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ẍB, ẍB =
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Abstract

This thesis investigates novel planning and control methods for robotic manipulation

tasks with non-negligible dynamics. The central goal is to equip robots with advanced

sensory and motor skills. This represents an important contribution to the development

of flexible and versatile robotic systems that allow natural and intuitive interaction with

humans.

The thesis follows a model-based approach and discusses the fundamental, state-of-the-

art models for the description of the system and its environment. Methods for optimal

motion planning and for hybrid control of dynamic manipulation tasks are presented and

applied to a number of case studies such as throwing, catching, and juggling. In addition,

ball dribbling is introduced as a novel case study for dynamic dexterity. For the task

planning process, a simple and hence generic end effector design is considered. The specific

challenges with respect to environment perception are addressed that are characteristic for

dynamic object manipulation. Based on the fusion of different sensor modalities, a dynamic

force/torque observer for the estimation of environment forces and torques is developed.

In addition, a method for high-speed image processing is presented that allows to track

and predict the state of the manipulated objects. Together with the robot action planning,

the two modules are integrated in an extensive control framework. In order to improve the

robot’s performance in dynamic manipulation tasks, an intrinsically compliant end effector

design is developed and evaluated. The effectiveness of the employed methods and of the

overall framework is demonstrated in a number of simulations and experiments.

Zusammenfassung

Diese Dissertation untersucht neuartige Methoden zur Planung und Regelung von dyna-

mischen Manipulationsaufgaben in der Robotik. Zentrales Ziel ist die Weiterentwicklung

der sensorischen und motorischen Fähigkeiten von Robotern. Hierdurch wird ein wichtiger

Beitrag zur Entwicklung von flexiblen und vielseitigen Robotersystemen geleistet, die eine

natürliche und intuitive Interaktion mit dem Menschen erlauben.

Die Arbeit folgt einem modellbasierten Ansatz und diskutiert die grundlegenden System-

und Umgebungsbeschreibungen. Es werden Methoden zur optimalen Bewegungsplanung

sowie zur hybriden Regelung von dynamischen Manipulationsaufgaben präsentiert und

auf eine Reihe von Fallbeispielen wie Werfen, Fangen oder Jonglieren angewendet. Zu-

dem wird das Dribbeln eines Balls als neue Fallstudie zur Untersuchung von dynamischer

Geschicklichkeit eingeführt. Des Weiteren werden die Probleme im Bereich der Perzepti-

on behandelt, welche speziell bei dynamischer Objektmanipulation auftreten. Basierend

auf der Integration verschiedener Sensormodalitäten wird der Entwurf eines Beobachters

zur Bestimmung der Umgebungskräfte und -momente präsentiert. Anschließend wird eine

Methode zur Bildverarbeitung vorgestellt, welche es erlaubt, den Zustand manipulierter

Objekte mit hoher Geschwindigkeit zu verfolgen und zu prädizieren. Die beiden Module

werden, zusammen mit der Aktionsplanung für den Roboter, in ein regelungstechnisches

Rahmenwerk integriert. Zur Verbesserung der Systemperformanz wird der Einsatz eines

Endeffektors mit intrinsischer Nachgiebigkeit evaluiert. Die Leistungsfähigkeit der entwi-

ckelten Lösungsmethoden sowie des gesamten Rahmenwerks wird in zahlreichen Simula-

tionen und Experimenten demonstriert.
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1 Introduction

For more than 30 years, robots have been extensively used in various industrial settings.

There, they perform a broad range of manufacturing tasks with high speed and high

accuracy. Typically, the precision is achieved by using a rigid mechanical design. Also, the

robots operate in structured and known environments which facilitates the task execution

and reduces the sensor requirements.

In spite of the great achievements in robotics over the last decades, the evolution of the

field is still near the beginning. The potential areas of application for robots have gradually

extended beyond the classical industrial settings in large-scale enterprises: lower costs and

increased capabilities have increased the adoption of robots in smaller enterprises with

flexible manufacturing systems [1]. Besides, service robots have gained growing attention

in fields such as health care and even domestic services. Nowadays, the integration of robots

into daily life has become a central development in robotics. Such an integration poses a

fundamental challenge as both, the general conditions and the requirements for the robot,

are drastically different from industrial applications. Robots that are destined to leave the

classical industrial settings need to have various additional skills and capabilities compared

to their counterparts in industrial settings. Fig. 1.1 illustrates the evolution of robotics

over the last fifty years: the first industrial robot from Unimate, a six DOF industrial robot

from ABB, and Honda’s Asimo, which is currently one of the most advanced humanoid

robots.

For the envisioned application areas mentioned above, a high degree of autonomy con-

stitutes a characteristic feature. Tasks or plans are specified on a high-level and ultimately,

the robot should be able to decide by itself which actions to take. This is a fundamental

difference to classical industrial applications where robots typically execute predefined tra-

jectories. Additionally, the assumption of a static environment does no longer hold for the

new areas of application. The robot has to operate in changing and unknown surround-

ings. This necessitates an extensive environment perception and substantially increases

the sensor requirements. It is crucial for the robot to rely on different sensor modali-

ties and to fuse the information obtained from these sources. In addition to these sensor

skills, advanced manipulation capabilities are needed. For the physical interaction with

an unknown and changing environment, autonomous robots need a higher manipulative

dexterity than their industrial counterparts. Also, the robot is no longer stationary but is

requested to move in its environment. Such locomotion capabilities are typically realized

either through bipedal walking or through a wheeled platform. This leads to challenging

problems with respect to navigation and path planning. A number of other challenges

are related to human-robot interaction: first and foremost, in order to become a valued

partner, it is a prerequisite that the robot does not unsettle or scare the human by its

appearance. The integration of robots into human life also implies physical interaction.

Therefore, the second challenge with respect to human-robot interaction is the aspect of

1



1 Introduction

Fig. 1.1: The first industrial robot Unimate (left), the six DOF industrial robot IRB 260 from
ABB (middle) and Honda’s humanoid robot Asimo (right).

safety and dependability. While malfunctions in industrial applications are primarily a

financial issue, they can have severe consequences if they occur during an interaction with

a human. Hence, the creation of intrinsically safe systems is a fundamental goal for the

mechanical design of next generation robots.

Concluding the previous considerations, it becomes apparent that the integration of

robots into human life requires a completely new kind of robot. All the aforementioned

requirements can be summarized as the robots’ ability to interact with humans on equal

terms. And while these aspects are of great importance for the development of cognitive

systems that can truly interact with humans, the main focus of this thesis is on the ma-

nipulation capabilities of robots. With respect to manipulation, such an interaction on

equal terms implies that robots need to have manipulation skills and action/reaction times

comparable to those of humans: interaction with a robot that can manipulate objects by

throwing, catching, rolling, or sliding motions is intuitive and natural for humans who

often exploit the advantages of dynamic manipulation in their own actions.

1.1 Overview of Manipulation

The following section provides definitions used to identify and to characterize the chal-

lenges that are associated with dynamic object manipulation. To this end, the various

manipulation techniques are classified and the differences between them are illustrated.

Furthermore, it is necessary to define and characterize different grasping techniques. Typ-

ically, dynamic object manipulation follows a nonprehensile approach and uses only basic

form- or force-closure grasps. Manipulation tasks are, in general, also characterized by

varying contact situations which will also be addressed at the end of the section.

Manipulation. The term manipulation is defined in different context. In a psychological

interpretation, manipulation describes a type of social influence that tries to change the

perception and/or action of others through hidden activities [44]. In a technical interpre-

2



1.1 Overview of Manipulation

tation, manipulation has a variety of meanings which all refer to physical changes in the

surrounding environment. These changes include moving one or multiple objects, joining

two or more objects by welding or gluing, or reshaping objects by cutting or grinding [88].

As pointed out by Bicchi, manipulation skills are, together with speech, probably the most

important feature that distinguish humans from animals [10].

Throughout this thesis, the term manipulation refers to the moving of objects. In

robotics, such an object manipulation is realized by robotic hands or end effectors. The

terms hand or end effector denote the interface between the robotic arm and the environ-

ment [92].

Comparing manipulation of humans and robots, Mason points out some fundamental

differences between the two [88]. One important aspect is the fact that humans possess a

larger number of (distributed) sensors and actuators. Additionally, in contrast to humans,

robots do not have the intrinsic capability to adapt to a given task. Here, human help

is needed, either by providing task instructions or by equipping the robot with learning

capabilities.

For the successful execution of a manipulation task, decisions have to be made with

respect to the explicit execution strategy. It applies to both systems, human and robotic,

that some of these decisions are made online while others are made offline, before the task

is executed. In principle, humans have a much higher intrinsic ability to make decisions

online [88]. Besides offline and online decisions, Mason differentiates a third type of decision

which he labels off-offline. Such decisions refer to the design stage of the system. Typically,

this includes the degrees of freedom, the sensor configuration, and the amount of actuation

of the robotic system.

With respect to the aforementioned decision types, the theory of manipulation distin-

guishes two challenges which are obviously coupled: the first challenge are task-related,

offline and online decisions which are needed for successful task execution. The second

challenge are decisions with respect to the mechanical design of the robotic manipulators

which are destined to perform the manipulation tasks.

Taxonomy of manipulation techniques. The following taxonomy of manipulation is

adopted fromMason and Lynch [90]. As illustrated in Tab. 1.1, they distinguish four classes

of manipulation based on the elements which are needed for a complete description. The

classification is based on the terms kinematics, statics, and dynamics. Kinematics refers to

the motion of bodies without considering the forces/torques that cause the motion [125]. It

can be regarded as the geometry of the motion. Statics, in contrast, deals with the analysis

of forces/torques in mechanical (physical) systems that are in a static equilibrium. Finally,

dynamics is concerned with the forces/torques acting on bodies and the motions that are

related to these forces/torques. Based on the three definitions, the following manipulation

techniques can be characterized [88]:

• Kinematic manipulation: an action (or sequence of actions) which can be fully ana-

lyzed on the kinematics level

• Static manipulation: an action (or sequence of actions) where considerations with

respect to both, statics and kinematics, are needed for the analysis
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Class
Kinematic

manipulation
Static

manipulation
Quasi-static
manipulation

Dynamic
manipulation

Kinematics X X X X

Static forces - X X X

Quasi-static forces - - X X

Acceleration forces - - - X

Tab. 1.1: Taxonomy of manipulation by elements needed for analysis, from [90].

• Quasi-static manipulation: an action (or sequence of actions) where frictional and/or

impact forces are predominant and inertial forces can be neglected in the analysis

• Dynamic manipulation: an action (or sequence of actions) where inertial/acceleration

forces and torques are essential elements and are hence needed for planning and

analysis

In order to clarify the taxonomy, some examples are helpful: In a typical pick-and-place

task, the goal is to move an object from an initial to a final configuration. Neglecting

the grasp/release of the object, the fundamental problem is the planning of a collision-free

path from an initial configuration A to a final configuration B. This is an example for a

kinematic manipulation. Clearly, the process of picking and placing the object generally

involves statics, since a stable equilibrium configuration has to be ensured when the object

is grasped. Consequently, these operations are examples for static manipulation. Sliding

an object over a surface is an example of a quasi-static manipulation. Here, the influence

of inertial forces is negligible in comparison to the friction forces. Finally, throwing, catch-

ing, and juggling of objects are examples of dynamic manipulation tasks. As pointed out

by Mason, most dynamic manipulation tasks also constitute kinematic and/or quasi-static

phases. A throwing motion, for instance, typically begins with a form- or force-closure

grasp before the object’s degrees of freedom are sequentially released. From this consid-

eration, Mason introduced a further differentiation of dynamic manipulation [88]: based

on the length of the dynamic manipulation phases, tasks are classified into quasidynamic,

briefly dynamic, and continuously dynamic tasks.

Considering the aforementioned examples, two classes of manipulation tasks can be

identified: the first class includes tasks that can be carried out by different manipulation

techniques. Bringing an object from an initial to a final configuration, for instance, can

generally be realized with each of the four techniques. The second class of tasks are

intrinsically dynamic and hence require the dynamic manipulation technique. Juggling,

throwing, and dribbling are examples for this second class. Mason summarizes these

aspects by referring the term dynamic manipulation to methods which actively exploit

the task dynamics instead of merely tolerating them [90].

Dexterous manipulation. In the general context of robotics, dexterity is commonly un-

derstood as the capability of the robotic system to autonomously perform tasks with a

certain level of complexity [125]. This is a rather broad definition of the term which leaves

room for different interpretations.
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With respect to manipulation, the widely accepted meaning of the term dexterous is the

capability of a hand / end effector to relocate objects in an arbitrary way according to the

requirements of a given task [8]. In addition, Okamura defines manipulations as dexterous

in which multiple manipulators, or fingers, cooperate to grasp and manipulate objects [95].

This definition of dexterous manipulation can be regarded as a kinematic / static dexterity

and has an interesting implication: typically, dexterous kinematic / static manipulation

requires robotic hands with numerous DOF as it describes the reconfiguration of arbitrary

objects with different shapes, surfaces, sizes, and weights. Consequently, Murray attests

robotic end effectors / hands with few DOF clumsiness and a lack of dexterity [92].

However, apart from this kinematic dexterity, a second interpretation of the term dex-

terous manipulation exists which can be entitled dynamic dexterity [52, 106]. Sakaguchi

describes the ability of a robot to perform tasks that require a dynamical interaction with

the environment with this term [113]. Similarly, Burridge defines it as the robots ability

to perform work on the environment by changing its kinetic and potential energy [23].

With these definitions, it becomes evident that a significant difference between kinematic

and dynamic dexterity exists: in contrast to kinematic dexterity, a multi-fingered hand or

an end effector with multiple DOF is not an essential feature for a dynamically dexterous

robot. For various tasks, a hand with multiple DOF has no or only little advantage

over a basic end effector structure. Numerous case studies realized this type of dexterity

with rather simplistic end effector design [89, 85, 8]. Clearly, this does not mean that

sophisticated hands and dynamic dexterity exclude each other. However, it shows that

there are different ways to manipulative dexterity: putting an increased effort into the

task planning stage might enable the use of less complex and less expensive end effectors.

Lynch and Mason demonstrated impressive manipulation skills with a minimalistic gripper

design [82, 83, 84]. Bicchi also addressed this aspect by considering rolling contacts as a

way to enhance manipulative dexterity [11].

The focus of this thesis is on planning and control methods for tasks which require

robots that possess dynamic dexterity. Also, the goal is to realize these tasks with generic

and hence simple end effector designs. While this reduces the costs of the required end

effectors, it also constrains the variety of grasping operations that can be performed by the

robot. To understand the concepts in the following chapters, a classification of grasping

techniques is helpful.

Grasping. For grasping an object, the fundamental requirement is the ability to fix the

object in an arbitrary pose (meaning position and orientation) relative to the hand [125,

9]. A characterization of grasps commonly distinguishes between form and force closure.

These terms originate from the mechanical engineering domain where they are used to

characterize mechanical joints.

With a form closure grasp, any infinitesimal motion of the object relative to the hand

leads to a penetration of the two bodies. Hence, external forces/torques applied to the

object result in normal forces on the contacting surfaces which counteract and balance the

external forces.

With a force closure grasp, in contrast, a motion of the object relative to the hand

does not necessarily result in a penetration of the two bodies. A force closure grasp only
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requires that grasp forces exist which counteract the external forces/torques applied to the

object. Typically, this fixation of the object is realized by normal forces at the contact

points which, in turn, create friction forces.

Consequently, these definitions imply that a form closure grasp is also a force closure

grasp since it also creates forces that balance the external forces applied to the object. The

fundamental difference is that force closure allows frictional forces for the fixture of the

object. These are tangential to the contacting surfaces, whereas the counteracting forces

of a form closure grasp are normal to the contacting surfaces.

Clearly, a mixture of these grasping types is also possible and commonly referred to as

partial form closure. Here, some DOF of the object are constrained by form closure and

some by force closure.

Mason and Lynch applied their taxonomy of manipulation to grasping operations [90].

Based on the aforementioned definitions, a form closure grasp corresponds to a kinematic

grasping operation since the grasp is determined by the joint configuration of the hand. Ac-

cordingly, a force closure is equivalent to a static grasping manipulation as frictional forces

are essential for maintaining the grip. However, there are two additional manipulation

techniques that are not covered by the definitions of form and force closure: quasi-static

and dynamic manipulation. An example for the former is an end effector that pushes an

object across a surface. Here, the contact between end effector and object represents a

quasi-static grasp since the forces that maintain the contact between hand and object are

created by sliding friction. Finally, a dynamic grasp uses acceleration forces to maintain

the contact between hand and object. An example is the dribbling of a ball, where contact

is only maintained as long as the downward acceleration of the hand is larger than the

gravitational acceleration. Such a grasp is also referred to as dynamic closure.

Nonprehensile manipulation. The term nonprehensile manipulation denotes operations

that are performed without form or force closure grasps [36]. Nonprehensile manipulation

is sometimes entitled as graspless [89]. However, based on the aforementioned grasping

definitions, operations such as dynamic closures or quasi-static grasps are also nonprehen-

sile. Hence, it seems more appropriate to denote it as manipulation without form- or force

closure grasps instead of graspless manipulation. Comparing it with human manipulation,

it can be considered as just using the palm of one hand.

1.2 Applications

Exploiting dynamics in manipulation can render the object handling faster, since complex

grasping is avoided, more versatile, since robots can also cope with intrinsically dynamic

environments, and cheaper, since end effectors are generally less complex and robots can

be constructed to be less powerful. This extends the capabilities of conventional static

manipulation and opens up a new range of applications previously not feasible for robots.

In particular, the following applications can be envisioned:

• With conventional manipulation techniques, it is not possible to manipulate objects

that are oversized for conventional grippers. The paradigm of dynamic manipulation
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1.3 Control Framework and General Approach

addresses this shortcoming: by using nonprehensile manipulation with rolling and

sliding motions, the handling of bulky objects can be realized.

• The grasping of unknown objects with a force closure grasp poses safety concerns,

e.g. if the stiffness properties of the object are not known. Hence, for manipulating

unknown objects, it is useful to employ nonprehensile techniques.

• Dynamic manipulation increases the flexibility of transportation systems and logistic

chains [37]. Manipulating objects by sliding, throwing, or catching can reduce the

transit time of such systems and, at the same time, lower the costs.

• Dynamic manipulation skills are also beneficial for autonomous robots as they in-

crease their manipulative dexterity. This, in turn, improves the handling of unfore-

seen situations, e.g. the robot can catch objects that fall from a table or out of a

cupboard that is being opened. Furthermore, dynamic manipulation skills are useful

for everyday manipulation tasks such as opening and closing doors. Here, humans

typically employ an approach that is very similar to throwing and catching of objects.

1.3 Control Framework and General Approach

In order to equip robots with dynamic manipulation skills, an extensive control framework

is needed. Such a framework poses challenges that are associated with environment percep-

tion, action planning and motion & interaction control. Fig. 1.2 depicts the overall control

structure employed in this work. It consists of four main elements: robot action planning,

dynamic force/torque observer, object tracking & trajectory prediction, and motion &

interaction control.

The robot action planning discusses how to find optimal trajectories: it proposes selec-

tion criteria and cost functions for dynamic manipulation tasks. The developed methods

Robot &

Environment

Dynamic

F/T Observer

Object

Tracking &

Trajectory

Prediction

Robot

Action

Planning

 Motion &

 Interaction

Control

Sec. 5.2

Ch. 3 & 4 Sec. 5.3Sec. 5.4

Control Structure

visual information
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τ
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Fig. 1.2: Overall control structure consisting of four main elements: robot action planning,
dynamic F/T observer, object tracking & trajectory prediction, and motion & inter-
action control.
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Fig. 1.3: Stäubli six DOF industrial robot (left) and the dual-arm robot with 14 DOF (right).

are then applied to a number of case studies. Realizing these tasks on real hardware gener-

ally requires a perception of the environment. Here, the control framework considers visual

and force/torque sensor information: the former is used for object tracking and the latter is

used in a dynamic force/torque observer to reconstruct the interaction forces and torques.

For both modalities, the use in dynamic manipulation tasks poses additional challenges.

The type and/or the amount of feedback is chosen on a task-dependent basis. Further-

more, the execution of these tasks with real robots require precise motion and interaction

control schemes. The control framework and its aforementioned components are evaluated

in a number of experiments with the two robots depicted in Fig. 1.3.

Clearly, the hardware design is a crucial aspect for the planning and execution of dy-

namic manipulation tasks. While the mechanical design of the robotic manipulators is

not within the scope of this work, design modifications of the end effector are considered.

More specific, the thesis investigates how the use of elastic elements can enhance the robots

performance in dynamic manipulation tasks.

The planning and control methods discussed in this work rely on models of the system

and its environment. In contrast to the pursued model-based approach, learning strategies

are a way to transfer the modeling effort from the human to the robotic system [90]. Both

approaches have been successfully applied to a variety of manipulation tasks. However,

from the authors’ point of view, it is desirable to provide a task model whenever it is

possible. Furthermore, also with model-based control, the system is capable of reacting on

changing environment conditions based on adaptive control schemes.

The thesis considers the realization of dynamic manipulation tasks with generic end

effector designs. However, it is important to point out that dynamic dexterity and multi-

fingered hands do not exclude each other. On the contrary, dynamic manipulation tasks

that require hands with multiple DOF do exist, e.g. twisting a pen in one’s hand. Addi-

tionally, multi-fingered hands also fulfill other functions in addition to manipulation such

as the exploration of objects [10]. Still, most dynamic manipulation tasks can be realized

with simple end effector designs. Consequently, using such an approach is desirable as it

generalizes to more complex hands, e.g. by using only the palm of a multi-fingered hand

for a particular task.
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1.4 Contributions and Outline of this Thesis

The following contributions are presented in this thesis:

Dexterous manipulation with generic end effector designs. The thesis illustrates how

to equip robots with dexterous manipulation skills using simplified and generic end effector

designs. It introduces the relevant modeling foundations, discusses optimization criteria

for trajectory planning, and presents applications to validate the approach.

Control framework for dynamic object manipulation. The particular challenges for the

closed-loop control of dynamic manipulation tasks are addressed: four different observer

designs are developed to reconstruct the forces/torques exchanged between the robot and

its environment. The designs are evaluated in a simulation scenario as well as in experi-

ments. The force/torque observer is integrated in a direct force control scheme to improve

the interaction control for dynamic motions. Finally, an approach for high-speed image

processing is presented which allows to track and to predict the state of objects during

non-contact phases with high sampling rates.

A novel case study for dynamic dexterity. Ball dribbling is introduced as a new case

study for dynamic object manipulation. The system dynamics and optimal trajectory

planning are discussed for both, a rigid and a compliant end effector design. In addition,

the classic juggling task is considered: the thesis reviews the control strategies proposed in

literature and presents an approach for optimal trajectory planning based on a non-local

stability analysis. The thesis provides a comparison between the classic juggling and the

novel dribbling task and elaborates why the latter is more challenging.

End effector design with intrinsic compliance. The thesis proposes the use of intrinsi-

cally compliant end effectors to improve the performance in dynamic manipulation tasks.

The benefits of the approach are demonstrated in experiments which compare the perfor-

mance of the compliant and the rigid end effector design for the dribbling task.

Experimental evaluation. Nonprehensile catching, throwing, dribbling, and juggling

tasks are experimentally studied with a six DOF industrial robot and a 14 DOF anthro-

pomorphic dual-arm manipulator. The experiments validate the approach of the thesis by

integrating the results with respect to modeling, environment perception, planning and

control design in a robotic basketball scenario. In addition, the experiments provide valu-

able insights into practical issues that have not been considered in the theoretical analysis.

The thesis is structured into four main parts: modeling foundations, action planning,

perception & interaction control, and experimental evaluation. The outline is as follows:

Chapter 2 presents the modeling foundations that are needed for the planning and exe-

cution of dynamic manipulation tasks. Then, Chapters 3 and 4 address the challenge of

optimal motion and interaction planning for these tasks. The former chapter focuses on
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non-periodic manipulation tasks that are intrinsically dynamic, whereas the latter chapter

discusses periodic manipulation tasks with intermittent contact. Next, Chapter 5 discusses

environment perception & interaction control for dynamic manipulation tasks. Finally,

Chapter 6 presents a number of case studies in a robotic basketball scenario to evaluate

the implemented control framework in experiments.
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2 Modeling Foundations for Dynamic Object

Manipulation

Summary The goal of this chapter is to summarize and to review state-of-the-art models

that provide the foundations for dynamic object manipulation: a hybrid system model

is introduced to capture the task dynamics with varying contact states. The contact

kinematics are outlined in a general form and it is shown how the equations simplify for

special cases such as rolling or sliding motions. In addition, the chapter discusses models

for friction and for impact events.

As detailed in Chapter 1, dynamic object manipulation extends the classical manip-

ulation techniques: besides (quasi-)static forces, it also involves acceleration forces. In

addition, the relative motion between the robotic hand and the object is actively used.

Examples for such a relative motion are rolling, sliding, spinning, and free flight phases

with no contact. Due to relative motion, impact events and friction forces are central

elements of dynamic object manipulation and must be included in the analysis. Conse-

quently, non-smooth dynamics are an important aspect in modeling. Another consequence

of the varying contact states are hybrid system dynamics. This necessitates a suitable

mathematical model to describe the hybrid control system.

The outline of the chapter is as follows: first, Section 2.1 gives some preliminary def-

initions. Next, Section 2.2 details the modeling approach for discrete-continuous control

systems that is used in this work. Then, Section 2.3 presents a classification of kinematic

constraints that occur during contact. Section 2.4 outlines a mathematical model for the

kinematics of two contacting bodies, considering different contact situations such as rolling,

sliding, spinning, and free-flight (no contact). Then, Section 2.5 discusses friction models

considering both, static and dynamic, modeling approaches. While these models are essen-

tial for task modeling, they are also important for precise robot motion control based on

inverse dynamics. Finally, Section 2.6 focuses on the modeling of impact events. Classifi-

cation criteria for impacts are outlined and two types of impact models are distinguished:

discrete (impulse-momentum) and continuous (force-based) approaches.
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2 Modeling Foundations for Dynamic Object Manipulation

2.1 Preliminaries

The section introduces some preliminary definitions. Detailed discussions of these terms

can be found in the books by Khalil or Parker [99, 69].

Definition 2.1 (Vector field) A vector field on R
m is a smooth map which assigns a

tangent vector f(x) ∈ TqR
m to each point x ∈ R

m. In local coordinates, f is expressed

as a column vector

f(x) =







f1(x)
...

fm(x)






. (2.1)

Definition 2.2 (Autonomous ordinary differential equation) An n-th order au-

tonomous ordinary differential equation is defined by

ẋ(t) = f (x(t)) (2.2)

where x(t) ∈ R
n is the system state and f : D → R

n is a locally Lipschitz vector field

(map) from domain D ⊆ R
n into R

n. A unique solution exists for every initial condition

x(t0) = x0. This solution is denoted by the flow φt(x0) which assigns a trajectory x(t) to

every initial value x0. �

Generalized coordinates, configuration. A set of generalized coordinates

q(t) =







q1(t)
...

qn(t)






∈ Q ⊆ R

n (2.3)

is used to describe the configuration of the system. The configuration space Q is the space

that contains all configurations of a given system.

Degrees of freedom. The degrees of freedom (DOF) of a system are defined by the

number of independent generalized coordinates.

2.2 Hybrid System Model

One of the characteristic features of dynamic object manipulation are varying contact

states. This necessitates a modeling framework for hybrid control systems. Various models

for such systems have been proposed in literature, see e.g. [144, 17, 16, 25].

The hybrid system model (HSM) used in this work has been proposed by Buss [25] and is

similar to the one developed by Branicky et al. [16]. At first sight, the model by Branicky

seems to be more general as it explicitly allows state vectors with varying dimensions.

However, this property is also implicitly included in the model by Buss, compare [25]. A

further difference between the two models exists with respect to the definition of switching

surfaces. Here, the model by Buss provides more flexibility as it allows a time dependence
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2.2 Hybrid System Model

of the switching surfaces. The following section outlines the hybrid system model used in

this work. A detailed description of the HSM as well as a comparison with other modeling

techniques for hybrid systems can be found in [25].

The state vector of the hybrid system is defined as

ζ(t) = ζ =

[

x(t)

xd(t)

]

∈ R
n × Z (2.4)

where x(t) ∈ R
n denotes the continuous and xd(t) = 1, 2, . . . , nd ∈ Z the discrete state

of the system. Accordingly, the output of a hybrid system comprises a continuous y(t) =

h(x,u, xd, ud, t) and a discrete part yd(t) ∈ Z. The continuous control input of the hybrid

system is defined as

u(t) = u =

nd
∑

k=1

δk,xduk(t) ∈ R
m (2.5)

with the Kronecker delta δk,xd being 1 if k = xd and 0 if k 6= xd. The discrete control input

is given by ud(t) ∈ Z. For a compact notation, the time dependency of the variables is

omitted in the following. With (2.4) and (2.5), the continuous dynamics are described by

vector fields of the form

f =















f 1(x,u, xd, ud, t) = f 1(x,u1, xd, ud, t) for xd = 1
...

fnd
(x,u, xd, ud, t) = fnd

(x,und
, xd, ud, t) for xd = nd.

(2.6)

The occurrence of discrete events is defined by switching surfaces Sji

Sji : sji (x,u, xd, ud, t) = 0. (2.7)

If one of the switching conditions is fulfilled (sji (x,u, xd, ud, t) = 0), the state of the system

is reset (reinitialized) based on the transition or jump map

ζ+ =

[

x+

x+d

]

=

[

∆j
i (x,ui, xd, ud, t

−)

j

]

. (2.8)

Here, t− denotes the limit from the left of time t and ζ+ = ζ(t+) is the hybrid state

immediately after the impact event (limit from the right). With (2.4)-(2.8), the definition

of a hybrid control system is complete.

Definition 2.3 (Hybrid control system) A hybrid control system is defined by its con-

tinuous dynamics

ẋ = f i(x,ui, xd, ud, t) if sji (x,u, xd, ud, t) /∈ 0 ∀ {i, j}, (2.9)

transition or jump maps

ζ+ =

[

x+

x+d

]

=

[

∆j
i (x,ui, xd, ud, t

−)

j

]

if sji (x,u, xd, ud, t
−) = 0, (2.10)

and outputs y(t) = h(x,u, xd, ud, t) and yd(t). �
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2 Modeling Foundations for Dynamic Object Manipulation

2.3 Kinematic Constraints

Manipulation requires contact phases between object and hand or end effector respectively.

Typically, a contact is modeled as kinematic constraint [92, 88, 126]. By imposing such

a kinematic constraint on a mechanical system, the possible paths that the system can

follow are reduced and the motion of the system is limited.

If contact is established by form or force closure grasp, object motion relative to the hand

is prohibited and the object is immobilized. During nonprehensile manipulation, however,

motion of the object is only constrained in some directions. The following summarizes

the different types of constraints that can be identified. Further information can be found

in [88, 92].

In general, bilateral and unilateral constraints are distinguished. The former are two-

sided constraints that can be written as an equality c(. . .) = 0, the latter are one-sided con-

straints formalized as inequalities c(. . .) ≥ 0. A further differentiation is made with respect

to time dependency: a scleronomic constraint is stationary and hence time-independent

whereas a rheonomic constraint is moving and time-dependent.

Holonomic constraint. As detailed by the following definition, a holonomic constraint

can be expressed using only configuration variables and potentially time (as it can either

be scleronomic or rheonomic).

Definition 2.4 (Holonomic constraint) A set of functions ch,i(q, t) : Q × R → R on

the configuration space that can be written in the form

ch,i(q, t) = 0, i = 1, . . . , k. (2.11)

is called a holonomic constraint. They define a smooth hypersurface in the configuration

space. �

Nonholonomic constraint. Commonly, constraints that do not satisfy (2.11) are denoted

nonholonomic constraints, compare the discussion in [88]. Based on this interpretation, all

unilateral constraints are nonholonomic as they are not described with an equality.

Definition 2.5 (Nonholonomic constraint) A set of functions cnh,i(q, q̇, t) : Q×Q×

R → R on the configuration space that can be written in the form

cnh,i(q, q̇, t) = 0, i = 1, . . . , k. (2.12)

is called a nonholonomic constraint. �

Definition 2.6 (Pfaffian constraint) A constraint of the form

A(q)q̇ = 0 (2.13)

is called a Pfaffian constraint. Hence, a Pfaffian constraint is a special case of an non-

holonomic constraint. A Pfaffian constraint is integrable if a vector-valued function

ch(q, t) : Q → R
k exists such that A(q)q̇ = 0 ⇔ ∂ch(q,t)

∂q
q̇ = 0. �
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2.4 Contact Kinematics

From this definition it follows that an integrable Pfaffian constraint is equivalent to a

holonomic constraint [92].

Virtual holonomic constraint. Typically, the restrictions described by a holonomic

constraint are physically imposed on the system. However, it is also possible to define

artificial or virtual geometric constraints for a given system [123, 143]. In contrast to

a holonomic constraint, these virtual holonomic constraints have to be fulfilled by some

control action. As detailed in Chapter 4, such constraints can be used for the control of

underactuated periodic manipulation tasks.

2.4 Contact Kinematics

Contact modeling is a fundamental aspect in the planning of robotic tasks. This includes

robotic walking machines, robotic hands grasping objects, and part handling in industrial

scenarios [86]. The following section considers contact kinematics from a manipulation

perspective and outlines the model originally developed by Montana [91].

Assumptions. The derivation of the kinematic contact equations is based on the following

assumptions:

A1 Contacts can be regarded as point contacts.

A2 For two bodies, contact occurs only at one point.

A3 The surfaces of the contacting bodies are regular.

Surface parameterization. Given an object in R
3 with an arbitrary regular surface S,

this surface can be locally described by the orthogonal parameterization c : R2 → R
3,

c(u, v) =





f1(u, v)

f2(u, v)

f3(u, v)



 . (2.14)

Tangent plane. The tangent plane to the surface is spanned by the vectors

cu(u, v) :=
∂c

∂u
cv(u, v) :=

∂c

∂v
. (2.15)

Kinematic equations of contact. In the following, the subscripts 1 and 2 denote the

two bodies. A schematic of a general contact situation is depicted in Fig. 2.1. The surfaces

of the two bodies in the body-fixed coordinate frames Σ1, Σ2 are parameterized according

to (2.14). The contact frames Σc1, Σc2 are defined as the normalized Gauss frames at the

contact point. The angle ψ is defined as the rotation angle around the z-axis of Σc2 that

aligns the x-axes of Σc1 and Σc2. Additionally, the body-fixed frames Σl1(t), Σl2(t) are

defined that coincide with the respective contact frame at time t. The motion of object 1
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Body 1

Body 2

Σ1

Σ2

Σc2
Σc1

ψ

cu,1

cv,1

n1

cu,2

cv,2

n2

Fig. 2.1: Motion of two bodies in contact, adopted from [92].

relative to object 2 is then described by the translational v =
[

vx vy vz
]T

and rotational

ω =
[

ωx ωy ωz
]T

velocity of Σl1(t) relative to Σl2(t). The contact kinematics are given

by [91]

[

u̇1
v̇1

]

= M−1
1

(

K1 + K̃2

)−1
([

−ωy
ωx

]

− K̃2

[

vx
vy

])

,

[

u̇2
v̇2

]

= M−1
2 Rψ

(

K1 + K̃2

)−1
([

−ωy
ωx

]

+K1

[

vx
vy

])

, (2.16)

ψ̇ = ωz + T 1M 1

[

u̇1
v̇1

]

+ T 2M 2

[

u̇2
v̇2

]

,

0 = vz.

with K̃2 = RψK2Rψ and Rψ =

[

cosψ − sinψ

− sinψ − cosψ

]

.

Here, M is the metric tensor, K is the curvature tensor, and T is the torsion form of the

corresponding surface. The three quantities are commonly referred to as the geometric

parameters of a surface. Details on these terms can be found in the book by Murray [92]

and in Appendix A.1.

The equations (2.16) describe the kinematics of a point contact in its most general form.

Special types of relative motion are realized by imposing additional constraints - this is

detailed in the following subsections.

2.4.1 Sliding

A sliding motion imposes the constraint of zero rotational velocity,

ωx = ωy = ωz = 0. (2.17)

2.4.2 Rolling

Here, rolling and pure rolling are distinguished. For the former, the following conditions

vx = vy = 0, (2.18)
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have to be fulfilled. Pure rolling adds the constraint of no spin motion,

vx = vy = ωz = 0. (2.19)

2.4.3 Spinning

A spinning motion comprises only rotational velocities in normal direction to the tangential

contact plane,

ωx = ωy = vx = vy = 0. (2.20)

2.4.4 No Contact / Free-Flight

Finally, the special case of no contact between object and end effector is considered. Here,

none of the objects’ six DOF is constrained and nonzero velocities vz are allowed [88]. The

motion of the object is determined by gravitational acceleration and possibly air resistance.

2.5 Friction

Friction is a nonlinear phenomenon which is of great importance for various engineering

disciplines. With respect to this work, there are three reasons for the interest in accurate

friction models: first, nonprehensile manipulation includes relative motion between object

and hand such as rolling or sliding. Hence, to plan these tasks, a model of the friction forces

is essential. The second reason is related to the motion control of robotic manipulators.

The successful execution of dynamic manipulation tasks with robotic systems requires a

precise motion control of the robot. This is typically achieved by an inverse dynamics

scheme which necessitates an accurate description of the friction forces as part of the

dynamic model, see Sec. 5.3 for details. Finally, friction is an important aspect when

considering impact between bodies with nonsmooth surfaces.

Numerous friction models have been proposed. Detailed surveys on these models can

be found in [4, 97]. In general, one distinguishes static and dynamic friction models.

The characteristic feature of static models is that the friction force only depends on the

current velocity. Hence, non-stationary friction phenomena such as micro-slip or hysteretic

behavior are not captured by static models. This shortcoming is addressed by dynamic

(or state variable) friction models. These models introduce one (or more) state variable(s)

and the friction force is a function of the current velocity and the state variable(s). In the

following, static and dynamic friction models are briefly discussed and their suitability for

the different purposes (trajectory planning, impact modeling, and friction compensation

in motion control) is evaluated.

2.5.1 Static Models

This category includes all models that use static maps between velocity and friction

force [27]. Classical static friction models comprise a combination of four components,

which capture the fundamental friction phenomena.
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(a) (b) (c) (d)
FfFfFfFf

vvvv

Fig. 2.2: Static friction models: (a) Coulomb friction, (b) Coulomb and viscous friction, (c)
Coulomb, viscous, and static friction, (d) Coulomb and viscous friction with Stribeck
effect.

Coulomb friction. The basic idea of Coulomb friction is that the friction force opposes

the motion and that its magnitude is independent of velocity and contact area [97]. Hence,

it is defined as

Fc(v, Fn) = µcFnsgn(v) = Fc,0sgn(v). (2.21)

Here, sgn(·) denotes the signum function and v is the relative velocity of the two contact

areas. Fc,0 is a force proportional to the normal load Fn given by Fc,0 = µcFn with the

Coulomb friction coefficient µc, compare Fig. 2.2(a).

Viscous friction. The second friction component, viscous friction, describes the friction

that is caused by the viscosity of lubricants. Hence, it is a function of velocity:

Fv(v) = kvv or Fv(v) = kv ||v||
δv sgn(v), (2.22)

where kv is the viscous friction coefficient, ||v|| denotes the norm of v, and δv is a parameter

that depends on the geometry of the application [97]. The combination of Coulomb and

viscous friction is depicted in Fig. 2.2(b).

Static friction. Coulomb and viscous friction do not cover the static friction forces at

zero velocity. These friction forces prevent relative motion by counteracting the external

forces Fe up to a friction threshold or break-away force Fs,t = µsFn determined by the

normal force Fn and the static friction coefficient µs. Static friction is described as

Fs(Fn, Fe) =

{

Fe if v = 0 and ||Fe|| < Fs,t

Fs,tsgn(Fe) if v = 0 and ||Fe|| ≥ Fs,t.
(2.23)

The combination of Coulomb, viscous, and static friction is depicted in Fig. 2.2(c).

Stribeck effect. The static friction components yields a discontinuous friction force at

the transition from rest to relative motion. As this discontinuity contradicts experimental

observations, Stribeck proposed a modification of the friction curve at non-zero veloci-

ties [135],

F (v, Fn) = (Fs,t − Fc,0)e
−||v/vs||

δs

sgn(v), (2.24)

with the empirical parameters vs (Stribeck velocity) and δs (commonly δs = 2). The

combined model comprising the four components is depicted in Fig. 2.2(d).
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Fig. 2.3: Bristle model: representation of the friction phenomenon on a microscopic level,
adopted from [48]. For simplicity, the bristles of the lower surface are shown rigid.

2.5.2 Dynamic Models

Static models fail to explain some additional friction phenomena that have been experi-

mentally observed such as micro-slip, hysteresis, and varying break-away forces. Dynamic

models address these shortcomings and describe friction at a microscopic level. At this

scale, the surfaces are irregular and contact occurs only at certain points which are called

asperities. Haessig et al. proposed to represent this contact state with a bristle model

illustrated in Fig. 2.3. At various points, the elastic bristles of the two surfaces are in

contact with each other and the relative motion of the bodies causes a deflection of the

bristles. For each bristle, the deflection results in a force that contributes to the friction

force, for details see [48]. Although the original bristle friction model from Haessig is com-

putationally inefficient, the basic idea of modeling the contact with bristles has been used

in various models.

Dahl model. Dahl’s model was motivated by the observation of micro-slip, also called pre-

sliding displacement or Dahl effect, between contacting surfaces [32]. The model captures

the spring-like behavior of the bristle model, without explicitly using it. In its common

form, the Dahl model is given by

ż = v −
||v||

Fc,0
σ0z,

F = σ0z. (2.25)

Here, the internal state variable z represents the average bristle deflection and σ0 is the

bristle stiffness. While the model captures the micro-slip phenomenon, it does not include

the Stribeck effect.

LuGre model. The LuGre (Lund Grenoble) model was proposed by Canudas de Wit et

al. in [27]:

ż = v −
||v||

g(v)
z

F = σ0z + σ1(v)ż + kvv (2.26)

with g(v) =
1

σ0

(

Fc,0 + (Fs,t − Fc,0) e
−(v/vs)2

)

.
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Again, the variables z and σ0 denote the average bristle deflection and stiffness, σ1(v) is

the damping, and g(v) captures Coulomb friction and Stribeck effect. When g(v) = Fc/σ0
and σ1 = kv = 0, the LuGre model reduces to the Dahl model. The central advantages

of the LuGre model are its completeness with respect to the modeled friction phenomena

and the relatively low number of parameters. In total, six parameters have to be identified

for the LuGre model: the ones already known from the static models (Fc,0, Fs,t, kv, vs)

and the two additional parameters σ0 and σ1.

Beside these two, other dynamic friction models have been proposed: Bliman and Sorine

presented an extension of Dahl’s model using two state variables [13]. However, their

model does neither capture the Stribeck effect nor frictional lag [40]. Armstrong-Hélouvry

introduced a dynamic friction model with seven parameters. This model includes the

various friction phenomena by using different models for stiction and sliding [4].

2.6 Impacts

For interacting bodies, impacts are an essential phenomenon: they occur when two ore more

bodies collide with each other and are characterized by a short time duration and high

force levels. For various research areas, such impact events are of great relevance. Popular

examples are walking/hopping machines or drive trains with backlash. Impacts are also an

important element in dynamic manipulation. To this end, the section characterizes impact

types and reviews the state-of-the-art models to describe them. The aim of these models

is to determine/predict the post-impact state of the system based on its pre-impact state.

Clearly, the modeling process depends on the intended usage of the model: an online usage

imposes constraints on the model complexity and hence reduces the accuracy.

The following subsections discuss the impact events that are relevant for dynamic object

manipulation, namely collisions between two bodies with a single contact point. A general

introduction to non-smooth dynamics can be found in the book by Brogliato [18]. An

extensive literature survey on the modeling of impact dynamics was provided by Gilardi

and Sharf [45].

2.6.1 Classification Criteria

When an impact event occurs, the two colliding bodies get in contact. The case of a general

impact between two bodies is illustrated in Fig. 2.4. The line of impact is the common

normal on the contacting surfaces. In the following, velocities along the line of impact are

denoted as normal velocities with subscript n. Accordingly, velocities in the tangential

plane of the contact are labeled with the subscript t.

Independent of the model that is used for the mathematical description, impacts are

classified based on the following criteria [45].

Direct and oblique impact. As depicted in Fig. 2.5(a), an impact is denoted as direct if

the pre-impact velocities of the two bodies are along the line of impact. Accordingly, an

oblique impact occurs if one or both initial velocities do not fulfill this condition, compare

Fig. 2.5(b). In the latter case, at least one body has a non-zero tangential velocity.
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Tangential plane

t1

t2

n

Fig. 2.4: Illustration of a general impact between two bodies.

(a) (b) (c) (d)

COG 1

COG 1 COG 2COG 2

v1v1
v2

v2

tttt

nnnn

Fig. 2.5: Classification of impacts: (a) direct, (b) oblique, (c) central / collinear, (d) eccentric.

Central and eccentric impact. An impact is characterized as central or collinear if the

centers of mass are on the line of impact, see Fig. 2.5(c). Consequently, the impact forces

in normal direction do not change the rotational velocity. In contrast, for an eccentric

impact the center of mass of one or both bodies is not on the line of impact, compare

Fig. 2.5(d). Hence, the rotational velocity after the impact is changed due to the impact

forces in normal direction.

Energy loss. For all impact events, a compression and a restitution phase can be distin-

guished. The compression phase begins with the initial contact of the two bodies. The

transition to the restitution phase occurs at the time of maximum deformation when the

relative velocity between the two bodies is zero. The end of the restitution phase is reached

when the bodies separate.

Depending on the energy loss during the impact event, four impact types are character-

ized: a perfectly elastic impact occurs when no kinetic energy is lost during the collision

and the deformation is completely reversed. In contrast, for a perfectly inelastic or plastic

collision, the maximum possible amount of kinetic energy is lost, the two bodies deform

and stick together after the impact. If the kinetic energy is not completely conserved but

the deformation is completely reversed, the impact is partially elastic. Finally, an impact

with a partial loss of kinetic energy and some amount of permanent deformation is denoted

as partially plastic.
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The first two types are idealized cases: a perfectly elastic impact assumes that the energy

flow from the initial kinetic energy to the elastic strain energy is completely reversible.

Similarly, a perfectly inelastic collision assumes that the lost kinetic energy is completely

transferred into plastic deformation. In reality, impacts of two colliding masses are partially

plastic or partially elastic and hence a mixture of the idealized cases. Typically, not all

of the initial kinetic energy is transformed into elastic strain or plastic deformation: some

energy is dissipated in other processes such as wave propagation, sound, and heat [45].

Smooth and frictional impact. Friction is an important aspect as it can stop or reverse

the tangential motion during an impact. In contrast, if the impact is assumed frictionless,

no tangential forces can be exchanged between the two bodies and the impulse in tangential

direction, ∆Pt is zero.

2.6.2 Discrete Models

Discrete or impulse-momentum-based impact models are based on the following assump-

tions: the impact event is instantaneous and the occurring impact forces are impulsive.

This implies discontinuous changes in the velocities of the colliding bodies while the posi-

tions are invariant. In addition, forces that are not caused by the impact (e.g. gravitational

or spring forces) are assumed to be negligible. Typically, discrete models are used for the

collision of bodies that can be considered as effectively rigid [45, 145]. This criteria is

fulfilled if strain energy is negligible and the contact area is small compared to the size of

the body [136]. Discrete models are based on the specification of a coefficient of restitution

(COR) cr, which describes the plasticity of the impact and varies in the range from 0 (per-

fectly plastic) to 1 (perfectly elastic). The aforementioned assumption of an instantaneous

impact with discontinuous changes in the velocities results in infinitely large impact forces.

Hence, it is more suitable to deal with impulses instead. In the following, the subscript

specifies the body (1 or 2) and the superscript + denotes post-impact velocities.

The change in momentum over a time interval [ti, tf ] or the so called impulse-momentum

equations are given by

∆P = m∆v = m(vf − vi) =

∫ tf

ti

F dt,

∆L = J∆ω = J(ωf − ωi) =

∫ tf

ti

Mdt =

∫ tf

ti

r × F dt, (2.27)

where P / L denotes the linear / angular momentum, m and J are the mass and the

inertia tensor of the body, and r is the vector from the center of mass to the contact point.

With conservation of momentum, the sum of momentum of two bodies before and after a

collision is equal

m1v1 +m2v2 = m1v
+
1 +m2v

+
2 , (2.28)

J1ω1 + J2ω2 = J1ω
+
1 + J2ω

+
2 . (2.29)

Discrete models decouple the impact problem into a contact problem in normal direction
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and a friction problem in tangential direction [46]: the linear impulse ∆P is divided in a

normal impulse ∆Pn and a tangential impulse ∆Pt. Accordingly, the relative translational

velocity at the contact point C is divided into a normal component vC,n and a tangential

component vC,t.

Normal direction. In normal direction, the most common models are the impact laws by

Poisson, Newton, and Stronge.

• Poisson’s COR. The normal impulse ∆Pn of an impact is the sum of the impulses

in the compression and restitution phase

∆Pn = ∆Pn,c +∆Pn,r. (2.30)

In Poisson’s hypothesis, the coefficient of restitution is defined as the ratio of the

compression and the restitution impulse

cr,P =
∆Pn,c
∆Pn,r

. (2.31)

• Newton’s COR. While Poisson’s COR is based on the impulses during impact,

Newton’s model determines the coefficient of restitution based on velocities. Let vC,n
(v+C,n) denote the relative normal velocity of the contact point C before (after) the

impact. Then, Newton’s model defines the coefficient of restitution as

cr,N = −
v+C,n
vC,n

. (2.32)

• Stronge’s COR. Stronge’s model defines the COR as ratio of the work W in resti-

tution (subscript r) and compression phase (subscript c) [136],

cr,S = −
Wr

Wc

. (2.33)

Tangential direction. The aforementioned three coefficients are for the normal direction.

However, if the contacting surfaces are not smooth, changes in the translational velocities

tangential to the impact plane and the rotational velocities will be induced [45]. A common

method to reflect these changes is related to Newton’s COR and specifies coefficients of

restitution for these directions as

cr,t = −
v+C,t
vC,t

cr,r = −
ω+
C

ωC
. (2.34)

Brach proposesd an alternative approach and related the tangential and normal im-

pulse [15],

∆Pt = µ∆Pn. (2.35)

For collinear or smooth (non-frictional) impacts, the models of Poisson, Newton, and

Stronge are equivalent. However, for frictional impacts with transitions from slip to stick
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or slip-reversal, Newton’s and Poisson’s model can lead to different energetic inconsisten-

cies [136]. Despite this shortcoming, velocity-based coefficients of restitution will be used

in this work as they provide an accurate description for central impacts of effectively rigid

bodies and as their mathematical compactness allows a direct integration into the task

planning.

2.6.3 Continuous Models

Continuous or force-based impact models relax the assumptions of the discrete models:

they consider a finite impact duration and the positions of the colliding bodies are not

fixed during impact. As the deformation of the objects is explicitly taken into account,

continuous models are particularly well suited for the impact of elastic bodies [76]. Various

continuous models have been proposed to capture the deformation and energy loss during

impact, e.g. the models of Hertz, Kelvin-Voigt, and Hunt-Crossley [50, 58]. Commonly,

continuous models include (possibly nonlinear) spring and damper forces. in the following

paragraph, this is exemplarily illustrated for the Hunt-Crossley model.

Hunt-Crossley model. For this model, the impact force in normal direction consists of

a nonlinear spring and a nonlinear damping force

F (t) = −ksx
λ1 − kdx

λ2 ẋ. (2.36)

where x is the penetration, ẋ the penetration velocity, ks the spring constant, and kd the

damper constant [58]. The exponents λ1, λ2 take into account the geometry of the contact

and in its common form, λ = λ1 = λ2 takes a value close to one. Methods for the parameter

identification of continuous models have been proposed in [7, 47, 33].

2.6.4 Extensions

Multibody systems. The previous models considered the collision of two bodies at a sin-

gle contact point. Impact situations for multi-body systems and/or with multiple contacts

were addressed by Glocker and Pfeiffer [46, 100]. Studer investigated such systems of rigid

bodies with non-smooth dynamics and developed a simulation environment [137].

Elastic bodies. Discrete and continuous model are both based on lumped parameters.

For elastic bodies, distributed models can be used to describe the deformation and the

energy loss during impacts. The Bullet physics project is one of the few examples that

considers soft body dynamics [30]. Tian and Jia presented a distributed model for the

specific class of deformable, shell-like objects [138].

2.7 Summary

This chapter provided the modeling foundations for dynamic object manipulation. To

this end, state-of-the-art models for the relevant areas were outlined and briefly discussed.
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Section 2.2 introduced a hybrid system model to cover the discrete and continuous aspects

that are characteristic for dynamic manipulation tasks. Section 2.3 discussed the different

types of kinematic constraints that occur during contact. Then, in Section 2.4, the kine-

matic equations for two contacting surfaces were derived. Next, Section 2.5 outlined the

fundamental properties of static and dynamic friction models. For the planning of manip-

ulation tasks, the static models provide sufficient accuracy. For friction compensation in

robotic motion control schemes, however, dynamic models are generally preferable. Here,

the LuGre model offers the best trade-off between accuracy and mathematical complexity.

Finally, Section 2.6 considered the modeling of impact events. Both, discrete and con-

tinuous, impact models were outlined. The former are based on the impulse-momentum

equations and assume an instantaneous impact. The mathematical compactness of discrete

models comes at the cost of reduced accuracy and potential inconsistencies for frictional

impacts. In contrast, the continuous models consider a finite impact duration and motion

of the objects during impact. Naturally, this results in an increased mathematical com-

plexity. As the manipulated objects in this work are considered to be effectively rigid,

the discrete models provide an accurate description. For manipulation tasks with elastic

bodies, continuous or distributed impact models are preferable.
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Summary This chapter discusses non-periodic dynamic manipulation tasks and details

how dynamic dexterity can be realized with generic end effector designs. The planning of

optimal trajectories is addressed: the chapter summarizes the constraints that have to be

considered and discusses criteria for the trajectory optimization. Three exemplary appli-

cations are studied: first, rolling manipulation is considered with a ball-on-plate system.

Second, dual-handed ball throwing using a basic force closure grasp is addressed. Third,

a nonprehensile approach for robotic catching is presented and two catching strategies are

discussed.

While there are animals with locomotion or sensor capabilities superior to those of

humans, the dexterous manipulation skills of humans are outstanding [10]. This is due to

two reasons: superior grasping capabilities and a better coordination between sensor and

motor skills. For conventional dexterous manipulation, advanced grasping capabilities are

a prerequisite. This is illustrated by the fact that a general form closure grasp requires

seven contact points [125]. Hence, multi-fingered hands are needed to manipulate objects of

different size and shape with a form closure grasp. For dynamical dexterous manipulation,

the grasping capabilities are less important. Many dynamic manipulation tasks can be

performed in a nonprehensile fashion using only a single contact point between end effector

and object [57, 84]. Instead, these tasks require a high ability of coordination between

sensor and motor skills.

In general, the successful execution of manipulation tasks requires task-specific decisions.

Some of these decisions can be made offline while others have to be made online during the

task execution. Offline decisions commonly include a preselection that specifies the overall

strategy for a particular task. Online decisions include the compensation of disturbances

or the reaction to unforeseen events. The planning approach pursued in this work includes

both decision types: first, a number of selection criteria are evaluated offline. The creation

of look-up tables then allows to evaluate these selection criteria online and create the

corresponding trajectory.

The outline of the chapter is as follows: first, Section 3.1 provides an overview of

related work. In Section 3.2, the planning of motion and force trajectories for these tasks

is addressed. Then, Section 3.3 presents applications for rigid end effector designs.
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3.1 Related Work

Robots with dynamic skills have been studied in various research works: Hodgins and

Raibert were among the first and investigated dynamic locomotion primitives such as hop-

ping for robots [52]. With respect to manipulation, dynamic dexterity was first addressed

by Mason and Lynch [90]. Their work was motivated by the following considerations: first,

dynamic manipulation is either the most efficient or even the only method to perform cer-

tain tasks. Second, dynamic dexterity helps to reduce the complexity of the end effector

and/or manipulator. Third, exploiting the task dynamics by following a graspless (non-

prehensile) approach is beneficial for the handling of bulky objects. The new manipulation

paradigm was demonstrated for tasks such as planar throwing or snatching using mini-

malistic robots and open-loop control [82, 84]. Dynamical dexterous manipulation skills

for different robots were also discussed by Koditschek et al. [71]. In addition to motion

planning, they addressed closed-loop control of these tasks based on visual feedback [106].

Huang investigated impulsive manipulation as an example of dynamic manipulation with

intermittent contact [57]. In his work, the action planning was decomposed into an inverse

sliding problem, which determined the required velocities to drive an object to the desired

state, and an impact problem, which determined the parameters of the collision between

object and actuator. The presented case studies were restricted to planar problems.

Robotic throwing tasks were investigated by several researchers: Kato and co-workers

planned throwing motions and presented experimental results for a two DOF robot and

an object with mass 0.01 kg [67]. Katsumata et al. discussed a throwing task with an

underactuated two DOF robotic manipulator [68]. Considering more complex robotic

structures, Lombai and Szederkenyi followed an offline approach to optimize throwing

trajectories for a six DOF robot [79]. Senoo used a four DOF manipulator and a robotic

hand to generate throwing trajectories for a tennis ball [120]. They proposed a rolling

motion of the ball on the hand in order to increase the release velocity.

The task of robotic ball catching has also been studied by various researchers: Andersson

realized two-dimensional catching of ping-pong balls with a robotic arm [3]. Hove and

Slotine presented spatial catching with a four DOF manipulator [55]. Burridge et al.

described a mirror law for catching a ball with a three DOF robot and a planar paddle

end effector [24, 23]. Frese et al. presented ball catching with a seven DOF robot [38].

In their setup, a basket served as end effector to catch the ball. Bäuml et al. discussed

kinematically optimal catching with a seven DOF robot and a robotic hand [6]. Riley

and Atkeson investigated ball catching with a humanoid robot using a baseball glove to

catch [103]. Frank et al. considered shooting and catching as a new technology within

logistic chains [37]. In a first experimental study, a Gantry type robot was used to catch

objects with up to 0.06 kg.

The large majority of the aforementioned work is based on strategies that applied a form-

or force-closure grasp to catch/throw the object. Additionally, the mass of the manipulated

object was sufficiently small and thus neglected. In contrast to these approaches, this

chapter considers the skill of nonprehensile catching. Such a skill is beneficial as it allows

to catch objects that are too large for conventional robotic hands. Furthermore, the chapter

discusses catching and throwing of objects with non-negligible mass properties.
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ẋO,(t+∆t)

xM,d
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Fig. 3.1: Overall control structure highlighting the action planning module which is addressed
in this chapter.

3.2 Trajectory Planning

Fig. 3.1 depicts the overall control structure and highlights the robot action planning

module. Here, the term action planning refers to the planning of desired motion (xM,d,

ẋM,d, ẍM,d) and/or force (F E,d, ME,d) trajectories. The planning process is based on

the modeling foundations discussed in Ch. 2. For dynamic manipulation tasks, the action

planning has to be performed online based on the provided sensor feedback. The inputs are

the actual end effector pose (xM,a), the predicted object trajectory (xO,(t+∆t), ẋO,(t+∆t)),

and the estimated forces/torques exchanged with the environment (F̂ E, M̂E). Details on

the environment perception are given in Ch. 5.

The overall goal is to find motions that fulfill the desired optimization criteria and that

are dynamically feasible. In this context, dynamically feasible means that the resulting

hybrid state trajectory can be realized with a control input u and the corresponding torques

τ do not exceed hardware limitations [130]. The following section presents the constraints

that need to be considered in the planning stage. It also discusses selection criteria that

can be used to optimize the trajectory of the hybrid system.

3.2.1 Constraints

Two types of constraints are commonly distinguished: two-sided equality constraints and

one-sided inequality constraints, compare Sec. 2.3. Equality constraints are given in the

form

ce(γ) = 0, (3.1)

where γ denotes a set of parameters that define the trajectory. Typically, equality con-

straints are used to specify positions, velocities, and accelerations at certain points in time.

Inequality constraints are given by

ci(γ) ≤ 0. (3.2)

With these constraints, hardware limitations such as maximum manipulator acceleration

or joint limits are considered.
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3 Non-Periodic Dynamic Manipulation Tasks

3.2.2 Optimization Criteria

The following paragraphs outline selection criteria wi for the optimal trajectory planning.

Based on these selection criteria, task-specific cost functions

J(γ, w1, . . . , wk) (3.3)

are defined. The optimization problem is given by

min
γ∈Γ

J(γ, w1, . . . , wk)

with Γ = {γ ∈ R
n, ci(γ) ≤ 0, ce(γ) = 0} (3.4)

γ = [a1, . . . , am] .

The parameter set γ defines the trajectory and thus also the corresponding joint angles q.

Consequently, the selection criteria wi(·) can be formulated either as function of γ or q.

Distance from joint limits. The distance from mechanical joint limits imposes con-

straints on the trajectory planning. It can also be utilized to ensure that the manipulator

stays within preferred regions of its workspace. The measure is given by

wj(q) =
n
∏

i=1

wj,i(qi, qi,min, qi,max) (3.5)

where qi is the angle of the i-th joint and wj,i corresponds to the normalized joint limit

measure for the i-th joint.

Dynamic manipulability measure. A global measure for the manipulation ability has

been proposed by Yoshikawa in [147]. The measure quantifies the ability for arbitrarily

changing position and orientation of the end effector in a given posture. The main drawback

of this concept is the fact that it is a kinematic measure ignoring the arm dynamics. Hence,

it is not suitable for planning dynamic motions. This shortcoming is addressed by the

dynamic manipulability measure wd introduced in [148]. The scalar measure is defined as

wd(q) =
1

wd,max

√

det
(

J(q)
(

BT (q)B(q)
)−1

JT (q)
)

(3.6)

where J(q) ∈ R
6×n is the manipulator Jacobian and B(q) ∈ R

n×n is the inertia matrix

of the manipulator. The scaling factor wd,max is used to normalize the measure. Fig. 3.2

exemplarily shows the dynamic manipulability measure of the six DOF industrial robot

used in this work for different yz-planes and a constant end effector orientation. The

reference coordinate system is located in the robot base with the z-direction pointing

vertically upwards and the y-direction to the right.

Object orientation. In accordance with the distance from mechanical joint limits, the

object orientation can be regarded as both a constraint and an optimization criteria. For a
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Fig. 3.2: Normalized dynamic manipulability measure wd for different yz-planes: (a) x =
0.45 m, (b) x = 0.50 m, (c) x = 0.55 m.

specific object, there might exist a range of admissible contact points. Preferences within

this range can be considered with a normalized selection criteria wo(q,oO), where oO
denotes the orientation of the object.

Energy consumption. Finally, the energy consumption of the system is another criteria

for the evaluation of planned trajectories. It can be approximated by

wu(γ) =
1

wu,max

∫ te

ts

u(γ, t)Tu(γ, t)dt, (3.7)

where wu,max normalizes the measure and te−ts denotes the duration of the task execution.

3.2.3 Optimization Method

In order to generate near-optimal trajectories in limited time, the optimization method

combines offline and online decisions. The method considers tasks that include a free-

flight phase. This is a common feature for many dynamic manipulation tasks, the two

best-known examples are catching and throwing.

In a first step, equally spaced grid points are defined in the robot workspace, compare

Fig. 3.3. For each grid point, the values of the optimization criteria wj and wd are de-

termined by averaging the measures for different end effector orientations at that point.

For the 14 DOF manipulator, the redundancy is resolved so that distinct values can be

assigned to each grid point. These values are stored in look-up tables.

In the second step, motion trajectories are preplanned. Here, the initial state of the

manipulator for a given task is assumed to be fixed. The trajectories are generated us-

ing fifth-order polynomials of which coefficients are determined by position, velocity, and

acceleration constraints at initial and final time. The resulting trajectories are checked

for dynamic feasibility and their costs are determined based on a combination of wu, wo,

wd, and wj. Again, each grid point is assigned a distinct value by averaging the costs for

different final states and the costs are stored in a look-up table.
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predicted / desired object trajectory

workspace boundary

candidate points

initial pose

grid points

xe(t0)

xo(t)

Fig. 3.3: Illustration of the optimization approach.

The third step of the optimization is performed online: the module determines where the

desired or predicted free-flight trajectory of the object intersects the workspace of the robot,

compare Fig. 3.3. For this part of the free-flight trajectory, the nearest neighbors in the

offline computed look-up tables are determined and the ten points with the lowest costs are

considered as candidate points. For each of these points, the module generates trajectories

using fifth-order polynomials. Based on the desired/predicted free-flight trajectory of the

object, the coefficients of the polynomials are determined by the task-specific position,

velocity, and acceleration constraints at initial and final time. The resulting trajectories of

the candidate points are checked for workspace and acceleration constraint violations and

the feasible solution with the lowest costs is selected.

3.3 Application for Rigid End Effectors

This section discusses three dynamic manipulation tasks for rigid end effectors: rolling

manipulation, throwing, and catching. Here, the following assumptions are made:

A1 The ball is a rigid body and its geometric center coincides with the center of mass.

A2 Impacts between ball and manipulator are instantaneous inelastic collisions described

by the coefficient of restitution cr.

A3 Air resistance is negligible.

The state of the system is given by

x =
[

xTM xTB ẋTM ẋTB
]T

∈ R
n (3.8)

where xM is the pose of the end effector(s), xB the pose of the ball, and ẋM (ẋB) the corre-

sponding velocities. The overall dimension n of the state is task-dependent. Experimental

results for the manipulation tasks are given in Chapter 6.

3.3.1 Balancing

For dynamic manipulation, especially when following a nonprehensile approach, relative

motions between object and end effector are an important element, compare Sec. 2.4. With
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3.3 Application for Rigid End Effectors

Fig. 3.4: Schematic of the ball-on-plate system.

respect to the applications discussed in this work, rolling manipulation is of particular

interest: the stabilization of a spherical object on a planar surface is a preliminary skill for

the nonprehensile catching task. To this end, the ball-on-plate system is briefly reviewed.

A schematic of the system is shown in Fig. 3.4.

The contact kinematics are derived based on (2.16). The surface parameterization of

the ball with radius rB and the plate are given by

c(uB, vB) =





rB cos uB cos vB
rB cos uB sin vB

rB sin uB



 c(uM , vM) =





uM
vM
0



 (3.9)

with −π/2 < uB < π/2 and −π < vB < π. The geometric parameters of the sphere and

the manipulator plate are given by [92]:

MB =

[

rB 0

0 rB cos uB

]

, KB =

[

1/rB 0

0 1/rB

]

, TB =
[

0 −1/rB tan uB
]

,

MM =

[

1 0

0 1

]

, KM =

[

0 0

0 0

]

, TM =
[

0 0
]

. (3.10)

For pure rolling, the condition vx = vy = vz = ωz = 0 has to be fulfilled (compare

Subsec. 2.4.2) and the contact kinematics simplify to:













u̇B
v̇B
u̇M
v̇M
ψ̇













=













0

1/ cos uB
−rB sinψ

−rB cosψ

− tan uB













ωx +













−1

0

−rB cosψ

rB sinψ

0













ωy. (3.11)

The design of a balancing control is presented by Lee and Bätz in [158]. The controller

utilizes feedback from a wrist force/torque sensor to determine the contact point and

stabilizes the ball at the center of the plate. Similar studies of the system dynamics and

the design of a stabilizing controller can be found in [98, 72, 87, 12].
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End effector 1 End effector 2

Object

Fig. 3.5: Schematic of dual-handed throwing with a force closure grasp.

3.3.2 Throwing

The two-handed throwing of spherical objects with a basic force-closure grasp is considered.

Hence, the object’s orientation and its rotational velocity are neglected. The state of the

system is then given by

x =
[

xTM,1 xTM,2 pTB ẋTM,1 ẋTM,2 vTB
]T

∈ R
32 (3.12)

with xM,i =
[

pTM,i oTM,i

]T
∈ R

7 and ẋM,i =
[

vTM,i ωT
M,i

]T
∈ R

6. A schematic of the of

the dual-handed throwing task is depicted in Fig. 3.5. As first subtask, a grasping motion

is executed if a stationary ball position within the robots workspace is tracked. Grasping

is realized by force closure, applying a desired normal force on the contact surface. The

imposed constraint for the normal force Fn is

||mB(aB,max + g)|| ≤ Fr = µsFn, (3.13)

where µs is the static friction coefficient. For the two manipulators, the throwing tra-

jectories in the directions tangential to the contact surfaces are planned based on the

optimization method presented in Subsec. 3.2.3. For the direction normal to the contact

surfaces, the desired grasping force is specified.

3.3.3 Nonprehensile Catching

This subsection details the one-handed catching of spherical objects. Due to the spherical

shape, the object’s orientation and its rotational velocity are not considered in the trajec-

inertial framexM

n̂M

xB

rB

Fig. 3.6: Schematic of the one-handed nonprehensile catching.
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free flight catch contact

rebound

catch balanceswitch

Indirect catch

Direct catch

ẋ = f1(x,uf )

x− ∈ Sc
f

x+ = ∆c
f
(x−) ẋ = f2(x,uc)

x− ∈ Sb
c

x+ = ∆b
c(x

−) ẋ = f3(x,ub)

x− ∈ Sf
f

x+ = ∆f
f
(x−)

Fig. 3.7: Direct and indirect catch - evolution chart. Solid boxes depict discrete states, dashed
boxes depict instantaneous transitions.

tory optimization. They are, however, used for the balancing control and hence included

in the state vector

x =
[

xTM xTB ẋTM ẋTB
]T

∈ R
26 (3.14)

with xM =
[

pTM oTM
]T

∈ R
7 and xB analogous. Two different catching strategies

are considered: direct catch and indirect catch. The former strategy catches the ball at

first contact, whereas the latter strategy includes an initial rebound and catches the ball

at the second contact. The trajectory generation is based on the optimization method

described in Subsec. 3.2.3 and the task-specific constraints are detailed in the following

two paragraphs.

Direct catch. The evolution chart for a direct catch is depicted in Fig. 3.7. Here, the end

effector trajectory at time tc of the initial contact has to fulfill the following constraints:

pM(tc) = pB(tc) + rBv̂B(tc), vM(tc) = vB(tc),

aM(tc) = aB(tc), n̂M(tc) ‖ −vB(tc). (3.15)

Here, rB denotes the radius of the ball, v̂B(tc) = vB(tc)/ ||vB(tc)|| is the normalized ball

velocity, and n̂M(tc) is the unit normal vector on the end effector plate. Once contact

between ball and plate is established, the end effector is decelerated with acb = const.

in the direction of vM(tc). Hence, the time tb when the translational velocity of the end

effector reaches zero is given by

tb = tc + ||vB(tc)||/||acb||. (3.16)

The end effector constraints at time tb for a direct catch are

pM(tb) = pM(tc) + vM(tc)(tb − tc) + 0.5aM(tb − tc)
2, vM(tb) = 0,

aM(tb) = 0, n̂M(tb) ‖ −g (3.17)

For t > tb, a balancing controller is applied to stabilize the ball on the plate, for details

see Subsec. 3.3.1 and Lee and Bätz [158].
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Switching surface Reset map

S
f
f = ||vM ||+ λ ||pM − pB + rBn̂M || x+ = ∆f

f (x
−) =

=
[

xTM xTB ẋTM 01×2 cr ||vB|| ωTB

]T

Scf = ||vM − vB||+ λ ||pM − pB − rBv̂B|| x+ = ∆c
f (x

−) = x−

Sbc = ||vM ||+ (xd − 2) x+ = ∆b
c(x

−) = x−

Tab. 3.1: Indirect catch - switching surfaces and reset maps.

Indirect catch. If the direct catch algorithm does not obtain a feasible solution, the mod-

ule checks whether an indirect catch is possible in order to extend the range of admissible

object states. For an indirect catch, the following constraints are set for the end effector

trajectory at the initial contact time tr:

pM(tr) = pB(tr)− rBn̂M(tr), vM(tr) = 0, aM(tr) = 0, n̂M(tr) = −s/ ||s|| , (3.18)

where s = v̂B(tr) + ĝ. With the assumptions A1 and A2, the last constraint ensures that

the ball rebounds in vertical z-direction. For the indirect catch, there is an additional phase

where the ball is again in free-flight, compare Fig. 3.7. The time tc of the second contact

at pM(tc) = pM(tr) is calculated based on the ball velocity vB(tr) and the coefficient of

restitution cr. The constraints at tc are then identical to the ones of a direct catch with

sole vertical velocity. The switching surfaces and reset maps for the indirect catch are

summarized in Tab. 3.1.

3.4 Summary

This chapter discussed non-periodic dynamic manipulation tasks using a generic end ef-

fector design. First, an overview of related work was given. Then, the planning of optimal

trajectories was discussed. The approach used in this work is based on a combination of

online and offline decisions: selection criteria are evaluated offline and look-up tables are

created. These look-up tables allow to evaluate the selection criteria online and to gener-

ate the desired trajectory. Section 3.3 presented three applications for rigid end effector

designs: Subsection 3.3.1 reviewed the ball-on-plate system since the stabilization of a

spherical object on a planar surface is a preliminary skill for nonprehensile manipulation.

Subsection 3.3.2 addressed the planning of dual-handed throwing motions. Here, the grasp-

ing of the object is realized with a basic force closure. Finally, Subsection 3.3.3 presented

a novel method for robotic catching: a nonprehensile approach was discussed which allows

the catching of bulky objects and the trajectory planning for catching spherical objects

was outlined. Two catching strategies, direct and indirect, were proposed to increase the

range of admissible initial object states. Both approaches considered the nonprehensile

catching of spherical objects. Here, the object orientation does not affect the geometry

of the contact surfaces. For arbitrarily shaped objects, the object orientation along the

trajectory has to be included as additional selection criteria. An experimental evaluation

of the studied manipulation tasks is presented in Chapter 6.
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4 Periodic Manipulation Tasks with

Intermittent Contact

Summary This chapter considers periodic manipulation tasks with an intermittent con-

tact between actuator and object. Ball dribbling is introduced as a novel case study for

dynamic object manipulation. The system dynamics and optimal trajectory planning are

discussed for both a rigid and a compliant end effector design. The virtual holonomic

constraints approach is used to design a stabilizing controller for the dribbling task. In

addition, the classic juggling task is considered: the chapter reviews control strategies pro-

posed in the literature and presents a new approach for optimal trajectory planning based

on a non-local stability analysis.

The control of rhythmic tasks has been a very active research area over the last two

decades. A large amount of these research activities focused on legged robot locomotion.

However, besides robotic walking, there are also numerous works that investigated rhyth-

mic manipulation tasks which are commonly summarized with the term juggling. Bühler

coined the term for tasks that require interaction with an object or multiple objects that

would otherwise fall freely in the earths gravitational field [21]. For such tasks, the con-

tinuous motion of an actuator is used to control the continuous motion of one or multiple

objects through a temporary contact. Due to this intermittent or impulsive contact, the

systems possess hybrid dynamics described by discrete states with continuous dynamics

and instantaneous transitions.

The interest in juggling tasks originates from different sources: the first is the fact

that they provide an excellent scenario to investigate the role of feedback in rhythmic

tasks. Since the object is only controlled during a fraction of the cycle, the question

arises, in which phases sensor feedback is needed to stabilize a desired periodic motion. A

second, closely related aspect is the question of controllability of these systems. Due to the

underactuation of the system and the impulsive or intermittent character of the contact

phases, the control of these tasks is challenging. In addition, studying these manipulation

tasks can provide clues for the mechanical design of the manipulator. Finally, such periodic

tasks are helpful to increase the understanding of human movement control. The task of

juggling a ball, for instance, poses all the fundamental questions that are raised in the

study of human motion coordination, see [117]. Finally, due to their periodicity, these

tasks are well suited for the evaluation of learning algorithms.

The chapter is organized as follows: Section 4.1 provides an overview on related work.
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In Section 4.2, the planning of optimal trajectories for periodic manipulation tasks is ad-

dressed. Section 4.3 discusses the stability of periodic solutions of ordinary differential

equations. Next, Section 4.4 addresses the stability of periodic solutions of hybrid dynam-

ical systems. In addition to local stability, the section also considers a region of attraction

analysis. Section 4.5 then applies these methods to tasks with a rigid manipulator. Besides

the classic juggling, the task of dribbling a ball is considered as it introduces additional

challenges. The distinctive feature of the dribbling task is the existence of a second, au-

tonomous impact between the object and the environment. Finally, Section 4.6 details the

realization of the dribbling task with a compliant end effector.

4.1 Related Work

Holmes was the first to investigate the dynamics of repeated impacts on a sinusoidally

vibrating table [54]. With this work, he introduced the bouncing ball model as a case

study in nonlinear dynamics which has since become very popular. Holmes proved that, for

sufficiently large excitation velocities and a coefficient of restitution close to one, the system

possesses both periodic solutions as well as irregular non-periodic and chaotic motions.

Inspired by Holmes pioneering work, various researchers have considered this or similar

tasks: Bapat and coworkers followed up the work of Holmes, focusing on the sinusoidal

motions which led to stable periodic collisions [5]. Their results already implied that such a

sinusoidal actuation requires negative actuator acceleration at impact to obtain open-loop

stability. Based on a refinement of Holmes original model, the numerical simulations of

Luo and Han led to an extended range of stable periodic motions [80].

Bühler et al. were the first to investigate the stabilization of robotic juggling

tasks [20, 21, 22]. In their work, they considered the trajectory control of a puck which

was constrained to lie on a plane turned into the earth’s gravitational field. The manip-

ulator was a one DOF robot with a revolute joint. They proposed the so called mirror

law algorithm for stabilizing the desired periodic motions of the puck. Here, the idea is

that the manipulator describes a distorted reflection (mirroring) of the objects trajectory.

The control algorithm was verified for a planar experimental setup. However, it should

be noted that the mirror law does not provide open-loop stability and hence requires per-

manent tracking of the ball. Following the work of Bühler, Rizzi et al. extended the

mirror law to accomplish spatial juggling of two balls with a three DOF robot manipula-

tor [104, 105, 107, 23].

Atkeson and Schaal investigated the learning of different periodic manipulation tasks,

e.g. devil sticking and classic juggling. Here, they demonstrated that task-level learning

improves the performance of a juggling robot [2, 116, 115]. In addition, Schaal and Atkeson

discussed open-loop stability for the classic juggling task. Generalizing the results of

Holmes and Bapat, they showed that, for a line juggler, an arbitrary periodic motion of

the manipulator results in open loop stability if the manipulator acceleration at impact is

within a certain negative range [114]. Considering systems with one DOF object motion,

this is an fundamental advantage compared to the mirror algorithm as this approach allows

sensorless stabilization of a desired periodic orbit. For planar or spatial juggling systems,

however, it is important to note that the open-loop control can not stabilize a particular
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contact point in the impact plane. Horizontal deviations still have to be compensated by an

additional control or an appropriate mechanical design, see e.g. [102]. Schaal and Atkeson

also provided a non-local stability analysis for the open loop stable control strategies [117].

However, this analysis is of limited use since it does not determine a region of attraction

but only allows relative comparisons of different controller designs. Based on these results,

Schaal and Sternard also published a number of studies that focused on human motion

coordination in a classic juggling task [117, 133, 134].

Driven by the interest in minimalist manipulation systems, Lynch and Black discussed

the planar juggling system with one actuated revolute joint introduced by Bühler. Here,

the planar juggler served as a case study for systems that are controllable, but insufficient

actuated to be locally controllable. Applying the idea of forced recurrence, they showed

controllability of the system on a large subspace of the state space and developed a stabi-

lizing controller [81]. Brogliato et al. also discussed controllability and proposed stabilizing

feedback laws for the one DOF and the planar juggler [19, 150].

A special type of juggling system, the so called wedge billiard, was first introduced by

Lehtitet and Miller and later studied in detail by Sepulchre et al. [121, 77]. Such dynam-

ical billiards are part of the mathematical theory of particle trajectories within a closed

reflective boundary. Ronsse and Sepulchre studied different types of actuation and inves-

tigated the importance of timing the control feedback [108, 109, 110]. They also discussed

feedback control strategies for the bouncing ball system and discussed the influence of the

impact acceleration on the robustness of the system to parameter uncertainties [112].

An example of robot dribbling was presented by Shiokata et al. for experimental eval-

uation of a high-speed vision system [122]. For the experiment, a ping-pong ball and

an actuator with four DOF were used. The task served as a benchmark study for the

high-speed vision system and did not discuss the trajectory planning or the design of a

stabilizing controller.

Besides their periodic nature, the works discussed so far all have the characteristic

property of an intermittent and/or impulsive contact in common. For the sake of com-

pleteness, it has to be mentioned that there exist also numerous periodic/rhythmic dynamic

manipulation tasks with continuous contact phases. An interesting example is the work

of Zacksenhouse et al. who investigated robotic yo-yo playing [62, 63, 61]. However, these

works are not further discussed as the focus of the chapter is on periodic manipulation

tasks with intermittent contact.

4.2 Trajectory Planning

The trajectory planning for periodic tasks is similar to the one for non-periodic which was

presented in Sec. 3.2. Again, the planning is based on the modeling foundations discussed in

Ch. 2. As detailed in Sec. 3.2, equality constraints ce(γ) = 0 are used to specify positions,

velocities, and accelerations at certain points in time and inequality constraints ci(γ) ≤ 0

are used to incorporate hardware limitations. The same approach and the same selection

criteria as for the tasks studied in Sec. 3 can be applied for the trajectory optimization

of periodic manipulation tasks, compare (3.4)-(3.7). The trajectory planning for periodic

manipulation tasks also includes on- and offline decisions. However, the periodic nature of
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the tasks allows more offline decisions in the planning process.

Considering the open-loop control of a periodic manipulation task, the manipulator

motion is described by an arbitrary but periodic trajectory. Hence, the motion of the

manipulator can be described by a finite Fourier series

xM(t) =
L
∑

k=1

Ak sin (kωt+ φk) . (4.1)

Consequently, position, velocity, and acceleration of the manipulator at time tn (at the

n-th impact) are given by

xM [n] =
L
∑

k=1

Ak sin (kωtn + φk) = f(ωtn) = f(θ[n]),

ẋM [n] = ω

L
∑

k=1

Akk cos (kωtn + φk) = ωf ′(ωtn) = ωf ′(θ[n]), (4.2)

ẍM [n] = ω2

L
∑

k=1

−Akk
2 sin (kωtn + φk) = ω2f ′′(ωtn) = ω2f ′′(θ[n]),

where the expressions f ′(θ[n]) =
∂f(θ[n])

∂θ[n]
and f ′′(θ[n]) =

∂2f(θ[n])

∂2θ[n]
have been used [134].

4.3 Stability of Periodic Solutions of Ordinary Differential

Equations

This section outlines definitions that are preliminary for the stability analysis of hybrid

systems in Sec. 4.4. A detailed discussion of these definitions can be found in the books

by Parker and Chuo, Khalil, and Slotine [99, 69, 129]. In the following, an autonomous

continuous-time dynamical system ẋ = f(x) as defined in (2.2) is considered. By assuming

a state feedback control u = k(x), the explicit dependency of the system on the control

input u is omitted.

Definition 4.1 (Periodic solution, Periodic orbit, Limit cycle) The flow φt(x0) is

a periodic solution (orbit) Γ of an autonomous system if, for all t,

φt(x0) = φt+T (x0) (4.3)

for some period T > 0. The restriction T > 0 is needed to prevent the classification of

an equilibrium point as periodic solution. A periodic solution is isolated if it possesses a

neighborhood that contains no other periodic solution. In the autonomous case, an isolated

periodic solution is called a limit cycle. The limit set corresponding to a limit cycle is the

closed curve defined by φt(x0) over one period. �

Typically, in a nonlinear dynamical system, there exist other limit sets in addition to the

periodic solution such as equilibrium points, quasi-periodic solutions and chaos. The focus
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4.3 Stability of Periodic Solutions of Ordinary Differential Equations

in this chapter, however, is the study of periodic solutions.

Definition 4.2 (Invariant set) A set M is said to be an invariant set with respect to

an autonomous ODE (2.2) if

x(t0) ∈M ⇒ x(t) ∈M, ∀ t ≥ R (4.4)

Hence, a periodic solution φt(x0) is a closed invariant set of the dynamic system (2.2). In

the following, the periodic solution is denoted by Γ.

Definition 4.3 (LaSalle’s invariance principle) Consider an autonomous ODE as de-

fined in (2.2) and let V (x) : Rn → R be a locally positive definite function. Assume that,

on the compact set

Ωl = {x ∈ R
n : V (x) ≤ l} , it holds that V̇ (x) ≤ 0 ∀ x ∈ Ωl.

Define R = {x ∈ Ωl : V̇ (x) = 0} and let M be the largest invariant set in R. Then, every

solution x(t) originating in Ωl tends to M as t→ ∞. �

Definition 4.4 (Discrete-time dynamical system) A discrete dynamical system is

defined by

x[k+1] = f d(x[k]) k = 0, 1, 2, . . . (4.5)

where x[k] ∈ R
n is the state and f d : D ⊂ R

n → R
n maps the current state x[k] to the

next state x[k+1]. �

Poincaré map. The Poincaré map is a widely used technique for the analysis of dynamical

systems. Here, the flow of an n-th order dynamical system is replaced with an (n− 1)-th

order discrete-time system which is called the Poincaré map. Its main advantages are the

reduction of order and the fact that it bridges the gap between continuous- and discrete-

time systems [99].

Definition 4.5 (Poincaré map, First return map for autonomous systems)

Consider an n-th order autonomous system with the limit cycle (periodic orbit) Γ

as shown in Fig. 4.1. Let x∗ denote a point on the limit cycle and let Σ be an

(n − 1)-dimensional cross section (hyperplane) transversal to Γ at x∗. A cross section is

transversal, if n(x)Tf(x) 6= 0, where n is the normal vector to Σ. Then, the Poincaré

map P : U → Σ is defined in a neighborhood U ⊂ Σ of x∗ as

P (x) := φT (x)(x). (4.6)

The time T (x) denotes the first time the orbit and the cross section intersect after starting

the integration in x ⊂ U . The mapping has a fixed point if P (x∗) = x∗. �

Due to the definition of the Poincaré map, its limit sets correspond to the limit sets of

the underlying flow. Furthermore, the asymptotic stability of the fixed point can be shown

to be equivalent to the asymptotic orbital stability of the periodic solution. A fixed point

41



4 Periodic Manipulation Tasks with Intermittent Contact

x

P (x)

x∗ = P (x∗)

Σ

Γ

Fig. 4.1: Poincaré map

x∗ of the nonlinear difference equation x[n+1] = P (x[n]) can be shown to be asymptotically

stable if all eigenvalues of its linearization

∂P (x)

∂x

∣

∣

∣

∣

x=x∗

(4.7)

are strictly within the unit circle [99, 130].

Topological equivalence of flows. The concept of equivalence is a useful tool for the

comparison of (hybrid) dynamical systems. Two orbits of a smooth or hybrid dynamical

system are topologically orbitally equivalent (TOE) if there exists a orientation-preserving

homeomorphism that maps one orbit into the other [60, 128]. Employing the TOE helps to

simplify the analysis of periodic solutions: if such a homeomorphism exists, the results of a

particular periodic solution can be generalized to other periodic orbits, see e.g. Schaal [134].

4.4 Stability of Periodic Solutions of Hybrid Dynamical

Systems

The following section outlines methods for local and global stability analysis of hybrid

systems. A hybrid system as stated in Definition 2.3 is considered. However, the explicit

dependence on the control inputs u and ud is omitted by assuming a state-dependent

control law in the form u = k(x, xd) and ud = k(x, xd). The hybrid system is then given

by

ẋ = f i(x, xd) if sji (x, xd) /∈ 0 ∀ {i, j},

ζ+ =

[

x+

x+d

]

=

[

∆j
i (x

−, xd)

j

]

if sji (x, xd) = 0. (4.8)

4.4.1 Local Stability Analysis

The concepts for local stability analysis of periodic solutions of hybrid system are analogous

to the ones for ODEs discussed in Sec. 4.3.
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Definition 4.6 (Hybrid periodic solution, Hybrid periodic orbit) A solution of ζ

is a hybrid periodic solution Γ with period length T > 0 if

ζ(t+ T ) = ζ(t), (4.9)

holds for all t ∈ R. �

This definition of a hybrid periodic solution implies that there exists a switching sequence

of the discrete state xd which corresponds to the periodic solution.

A general definition for the stability of invariant sets of hybrid dynamical systems was

given by Simic et al. [127]. In most works that consider the stability of hybrid periodic

solutions, the stability of the hybrid limit cycle is determined with the stability of the

discrete mapping of the hybrid Poincaré map [130, 51].

Poincaré map for hybrid systems. The definition of the hybrid Poincaré map is in

accordance with the one for smooth dynamical systems stated in Def. (4.5). Assume a

cross section Σ that is transversal to the flow of the hybrid system. Then, the hybrid

Poincaré map is defined to map initial values on Σ to the next occurrence of a crossing of

Σ. A detailed discussion on the construction of the hybrid Poincaré map is provided by

Sobotka in [130].

4.4.2 Non-Local Stability Analysis

The Poincaré map is a powerful tool and a widely used technique for the local stability

analysis of periodic solutions for hybrid dynamical systems. However, the eigenvalues of

the linearized system dynamics provide only a local stability measure. In order to evaluate

the robustness of a hybrid periodic orbit with respect to disturbances or to modeling

errors, it is important to know how the system behaves in the non-local neighborhood of

the periodic solution.

Region of attraction. The behavior in the neighborhood of the hybrid limit cycle can be

evaluated with a region of attraction analysis. Such an analysis addresses the shortcomings

of the Poincaré map and determines a region in which initial states are attracted to the

periodic orbit. Following a numerical approach, the region of attraction is estimated by

simulating the system’s hybrid flow for initial states in the vicinity of the desired fixed

point. For a dense grid of sample points, the convergence/divergence of the corresponding

flows determines an attracting region for the hybrid limit cycle. A cell mapping method

can be used to reduce the computational burden of the numerical approach [56]. Schwab

and Wisse employed this method to evaluate the attracting region of a periodic orbit for

a passive walking model [118]. The approach can be used for systems with either open- or

closed-loop control.
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4 Periodic Manipulation Tasks with Intermittent Contact

4.5 Application for Rigid End Effectors

In this section, a rigid manipulator design is assumed and two periodic manipulation tasks

with intermittent contact are considered: classic juggling and dribbling. For both tasks,

the dynamic model and the first return map are derived. Based on the model, a local

and global stability is performed. For the model and the stability analysis, the following

assumptions are made:

A1 The ball and the manipulator are modeled as one DOF systems such that only vertical

motions are taken into account.

A2 The ball is a rigid body and its geometric center coincides with the center of mass.

A3 Impacts between ball and manipulator and (possible) impacts between ball and ground

are instantaneous inelastic collisions described by the coefficient of restitution cr.

A4 Air resistance and rotational ball velocity are negligible.

4.5.1 Classic Juggling Task

A schematic of the juggling system is depicted in Fig. 4.2. The manipulator is used to

control the motion of the object through an instantaneous contact.

Review of control strategies. Different solutions have been reported in literature to

realize stable periodic motions for the juggling task. A sinusoidal trajectory

xM(t) = A sin(ωt+ φ0) + xM,0 (4.10)

which does not require any sensory feedback has been first proposed by Holmes and later

by Schaal et al. [54, 114]. Next, Bühler et al. presented a mirror law

xM(t) =

(

−
1− cr
1 + cr

− κ (E∗ − E(t))

)

xB(t), (4.11)

that requires permanent tracking of the ball [21, 22, 104, 105, 107]. Here, E∗ and E(t)

denote the desired and the actual ball energy. Finally, a trajectory based on state-feedback

xM(t) = xM [n+1] + ẋM [n+1]

(

t− t[n+1]

)

+
1

2
ẍM [n+1]

(

t− t[n+1]

)2
(4.12)

for t[n] < t < t[n+1] has been discussed by Ronsse et al. [110, 111]. For the three strategies,

the manipulator position xM and velocity ẋM at impact are determined by the desired

periodic motion. The manipulator acceleration ẍM , in contrast, is a free parameter.In the

following, the optimal open-loop control strategy for the juggling task is evaluated.

Dynamic model. The state of the system is described by the position and velocity of the

manipulator and the ball,

x =
[

xM xB ẋM ẋB
]T
. (4.13)
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mM

mB
xB

xM

g

u

dB

free flight

actuator impact

ẋ = ff (x, uf )

x+ = ∆f
f (x

−)

x− ∈ Saf

Fig. 4.2: Classic juggling task: Schematic (left) and evolution chart (right) of the juggling
system with a rigid actuator. Solid boxes depict discrete states, dashed boxes depict
instantaneous transitions.

For the juggling task, a state vector of dimension three is sufficient to describe the sys-

tem [134]. However, using a non-minimal state vector of dimension four facilitates the

comparison with the dribbling task in Subsec. 4.5.2 and 4.5.3. A Poincaré cross section

directly before the actuator impact is defined. In the following equations, the superscript −

denoting the pre-impact time t− is omitted to simplify the notation. The state immedi-

ately after the impact event is denoted by the superscript +. With these definitions, the

position of ball and manipulator at the cross section are related via

xB[n] = xM [n] + dB/2 (4.14)

and the state dimension is reduced to three. Sternard and Schaal proposed a modification

of the state vector to facilitate the stability analysis: the manipulator position xM [n] at the

n-th impact is replaced with the angle θ[n] of the Fourier series at the n-th impact [134].

Considering (4.2), θ[n] = ωtn also specifies the ball position at impact, however in an

implicit way. This results in the modified state vector

x(tn) = x[n] =





θ[n]
ẋM [n]

ẋB[n]



 (4.15)

and discrete relations in the following implicit form 0 = f
(

x[n],x[n+1]

)

, precisely

θ[n+1] = θ[n] + Tω

ẋM [n+1] = ωf ′(θ[n+1]) (4.16)

ẋB[n+1] = −

√

(

(1 + cr) ẋM [n] − crẋB[n]

)2
− 2g

(

xM [n+1] − xM [n]

)

where xM [n+1] = f(θ[n+1]) and xM [n] = f(θ[n]). The periodic time T is given by

T =
1

g

(

ẋ+B[n] +

√

(

ẋ+B[n]

)2

− 2g
(

xM [n+1] − xM [n]

)

)

(4.17)

with ẋ+B[n] = (1 + cr)ẋM [n] − ẋB[n].
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4 Periodic Manipulation Tasks with Intermittent Contact

Local stability analysis. For the local stability analysis, the system (4.16) is linearized

around the fixed point using the implicit function theorem [134]. The linearization is given

by

∂P (x)

∂x

∣

∣

∣

∣

x=x∗

=





1 −ωcr(1 + cr)/g (1 + cr)
2ω/g

0 c2r −cr(1 + cr)

ωf ′′(θ[n]) −ω2f ′′(θ[n])cr(1 + cr)/g ω2f ′′(θ[n])(1 + cr)
2/g



 . (4.18)

The system (4.16) has an asymptotically stable fixed point x∗ if all eigenvalues of the

linearization (4.18) are strictly within the unit circle, compare Def. 4.5 and [99]. This is

the case if the condition
−2(1 + c2r)g

(1 + cr)2
< ẍM [n] < 0 (4.19)

is fulfilled [116]. Depending on cr, the lower bound varies between −g (cr = 1) and −2g

(cr = 0).

Non-local stability analysis. A non-local stability analysis for the classic juggling task

was presented by Schaal et al. [117]. The analysis was based on a discrete-time Lyapunov

function Ln for the linearized system. The state was sampled around the equilibrium state

x∗ and, for each of sample i, the relative change ∆Li = Li,[n+1] − Li,[n] was determined.

By summarizing over all samples, a stability measure S =
∑

i∆Li is obtained. This

approach has several drawbacks: first, the range of validity of the analysis is limited since

the Lyapunov function is based on the linearized system. Second, the overall stability

measure does not provide information about which initial states converge to the periodic

orbit. Finally, the relative change ∆Li over one period is of limited use since a convergence

towards the orbit could occur over multiple cycles. Due to these limitations, the method

presented in Subsec. 4.4.2 is better suited to estimate the region of attraction.

Fixed points that possess a large region of attraction are desirable since larger distur-

bances and modeling errors can be compensated. The following two paragraphs describe

the chosen numerical approach to analyze the region of attraction for the juggling task.

Manipulator acceleration. For this analysis, the coefficient of restitution was assumed

to be cr = 0.7 and the periodic time T was set to 0.4 s. These assumptions define the

desired fixed point as

x∗ =
[

x∗M x∗B ẋ∗M ẋ∗B
]T

=
[

0 0 0.3462 −1.962
]T
. (4.20)

The relation derived in (4.19) states a regime of manipulator accelerations ẍ∗M that result

in local stability of the fixed point. In order to investigate the interdependence between

the manipulator acceleration and the size of the region of attraction, the manipulator

trajectory is optimized for a number of fixed ẍ∗M . To this end, the system is initialized

at equidistant grid points xj in the vicinity of the fixed point x∗ and then simulated for

Nc = 20 cycles. In the vicinity of the desired impact, the periodic manipulator trajectory
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(4.2) can be approximated by a sixth-order polynomial [117]

xM(t) =
6
∑

k=0

ak(t− tn)
k for ||t− tn|| ≤ tthresh. (4.21)

For a sampling point xj, the initial and final error are defined as

ei,j =

√

(

xj[1] − x∗
)T (

xj[1] − x∗
)

ef,j =







0, if
√

(

xj,[Nc] − x∗
)T (

xj,[Nc] − x∗
)

≤ ethresh

ej,max else,
(4.22)

where ej,max is the maximum error that occurred at the last five impacts. Using the

maximum error allows to identify chaotic behavior that might, by accident, show a relative

small error for the final cycle of the simulation. With (4.22), the relative change of the

error erel,j = ef,j/ei,j can be determined for each grid point xj. The trajectory optimization

utilizes a cost function that combines the relative change of the error for each sample point

xj. The optimization problem is given by

min
γ∈Γ

J(γ) = λ
Ns
∑

j=1

(

ef,j
ei,j

)2

with Γ =
{

γ ∈ R
7, ci(γ) ≤ 0, ce(γ) = 0

}

(4.23)

γ = [a0, . . . , a6]

Here, λ = 102 and the number of grid points is Ns = 357 (21 along ∆ẋB and 17 along ∆T ).

The inequality constraints ci(γ) restrict the manipulator trajectory to feasible motions.

The equality constraints ce(γ) are determined by the desired fixed point x∗ and the desired

manipulator acceleration,

ci(γ) =







||a3|| − 102

...

||a6|| − 102






ce(γ) =





a0 − x∗M
a1 − ẋ∗M
a2 − ẍ∗M



 . (4.24)

The results of the optimization for six manipulator accelerations in the range from

ẍM = 0.0 m/s2 to ẍM = −7.5 m/s2 are illustrated in Fig. 4.3. The coefficient of restitution

was assumed to be cr = 0.7 and the periodic time T was set to 0.4 s. For the cases (b)

to (f), regions of attraction (white areas) around the fixed point x∗ are found. However,

no attracting region is found for case (a) with ẍM = 0 m/s2. This corresponds to the

result of (4.19) which determines zero manipulator acceleration at the impact as locally

unstable. While there is a relatively large region of attraction for ẍM = −1.5 m/s2, it

reduces with decreasing ẍM . This is also illustrated in Tab. 4.1, where the optimized costs

J for different manipulator accelerations ẍM are summarized. Based on these results, a

manipulator trajectory with an acceleration ẍ∗M at impact in the range of [−0.5, −2] m/s2

is desirable as this maximizes the region of attraction.
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M = −1.5 m/s2

−2.4 −2.2 −2 −1.8 −1.6
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
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M = −7.5 m/s2

Fig. 4.3: Optimized regions of attraction for the juggling task with a rigid manipulator for
different manipulator accelerations ẍM . The coefficient of restitution is cr = 0.7 and
the periodic time T was set to 0.4 s. The plots illustrate the relative change of the
error erel. For initial states in the white areas, the trajectory converges to the desired
orbit. In contrast, dark red areas correspond to an increasing error and thus indicate
unstable regions.
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Fig. 4.4: Optimized regions of attraction for the juggling task with a rigid manipulator for
different coefficients of restitution cr. The periodic time T was set to 0.4 s. The
plots illustrate the relative change of the error erel. For each case, the optimized
trajectory reduces the initial error. However, the rate of convergence decreases as cr
increases (illustrated by the decreasing size of the white area).
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Manipulator acceleration ẍM [m/s2]

0.0 −1.5 −3.0 −4.5 −6.0 −7.5 −9.0

Costs J 9.4 · 107 3.2 7.3 13.5 69.3 3.8 · 103 2.5 · 105

Tab. 4.1: Optimized costs J for different manipulator accelerations ẍM with cr = 0.7.

Coefficient of restitution cr
0.60 0.625 0.65 0.675 0.70 0.725 0.75

Costs J 0 0 0 0.007 0.61 3.09 9.56

Tab. 4.2: Optimized costs J for different coefficients of restitution cr with optimized ẍ∗M .

Coefficient of restitution. In contrast to the manipulator acceleration, the coefficient

of restitution cr is a task-specific parameter which is determined by the properties of the

colliding bodies, compare Sec. 2.6. Consequently, the value of cr can not be the subject

of an optimization process. However, (4.19) showed that cr influences the local stability.

Hence, it is interesting to see which effect cr has on the region of attraction. To this

end, a second numerical optimization was performed for different values of cr. In this

optimization, the manipulator acceleration ẍM is a free parameter. The results of the

optimization for three values of cr are depicted in Fig. 4.4(a)-(c). Again, the periodic

time T was set to 0.4 s. For each case, the optimized trajectory reduces the initial error.

However, as illustrated by the decreasing white areas, the rate of convergence slows down

for increasing values of cr. This is also shown in Tab. 4.2, which summarizes the optimized

costs J for cr in the range from 0.60 to 0.75.

4.5.2 Dribbling Task

The schematic setup and the evolution chart of the dribbling task with a rigid end effector

is illustrated in Fig. 4.5. The fundamental difference to the juggling task is the existence

of an additional, autonomous impact that occurs between ball and ground. Due to this

additional impact, a periodic solution for the dribbling task is defined by x∗M , ẋ∗M , and

ẋ∗B. For the juggling task, x∗M and ẋ∗M sufficed to define a periodic solution, compare

Subsec.4.5.1.

Dynamic model. Again, a Poincaré cross section directly before the actuated impact

is considered and the superscript − for the state is omitted. The position of ball and

manipulator at the cross section are then related via

xB[n] = xM [n] − dB/2 (4.25)

and the state dimension is reduced to three. The time of the ground impact is denoted

by tgi and ẋ+B,gi[n] = ẋB[n]

(

t+gi
)

refers to the ball velocity after the n-th ground impact.

With the state vector introduced in (4.15), the discrete-time dynamic model of the system
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Fig. 4.5: Dribbling task: schematic (left) and evolution chart (right) of the dribbling system
with a rigid actuator. Solid boxes depict discrete states, dashed boxes depict instan-
taneous transitions.

is given by integration of the continuous-time dynamics

θ[n+1] = θ[n] + Tω

ẋM [n+1] = ωf ′(θ[n+1])

ẋB[n+1] = −gTrise + ẋ+B,gi[n] = (4.26)

=

√

(

ẋ+B,gi[n]

)2

− 2gf(θ[n+1]) =

√

c2r

(

−gTdrop + ẋ+B[n]

)2

− 2gf(θ[n+1])

=

√

c2r
(

(1 + cr)ẋM [n] − crẋB[n]

)2
+ 2gc2r

(

f(θ[n])− dB
)

− 2gf(θ[n+1])

with the following abbreviations:

ẋ+B[n] = (1 + cr)ẋM [n] − crẋB[n], ẋ+B,gi[n] = −crẋ
−
B,gi[n] = −cr(−gTdrop + ẋ+B[n]),

Tdrop =
1

g

(

ẋ+B[n] +

√

(

ẋ+B[n]

)2

+ 2g
(

xM [n] − dB
)

)

, (4.27)

Trise =
1

g

(

ẋ+B,gi[n] −

√

(

ẋ+B,gi[n]

)2

− 2gxM [n+1]

)

.

Local stability analysis. For the local stability analysis, the system (4.26) is also lin-

earized around the fixed point using the implicit function theorem. The linearization of

the Poincaré map ∂P (x)
∂x

∣

∣

∣

x=x∗

can be derived analytically and results in a long symbolic

expression. For the dribbling task, the linearized matrix and its eigenvalues are a function

of the chosen fixed point x∗. This is in contrast to the juggling task, where the eigenvalues

were not influenced by the fixed point x∗, compare (4.18)-(4.19). Due to this increased

complexity, it is not possible to derive an analytical expression for the range of locally

stable periodic orbits for the dribbling task. However, it is possible to perform a numerical

analysis which evaluates the stability properties for different hybrid limit cycles. For the

dribbling task, a periodic solution is defined by x∗M , ẋ∗M , and ẋ∗B.

In the following analysis, the ball velocity before the actuated impact ẋ∗B is constrained
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Fig. 4.6: Local stability of periodic solutions of the dribbling task for cr = 0.8. Green circles
denote locally stable combinations where the magnitude of the largest eigenvalue is
smaller than one. A large marker corresponds to a small maximum eigenvalue. Red
crosses denote unstable solutions and black squares illustrate infeasible solutions.

to the range [0, 5] m/s. If there exist two feasible ball velocities within the range for a

given combination of x∗M and ẋ∗B, the velocity with the smaller absolute value is chosen.

The coefficient of restitution is assumed to be cr = 0.8. With these assumptions, a local

stability analysis for different periodic solutions can be performed by varying the manipu-

lator position x∗M and velocity ẋ∗M at impact. Fig. 4.6 illustrates the relationships between

these two quantities, the manipulator acceleration ẍM and the magnitude of the largest

eigenvalue for the linearized system. Fig.4.6(a) shows combinations of manipulator accel-

erations and velocities for a fixed position x∗M = 1.4 m. Fig.4.6(b) shows combinations of

manipulator accelerations and positions for a fixed manipulator velocity ẋ∗M = −2.2 m/s.

In both cases, local stability of a periodic orbit requires a negative manipulator accelera-

tion. Furthermore, the lower and upper bounds for the manipulator acceleration depend

on the hybrid limit cycle.

4.5.3 Comparison of Classic Juggling and Dribbling

The following paragraphs compare the classic juggling task with the dribbling task. A

detailed evaluation of the differences is provided by Bätz et al. in [154].

Feasible periodic motions. As illustrated in Fig. 4.2, the hybrid limit cycle of the jug-

gling task includes only one impact event, namely the actuation impact. For the dribbling

task, the hybrid limit cycle includes two impact events: the actuation impact and the addi-

tional autonomous impact, compare Fig. 4.5. Consequently, for the juggling task, the ball

trajectory of a periodic motion is unambiguously defined by x∗M and ẋ∗M or, alternatively,

by its energy level E∗. For the dribbling task, in contrast, an infinite amount of feasible

periodic orbits exists for a given energy level E∗: the hybrid limit cycle is defined by x∗M ,

ẋ∗M , and ẋ∗B and hence, by varying the dribbling height x∗M , the ratio between potential
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Fig. 4.7: Dribbling task: schematic (left) and evolution chart (right) of the hybrid ball dribbling
system with a compliant end effector. Solid boxes depict discrete states, dashed boxes
depict instantaneous transitions.

and kinetic energy at impact with the actuator is changed the resulting motion of a certain

energy level is modified.

Local stability. For the juggling task, the linearized Poincaré map and its eigenvalues are

independent of the desired fixed point x∗, compare (4.18)-(4.19). Hence, local stability is

only influenced by the manipulator acceleration ẍ∗M and the coefficient of restitution cr.

For the dribbling task, in contrast, the desired fixed point x∗ influences the linearization

of the Poincaré map and hence local stability, compare Fig. 4.6.

For both tasks, the manipulator acceleration ẍ∗M at impact has no influence on the

shape of the periodic motion, compare Subsec. 4.5.1 and 4.5.2. However, the manipulator

acceleration influences the stability of the hybrid limit cycle: for both tasks, there exists a

negative acceleration range in which periodic solutions are locally stable.

4.6 Application for Compliant End Effectors

The previous section discussed two periodic manipulation tasks for a rigid end effector

design. The following section considers the dribbling task with a compliant end effector

design. The contact between end effector and ball is still intermittent, however, the use of

a spring element introduces a continuous-time control phase instead of an instantaneous

impact. This modification resembles the human approach where a rather flexible arm-hand

manipulator is used. The schematic in Fig. 4.7 shows the two DOF ball-spring-manipulator

system actuated at the mass mM . The switching surfaces and reset maps are depicted in

Tab. 4.3.

52



4.6 Application for Compliant End Effectors

Switching surface Reset map

Spc = ẋB x+ = ∆p
c(x

−) = x−

Sfp = xM − xB − dPB − lc,0 x+ = ∆f
p(x

−) = x−

Sff = xB − dB/2 x+ = ∆f
f (x

−) = [1 1 1− cr]
Tx−

Scf = xM − xB − dPB − lc,0 x+ = ∆c
f (x

−) =

[

I3×3 03×1

0 0 mP

m̃B

mB

m̃B

]

x−

Tab. 4.3: Dribbling task with compliant end effector: switching surfaces and reset maps.

Coupled dynamics. When the ball is in contact with the plate, the system dynamics are

given by

mM ẍM = u− c (xM − xB − dPB − lc,0)−mMg

m̃BẍB = c (xM − xB − dPB − lc,0)− m̃Bg, (4.28)

where m̃B = mB + mP is the merged mass of ball and plate and g the gravitational

acceleration. The spring with stiffness c is restricted to its working range

lc = xM − xB − dPB, lc ∈ [lc,min, lc,0]. (4.29)

Decoupled dynamics. Here, it is assumed that manipulator and plate are rigidly con-

nected when the ball is not in contact with the plate. In practice, this can be realized by

an electro-mechanical lock. This assumption yields to the following free-flight dynamics

m̃M ẍM = u− m̃Mg

ẍB = −g, (4.30)

where m̃M = mM +mP is the merged mass of manipulator and plate.

Hybrid dynamics. The cyclic ball dribbling task is of hybrid nature consisting of contin-

uous phases c (catch), p (push) and f (free flight) separated by instantaneous transitions.

The state of the system is given by

x =
[

xM xB ẋM ẋB
]T

(4.31)

and the dynamic model for phase i ∈ {c, p, f} is ẋ = f i(x, ui). Here, phases p and c are

described by (4.28), and phase f is described by (4.30). Switching surfaces Sji determine

the occurrence of a transition from phase i to j, compare Sec. 2.2. The reset map for such

a transition can be written as

x+ = ∆j
i

(

x−
)

for x− ∈ Sji (4.32)

where x− is the state directly before the transition, x+ is the state directly after the

transition, and (i, j) ∈ {(f, c), (c, p), (p, f), (f, f)}.
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The hybrid model of the complete system is given by

ẋ = f i(x, ui) x− /∈ Sji

x+ = ∆j
i

(

x−
)

x− ∈ Sji (4.33)

with (i, j) ∈ {(f, c), (c, p), (p, f), (f, f)}. A summary of discrete states and transitions for

a ball dribbling cycle is given in Tab. 4.3.

The ball dynamics between release and the subsequent initial contact are not directly

controlled. Hence, an algebraic relation for the state of the ball can be derived by inte-

grating (4.30). Furthermore, it is assumed that the manipulator dynamics are fast enough

to reach the desired state at initial contact, starting from release during the time that the

ball falls to the ground and bounces back. For the system analysis, it is reasonable to

consider only the controlled phase of the ball dribbling cycle involving the dynamics of the

underactuated ball-spring-manipulator system (4.28). The time from release to ground

impact is given by

tff − tfp =
1

g

(

ẋB,p +
√

ẋ2B,p + 2g(xB,p − dB/2)
)

, (4.34)

where ẋB,p = ẋB
(

tfp
)

and xB,p = xB
(

tfp
)

. The ball velocity after the ground impact can

be described as function of the ball state at release or at initial contact :

ẋ+B,f = ẋB

(

tf+f

)

= cr

√

ẋ2B,p + 2g(xB,p − dB/2)

=
√

(ẋ−B,c)
2 + 2g(x−B,c − dB/2), (4.35)

where ẋ−B,c = ẋB
(

tc−f
)

and x−B,c = xB
(

tc−f
)

. Using (4.34) and (4.35), the evolution chart in

Fig. 4.7 can be modified by introducing a new mapping from release to initial contact.

Motion planning. During a dribbling cycle, there are two continuous phases that provide

control over the ball, namely catch and push. The desired continuous-time motion of

the ball-spring-manipulator system (4.28) can be described by the time evolution of its

generalized coordinates

{xM = x∗M(t), xB = x∗B(t)} , t ∈ [tb, te], tb < te. (4.36)

The facts that the dynamical system (4.28) is underactuated and the overall system (4.33)

is of hybrid nature pose a challenge for the planning of desired motions.

Virtual holonomic constraints. By introducing a set of geometric relations among the

general coordinates, the motion of (4.36) can be rewritten as

{xM = φ1(θ), xB = φ2(θ)} , θ = θ∗(t), t ∈ [tb, te] (4.37)

with a scalar variable θ ∈ [θb, θe] that is used as trajectory generator for parameterizing

the time evolution. Geometric functions among the generalized coordinates as introduced
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by (4.37) are known as virtual holonomic constraints, see Sec. 2.3. A convenient choice for

the system is the following:

[

xM
xB

]

:= Φ(θ) =

[

φ(θ)

θ

]

. (4.38)

Suppose that there exists a control law u∗(t) for the input u that makes the virtual holo-

nomic constraint (4.38) invariant with respect to time. Then, the overall closed-loop system

can be generally represented by reduced order dynamics of the form [123]

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = 0. (4.39)

The solutions of this virtually constrained system define achievable motions with precise

synchronization determined by (4.38). It means the whole motion is parameterized by the

evolution of the chosen configuration variable θ. The smooth coefficient functions of (4.39)

can be derived by substituting (4.38) into the system dynamics (4.28):

α(θ) = m̃B, β(θ) = 0, γ(θ) = −c (φ(θ)− θ − dPB − lc,0) + m̃Bg. (4.40)

The reduced order dynamics of the form (4.39) is always integrable [123]. Specifically, the

integral function

I(θb, θ̇b, θ, θ̇) = θ̇2 − θ̇b
2
+

∫ θ

θb

2γ(s)

α(s)
ds (4.41)

preserves its zero value along the solution of (4.39), initiated at [θb(tb), θ̇b(tb)] = [θb, θ̇b].

With the above arguments, the motion planning problem is converted from a search of

feasible orbits in the state space into a search for a parameterizing function φ(θ) such that

a desired solution of the reduced dynamics is found. Here, a Bézier polynomial

φ(θ) =
M
∑

k=0

ak

(

M

k

)

sk(1− s)M−k, s =
θ − θb
θe − θb

(4.42)

is used as geometric relation between the generalized coordinates [143]. Hence, one needs

to find the coefficients a = [a0 . . . aM ] that lead to the desired time evolution θ∗(t) between

the specified initial and final conditions [θb, θ̇b] and [θe, θ̇e].

Trajectory optimization. For the trajectory optimization, the following restrictions are

considered: at the beginning of the catching phase and at the end of the pushing phase, the

spring is constrained to be at equilibrium length. Furthermore, the condition of continuity

requires x+ = ∆p
c(x

−) = x−. With these requirements, the Bézier coefficients a
(c)
0 , a

(p)
0

and a
(p)
M are fixed. The remaining coefficients a(c) and a(p) of the Bézier polynomials for

the catching and the pushing phase are determined by an optimization. The nonlinear
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optimization problem is defined as

min
γ∈Γ

Ji(γ)

with Γ =
{

γ ∈ R
2M−1, ci(γ) ≤ 0, ce(γ) = 0

}

(4.43)

γ =
[

a
(c)
1 . . . a

(c)
M , a

(p)
1 . . . a

(p)
M−1

]

.

The inequality constraints ci(γ) originate from the limitations of the physical system,

such as maximum actuator acceleration and limits of the spring deflection. The equality

constraint ce(γ) ensures the validity of the reduced order dynamics:

ci(γ) =





||u(γ)|| − amax
(xM(γ)− xB − dPB)− lc,0
lc,min − (xM(γ)− xB − dPB)



 , ce(γ) = I(θb, θ̇b, θ, θ̇,γ). (4.44)

Two different cost functions are considered for the trajectory optimization. The function

J1 evaluates the maximum manipulator velocity and J2 estimates the energy consumption:

J1(γ) = λ max ||ẋM(t)||2 + e(te)

J2(γ) =
λ

T

∫ te

tb

u(t)2dt+ e(te), (4.45)

with λ = 102, T = te − tb and the terminal cost

e(te) = λvev(te)
2 + λpep(te)

2 (4.46)

which punishes deviations of the final velocity and position (λv = λp = 106) at the end of

each phase. Based on these cost functions, trajectory optimization has been performed for

different degrees of the Bézier polynomial (4.42). For the optimization results, a particular

ball dribbling cycle is considered: the desired dribbling height is set to hd = x−B,c =

x+B,p = 0.9 m, the initial contact to [x+B,c, ẋ
+
B,c] = [0.8 m, 1.72 m/s] and the release to

x−B,p = x+B,f = 0.5 m is considered. With a known coefficient of restitution cr, the ball

velocity ẋ−B,p at release is determined with (4.35). Table 4.4 summarizes the results of

the numerical optimization. For both cost functions, the higher order Bézier polynomials

naturally lead to reduced costs. However, there is no significant difference in the costs

betweenM = 5 andM = 6. Hence, a Bézier polynomial of orderM = 5 is a good trade-off

between cost optimality and numerical complexity, which is relevant for the implementation

on the real system. For comparison, Fig. 4.8 shows optimized trajectories and the resulting

spring deflection for M = 3 and M = 5 obtained when using J1.

Control design: transverse linearization. Given the desired orbit obtained through

the optimization process, the next step is to design a controller that stabilizes the ball-

spring-manipulator system in the vicinity of the desired limit cycle. Based on the system

description in the form of (4.37), new coordinates and velocities are introduced in the
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ẋM , M = 5

switch, M=5

switch, M=3

(b) velocities ẋB , ẋM
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Fig. 4.8: Optimized trajectories for different Bézier degrees using cost function J1. The solid
lines indicate the switch from catch to push phase.

Cost function Beziér degree

3 4 5 6

J1 779 720 708 706

J2 80249 77663 75234 74134

Tab. 4.4: Costs of the optimized trajectories for different Bézier degrees.
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vicinity of the target orbit:

xM = φ(θ) + y, xB = θ

ẋM = φ
′

(θ)θ̇ + ẏ, ẋB = θ̇. (4.47)

The dynamics of the synchronization error y to the specified virtual holonomic constraint

can be computed from the system dynamics (4.28) by substituting (4.47):

ÿ = r(θ, θ̇, y, ẏ) + (1/mM) u = v. (4.48)

An auxiliary control signal v is introduced by a control transformation via partial feedback

linearization [131]. The dynamics of θ is given by substituting (4.47) into the second order

differential equation (4.39), which yields

m̃B θ̈ − c (φ(θ)− θ − dPB − lc,0) + m̃Bg = −cy, (4.49)

where the right hand side equals to zero on the desired orbit. The target motion (4.36) in

the new generalized coordinates is given by

{y∗(t) ≡ 0, θ = θ∗(t)} , t ∈ [tb, te]. (4.50)

The dynamic system has a natural choice of transverse coordinates

x⊥ =
[

I(θ, θ̇, θ∗b , θ̇
∗
b ) y ẏ

]T
, (4.51)

that describe the system’s behavior away from a specified orbit [123]. A transverse lin-

earization along a continuous-time target motion (4.50) can be analytically computed to

be used for system analysis and control design:

ż = A(t)z + bv =







0 2θ̇∗(t)
m̃B

c 0

0 0 1

0 0 0











I

Y1
Y2



+





0

0

1



 v, (4.52)

where z =
[

I Y1 Y2
]T

denotes the linearization for x⊥. A cyclic solution z = z(t) =

z(t+ T ) with time period T = tfp − tcf and a switch at ts = tpc is defined by

ż = A(s)z + bv, s = t mod T

A(s) =

{

Ac(s), s ∈ (0, ts]

Ap(s), s ∈ (ts, T )
(4.53)

z(t+k ) = f ri
(

z(t−k )
)

, tk = kT, k ∈ N.

The operator f ri is the mapping from release to initial contact based on (4.35).
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Closed-loop system. Consider the control law

v = k(s)z, k(s) =

{

kc(s), s ∈ (0, ts]

kp(s), s ∈ (ts, T )
(4.54)

for the hybrid linear system (4.53). It can be shown that exponential stability of the

origin for the linear impulsive system is equivalent to exponential orbital stability of the

periodic motion for the nonlinear one [124]. For reasons of implementation, only a constant

feedback of the synchronization error xM − φ(xB) is used since these measurements are

available:

kc =
[

0 kc2 0
]

, kp =
[

0 kp2 0
]

. (4.55)

In addition to the control during the two contact phases catch and push, a control for the

manipulator during the non-contact phase has to be applied. This control law must ensure

that the manipulator is at the desired state when the controlled phase of the ball dribbling

cycle starts, compare Subsec. 6.4.2.

4.7 Summary

The chapter discussed periodic manipulation tasks with intermittent contact. In Sec-

tion 4.1, an overview on related work was given and the challenges of the trajectory plan-

ning were addressed in Section 4.2. Next, methods for the stability analysis of periodic

solutions of (hybrid) dynamical systems were outlined in Sections 4.3 and 4.4. Then, two

applications for rigid end effectors were presented in Section 4.5. First, the classic juggling

task was studied: the section reviewed the control strategies proposed in the literature and

presented a new approach for optimal trajectory planning based on a non-local stability

analysis. Ball dribbling was introduced as novel case study for dynamic dexterity. The

system dynamics and optimal trajectory planning were discussed. A comparison with the

classic juggling task showed that the dribbling task is more challenging due to the oc-

currence of an additional, autonomous impact. In addition to dribbling with a rigid end

effector, a novel approach for the stabilization of human-like periodic ball dribbling motion

was presented in Section 4.6. Adding an elastic element to the manipulator promises two

benefits: first, the ball can be controlled in a continuous-time phase instead of an intermit-

tent contact. Second, impacts between manipulator and ball are avoided which reduces the

mechanical load. The virtual holonomic constraints approach was used to plan optimal

catching and pushing trajectories considering two different cost functions. An orbitally

stabilizing feedback controller was designed for the underactuated ball-spring-manipulator

system based on a transverse linearization along the desired motion.
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5 Perception and Interaction Control for

Dynamic Manipulation

Summary This chapter addresses the particular challenges that arise for the closed-loop

control of dynamic manipulation tasks and presents an extensive control structure to over-

come these challenges. Four different observer designs are developed to reconstruct the

forces/torques that are exchanged between the manipulator and its environment during

dynamic motions. The designs are evaluated in a simulation scenario as well as an exper-

iment. The force/torque observer is then integrated in a direct force control scheme to

improve the interaction control for dynamic manipulation tasks. Finally, an approach for

high-speed image processing is presented which allows to track and to predict the state of

objects during non-contact phases with high sampling rates.

The two previous chapters discussed trajectory planning and control strategies for dy-

namic manipulation tasks. It was shown that the successful execution of these tasks

generally requires some amount of sensory feedback. Clearly, state feedback is also needed

when performing conventional manipulation tasks. However, the dynamic nature of the

tasks studied in this work poses some additional challenges which have to be overcome.

The chapter addresses these challenges and the obtained results are prerequisites for the

experiments presented in Chapter 6.

In principle, feedback can be provided either at discrete times or continuously through-

out the task execution. During non-contact phases, the most valuable source of feedback is

visual information. When the manipulator is in contact with the environment, force/torque

measurements are another essential source of information. Like visual feedback, they al-

low to determine the pose of the manipulated object. Additionally, the measured forces

and torques also provide information about the acceleration of the object. This informa-

tion, however, is not directly accessible since the force/torque measurements are disturbed

by inertial and gravitational forces and measurement noise. For dynamic motions, this

is particularly a problem, since the tool inertia has here a non-negligible effect on the

measurements of the wrist F/T-sensor. Due to this fact, the chapter discusses observer

designs which allow the reconstruction of the forces and torques exchanged between the

manipulator and the environment.

Accurate knowledge of these contact forces improves the performance of the applied

interaction control scheme (direct or indirect force control). In addition to this sensory

information, a precise underlying motion control of the robot is a prerequisite for successful
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Fig. 5.1: Overall control structure highlighting the elements that are addressed in this chap-
ter: dynamic F/T observer, object tracking & trajectory prediction, and motion &
interaction control.

task execution. Typically, this is realized with an inverse dynamics control scheme.

The outline of the chapter is as follows: Section 5.1 provides an overview on related

work. In addition to works in the field of interaction control, the section details research

efforts in high-speed vision processing and in dynamic force/torque sensing. Section 5.2

discusses observer designs for the reconstruction of the forces and torques exchanged with

the environment. Four different designs are evaluated in a simulation scenario and in

experiments. Then, Section 5.3 focuses on robot motion and interaction control schemes

that are suitable for dynamic manipulations tasks. Besides a classical inverse dynamics

control, a parallel force/position control scheme is reviewed. Finally, Section 5.4 details

the vision-based object tracking and trajectory prediction. For the image processing, the

challenge is finding the optimal trade-off between two competing goals: high tracking

accuracy and high frame rates. The overall control structure is shown in Fig. 5.1 and the

elements addressed in this chapter are highlighted.

5.1 Related Work

The knowledge of contact forces and torques is particularly crucial for the interaction with

the environment. For dynamic manipulation tasks, the extraction of these contact forces

is a challenging task. This problem has been addressed by various researchers: Dynamic

force sensing for high-speed robot manipulation was first investigated by Uchiyama et

al. [139]. The developed observer could estimate both environment forces and torques and

was based on the Extended Kalman Filter. The design, however, was restricted to pose

and F/T measurements only. In the presented results, the complexity of the problem was

reduced by considering only a planar scenario with two translational and one rotational

DOF.

Lin developed an observer based on position and force measurements in [78]. In this

work, only environment forces and translational motions were considered which results

in linear process and measurement equations. Hence, a classical Kalman Filter could be

applied to estimate the contact forces.
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Garcia et al. investigated a sensor fusion approach for dynamic force/torque estima-

tion [42, 43]. In addition to pose and F/T measurements, an inertial sensor was used to

measure the tool acceleration. In the EKF-based observer design, the environment forces

and torques were not considered. The estimation error was utilized to obtain a contact

F/T estimator with low-pass properties. Considering the nonlinear process model for the

torques, it seems problematic to use the estimation error of such an observer to determine

the environment torques. In addition, the representation of the tool orientation with Euler

angles appears critical because of the well-known issues with representation singularities.

Kröger et al. also discussed a fusion of F/T and acceleration information for contact

force/torque estimation [74]. In their work, characteristic properties of F/T and acceler-

ation sensors were reported [75]. Furthermore, translational and rotational acceleration

estimates based on pose measurements were derived. However, the calculation of con-

tact forces and torques was performed without considering the stochastic properties of the

signals, hence limiting the effectiveness of the approach.

For dynamic manipulation tasks, the precise timing and execution of motions are pre-

liminary requirements. Inverse dynamics control schemes are a well-established method

for improved motion control [126, 125, 94]. Friction compensation is an essential part of

the inverse dynamics control. Due to the various friction phenomena that need to be con-

sidered, this is a challenging task (compare Sec. 2.5). Surveys on friction compensation

for robotic manipulators were provided by Olsson and Bona [96, 97, 14]. Detailed exper-

imental results on friction compensation for the dual-arm robot used in this work have

been presented by Ueberle [140]. Comprehensive discussions on motion control for robotic

manipulators were presented by Siciliano and Khatib [126, 125].

In addition to precise motion execution, dynamic manipulation tasks also require in-

teraction with the environment. Hence, an interaction control is needed in addition to

pure motion control. Numerous strategies for such an interaction control have been pro-

posed in literature: in general, these interaction control schemes can be classified into

direct and indirect force control. The former approach, which includes impedance and

admittance control, was first proposed by Hogan [53]. A drawback of indirect force control

schemes is the fact that the contact forces/torques at the end effector can not be directly

controlled. This shortcoming is addressed by direct force control, which allows to con-

trol the forces/torques that are exchanged between end effector and environment. Direct

force control was first proposed by Raibert and Craig and later extended by Yoshikawa

and Khatib to include an inverse dynamics motion control [101, 149, 70]. These hybrid

force/position control schemes use a task-specific selection matrix that determines for each

task coordinate whether it is force or position controlled. This is a drawback as the struc-

ture of the control has to be changed during task execution. The problem was addressed

by Chiaverini and Sciavicco, who presented a parallel approach to force/position control

of robotic manipulators [28]. Here, the position and force controller act in parallel, and

conflicting situations are resolved by assigning a higher priority to the force control. The

approach was extended by Natale for interaction control of six DOF tasks [94]. A compre-

hensive survey on interaction control schemes including experimental results was presented

by Chiaverini et al. and Natale [29, 94]. For the intended applications in this thesis, the

parallel approach is best suited as it offers both direct force control and relatively high
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structural flexibility.

Rizzi and Koditschek were the first who emphasized the importance of visual attention

control for dynamically dexterous robots [106]. In order to achieve higher frame rates,

they proposed to reduce the search window on the images obtained from the camera sys-

tem. High-speed vision improves control performance in vision-based control due to higher

frame rates and lower latencies. Recent progress in sensors, bus systems and semiconduc-

tor technology has led to a few works on vision with more than 30 Hz frame rate during

the last decade: Ishikawa et al. have developed high-speed vision systems with various res-

olutions and fast low-level image processing functions integrated on customized processing

hardware allowing framerates of up to 1 kHz. These vision systems were applied to various

dynamic vision-based manipulation tasks, e.g. ball dribbling with multi-fingered hands,

ball catching, ball batting, and regrasping [122, 59, 119, 39]. In the field of visual servo

control, a number of works with higher framerates (> 30 Hz) exist, see e.g. [93, 41, 146].

5.2 Dynamic Contact Force/Torque Observer

For robots that are destined to leave the classical industrial settings, one major challenge

is the physical interaction with unknown and/or changing environments. Such an interac-

tion requires knowledge of the exchanged contact forces and torques. To this end, robotic

systems nowadays are typically equipped with force/torque sensors at the wrist. By using

force control schemes that rely on measurements from these sensors, conventional ma-

nipulation tasks are successfully executed. In particular for dynamic manipulation tasks,

however, the problem arises that the inertial forces/torques of the end effector have a non-

negligible effect on the measurements of the wrist sensor. This does not only degrade the

performance of the interaction control but also constitutes a safety risk.

The section discusses four different contact force/torque observer designs to overcome

this problem: two approaches are based on the Extended Kalman Filter (EKF) and two

approaches are based on the Unscented Kalman Filter (UKF). For each case, two differ-

ent measurement vectors are considered: the first one only uses pose and force/torque

measurements, whereas the second one also uses acceleration measurements to determine

the contact forces and torques. The four observer designs are evaluated in simulation and

experiment for six degrees-of-freedom tasks, paying particular attention to the influence of

changing operating conditions.

Fig. 5.2 illustrates the typical hardware setup with a F/T-sensor located at the wrist.

For dynamic motions, the inertial forces/torques of the end effector have a non-negligible

effect on the force sensor measurements. Hence, the measurements do not correspond to

the actual environmental interaction forces/torques. In general, the measured forces F S

and torques MS are constituted by the following components

[

F S(t)

MS(t)

]

=

[

F E(t)

ME(t)

]

+

[

F I(t)

M I(t)

]

+

[

FG(t)

MG(t)

]

(5.1)

where F E and ME are the environmental contact forces and torques, F I and M I are the

inertial forces and torques, and FG and MG are the forces and torques due to gravity.
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5.2 Dynamic Contact Force/Torque Observer

Let C denote the center of mass of the end effector and ΣC the body-fixed coordinate

frame with origin in C and which axes coincide with the principal axes of inertia of the end

effector. Using the center of mass C as the reference point, the Newton-Euler equations

for the end effector with respect to frame ΣC (illustrated by the superscript C) are given

by

F C
S − F C

E +mgC = maCC

S
(

rCCS
)

F C
S +MC

S − S
(

rCCE
)

F C
E −MC

E = JC
Cα

C + S
(

ωC
)

JC
Cω

C (5.2)

Here, the tool mass is given bym, JC
C is the moment of inertia of the tool with respect to

C, aC denotes the translational end effector acceleration, ωC/αC the angular end effector

velocity/acceleration, and gC the vector of gravitational acceleration. The matrix Ri
j is

the rotation matrix of frame Σj with respect to frame Σi.

It should be noted that most quantities in (5.2) are measured (calculated) in their

own frame. Thus, an extended formulation of the Newton-Euler equations for the actual

implementation is given as

RC
SF

S
S −RC

EF
E
E +mRC

WgW = mRC
I a

I
C (5.3)

S
(

rCCS
)

RC
SF

S
S +RC

SM
S
S − S

(

rCCE
)

RC
EF

E
E −RC

EM
E
E = JC

CR
C
I α

I + S
(

RC
I ω

I
)

JC
CR

C
I ω

I .

In matrix notation, one obtains

[

F C
S→C

MC
S→C

]

−

[

F C
E→C

MC
E→C

]

= (5.4)

=

[

m RC
I 0

0 JC
C RC

I

] [

aIC
αI

]

+

[

−mRC
W 0

0 S
(

RC
I ω

I
)

JC
CR

C
I

] [

gW

ωI

]

.

where the expressions F C
j→C , M

C
j→C with j ∈ {S,E} correspond to

[

F C
j→C

MC
j→C

]

=

[

RC
j 0

S
(

rCCj
)

RC
j RC

j

] [

F
j
j

M
j
j

]

(5.5)

F/T wrist sensor tool / end effector

robot

FE , ME

Fig. 5.2: Schematic of the hardware setup: the tool / end effector that interacts with the
environment is attached to a wrist F/T sensor.
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Fig. 5.3: Forces and moments applied at the end effector

5.2.1 Continuous-Time System Model

In the following, all quantities are expressed in frame C and in order to facilitate the

notation, the superscript C is omitted. However, velocities and acceleration are, of course,

absolute quantities calculated with respect to the inertial frame and only expressed in

frame C. Let

x(t) = x =
[

pT oT vT ωT F T
S MT

S F T
E MT

E

]T
∈ R

25 (5.6)

denote the state vector of the system. Here, p and o are the position and orientation

(in quaternion) of the tools center of mass with respect to the inertial frame and v is the

(absolute) translational tool velocity. For the observer design, two different measurement

vectors

y1(t) = y1 =
[

pT oT F T
S MT

S

]T
∈ R

13 (5.7)

y2(t) = y2 =
[

pT oT F T
S MT

S aT αT ωT
]T

∈ R
22

are considered. While y1 relies solely on position and force/torque measurements, y2 also

includes acceleration and (rotational) velocity measurements. As proposed by [139], it is

assumed that the process model for the sensor and environment forces and torques can

be approximated by a white and Gaussian process. Based on (5.4)-(5.7), the nonlinear,

continuous-time system model

ẋ = f(x,w)

yi = hi(x,ν) (5.8)
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can be derived. The variables w and ν represent the process and measurement noise.

They are assumed to be white, independent of each other, and with normal probability

distributions

p(w) ∼ N(0,Q)

p(ν) ∼ N(0,R), (5.9)

where the process and measurement noise covariances Q, R can vary with each measure-

ment or time step.

5.2.2 Discrete-Time System Model

The nonlinear process and measurement model are given by the stochastic difference equa-

tion

x[k+1] = f(x[k],w[k]),

yi,[k+1] = hi(x[k+1],ν [k+1]), (5.10)

where the subscripts [k + 1],[k] denote the discrete time steps. The detailed difference

equation for the process is given by

x[k+1] = f(x[k],w[k]) = (5.11)

=





























p[k] + Tv[k] + 0.5T
2

m

(

F S[k] − F E[k]

)

+wp,[k]

o[k] ∗ ow ∗ o∆

v[k] +
T
m

(

F S[k] − F E[k] +wv,[k]

)

ω[k] + T (JC)
−1
(

SrCS
F S[k] − SrCE

F E[k] +MS[k] −ME[k] − Sω[k]
JCω[k]

)

+wω,[k]

F S[k] +wFS ,[k]

MS[k] +wMS ,[k]

F E[k] +wFE ,[k]

ME[k] +wME ,[k]





























.

Here, ow = wo,[k] is the quaternion reflecting process noise and

o∆ = {η∆, ǫ∆} =

{

cos

(

1

2

∣

∣

∣

∣ω[k]

∣

∣

∣

∣T

)

,
ω[k]
∣

∣

∣

∣ω[k]

∣

∣

∣

∣

sin

(

1

2

∣

∣

∣

∣ω[k]

∣

∣

∣

∣T

)

}

denotes the differential rotation during the time interval T [94, 73]. As the measurement

equations for y1 are linear, they can be written in the following matrix notation

y1,[k+1] = h1(x[k+1],ν [k+1]) = (5.12)

=

[

I7×7 07×6 07×6 07×6

06×7 06×6 I6×6 06×6

]

x[k+1] + ν [k+1] = H1x[k+1] + ν1,[k+1]

Due to the incorporation of the angular acceleration, the measurement equations for y2
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are nonlinear:

y2,[k+1] = h2(x[k+1],ν [k+1]) = (5.13)

=











H1x[k+1] + ν1,[k+1]
1
m

(

F S[k+1] − F E[k+1]

)

+ νa,[k+1]

J−1
C

(

MS[k+1] −ME[k+1] − Sω[k+1]
JCω[k+1] + SrCS

F S[k+1] − SrCE
F E[k+1]

)

+ να,[k+1]

ω[k+1] + νω,[k+1]











.

5.2.3 Filter Design

As shown in (5.11), the system is characterized by a nonlinear process model. In addition,

the measurement model for y2 is also nonlinear, compare (5.13). Hence, a nonlinear filter

design is needed for the six DOF dynamic F/T observer. In the following, two different

approaches for nonlinear systems are evaluated: Extended Kalman Filter and Unscented

Kalman Filter.

Extended Kalman Filter (EKF). The EKF extends the Kalman Filter for nonlinear

systems by linearizing about the current mean and covariance and can hence be applied to

the given nonlinear estimation problem [142]. Using the following notations for the partial

derivatives,

A[k] =
∂f(x̂[k−1],0)

∂x
W [k] =

∂f(x̂[k−1],0)

∂w

H i,[k] =
∂hi(x̂[k−1],0)

∂x
V i,[k] =

∂hi(x̂[k−1],0)

∂ν
, (5.14)

the EKF time update equations are given by

x̂−
[k] = f(x̂−

[k−1],0)

P−
[k] = A[k]P [k−1]A

T
[k] +W [k]Q[k−1]W

T
[k]. (5.15)

The equations in (5.15) predict the state x[k] and the error covariance P [k] at time step k

based on the results from the previous time step k − 1.

Then, the EKF measurement update equations are used to correct these predictions

based on the actual measurements at time step k, compare (5.16).

K [k] = P−
[k]H

T
i,[k]

(

H i,[k]P
−
[k]H

T
i,[k] + V i,[k]R[k]V

T
i,[k]

)−1

x̂[k] = x̂−
[k] +K [k]

(

yi,[k] − hi(x̂
−
[k],0)

)

(5.16)

P [k] = (I25×25 −K [k]H i,[k])P
−
[k].

The first equation computes the Kalman gain K [k], the second equation updates the

estimate x̂[k] with the current measurement yi,[k] and the third equation updates the error

covariance P [k].
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Unscented Kalman Filter (UKF). As detailed in the previous paragraph, the EKF ap-

proximates the state distribution by a Gaussian random variable, which is then propagated

through the first-order linearization of the nonlinear system. This can introduce large er-

rors in the mean and covariance, particularly if the system is highly nonlinear on the

considered time scale.

The UKF is based on the intuition that, when having a fixed number of parameters,

it is easier to approximate a Gaussian distribution than it is to approximate an arbitrary

nonlinear function [66]. Hence, instead of a linearization, the UKF uses a set of determin-

istic sample points (sigma points) to parameterize the mean and the covariance. The state

distribution is still approximated by a Gaussian random variable, but is now represented

through the set of sigma points. The sample points capture the true mean and covariance

of the Gaussian random variable. The sigma points are then propagated through the actual

nonlinear system (and not through a linearization). They capture the posterior mean and

covariance accurately to the third order whereas with the EKF, only first order accuracy

is achieved [141]. In addition to the higher accuracy, the UKF can be applied to a broader

class of system since it does not require the calculation of partial derivatives. In contrast to

particle filters, the UKF selects the sample points in a deterministic way. Hence, compared

to e.g. Monte Carlo methods, less sample points are needed. The UKF belongs to the

class of so called Sigma Point Kalman Filters (SPKF), together with Central Difference

Kalman filter (CDKF), Square-Root SPKF and SPKF smoother [141]. In the following,

the basic algorithm of the UKF is summarized - for the detailed idea and implementation

notes of the filter, see [64, 65].

For a state vector x of dimension L, the 2L + 1 sigma points (vectors) χi and their

corresponding weights for the covariance G
(c)
i and the mean G

(m)
i are created according to

the following procedure

χ0 = x[k]

χi =

{

x[k] +
(√

(L+ λ)P [k]

)

i
for i = 1, . . . , L

x[k] −
(√

(L+ λ)P [k]

)

i−L
for i = L+ 1, . . . , 2L

(5.17)

G
(c)
0 =

λ

L+ λ
+
(

1− α2 + β
)

G
(m)
0 =

λ

L+ λ

G
(c)
i = G

(m)
i =

1

2 (L+ λ)
for i = 1, . . . , 2L

with λ = α2(L+ κ)− L

L = dim (x)

where P [k] is the covariance matrix of x[k] and
(√

(L+ λ)P [k]

)

i
the i-th column of the

matrix square root. The parameters α and κ define the distribution of the sigma points

around the mean and are typically set to small positive values. The parameter β is used to

include prior knowledge on the distribution of x[k]. For Gaussian distributions, the optimal

choice is β = 2 [141]. For the UKF-based observers in this work, the parameters are set

to α = 10−3, κ = 0, and β = 2.

With the sigma points and the corresponding weights defined in (5.17), the basic for-
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mulation of the UKF is as follows: in the first step, sigma points for the augmented state

vector xa[k−1] =
[

x[k−1] w[k−1] ν [k−1]

]T
and the corresponding augmented covariance ma-

trix P a
[k−1] = diag

([

P [k−1] Q R
])

are calculated, leading to

χa
i,[k−1] =

[

χx
i,[k−1] χw

i,[k−1] χν
i,[k−1]

]T

. (5.18)

Next, the sigma points are propagated through process and measurement model

χx
i,[k] = f

(

χx
i,[k−1],χ

w
i,[k−1]

)

Y i,[k] = h
(

χx
i,[k−1],χ

ν
i,[k−1]

)

for i = 0, . . . , 2L. (5.19)

The time update equations (prediction) are then given by

x̂−
[k] =

2L
∑

i=0

G
(m)
i χx

i,[k]

P−
[k] =

2L
∑

i=0

G
(c)
i

[

χx
i,[k] − x̂−

[k]

] [

χx
i,[k] − x̂−

[k]

]T

(5.20)

ŷ−
[k] =

2L
∑

i=0

G
(m)
i Y i,[k].

The measurement update equations (correction step) are

K [k] = P xy,[k]P
−1
yy,[k]

x̂[k] = x̂−
[k] +K [k]

(

yi,[k] − ŷ−
[k]

)

(5.21)

P [k] = P−
[k] −K [k]P yy,[k]K

T
[k],

with P yy,[k] =
2L
∑

i=0

G
(c)
i

[

Y i,[k] − ŷ−
[k]

] [

Y i,[k] − ŷ−
[k]

]T

P xy,[k] =
2L
∑

i=0

G
(c)
i

[

χx
i,[k] − x̂−

[k]

] [

Y i,[k] − ŷ−
[k]

]T

.

In contrast to the EKF, the UKF does not require analytical derivatives, compare (5.14).

The computational complexity of EKF and UKF is comparable [141].

5.2.4 Simulation

The purpose of the following simulation study is the evaluation of the four observer designs

(EKF with y1, EKF with y2, UKF with y1, UKF with y2). Particularly, the simulation

of the system facilitates the investigation of the observer performance for changing envi-

ronment conditions. In the following, this will be denoted as scenario I.

While gravity has a significant effect on the measured forces and torques, the compen-

sation is relatively easy as its influence is only configuration-dependent. In contrast, the

compensation of inertial effects is more challenging since these forces/torques also depend
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on acceleration and (rotational) velocity. Hence, in order to facilitate the presentation and

discussion of the results, zero gravity was assumed in the simulation.

Scenario. The sampling time of the filter is Ts = 1 ms. The tool mass is m = 2 kg

and the inertia tensor JC
C = diag ([3, 2, 1]) kg·m2. The vector from the center of mass to

the force sensor coordinate frame is rCCS = [0.1 m, 0.1 m, 0.1 m]T . In the simulation, the

contact point of the tool with the environment coincides with the center of gravity. The

process noise covariance is set to

Q = diag
([

Qp,Qo,Qv,Qω,QFS
,QFE

,QMS
,QME

])

with Qp = 0.5T 4
s /m

2I3×3 Qo = 0.5T 4
s J

−1
C J−1

C I3×3

Qv = T 2
s /m

2I3×3 Qω = T 2
s J

−1
C J−1

C I3×3 (5.22)

QFS
= QMS

= QFE
= QME

= 100T 2
s I3×3.

The actual measurement noise covariances are

R1 = diag ([Rp,Ro,RFS
,RMS

]) (5.23)

R2 = diag ([Rp,Ro,RFS
,RMS

,Ra,Rα,Rω, ])

with Rp = 10−6 m2, Ro = 10−6, RFS
= 10−3 N2, RMS

= 10−3 Nm2, Ra = 10−2 m2/s4,

Rα = 10−2 rad2/s4, and Rω = 10−3 rad2/s2. In the simulation, it is assumed that process

and measurement covariances are constant. Then, the performance of the filter can be

optimized by taking sensor measurements and determining the values of Ri off-line. In

reality, however, it is likely that the measurement noise varies over time. To take that

effect into account, three different cases are considered in the filter evaluation:

A) R̄i = Ri B) R̄i = 102Ri C) R̄i = 10−2Ri (5.24)

with i ∈ {1, 2}. While case A) reflects a perfect knowledge of the actual measurement

noise level, the cases B) and C) simulate an over- and an underestimation of the actual

measurement noise level. Hence, the filter performance in the latter two cases is a measure

for the robustness of the filter towards changing operating conditions.

In the simulation scenario I, the tool executes a sinusoidal motion in x-direction com-

bined with a rotation of −π around the x-axis, see Fig. 5.4. The measured translational

and rotational tool accelerations are depicted in Fig. 5.5. During this motion, the following

contact forces and torques occur:

F E =

{

[20 N, 0 N, 0 N]T , if 1 s < t < 4 s

[0 N, 0 N, 0 N]T , else.
(5.25)

ME =

{

[0 Nm, 0 Nm, 5 Nm]T , if 2 s < t < 3 s

[0 Nm, 0 Nm, 0 Nm]T , else.

To evaluate the performance of the four filter designs, the force and torque estimation
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Fig. 5.4: Scenario I: Measured tool position (left) and orientation (right)
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Fig. 5.5: Scenario I: Measured translational (left) and rotational tool acceleration (right)

errors at time step [k] are defined as

eF [k] = F E[k] − F̂ E[k]

eM [k] = ME[k] − M̂E[k]. (5.26)

For the evaluation, the performance of the filter with respect to both continuous and dis-

crete changes of the environment forces and/or torques is of interest. Hence, the simulation

is separated into different segments and each time step [k] is associated either with phase

c (continuous) or phase d (discrete) according to

bc,[k] =

{

1 , if t[k] ∈ tc

0 , else
(5.27)

bd,[k] = 1− kc,[k].

Discrete changes of the environment forces and torques occur at t = 1 s, t = 2 s, t = 3 s,

and t = 4 s, compare Eq. (5.25). Hence, the continuous phase is defined as

tc = {[0, 1) ∨ [1.5, 2) ∨ [2.5, 3) ∨ [3.5, 4) ∨ [4.5, 5]} . (5.28)
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With (5.26)-(5.28), the scalar error measures

eF,c =
N
∑

k=1

Tsbc,[k]
∣

∣

∣

∣eF [k]

∣

∣

∣

∣ eF,d =
N
∑

k=1

Tsbd,[k]
∣

∣

∣

∣eF [k]

∣

∣

∣

∣

eM,c =
N
∑

k=1

Tsbc,[k]
∣

∣

∣

∣eM [k]

∣

∣

∣

∣ eM,d =
N
∑

k=1

Tsbd,[k]
∣

∣

∣

∣eM [k]

∣

∣

∣

∣ (5.29)

are defined. In addition, the error measures

eF,Σ = eF,c + eF,d and eM,Σ = eM,c + eM,d (5.30)

are used to evaluate the combined performance in phases c and d.

Results. For case A), the measured sensor force, the true environment force, and the

estimated environment force (UKF with y2) in x-direction are depicted in Fig. 5.6(a). The

force estimation errors for the four different filter designs are illustrated in Fig. 5.6(c). The

forces along y- and z-axis are not displayed since no environment forces were applied in this

direction. But they are, of course, considered in the calculation of the error measures. The

measured sensor torques, the true environment torques, and the estimated environment

torques (UKF with y2) around the three axis are depicted in Fig. 5.6(b), 5.6(e), and 5.6(f).

The corresponding estimation errors for the four filters are shown in Fig. 5.6(d), 5.6(g),

and 5.6(h). It should be noted that all three measured torques show significant deviations

from zero, despite the fact that an environment torque is only applied around the z-axis

(from t = 2 s to t = 3 s). These torques are created by two sources: the environment

force FE,x and the inertial force FI,x due to the translational acceleration along the x-axis.

The latter force also leads to measured torques since the tools center of mass and the force

sensor coordinate system do not coincide.

Discussion. The quantitative results of the simulation for the cases A) - C) are sum-

marized in Tab.5.1 using the six error measures stated in (5.29) and (5.30). As will be

detailed in the following, these results provide interesting information on the performance

on the different filter designs. The first line of the table shows the values of the error

measures when the measured forces F S and torques MS are assumed to be identical with

the environment forces and torques. This can be considered as the worst case scenario. As

F S and MS are unfiltered data, the results are in this case independent of the assumed

measurement noise. Hence, the error measures are identical for the cases A) to C).

In case A), when using an observer design based on y1 (pose and F/T measurements),

the combined error measures eF,Σ (eM,Σ) can be reduced by appr. 82% (90%) compared

to the worst case scenario. Here, EKF and UKF design are performing almost equally

well. By adding an acceleration sensor and using measurements y2 fused from the three

sensor types, the performance can be further improved: the combined error measure eF,Σ
is reduced by 63.9 % for the EKF and by 65.2 % for the UKF (compared to the filter with

y1). It should be noted that the additional acceleration measurements mainly improve

the error measure eF,d which evaluates discrete changes, whereas the improvements of eF,c
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are of minor influence. The same holds for the combined error measure eM,Σ when a filter

design with y2 instead of y1 is used: The measure is reduced by 71.4% for the EKF and

by 72.8% for the UKF. Again, the improvements are mainly associated with eM,d. This is

not surprising since the acceleration measurements are especially beneficial when sudden

changes in the measurements occur.

In case B), the performance of all four filter designs degrades compared to case A).

This is not surprising since the actual measurement noise is overestimated by factor 102.

However, all filters still show a significant improvement compared to the raw measurements:

the error measure eF,Σ is improved between 60.0% (EKF with y1) and 65.9% (UKF with

y2), the error measure eM,Σ between 80.7% (EKF with y1) and 89.5% (UKF with y2).

Remarkably, in case B, the error measure eF,c of the observer designs with y1 is smaller

than that of their counterparts with y2. However, considering the combined measure eF,Σ,

the designs with y1 are still superior.

In case C), the underestimation of the measurement noise by factor 10−2 results for all

four filters in a performance which is between their respective performance in cases A) and

B). However, the results of the filter designs with y1 are only slightly better than in case

B): For the EKF (UKF), the measure eF,Σ is improved by 11.7% (1.8%) and the measure

eM,Σ by 10.3% (10.5%). In contrast, the results of the filter designs with y1 are in case C)

significantly better than in case B): for the EKF (UKF), the measure eF,Σ is improved by

73.8% (72.5%) and the measure eM,Σ by 49.8% (47.8%). Also, for the filter designs with

y2, it is interesting to see that the decline in performance compared to case A) is mainly

caused by a worse performance in the continuous phases (error measures eF,c and eM,c).

The error measures eF,d and eM,d for discrete changes, however, are hardly affected by the

underestimation of the measurement noise. This result corresponds with the intuitive idea

of the functional principles of the filters.

Overall, the UKF based design with y2 showed the best performance although in most

cases, there is only a small improvement when compared to the EKF with y2. As an

additional advantage of the design with the UKF, the calculation of the partial derivatives

of process and measurement equation is not necessary, compare (5.14). While there is

a significant performance difference between the designs with y2 and y1, the observers

based on the latter measurement vector still show a fundamental improvement compared

to the raw measurements. For the designs with y1, the performance of EKF and UKF is

comparable with each of them giving better results in some cases.
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Fig. 5.6: Scenario I - Case A): (a) measured force FS,x, true environment force FE,x and best

estimate of the environment force F̂E,x, (c) estimation error eFx
for the two UKF

and the two EKF filter designs. The figure pairs (b) & (d), (e) & (g), and (f) & (h)
show the corresponding results for the torques around the x, y, and z-axis.
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Fig. 5.7: Error measures: Improvements of the four filter designs compared to the measurements F S, MS.

Case A Case B Case C

eF,Σ eF,c eF,d eM,Σ eM,c eM,d eF,Σ eF,c eF,d eM,Σ eM,c eM,d eF,Σ eF,c eF,d eM,Σ eM,c eM,d

meas. FS ,MS 28.37 17.37 11.00 23.57 12.60 10.97 28.37 17.37 11.00 23.57 12.60 10.97 28.37 17.37 11.00 23.57 12.60 10.97

EKF with y1 5.02 0.86 4.16 2.27 0.32 1.94 11.33 2.31 9.03 4.55 1.10 3.46 10.01 4.83 5.18 4.08 1.81 2.27

UKF with y1 4.95 0.87 4.08 2.28 0.38 1.90 10.41 1.48 8.93 3.72 0.56 3.17 10.22 5.11 5.11 3.33 1.30 2.03

EKF with y2 1.81 0.73 1.08 0.65 0.25 0.40 10.20 3.09 7.11 2.59 0.42 2.17 2.67 1.57 1.10 1.30 0.77 0.54

UKF with y2 1.72 0.68 1.04 0.62 0.25 0.37 9.68 2.79 6.89 2.47 0.37 2.10 2.66 1.56 1.09 1.29 0.76 0.53

Tab. 5.1: Scenario I: Error measures eM,Σ, eF,c, eF,d, eM,Σ, eM,c, and eM,d for the different filter designs and cases A) - C). In each column,
the filter with the best performance is highlighted.
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Fig. 5.8: Scenario II: Experimental setup with a spring attached to one end effector of the
dual-arm robot (left) and dynamic parameters of the tool, relative positions of the
F/T sensor and the contact point of the environment interaction and the sampling
time (right).

5.2.5 Experiments

In order to verify the simulation, the filter designs were also evaluated using real experi-

mental data. In the following, this will be denoted as scenario II. As in simulation scenario

I, the main focus is on the compensation of inertial effects and the rejection of measure-

ment noise. While gravitational forces and torques occurred during the experiments, their

effects have been eliminated from the measured forces and torques that are shown in the

results and the discussion.

Scenario. The experimental setup and the parameters of the experiment are depicted in

Fig. 5.8: an extension spring with spring constant c = 0.303 N/mm is attached to the end

effector in order to produce a known environment force when the robot is moving. The

dynamic parameters of the end effector were determined based on its CAD model. The

forces, torques, and accelerations are measured with a twelve DOF sensor from JR3. The

measurement noise covariances Ri were determined with the robot control running and

the robot commanded to remain in a stationary pose. The following values were obtained:

R1 = diag ([Rp,Ro,RFS
,RMS

]) (5.31)

R2 = diag ([Rp,Ro,RFS
,RMS

,Ra,Rα,Rω, ])

with Rp = 10−6 m2, Ro = 10−6, RFS
= 3 · 10−3 N2, RMS

= 10−3 Nm2, Ra = 10−3 m2/s4,

Rα = 1 rad2/s4, and Rω = 10−3 rad2/s2. The process noise covariance Q is set to the

same values as in the simulation, see (5.22). From time t = 0 s to 1 s, the end effector

moves to a specified position p0 to attach the spring. Starting at t1 = 1 s, the end effector

executes a sinusoidal motion in y-direction

py(t) = p0,y + 0.03
(

1− e−0.2(t−t1)
)

sin (15(t− t1)) , (5.32)
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(d) Torques MS (red) and ME (black)

Fig. 5.9: Scenario II: (a) measured position p and (b) measured translational acceleration a

of the end effector. Figures (c)/(d) show the measured forces F S/ torques MS and
the true environment forces F E/ torques ME.

while px(t) and pz(t) remain constant. After 23 cycles (t = 10.7 s), the spring is de-

tached from the end effector while the sinusoidal motion is continued until the end of the

experiment at t = 14 s.

The measured end effector position and acceleration are depicted in Fig. 5.9(a) and (b).

The forces F S measured with the F/T-sensor and the true environment forces F E are

illustrated in Fig. 5.9(c). The true environment forces caused by the spring are calculated

based on the actual end effector position during the task execution. As the spring is aligned

with the y-axis, a perfect trajectory execution would cause only forces in y-direction.

However, the error between desired and actual position also results in small forces in z-

direction. Due to inertial effects and noise, the measured sensor forces deviate strongly

from the actual forces exchanged with the environment, compare Fig. 5.9(c).

Similarly, Fig. 5.9(d) shows the measured torquesMS and the true environment torques

ME. As interaction with the environment occurs only via the extension spring, the true

environment torques are zero. Again, there are significant deviations between the measured

and the true environment torques. In addition to inertial effects and measurement noise,

these deviations are also caused by spring: the off-center contact point creates torques

around the x- and z-axis.

For the evaluation, the force and torque estimation errors as defined in (5.26) are used.

In contrast to the simulation, there is no differentiation between continuous and discrete
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phases. Hence, only the combined error measures eF,Σ and eM,Σ are utilized for the evalu-

ation of the performance, compare (5.30).

Results. The measured sensor force, the true environment force, and the estimated en-

vironment force (UKF with y2) in y-direction are depicted in Fig. 5.10(a). The force

estimation errors for the four different filter designs are illustrated in Fig. 5.10(b). For the

two observers based on measurement vector y1, the estimation error shows very similar

behavior: during contact with the environment, the estimates lag behind the actual forces

leading to errors of up to 7 N. The estimation errors of the y2-based designs are also almost

identical. However, the maximum estimation error for these designs is only 1.8 N. From

Fig. 5.10(a), it is evident that measured sensor forces can not be directly used in a force

control scheme: in both phases, there is a significant deviation between the measurements

and the actual environment forces. During the contact phase (from 1 s to 10.8 s), the

environment/spring force F E partially compensates the inertial forces F I . During the free

space motion (10.8 s to 14 s), the measured forces reflect the inertial forces caused by the

sinusoidal motion with increasing amplitude.

The measured sensor torques, the true environment torques, and the estimated envi-

ronment torques (UKF with y2) around the x- and z-axis are depicted in Fig. 5.12(a)

and (c). The corresponding estimation errors for the four filters are shown in Fig. 5.12(b)

and (d). As for the forces, the estimation errors for UKF and EKF with the same measure-

ment vector are very similar. Furthermore, the maximum errors of the y2-based designs

(0.04 Nm) are considerably lower than those of the filters with y1 (0.1 Nm). In analogy to

the forces, the deviations between measured torques MS and actual environment torques

ME depicted in Fig. 5.12(a) and (c) illustrate the importance of the observer for a reliable

force control performance.

Discussion. The quantitative results are summarized in Fig. 5.11 using the two error

measures eF,Σ and eM,Σ. Again, the first row of the table shows the values of the error

measures when the measured forces F S and torques MS are assumed to be identical with

the environment forces and torques. This can be considered as the worst case scenario.

When using an observer design based on y1 (pose and F/T measurements), the combined

error measures eF,Σ (eM,Σ) can be reduced by appr. 57% (80%) compared to the worst

case scenario. Here, EKF and UKF design are performing almost equally well. By adding

an acceleration sensor and using measurements y2 fused from the three sensor types, the

performance can be further improved: The combined error measure eF,Σ is reduced by

74.7 % for the EKF and by 74.6 % for the UKF (compared to the filter with y1). The

same holds for the combined error measure eM,Σ when a filter design with y2 instead of y1

is used: The measure is reduced by 61.3% for the EKF and by 60.5% for the UKF.

Overall, the experimental results are in accordance with those of the simulation: First,

EKF and UKF based observer designs perform almost equally well. Second, the designs

with the extended measurement vector y2 show a significant performance improvement

compared to designs based on y1. The observers with y1, in turn, still show significant

improvements compared to the measured values.
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Fig. 5.10: Scenario II: (a) measured force FS,y, true environment force FE,y and best estimate

of the environment force F̂E,y, (b) estimation error eFy
for the two UKF and the

two EKF filter designs.
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Fig. 5.11: Scenario II: Error measures - improvements of the four filter designs compared to
the measurements F S, MS. In each column, the filters with the best performance
are highlighted.
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Fig. 5.12: Scenario II: (a) measured forceMS,x, true environment forceME,x and best estimate

of the environment force M̂E,x, (b) estimation error eMx
for the two UKF and the

two EKF filter designs. The figure pair (c) & (d) shows the corresponding results
for the torque around the z-axis.
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5 Perception and Interaction Control for Dynamic Manipulation

5.3 Motion and Interaction Control

The following section summarizes the robot control strategies that have been utilized in this

thesis. Here, two different tasks have to be considered: first, the control of the robot during

free space motions. Second, the interaction control of the robot when the manipulator is in

contact with the environment. The former is realized with the inverse dynamics approach,

the latter with a parallel force/position control scheme. In both cases, the task space

formalism is used.

Commonly, interaction control schemes assume that the weight and the inertia of the

tool are negligible [125]. Since this assumption does not hold for dynamic manipulation

tasks, it is necessary to modify the interaction control scheme with the dynamic contact

force/torque observer that has been presented in the previous section.

A detailed discussion on interaction control schemes can be found in [94]. For the dual-

arm robot used in this work, impedance control schemes were evaluated by Stanczyk [132].

5.3.1 Task Space Motion Control

In general, the pose of the end effector is defined by

xM =
[

pTM oTM
]T
, (5.33)

where pM ∈ R
3 denotes the position and oM the orientation of the end effector. In oper-

ational space control, the orientation is described with three Euler angles. These are the

minimal set of variables to represent orientation, resulting in xM ∈ R
6. However, such an

approach has two drawbacks: first, Euler angles have representation singularities. Second,

they are inconsistent with the task geometry, see Natale for a detailed discussion [94].

To overcome these drawbacks, task space control schemes have been proposed, see e.g.

Caccavale et al. [26]. Here, the orientation is represented using a non-minimal set of

variables based on an angle-axis description. The most common angle-axis notation are

unit quaternions, which are also used in this work. Consequently, the pose of the end

effector is given by xM =
[

pTM oTe
]T

∈ R
7 with oM = {η, ǫ}. Details on the quaternion

notation are given in App. A.3. When referring to the end effector pose xM , the following

secondary subscripts are used: d (desired), a (actual), c (compliant), r (reference).

The dynamic model of a robot manipulator is given by

B(q)q̈ +C(q, q̇)q̇ + f(q, q̇) + g(q) = τ − JT (q)T E ∈ R
n (5.34)

where B(q) is the inertia matrix, C(q, q̇)q̇ the coriolis and centrifugal torques, f(q, q̇) /

g(q) the frictional / gravitational torques, τ the joint driving torques, J(q) the manipu-

lator jacobian and T E =
[

F T
E MT

E

]T
the vector of environment forces/torques [126].

A block scheme of the motion control is shown in Fig. 5.13 as the gray part of the

interaction control. It consists of three main modules: forward kinematics, pose control,

and inverse dynamics.
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5.3 Motion and Interaction Control

Pose control. Given a (desired) reference trajectory (xM,r, ẋM,r, and ẍM,r) and the ac-

tual robot pose and velocity (xM,a, ẋM,a), the module determines the resolved acceleration

aM in task space variables as

aM =

[

aM,p

aM,o

]

=

[

p̈M,r +KDp∆ṗM,ra +KPp∆pM,ra

ω̇M,r +KDo∆ωM,ra +KPoRMǫM,ra

]

(5.35)

where ∆ṗM,ra and ∆ωM,ra are the velocity tracking errors, ∆pM,ra and ǫM,ra the pose

tracking errors, and KDp, KPp, KDo, and KPo are matrix gains as detailed in [94].

Inverse dynamics. The inverse dynamics module applies the feedback linearization tech-

nique to the robotic system in order to obtain a linear and decoupled system. To this

end, the module calculates the joint torques that match the resolved acceleration. This is

realized in two steps: first, the joint accelerations q̈ that correspond to the resolved end

effector acceleration have to be determined,

q̈ = J−1(q)
(

aM − J̇(q, q̇)
)

. (5.36)

In the second step, the equivalent joint torques are calculated based on the dynamic model

given in (5.34).

Friction compensation. As part of the feedback linearization performed in the inverse

dynamics module, a model for the joint friction is needed. Commonly, a viscous friction

model is utilized because of its simplicity [94, 126]. While this is easy to implement, it

captures only a part of the friction phenomena discussed in Sec. 2.5. Clearly, the accuracy

of the friction compensator is highly dependent on the validity of the used model. For

dynamic manipulation tasks, a large range of joint velocities occurs. Hence, it is necessary

to adopt a friction model that is describing all the relevant effects. In this work, a static

friction model is utilized that considers Coulomb, viscous, and static friction and also

includes the Stribeck effect.

5.3.2 Interaction Control

Sec. 5.1 presented a brief overview on interaction control strategies. Comparing the existing

concepts, the parallel approach developed by Chiaverini and Sciavicco is the best choice

for the dynamic manipulation tasks considered in this work. This is due to two reasons:

first, the method allows to specify the desired interaction forces/torques directly. Second,

in contrast to hybrid force/position control, the controller structure does not need to be

changed during different stages of the task execution [28].

The parallel approach, like all interaction control schemes, utilizes the measured sensor

forces F S and torques MS either directly or after applying a low-pass filter [125]. This is

reasonable, as in most tasks, the weight and the inertia of the tool are negligible. However,

this assumption does not hold for dynamic robot motions where interaction forces occur

during phases with significant acceleration of the end effector. Hence, it is necessary to
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ẍM,d

xM,r

ẋM,r
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Fig. 5.13: Block diagram of the motion control (in gray) and the overall interaction control
scheme based on parallel composition.

extend the force control scheme with one of the dynamic contact force/torque observer

designs discussed in Sec. 5.2.

Fig. 5.13 shows the parallel approach for direct force control used in this work. The

task space motion control is extended by adding two modules: force control and parallel

composition. In the following, the two modules are briefly summarized. For a detailed

discussion, see [28, 94]. In contrast to the original scheme, the control does not use the

sensor forces/torques F S/MS but the observed quantities F̂ E/M̂E.

Force control. The module determines a compliant trajectory xM,c, ẋM,c, and ẍM,c based

on the differential equations

KAF p̈M,c +KV F ṗM,c = F E,d − F E

KAM ω̇c
M,c +KVMωc

M,c = M c
E,d −M c

E, (5.37)

where KAF , KV F , KAM , and KVM are matrix gains and the resulting compliant pose

xM,c incorporates an integral control action over the force/torque error [94].

Parallel composition. When using unit quaternion notation, the parallel composition of

the desired and the compliant trajectory is defined as

pM,r = pM,c + pM,d ṗM,r = ṗM,c + ṗM,d p̈M,r = p̈M,c + p̈M,d (5.38)

oM,r = oM,c ∗ oM,dc ωc
M,r = ωc

M,c + ωc
M,dc ω̇c

M,r = ω̇c
M,c + ω̇c

M,dc. (5.39)

For conflicting situations, the integral control action for the compliant pose ensures domi-

nance of the force control, see (5.37).
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5.4 High-Speed Vision

5.4 High-Speed Vision

The structure of the vision module is depicted in Fig. 5.14, showing two modules: object

tracking and trajectory prediction. In the following, tracking and trajectory prediction of

a spherical object is described, as this is part of the experimental scenario in Chapter 6.

Robot 
Action

Planning
Object Tracking Trajectory Prediction

raw image

xO,(t+∆t)

ẋO,(t+∆t)

xO(t)

Fig. 5.14: Block diagram of the vision module.

5.4.1 Object Tracking Module

The tracking algorithm assumes that color and shape information of the tracked object

are available. The main part of the algorithm is based on the color and shape information

of the object. First, a Gaussian smoothing filter is applied to the image in RGB-format.

Then, the image is converted into the HSV color space. The HSV space consists of the

three channels hue (H), saturation (S), and value (V) and the object is extracted based

on the information in the H- and V-channel. For the hue channel, a look-up table is used

containing the color information of the tracked object. For the value channel, a threshold

value is set to exclude darker regions of the image from the analysis. This is helpful since

the darker regions do not provide reliable color information. Combining the two images

with an and operation results in a binary image. In the next step, an opening operation

is performed on the binary image in order to filter out speckles, not related edges, and

noise in the image [49]. The opening includes an elementary erosion operation followed

by an dilation operation, both using a 3 × 3 pixel circle as structural element. Finally,

by computing the first order moment of the image, the geometric center of the object is

obtained. A block diagram with the processing steps of the tracking algorithm is depicted

in Fig. 5.15. In order to increase the tracking frequency and to reduce the latency, a moving

window search method is used: once the object is detected in the full size image (1280

× 1024 pixel), the search area is reduced to a 180 × 180 pixel window. The position of

the window is determined by a linear position prediction and tracking is performed with

approximately 150 Hz. If the object is lost, e.g. due to occlusion, the search algorithm is

again applied to the full-size image. Further details on the algorithm can be found in [159].

Gaussian

smoothing filter

Conversion

RGB -> HSV

raw image Opening operation

3x3 circle erosion

3x3 circle dilation

Detect center 

(x,y)

Look-up table

Threshold

H

V

pO(t)

Fig. 5.15: Object tracking module: block diagram of the image processing
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5.4.2 Trajectory Prediction Module

The input for the module is the object position pO(t) tracked by the camera system. The

following two paragraphs describe the trajectory prediction of the object’s trajectory for a

free-flight phase and for an impact event. Again, a spherical object is considered.

Free-flight. First, the module has to determine whether the object is in free-flight. This

can be realized in various ways: one approach is to check whether the vertical object

acceleration matches the gravitational acceleration for a certain period of time. If that is

the case, one can assume that the object is in free-flight. The drawback of this method is

that the acceleration aO(t) of the object has to be determined. However, if only position

information is available, noisy and hence imprecise acceleration estimates impede this

approach. Hence, a different approach is used in this thesis: a free-flight phase is detected

when the objects position is outside the workspace of the two robots and the human (which

has to be pre-specified).

The prediction of the objects trajectory is realized with a recursive least squares fitting

method for a sample period ∆Ts. The trajectory for free-flight is given by

p[k] =





px[k]
py[k]

pz[k] − 0.5gt2[k]



 =





px,0 vx,0
py,0 vy,0
pz,0 vz,0





[

1

t[k]

]

(5.40)

where g denotes the gravitational acceleration. This results in the recursive least squares

estimates for the parameters

m̂i[k+1] = m̂i[k] + h[k]

(

p̄i[k+1] −RT
[k+1]m̂i[k]

)

(5.41)

where p̄i[k+1] is the measured i-coordinate of the object and

m̂i[k] =
[

pi,0[k] vi,0[k]
]T

i ∈ {x, y, z} , R[k+1] =
[

1 t[k+1]

]T
(5.42)

h[k] =
Π[k]R[k+1]

1 +RT
[k+1]Π[k]R[k+1]

, Π[k+1] = Π[k] − h[k]R
T
[k+1]Π[k].

With the estimates for the initial state of the object, the future object trajectory xO(t+∆t),

ẋO(t+∆t) is predicted which serves as input for the robot action planning.

Impacts. For some tasks, it is desirable to predict object trajectories that include impact

events in addition to free-flight phases, compare e.g. the indirect catching or the dribbling

task. The prediction model is based on the following assumptions: first, the angle of impact

with respect to the normal direction is smaller than 30◦. In this case, no sliding occurs at

the contact point, see [35, 31]. Second, rotational velocities of the object are negligible.

With these assumptions, the objects tangential velocity after the impact is approximated

as

v+
t,O ≈

mOr
2
O

JO +mOr2O
v−
t,O (5.43)
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where JO denotes the moment of inertia of the ball. Inserting the expression for a spherical

shell, JO = 2
3
mOr

2
O, in (5.43) leads to a proportionality constant cr,t = 0.6 for the horizontal

velocities before and after the impact, compare Sec. 2.6. The translational object velocity

after the ground impact is hence defined as

v+
O =

[

cr,t cr,t −cr
]T

v−
O (5.44)

where cr is the coefficient of restitution for the ground impact.

The models for the free flight phase and the impact event provide the possibility to

predict the future object trajectory which is then used for the robot action planning.

5.5 Summary

This chapter discussed environment perception and interaction control for dynamic object

manipulation. Clearly, precise motion/interaction control and accurate sensor feedback are

essential for the execution of such tasks on real robotic hardware. However, the dynamic

nature of the tasks poses particular challenges that need to be considered.

In Section 5.2, a sensor fusion approach for improved interaction control and estima-

tion of environment forces and torques was presented. The continuous- and discrete-time

system model was derived using quaternion notation for the description of the tool ori-

entation. Based on the system model, the design of six DOF force/torque observers was

discussed. Here, designs based on the EKF and on the UKF were presented. For both de-

signs, two different measurement vectors have been considered: the first one uses pose and

F/T measurements while the second one also uses acceleration and (rotational) velocity

measurements. The four filter designs were first evaluated in a six DOF simulation sce-

nario. Particular interest was paid to the robustness of the filter designs towards changing

environment conditions. To this end, the simulation was performed in three different con-

ditions: a perfectly known, an overestimated, and an underestimated measurement noise.

Six error measures were introduced to evaluate the performance for force and torque es-

timation during continuous and discrete phases. Despite the decline in performance, the

variation of the measurement noise showed that the filters can significantly improve the

contact force/torque estimation even for inaccurate estimates of the measurement noise

levels. For the observer designs with extended measurement vector, the underestimation

of the measurement noise was less critical than the overestimation. For the designs with

pose and F/T measurements, the effects of over- and underestimation were comparable.

In addition to the simulation, a six DOF experiment was conducted to verify the results.

For both, simulation and experiment, the UKF with the extended measurement vector

performed best. Although it showed in most of cases only small improvements compared

to the EKF with extended measurements, it offers the additional benefit that the calcula-

tion of process and measurement jacobians is not needed which makes the UKF easier to

implement.

In Section 5.3, the motion and interaction control schemes for the robotic manipulators

were discussed. The motion control is realized in task space with the well-established

inverse dynamics approach. For the interaction control, a direct force control scheme based
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5 Perception and Interaction Control for Dynamic Manipulation

on parallel composition is used. To meet the demands of dynamic object manipulation,

the scheme was augmented with the dynamic force/torque observer which provides the

estimated environment forces and torques for the interaction control.

In Section 5.4, a method for object tracking with high frame rates (appr. 150 Hz) was

detailed. In addition to the tracking algorithm, the section discussed the trajectory pre-

diction for spherical objects. The prediction is based on the models discussed in Chapter 2

and was presented for free-flight phases and impact events as these are of particular inter-

est for the case studies considered in this thesis. However, the prediction can be used in a

similar way for other motion phases, such as rolling or sliding.
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6 Experimental Evaluation

Summary Experimental results of dynamic object manipulation are presented: nonpre-

hensile catching, throwing, dribbling, and juggling tasks are performed with a six DOF

industrial robot and a 14 DOF anthropomorphic dual-arm manipulator. The results of

the previous chapters with respect to modeling, environment perception, planning, and

control design are integrated in a robotic basketball demonstration scenario. In addition,

the benefits of a compliant end effector design are demonstrated by comparing the perfor-

mance of the compliant and the rigid end effector design for the dribbling task. Finally, the

experiments provide valuable insights into practical issues that have not been considered

in the theoretical analysis.

The experimental evaluation focuses on robotic basketball as demonstration scenario.

Basketball is an excellent challenge to study dynamic and interactive manipulation: the

game incorporates intrinsically dynamic manipulation tasks such as catching, throwing,

and dribbling. The execution of these tasks requires a high degree of mobility, a de-

tailed environment perception, and a precise timing of motions. Furthermore, the scenario

demonstrates exemplarily that dexterous manipulation skills can be realized with simpli-

fied end effector designs. Equipping robots with such a dynamic dexterity is particularly

helpful for the handling of objects that are oversized for conventional grippers.

The chapter is organized as follows: Section 6.1 introduces the hardware setup used for

the experiments. Then, Section 6.2 presents results of the throwing experiments that have

been performed with the dual-arm manipulator. Next, Section 6.3 details the nonprehensile

catching experiments that have been conducted. Both, direct and indirect catching have

been realized in experiments. Section 6.4 shows experimental results for ball dribbling

and considers two different end effector designs: dribbling with a rigid end effector is

detailed in Subsection 6.4.1 and dribbling with a compliant end effector is presented in

Subsection 6.4.2. A comparison of the two dribbling tasks is presented in Subsection 6.4.3.

Finally, Section 6.5 shows results for the classic juggling tasks performed with the dual-arm

manipulator in open-loop control.

89



6 Experimental Evaluation

Fig. 6.1: Experimental setup: prototype of a compliant end effector design (left), Stäubli six
DOF industrial robot (middle), and the dual-arm robot with 14 DOF (right).

6.1 Experimental Setup

For the experiments, a six DOF industrial robot and a 14 DOF dual-arm robotic manip-

ulator are used, see Fig. 6.1. The robots are equipped with either six DOF force/torque

sensors or twelve DOF force/torque and acceleration sensors from JR3 that are located at

the wrist. Circular plates are used used as end effectors. The plates are attached to robot

either through a rigid connection or through an elastic coupling which allows relative mo-

tion between plate and robot. The developed end effector design with intrinsic compliance

is shown in Fig. 6.1.

The stereo vision system for object tracking consists of two Mikrotron MC1311 high-

speed cameras, two frame grabbers and a general purpose PC with two PCIe ports. The

tracking algorithm obtains images from the frame grabber for image processing. The object

position is sent to the control PC via a TCP network connection. The two cameras are

mounted with a baseline b = 2 m and converging axes, the distance between baseline and

fixation point is 3 m.

The overall control structure was presented in Chapter 5, see Fig. 5.1 for a schematic.

6.2 Throwing

In order to evaluate the throwing strategy, a basketball was placed stationary in the

workspace of an anthropomorphic dual-arm robot with 14 DOF. The robot then grasped

the ball with a force closure grasp. The trajectory planning for the task was detailed in

Subsec. 3.3.2. Experimental snapshots of ball throwing with the dual-arm manipulator

are depicted in Fig. 6.2. With the current manipulator hardware, the throwing distance

is limited: for target points which are further away than 3 m from the robot base, all

generated trajectories violate dynamic constraints (e.g. maximum end effector accelera-

tion). However, for target points within this range the trajectory generation finds feasible

solutions. During task execution, the dynamic force sensing is used to apply a constant

grasping force and to maintain the contact between the ball and the two end effectors.
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6.3 Nonprehensile Catching

Fig. 6.2: Throwing - experimental snapshots: motion sequence of the dual-arm manipulator
from 0 s to 1 s.

6.3 Nonprehensile Catching

The catching task was performed with the six DOF industrial robot. It is initiated when

the human operator throws a basketball into the workspace of the robot. In the following,

experimental results for the ball trajectory prediction and the two nonprehensile catching

methods are presented.

Trajectory prediction. Once the ball is detected by the camera system, it is tracked

with appr. 150 Hz and the trajectory is predicted based on the recursive least squares

algorithm presented in Subsec. 5.4.2. If a free-flight phase is detected for 100 ms, the

prediction is used to create the end effector trajectory for direct or indirect catching which

took additional 20 ms. The results of the ball trajectory prediction for the vertical z-

and horizontal y-direction for two different sample periods ∆Ts are illustrated in Fig. 6.3.

For both, y- and z-direction, the accuracy is significantly improved when using the longer

sample period: for a prediction horizon of ∆t = 0.4 s, the deviations from the tracked

position are typically less than 0.1 m (∆Ts = 50 ms) respectively 0.02 m (∆Ts = 100 ms).

Direct catch. A snapshot sequence of a direct catch is shown in Fig. 6.4. For t < tc,

the robot adjusts its position and velocity to match the constraints at tc (snapshots 3-6),

compare Subsec. 3.3.3. Then, for t > tc, the ball is decelerated and the balancing scheme

controls the end effector orientation based on the force/torque measurements (snaps. 7-15).

Indirect catch. The ball and effector trajectories for an indirect catch are illustrated in

Fig. 6.5. For the initial contact, the end effector adjusts its orientation according to (3.18)
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Fig. 6.3: Nonprehensile catching - actual and predicted ball trajectory for different sample
periods ∆TS.

Fig. 6.4: Direct catch - experimental snapshots: initialization by human operator, catching
and balancing (sequence from 0 s to 3 s).

to let the ball rebound vertically. The ball is then caught with the second contact at tc.

Fig. 6.5(d) shows a sequence of snapshots for an indirect catch: After the free flight phase

(snaps. 2-4), the initial contact occurs at tr (snaps. 5), the ball rebounds vertically (snaps.

6-7) and a continuous contact is established at tc (snaps. 8). Then, the ball is decelerated

and balanced on the plate. Further details on the implementation and the experiments are

given in [156, 158].

Discussion. With the current hardware setup, a direct catch is only dynamically feasible

for a small range of ball trajectories. However, if a ball trajectory is within this range, the

success rate of the algorithm is more than 80%. A catch is considered successful if the ball

comes to rest on the plate. While an indirect catch can be realized for a larger range of

ball trajectories, its success rate is only 20 %. Here, the underlying modeling assumptions
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Fig. 6.5: Indirect catch - ball and end effector trajectories: (a) horizontal y-direction, (b) ver-
tical z-direction, (c) end effector orientation, and (d) experimental snapshots.

of the trajectory generation do not describe the impact event accurately, compare Sec. 3.3.

Clearly, the range of feasible ball trajectories is influenced by various factors and can be

improved by modifying the field of view of the camera system or the manipulator hardware.

6.4 Dribbling

For the analysis of the dribbling task in Subsec. 4.5.2 and Sec. 4.6, simplifying assumptions

were made: ball and manipulator motion were restricted to the vertical direction, impacts

were modeled as instantaneous inelastic collisions described by cr, and rotational ball

velocity was assumed to be negligible. For the hardware experiments, these modeling

errors must be considered and their effects have to be compensated.

The inputs for the robot trajectory generation are the predicted ball position in the

xy-plane pB,x(ti) and pB,y(ti), the predicted ball velocity vB(t
−
i ) at the impact / dribbling

height hd, and the point in time ti when hd is reached.

Trajectory prediction. The creation of a desired end effector trajectory is based on a

prediction of the ball trajectory. As depicted in Fig. 6.6(a) and 6.6(b), the two different

methods described in Subec. 5.4.2 are evaluated: a prediction before and a prediction after

the bounce on the ground. In Fig. 6.6(a), the value of the variable changes from 0 to hd
when the next prediction of ti becomes available. Accordingly, a step down from hd to 0

occurs once the predicted time ti is reached. This means, the wider the step, the earlier
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(b) Predicted x-coordinate pB,x(ti) of the ball at hd

Fig. 6.6: Dribbling with a rigid end effector - actual and predicted ball trajectory for two
prediction horizons.

the prediction is available and for an ideal prediction, the step down will occur exactly

when the ball reaches hd. As depicted in Fig. 6.6(a), the accuracy of both approaches is

almost identical while the first approach provides the predicted value approximately 0.15 s

earlier. Fig. 6.6(b) shows that, for the prediction of the x-coordinate of the ball at the

dribbling height, the second approach is more accurate. Again, the drawback of the second

method is that it requires a faster motion execution of the robot since the time span until

the ball reaches the dribbling height hd is approximately 0.15 s smaller. In the presented

experiments, the robot trajectory is generated based on the first prediction method.

Initialization. The dribbling task can be initialized either by the human operator or the

robot. In the former case, the task is triggered when the ball is dropped into a specified

area of the robot workspace. Such an initialization is shown in Fig. 6.8. In the latter case,

the ball is initially at rest on the plate and then dropped by the robot to start the dribbling

cycle. This autonomous initialization is illustrated in Fig. 6.9.

6.4.1 Rigid End Effector

Compensation of horizontal deviations. Horizontal deviations from the desired posi-

tion are compensated by adjusting the orientation of the end effector. The orientation is

described by quaternion representation {cos(φ/2), ra sin(φ/2)}, with axis ra in the hori-

zontal xy-plane and angle φ = 0 corresponding to an end effector plate facing the ground.

To determine the required horizontal ball velocity after the actuated impact vB,h(t
+
i ),

the deviations ex and ey of the ball’s x- and y-coordinate and the overall error eh in the

horizontal plane at the specified dribbling height

ex = pB,x,des(ti)− pB,x(ti) ey = pB,y,des(ti)− pB,y(ti) eh =
√

e2x + e2y (6.1)

are calculated, see Fig. 6.7. Based on the deviations ex and ey, the axis of rotation

ra =
1

eh

[

−ey −ex 0
]T

(6.2)

is defined. The horizontal motion of the ball during one cycle is the sum of the contributions
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Fig. 6.7: Dribbling with a rigid end effector - position error eh and axis of rotation ra.

in drop and rise phase

eh = vB,h(t
+
i ) (∆tdrop + cr,t∆trise) , (6.3)

which defines the required horizontal ball velocity vB,h(t
+
i ). With the assumption of no

sliding between the contact points during impact and neglecting rotational velocity, the

vertical and horizontal ball velocity after the impact are determined as a function of φ and

the known inputs. With small angle approximation, one obtains

vB,z(t
+
i ) ≈− crvB,z(t

−
i ) + (1 + cr) vM,z(ti) + φ (cr,t − cr) vB,h(t

−
i ) (6.4)

vB,h(t
+
i ) ≈ φ (cr,t + cr)

(

vB,z(t
−
i )− vM,z(ti)

)

+ cr,tvB,h(t
−
i ).

With (6.1)-(6.4), the vertical end effector velocity vM,z and the rotation angle φ are de-

termined. At time ti for which the ball is predicted to reach the dribbling height hd, the

desired position, orientation, and velocity of the end effector are

pM,des(ti) =
[

pB,x(ti) pB,y(ti) hd + rB
]T
,

oM,des(ti) = {cos(φ/2), ra sin(φ/2)} ∗ oe,i, (6.5)

vM,des(ti) =
[

0 0 vM,z(ti)
]T
.

After the impact with the ball, the end effector decelerates and returns to its initial/rest

height. During the dribbling cycle, the horizontal end effector position is adjusted to

match the tracked horizontal ball position. For further details on the implementation

and a comparison of the performance between vision-based and force/torque-based ball

tracking, see Bätz et al. [151].

Dribbling cycle. The ball is held in a human’s hand and then dropped into a specified

area of the robot workspace to initialize the dribbling. With vision-based ball tracking,

dribbling for multiple cycles (> 15) is achieved. Fig. 6.8 shows a sequence of snapshots

taken during an experiment. The time duration between two consecutive snapshots is

0.16 s. The ball and end effector trajectory in vertical direction are depicted in Fig. 6.11(a).
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Fig. 6.8: Dribbling with a rigid end effector - experimental snapshots: initialization by a human
operator and four dribbling cycles (sequence from 0.5 s to 2.9 s).

6.4.2 Compliant End Effector

The end effector design with intrinsic compliance is depicted in Fig. 6.1. The springs

allow to store energy temporarily and release it at the end of contact, leading to possi-

ble higher accelerations. The design reduces the effective inertia to 0.3 kg during initial

contact/impact, allowing for a continuous contact phase.

Dribbling cycle. The desired initial and final states for the experimentally studied drib-

bling cycle are summarized in Table 6.1. For the experiment, a constraint for the relative

velocity between ball and manipulator at the time of initial contact is added:

ẋM
(

tc−f
)

= 0.95ẋB
(

tc−f
)

. (6.6)

For the contact phases catch and push, the control law described in Sec. 4.6 is used.

During the non-contact phase the robot trajectory is generated and updated based on the

tracked ball position and the predicted impact time. For all phases, an additional controller

is used to compensate horizontal deviations. Fig. 6.11(b) shows the actual manipulator

and ball position in vertical direction during a dribbling experiment. The ball trajectory

starts at 0.75 s when the ball is detected by the vision system. A snapshot sequence of the

initialization and the first dribbling cycle is depicted in Fig. 6.9.

The performance is mainly limited by the following aspect: in the simulation, it was

assumed that there is no energy loss in the elastic actuator. For the real actuator however,

friction forces during spring compression/elongation cause energy dissipation. This, in

turn, leads to a reduced amount of energy storage in the spring and thus a reduced energy

transfer to the ball.
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Fig. 6.9: Dribbling with a compliant actuator - experimental snapshots: autonomous task
initialization and first dribbling cycle (sequence from 0 s to 2.16 s).

initial contact switch release
xM [m] 1.605 1.65∗ 1.285
xB [m] 1.32 1.38 1.00
ẋM [m/s] 1.1438 0 −2.91∗

ẋB [m/s] 1.204 0 −4.26

Tab. 6.1: Initial and final states for the experimentally studied dribbling cycle. Entries marked
with ∗ are obtained through trajectory optimization.

6.4.3 Comparison

Reduced mechanical load. The use of a mechanical spring element promises to reduce

the mechanical load on the end effector. In order to evaluate this assumption, the following

experiment was conducted: a basketball impacted the end effector with a relative velocity

of 1.4 m/s. Fig. 6.10(a) shows the contact force for a rigid end effector design: during the

initial impact, the force exceeds 220 N. In contrast, Fig. 6.10(b) shows the contact force for

the compliant end effector design: here, the maximum force is significantly reduced (appr.

25 N). In addition, the compliant structure leads to a continuous contact phase after the

initial impact.

Contact phase. Fig. 6.11 depicts the vertical position of manipulator and ball during

a dribbling sequence of ten seconds for a (a) rigid and (b) compliant end effector. The

ball trajectories show significant differences: with the rigid end effector, the contact phase

reduces to an impact event. The time duration of approximately 20 ms justifies the mod-

eling assumption of an instantaneous impact, compare Sec. 4.5. This is illustrated by the

discontinuous change in the ball velocity when contact with the manipulator occurs. In

contrast, with the compliant end effector, discontinuities of the ball velocity only occur

for the ground impacts. The instantaneous impact between end effector and ball is now

replaced with a continuous contact with a catch and push phase as discussed in Subsec. 4.6.
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Fig. 6.10: Measured impact forces for (a) rigid end effector and (b) compliant end effector.
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Fig. 6.11: Actual manipulator and ball position in vertical direction for a dribbling sequence
of ten seconds.
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Fig. 6.12: Juggling - experimental snapshots: motion sequence of ball and dual-arm
manipulator.

6.5 Juggling

The juggling of a ping-pong ball was experimentally studied using the dual-arm manipu-

lator. The task was performed in open-loop control and the manipulator trajectory was

optimized based on the approach presented in Subsec. 4.5.1.

Fig. 6.12 shows a snapshot sequence of the juggling task: the initial state of the systems

is determined by the human operator. If x0 is within the region of attraction, the system

converges to the desired fixed point x∗. The coefficient of restitution of the ping-pong ball

is appr. cr = 0.9. Such a value of cr close to 1 reduces the rate of convergence to the

desired periodic orbit, compare Subsec. 4.5.1. However, the region of attraction is large

enough so that nine of ten task initializations lead to a stable periodic motion.

Horizontal deviations from the fixed point are compensated by using a slightly curved

end effector plate with curvature K = 1 m−1. Further details on this approach are given

in [102]. A similar effect can be realized either with a compliant structure comparable to

a membrane or by adjusting the orientation of the end effector based on sensor feedback,

see Subsec. 6.4.1.

Fig. 6.13(a) shows the measured forces in vertical direction FS,z. Since inertial forces

have a non-negligible effect on these measurements, it is not possible to determine the forces

that are exchanged with the environment. Clearly, this effect becomes even more pro-

nounced if the juggling height and/or the ball mass were reduced. In contrast, Fig. 6.13(b)

shows the estimated environment forces FE,z using the UKF-based force/torque observer

with y2, compare Sec. 5.2. Here, the inertial effects have been compensated and the impact

forces can be directly identified.

6.6 Summary

This chapter presented the experimental results for a number of tasks that require robots

with a high degree of dynamic dexterity. The successful execution of the tasks validates
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Fig. 6.13: Juggling: (a) measured sensor forces FS,z and (b) estimated environment force FE,z
(UKF with y2).

the results of the previous chapter: the offline optimization of trajectories and the creation

of look-up tables is an excellent approach to obtain both, near-optimal trajectories, and

real-time capability with fast reaction times. The control framework presented in Ch. 5

allows a thorough environment perception. The source and/or amount of sensor feedback

can be chosen task-dependent: the catching task was performed using both, visual and

F/T-sensor information. For the dribbling task, only visual feedback was used whereas the

throwing motions were executed based on F/T-sensor information. Finally, the juggling

was performed in open-loop control based on the trajectory optimization discussed in

Subsec. 4.5.1.

Clearly, the mechanical design of a robotic manipulator is of great importance for its

dynamic dexterity. While the hardware design is not the main focus of this thesis, the

comparison of the dribbling task for two end effectors provides valuable implications for

future hardware design. While using the same manipulator, the addition of an elastic

element has a number of beneficial effects: first, the kinetic energy of the ball can be

transformed in potential energy of the spring. This, in turn, facilitates the task execution

as it relaxes the acceleration requirements for the manipulator. Second, the elastic element

also reduces the mechanical load for the manipulator by establishing a continuous-time

contact phase that replaces the instantaneous impact with impulsive contact forces. Third,

the continuous-time contact phase facilitates the compensation of horizontal deviations (in

the xy-plane) from the desired fixed point.

The experiments in this chapter were limited to the manipulation of spherical objects.

This simplified the image processing as the tracking of the objects orientation is dispens-

able. However, the extension of the presented approach for other object geometries is

straightforward: the trajectory prediction for the orientation can be realized in the same

way as for the position. The offline optimization and the creation of look-up tables require

only small modifications: as discussed in Subsec. 3.2, the orientation of the object has to

be used as additional optimization criteria.
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The chapter provides a summary and discussion of the material presented in this work. In

addition, possible directions of future research work are outlined.

7.1 Summary

The following paragraphs briefly summarize the contributions of the previous chapters.

Modeling foundations for dynamic object manipulation. Chapter 2 provided a sum-

mary and a discussion of state-of-the-art models that lay the foundations for dynamic

object manipulation. A hybrid system model was introduced to capture the task dynamics

with varying contact states. The contact kinematics were outlined in a general form and it

was shown how the equations simplify for special cases such as rolling or sliding motions.

In addition, the chapter discussed the fundamental properties of static and dynamic fric-

tion models. Finally, the modeling of impact events was considered and both, discrete and

continuous, impact models were outlined.

Planning methods for dynamic manipulation tasks. The realization of dynamic object

manipulation with a generic end effector design was considered.

First, Chapter 3 discussed non-periodic dynamic manipulation tasks. It was detailed

how dynamic dexterity can be realized with generic end effector designs and the planning

of optimal trajectories was discussed. The proposed approach was based on a combination

of offline and online decisions: selection criteria were evaluated offline and used for the cre-

ation of look-up tables. These look-up tables then allowed online evaluation of the selection

criteria. Three non-periodic manipulation tasks were exemplarily studied: rolling manip-

ulation, dual-handed throwing, and one-handed catching. For robotic catching, a novel

nonprehensile approach was discussed which allows the catching of bulky objects. Two

catching strategies, direct and indirect, were proposed to increase the range of admissible

initial object states.

Next, Chapter 4 focused on periodic manipulation tasks with intermittent contact. Ball

dribbling was introduced as novel case study for dynamic dexterity and the hybrid system

dynamics, optimal trajectory planning, and control design were presented. A comparison

with the classic juggling task showed that the dribbling task is more challenging due to the

occurrence of an additional, autonomous impact. In addition, the classic juggling task was

studied and a new approach for optimal trajectory planning based on a non-local stability

analysis was presented.

Dynamic contact force/torque observer. In Chapter 5, a sensor fusion approach for

the estimation of environment forces and torques was developed. The design of six
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DOF force/torque observers based on the EKF and on the UKF was discussed. For

both approaches, two measurement vectors were considered: the first one used pose and

force/torque measurements while the second one also used acceleration and velocity mea-

surements. The four filter designs were evaluated in a six DOF simulation scenario and

in experiments. The obtained results illustrated the importance of such an observer, not

only for dynamic object manipulation but also for other tasks that require environment

interaction during dynamic motions. With the quantitative comparisons, the appropriate

observer design can be chosen according to the task-specific requirements.

Control framework for dynamic object manipulation. Chapter 5 also addressed the

challenges for the closed-loop control of dynamic manipulation tasks and presented an ex-

tensive control framework to overcome these challenges. With respect to environment per-

ception, a method for high-speed image processing was presented. This allows to track and

to predict the state of manipulated objects during non-contact phases with high sampling

rates. Together with the dynamic force/torque observer, the high-speed image processing

was integrated into the control architecture and used for the robot action planning. In

addition, the motion and interaction control was discussed. The force/torque observer

was integrated in a direct force control scheme to improve the interaction control during

dynamic motions.

Dynamic manipulation with a compliant end effector. The thesis considered the con-

cept of series elastic actuation to improve the performance in dynamic manipulation tasks.

While such an approach adds complexity to the task planning, it also promises several

beneficial effects: first, kinetic energy of the object can be transformed in potential energy

of the spring element. This relaxes the acceleration requirements for the manipulator and

facilitates the task execution. Second, the elastic element reduces the mechanical load for

the manipulator at impact events as it establishes a continuous-time contact phase which

replaces the impulsive contact force of an instantaneous impact. Finally, the continuous-

time contact phase extends the time in which the object can be directly controlled with

the manipulator. The approach was evaluated in experiments: the dribbling task was

performed with both, a compliant and a rigid end effector design. Their comparison con-

firmed the expected benefits and provides a basis for further development of the mechanical

design.

Experimental evaluation. In Chapter 6, nonprehensile catching, throwing, dribbling,

and juggling tasks were experimentally studied with a six DOF industrial robot and a 14

DOF anthropomorphic dual-arm manipulator. The experiments validated the approach

of the thesis by integrating the results with respect to modeling, environment perception,

planning and control design in a robotic basketball scenario. In addition, the experiments

provided valuable insights into practical issues that had not been considered in the theo-

retical analysis.
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7.2 Discussion and Future Directions

Individual aspects of the topics presented in this thesis were discussed at the end of each

chapter. This section comments on the most important issues and outlines possible im-

provements and extensions for future research.

Mechanical design. The occurrence of motion sequences with high manipulator acceler-

ation is a characteristic feature of dynamic object manipulation. Consequently, an increase

of the peak power is desirable. One way to realize this is the use of motors with higher

output power. However, this is not reasonable since size and weight of a humanoid or

autonomous robot are usually constrained and, in addition, a temporary increase is suf-

ficient. Hence, the concept of series elastic actuation was employed in this work. The

benefits were exemplarily demonstrated by comparing the dribbling task with a rigid and

a compliant end effector design. On the one hand, the results emphasized the importance

of the mechanical design for the planning and execution of dynamic manipulation tasks.

On the other hand, the experiments showed that the optimal stiffness is task-dependent

and can even change for different phases of a particular task. Thus, a manipulator design

with variable stiffness actuation (VSA) is desirable to further improve the system perfor-

mance. Such an adjustable stiffness is also beneficial for manipulation tasks that include

a physical human-robot interaction.

Manipulation of elastic and arbitrarily shaped objects. The manipulated objects in

this work were effectively rigid, compare Sec. 2.6. This allowed the use of discrete impact

models and hence simplified the task planning and trajectory optimization. For the plan-

ning of dynamic manipulation tasks with elastic objects, continuous or distributed models

are needed. Furthermore, the applications and case studies in this work considered the

manipulation of spherical objects. Thus, the object orientation did not influence the task

planning. The manipulation of non-spherical objects generally implies preferred orienta-

tions and hence poses additional challenges for both task planning and object tracking.

Multi-camera system. In this work, a stereo camera system was utilized to provide visual

feedback of the environment. With this approach, an occlusion of the object in one camera

results in a loss of 3D information. In order to address this problem, future research work

could focus on a multi-camera setup that allows robust tracking of the object at high frame

rates. Another important criteria for successful task execution is the field of view of the

cameras, compare Sec. 6.3. With a multi-camera system, different field of views can be

fused to obtain a thorough visual perception of the environment.

Library of dynamic manipulation skills. The planning and control methods presented in

this work were applied to a number of case studies. However, the modeling foundations, the

planning approach, and the overall control structure can be used for a wide range of tasks

which require a dynamically dexterous robot. Hence, by building upon this framework,

future research work can establish a library of dynamic manipulation skills.

103



7 Conclusions

Dynamic manipulation with multi-fingered robotic hands. This work considered the

realization of dynamic manipulation tasks with simple end effector designs. Such an ap-

proach is desirable as it generalizes to more complex hands, e.g. when only the palm

of a multi-fingered hand is used for a particular task. However, dynamic dexterity and

multi-fingered hands clearly do not exclude each other. On the contrary, some dynamic

manipulation tasks even require hands with multiple DOF, e.g. twisting a pen in one’s

hand. Realizing dynamic object manipulation with a multi-fingered hand is one of the

future milestones for robotic manipulation.
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A.1 Differential Geometry

Detailed information on the following terms can be found in the in the books by DoCarmo

and Murray [34, 92].

First fundamental form. For a surface, the first fundamental form describes how the

inner product of two tangent vectors is related to the natural inner product on R
3. For a

local parameterization c(u, v), the matrix representation of the first fundamental form at

a point p is given by

Ip =

[

cTucu cTucv
cTv cu cTv cv

]

. (A.1)

Metric tensor. The metric tensor of a surface is given by the square root of the first

fundamental form

Ip = M pM p. (A.2)

For an orthogonal parameterization, M p takes the form

M p =

[

||cu|| 0

0 ||cv||

]

. (A.3)

Outward pointing unit normal vector. The vector

n̂(u, v) =
cu × cv

||cu × cv||
(A.4)

denotes the unit normal at a point of the surface.

Second fundamental form. For a surface, the second fundamental form is defined as

IIp =

[

cTu n̂u cTu n̂v

cTv n̂u cTv n̂v

]

. (A.5)

Curvature tensor. For an orthogonal parameterization, the curvature tensor is defined

as

Kp = M−T
p IIpM

−1
p =

[

cTu n̂u

||cu||
2

cTu n̂v

||cu||||cv ||
cTv n̂u

||cu||||cv ||
cTv n̂v

||cv ||
2

]

. (A.6)
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Torsion form. The torsion of a surface is a measure of how the Gauss frame twists when

moving across the surface. It is defined as

T p =
[

cTv cuu

||cu||
2||cv ||

cTv cuv

||cu||||cv ||
2

]

. (A.7)

Geometric parameters of a surface. For a given parameterization, the collective of the

metric tensor M , the curvature K, and the torsion form T are the geometric parameters

of the surface.

A.2 Velocity and Force/Torque Transformations

Velocity transformation. The velocities of two points A and C fixed on a rigid body are

related according to the following relation

ṙ0
C =ṙ0

A + ω0
A × r0

AC (A.8)

ω0
C =ω0

A, (A.9)

or in matrix notation
[

ṙ0
C

ω0
C

]

=

[

I −S(r0
AC)

0 I

] [

ṙ0
A

ω0
A

]

. (A.10)

When the velocities are referred to their own frames one obtains
[

ṙCC
ωC
C

]

=

[

RC
A −RC

AS(r
A
AC)

0 RC
A

] [

ṙAA
ωA
A

]

. (A.11)

Here, the subscripts A and C for ω can be omitted since the rotational velocity is identical

for every point on the rigid body.

Force/Torque transformation. The forces and torques applied on a rigid body at point

A can be transformed to corresponding forces and torques at a different reference point C

inertial frame Σ0

ΣA

ΣCrA

rC

rAC

Fig. A.1: Representation of velocities in different coordinate frames.
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A.3 Orientation of a Rigid Body: Unit Quaternion

according to

[

F 0
C

M 0
C

]

=

[

I 0

S(r0
CA) I

] [

F 0
A

M 0
A

]

. (A.12)

When the forces and torques are referred to their own frames one obtains

[

F C
C

MC
C

]

=

[

RC
A 0

S(rCCA)R
C
A RC

A

] [

F A
A

MA
A

]

. (A.13)

In some cases, however, it will be helpful to illustrate the origin of the transformed forces

and torques. Then, the following extended notation is used

[

F C
A→B

MC
A→B

]

, (A.14)

which means the forces and torques applied at point A have been transformed to the

corresponding forces and torques at point B and are expressed in frame C.

A.3 Orientation of a Rigid Body: Unit Quaternion

This section outlines the use of unit quaternions to describe the orientation of a rigid body.

A detailed discussion on unit quaternions and on other generalized coordinates for the

orientation of a rigid body can be found in the books by Wittenburg and Natale [145, 94].

Skew-symmetric operator. The skew-symmetric operator is defined as

S (r) =





0 −rz ry
rz 0 −rx
−ry rx 0



 . (A.15)

Unit quaternion. The unit quaternion is defined as

o = {η, ǫ} , (A.16)

where η is the scalar part and ǫ = [ǫx ǫy ǫz]
T is the vector part of the quaternion. The

unit quaternion fulfills the condition

||o||2 = η2 + ǫTǫ = η2 + ǫ2x + ǫ2y + ǫ2z = 1. (A.17)

The inverse of the unit quaternion is given by

o−1 = {η,−ǫ} . (A.18)
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The quaternion product operation is defined as

o1 ∗ o2 =

[

η1η2 − ǫT1 ǫ2
η1ǫ2 + η2ǫ1 + S (ǫ1) ǫ2

]

. (A.19)

Angular velocity. An expression for the angular velocity can be derived based on (A.19).

Starting with an initial orientation o10 at time t, the rotation o20 is interpreted as a

differential rotation over the time interval dt,

o20 = {η20, ǫ20} =

{

cos

(

1

2
||ω|| dt

)

,
ω

||ω||
sin

(

1

2
||ω|| dt

)}

. (A.20)

For dt→ 0, o20 =
{

1, 1
2
ω
}

and (A.19) can be rewritten as

η(t+ dt) =η10(t)−
1

2
ǫ10(t)

Tωdt, (A.21)

ǫ(t+ dt) =ǫ10(t) +
1

2
[η10(t)ω + S (ω) ǫ10(t)] dt. (A.22)

This yields to the so called unit quaternion propagation

η̇10 =−
1

2
ǫT10ω10, (A.23)

ǫ̇10 =
1

2
[η10I − S (ǫ10)]ω10. (A.24)

A.4 Newton-Euler Equations for a Rigid Body

For a reference point A fixed on the rigid body and an inertial frame Σ0 as reference frame,

the Newton-Euler equations for a rigid body are given by [145]

F A = mr̈A −mS (rAC)ω +mω × (ω × rAC)

MA = mrAC × r̈A + JAω̇A + ωA × JAωA (A.25)

If the reference point A coincides with the center of mass rAC = 0, (A.25) simplifies to

F A = mr̈A

MA = JAω̇A + ωA × JAωA (A.26)

Inertia tensor. The inertia tensor of a rigid body with respect to a body-fixed reference

point A and expressed in the inertial frame Σ0 is given by

JA = J0
A. (A.27)

If the rigid body is rotating, the inertia tensor expressed in the inertial frame is time-

varying. A constant expression for the inertia tensor is obtained by choosing a body-fixed
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reference frame, such as a frame ΣC located at the center of mass (COM),

JC
A. (A.28)

For a constant reference point A, a change of the reference frame for the inertia tensor is

realized by

JC
A = RC

B JB
A RB

C . (A.29)
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