludes finiteness of l(λ).

For x ∈ Rd \ {0}, denote by x̂ := x/|x| the unit vector in direction of x.

Lemma A.2 (subdifferentiability of the cost). Let l : R → R ∪ {+∞} be convex and non-increasing on
[0,∞) and define h(x) := l(|x|) on Rd. Unless h is a constant: (x, y) ∈ ∂·h if and only if (|x|,−|y|) ∈ ∂·l
with y = |y|x̂ and x 6= 0.

Proof. Fix x ∈ Rd \ {0} and suppose l(λ) admits ξ as a subderivative at |x| : (|x|, ξ) ∈ ∂·l. Since l is convex
and non-increasing, ξ ≤ 0, while for ε ∈ R,

l(|x| + ε) ≥ l(|x|) + εξ. (A.1)

Let

ε := |x+ v| − |x| =
√

|x|2 + 2 < x, v > +|v|2 − |x| ≤< x̂, v > +
v2

2|x| , (A.2)

which inequality follows from
√

1 + λ ≤ 1+ λ
2 . Now h(x+v) = l(|x+v|) ≥ l(|x|+ε), with ε =< v, x̂ > +o(|v|),

as seen from (A.2). It follows immediately from Definition 3.11(1) that h is subdifferentiable at x, with
(x, ξx̂) ∈ ∂·h. On the other hand, h cannot be subdifferentiable at the origin as h(0) = ∞.

Now let (x, y) ∈ ∂·h, so x 6= 0 and for small v ∈ Rd

h(x+ v) ≥ h(x)+ < v, y > +o(|v|).
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Spherical symmetry of h forces y to be parallel to x: otherwise, a slight rotation x+ v := x cos θ− ẑ sin θ of
x in the direction z := y − (< y, x̂ >)x̂ would contradict h(x+ v) = h(x) for θ sufficiently small. Moreover,
taking v := εx̂ yields (A.1) with ξ :=< x̂, y > +o(1), which concludes the lemma: |y| = ± < x̂, y > holds
with a minus sign since l cannot increase.

Lemma A.3 (uniform subdifferentiability of the cost). Let l and h be defined as in the lemma above. Then
h is subdifferentiable on R

d \ {0}. Moreover, for δ > 0, there is a real function Oδ(λ) tending to zero linearly
with |λ| such that |x| > δ, y ∈ ∂·h(x) and v ∈ Rd imply

h(x+ v) ≥ h(x)+ < v, y > +Oδ(v
2). (A.3)

Proof. For λ > 0, the convex function l admits a subgradient ξ ∈ ∂·l(λ): for example, take its right derivative
ξ = l′(λ+). If |x| = λ, the lemma implies (x, ξx̂) ∈ ∂·h, so h(x) is subdifferentiable at x.

Now suppose that (x, y) ∈ ∂·h. The opposite implication of the lemma yields y = ξx̂ with (|x|, ξ) ∈ ∂·l so
(3.24) holds. Morover, ξ ≤ 0. If v ∈ Rd, then h(x + v) ≥ l(|x| + ε) where ε is as in (A.2). By convexity of
l, its right derivative is a non-decreasing function of λ. Asssume |x| > δ so that ξ ≥ l′(δ+). Together with
(A.1) and (A.2), this assumption gives

h(x+ v) ≥ h(x)+ < ξx̂, v > +v2l′(δ+)/2δ.

Lemma A.4. Let l and h be defined as in the Lemma A.2. Define the dual function h∗ : Rd → R ∪ {+∞}
via (3.10). The for some R ≥ 0,

(i) h∗(y) is continuously differentiable on |y| > R while h∗ = +∞ on |y| < R;

(ii) (y, x) ∈ ∂·h
∗ with x 6= 0 if and only if (x, y) ∈ ∂·h with y 6= 0;

(iii) if (y, x) ∈ ∂·h
∗, then x = ∇h∗(y).

Proof. The proof follows the same reasoning as the proof of Proposition A.6 (i)-(iii) from [GM96] and will
be omitted.
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