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Abstract

In this paper we introduce an exponential continuous time GARCH(p, q) process.
It is defined in such a way that it is a continuous time extension of the discrete time
EGARCH(p, q) process. We investigate stationarity, mixing and moment properties of the
new model. An instantaneous leverage effect can be shown for the exponential continuous
time GARCH(p, p) model.
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1 Introduction

GARCH type processes have become very popular in financial econometrics to model returns
of stocks, exchange rates and other series observed at equidistant time points. They have
been designed (see Engle [9] and Bollerslev [3]) to capture so-called stylised facts of such data,
which are e.g. volatility clustering, dependence without correlation and tail heaviness. An-
other characteristic is that stock returns seem to be negatively correlated with changes in the
volatility, i.e. that volatility tends to increase after negative shocks and to fall after positive
ones. This effect is called leverage effect and can not be modelled by a GARCH type process
without further extensions. This finding led Nelson [19] to introduce the exponential GARCH
process, which is able to model this asymmetry in stock returns. The log-volatility of the
EGARCH(p, q) process was modelled as an ARMA(q, p− 1) process. We also like to mention
another popular model the LARCH process, which explains besides a long memory property
also the leverage effect as shown in Giraitis et al. [10].
The availability of high frequency data, which increased enormously in the last years, is one
reason to consider continuous time models with similar behaviour as discrete time GARCH
models. The reason for this is of course that at the highest available frequency the observations
of the price process occur at irregularly spaced time points and therefore it is kind of natural to
assume an underlying continuous time model. Different approaches have been taken to set up
a continuous time model, which has the same features as discrete time GARCH processes. Re-
cently Klüppelberg et al.[13] developed a continuous time GARCH(1, 1) model, shortly called
COGARCH(1, 1). Their approach differs fundamentally from previous attempts, which could
be summarized as diffusion approximations (see e.g. Nelson [18]), by the fact that their model
is driven by only one source of randomness (like discrete time GARCH) instead of two (like
in the diffusion approximations). They replaced the noise process of discrete time GARCH by
the jumps of a Lévy process . The COGARCH(1, 1) was then extended by Brockwell et al.[5] to
a continuous time GARCH(p, q) process for general orders p, q ∈ N, q ≥ p, henceforth called
COGARCH(p, q).
In this paper a continuous time analogue of the EGARCH(p, q) model is introduced. The
noise processes will also be modelled by the increments of a Lévy process . As in the discrete
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time case we describe the log-volatility process as a linear process, more precisely a continu-
ous time ARMA(q, p− 1) process.
The paper is now organized as follows. In Section 2 we review the definition of the discrete
time EGARCH process. After a short review of elementary properties of Lévy process es we
define the exponential continuous time GARCH(p, q) process at the beginning of Section 3. In
addition we state stationarity conditions for the log-volatility and volatility process of our
model. Afterwards the leverage effect in our model is considered. We close the section with
an investigation of the mixing properties of the (log)volatility and return process. In Section
4 we derive second order properties of the volatility process. Section 5 is devoted to the ana-
lysis of the second order behaviour of the return process. We derive expressions for the first
and second moment of the return process. The stylised fact of zero correlation in the return
process but correlation of the squared returns is also shown.

2 The discrete time EGARCH process

Motivated by empirical evidence that stock returns are negatively correlated with changes in
returns volatility Nelson [19] defined the exponential GARCH process (EGARCH) to model
this effect, which is called leverage effect (see also Section 3.1).

The process (Xn)n∈Z of the form Xn = σnǫn , n ∈ Z, where (ǫn)n∈Z is an i.i.d. sequence with
E(ǫ1) = 0 and Var(ǫ1) = 1, is called an EGARCH process, if the volatility process (σ2

n)n∈Z satisfies

log(σ2
n) = µ +

∞

∑
k=1

βk f (ǫn−k) ,

where f : R → R is some measurable real valued deterministic function, µ ∈ R and (βk)k∈N are real
coefficients such that E(| f (ǫn)|) < ∞ ,Var( f (ǫn)) < ∞ and ∑

∞
k=1 |βk| < ∞ .

Nelson [19] also suggested a finite parameter model by modelling the log-volatility as
an ARMA(q, p− 1) process instead of an infinite moving average process. This leads to the
EGARCH(p, q) model, which is defined in the following way.

Let p, q ∈ N, µ, α1, . . . , αq, β1, . . . , βp ∈ R, suppose αq 6= 0 , βp 6= 0 and that the autoregressive
polynomial φ(z) := 1 − α1z − · · · − αqz

q and the moving average polynomial ψ(z) := β1 +
β2z+ · · ·+ βpz

p−1 have no common zeros and that φ(z) 6= 0 on {z ∈ C | |z| ≤ 1}. Let (ǫn)n∈Z be
an i.i.d. sequence with E(ǫ1) = 0 and Var(ǫ1) = 1, and let f (·) be such that E(| f (ǫn)|) < ∞ and
Var( f (ǫn)) < ∞. Then (Xn)n∈Z, where Xn = σnǫn and

log(σ2
n) = µ +

p

∑
k=1

βk f (ǫn−k) +
q

∑
k=1

αk log(σ
2
n−k)

is called an EGARCH(p,q) process.

To achieve the asymmetric relation between the stock returns and the volatility, f (ǫn)
must be a function of the magnitude and the sign of ǫn as noted by Nelson [19]. Therefore he
proposed the following function:

f (ǫn) := θǫn + γ[|ǫn| − E(|ǫn|)] , (2.1)

with real coefficients θ and γ. We see that f (ǫn) is piecewise linear in ǫn and has slope θ + γ

for positive shocks ǫn and slope θ − γ for negative ones. Therefore f (ǫn) allows the volatility
process (σ2

n)n∈Z to respond asymmetrically to positive and negative jumps in the stock price.
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3 Exponential COGARCH

The goal of this section is to construct a continuous time analogue of the discrete time
EGARCH(p, q) process. Therefore we will use the idea of Klüppelberg et al. [13] to replace
the noise variables ǫn by the increments of a Lévy process L = (Lt)t≥0. Any Lévy process L
on R has a characteristic function of the form E(eiuLt) = exp{tψL(u)} , t ≥ 0, with

ψL(u) := iγLu−
τ2
L

2
u2 +

∫

R

(eiux − 1− iuxχ(−1,1)(x))νL(dx) , u ∈ R,

where τ2
L ≥ 0, γL ∈ R, the measure νL satisfies

νL({0}) = 0 and
∫

R

min(x2, 1)νL(dx) < ∞

and χA(·) denotes the indicator function of the set A ⊂ R. The measure νL is called the Lévy
process measure of L and the triplet (γL, τ

2
L , νL) is called the characteristic triplet of L. The map

ψL is called the Lévy process symbol . For more details on Lévy process es we refer to Sato [21]
or Applebaum [1].

We consider Lévy process es L defined on a probability space (Ω,F , P) with jumps ∆Lt :=
Lt − Lt−, zero mean and finite variance. In that case the Lévy process-Itô decomposition (see
e.g. Theorem 2.4.16 of Applebaum [1]) of L is

Lt = Bt +
∫ t

0

∫

R\{0}
xÑL(dt, dx) , t ≥ 0,

where B is a Brownian motion with variance τ2
L and ÑL(t, dx) = NL(t, dx) − tνL(dx),

t ≥ 0, is the compensated random measure associated to the Poisson random measure

NL(t, A) = #{0 ≤ s < t;∆Ls ∈ A} = ∑
0<s≤t

χA(∆Ls), A ∈ B(R \ {0}),

on R+ ×R \ {0}, which is independent of B.

The driving noise process in this continuous time model will be constructed similar as in
the discrete time case. In particular for a zero mean Lévy process L, with E(L21) < ∞, and
parameters (θ,γ)T ∈ R2 \ {0} we define the driving process M of the log-volatility process by

Mt :=
∫

R\{0}
h(x)ÑL(t, dx) , t ≥ 0, (3.2)

with h(x) := θx+ γ|x|.

Remark 3.1. (i) The process M defined by (3.2) is by construction a process with independent and
stationary increments and by Theorem 4.3.4 in Applebaum [1] well defined if

∫

R

|h(x)|2νL(dx) < ∞ . (3.3)

Condition (3.3) is satisfied since νL is a Lévy process measure and L has finite variance. By equation
(2.9) of Applebaum [1] the characteristic triplet of M is (γM, 0, νM), where νM := νL ◦ h

−1 is the Lévy
process measure of M and γM := −

∫
|x|>1 xνM(dx). The precise form of νM depends on the sign and

size of θ and γ and is given in the following formulas:

νM((−∞,−x]) =





νL([−
x

θ+γ ,∞)) + νL((−∞,− x
θ−γ ]) , −γ > θ > γ

νL((−∞,− x
θ−γ ]) , −θ < γ < θ

νL([−
x

θ+γ ,∞)) , −θ > γ > θ

0 −γ < θ < γ
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and

νM([x,∞)) =





νL([
x

θ+γ ,∞)) + νL((−∞, x
θ−γ ]) , −γ < θ < γ

νL((−∞, x
θ−γ ]) , −θ > γ > θ

νL([
x

θ+γ ,∞)) , −θ < γ < θ

0 −γ > θ > γ

for x > 0. One recognises that M is a spectrally negative Lévy process for
γ < θ < −γ , i.e. M has only negative jumps, and a spectrally positive Lévy process for −γ < θ < γ.
(ii) In case the jump part of L is of finite variation, M is a Lévy process of finite variation with Lévy
process-Itô decomposition

Mt := ∑
0<s≤t

[θ∆Ls + γ|∆Ls|]− Ct , t > 0,

where C := γ
∫
R
|x|νL(dx).

Now we define the exponential continuous time GARCH(p, q) process by specifying the log-
volatility process as a continuous time ARMA(q, p − 1) process, henceforth called
CARMA(q, p− 1) process (see e.g. Brockwell and Marquardt [6] for details on CARMA pro-
cesses), which is the continuous time analogue of an ARMA(q, p− 1) process. The driving
noise process of the CARMA(q, p− 1) process will be defined similarly to (2.1).

Definition 3.2. Let L = (Lt)t≥0 be a zero mean Lévy process with Lévy process measure νL such
that

∫
|x|≥1 x

2νL(dx) < ∞. Then we define the exponential COGARCH(p, q) process G, shortly

ECOGARCH(p, q), as the stochastic process satisfying,

dGt := σt−dLt, t > 0, G0 = 0,

where the log-volatility process log(σ2) = (log(σ2
t ))t≥0 is a CARMA(q, p− 1) process, 1 ≤ p ≤ q,

with mean µ ∈ R and state space representation

log(σ2
t ) := µ + bTXt, t > 0 , log(σ2

0 ) = µ + bTX0 (3.4)

dXt = AXt + 1qdMt , t > 0 (3.5)

where X0 ∈ Rq is independent of the driving Lévy process M. The q× q matrix A and the vectors
b ∈ Rq and 1q ∈ Rq are defined by

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−aq −aq−1 −aq−2 · · · −a1



, b =




b1
b2
...

bq−1

bq



, 1q =




0
0
...
0
1




with coefficients a1, . . . , aq, b1, . . . , bp ∈ R, where aq 6= 0, bp 6= 0, and bp+1 = · · · = bq = 0.

Returns over a time interval of length r > 0 are described by the increments of G

G
(r)
t := Gt − Gt−r =

∫

(t−r,t]
σs− dLs , t ≥ r > 0 . (3.6)

Thus this gives us the possibility to model ultra high frequency data, which consists of
returns over varying time intervals. On the other hand an equidistant sequence of such non-

overlapping returns of length r is given by (G
(r)
nr )n∈N.

In the sequel we refer to G and G(r) as the (log-)price process and (log-)return process, re-
spectively. Also σ2 and log(σ2) will be called the volatility process and log-volatility process,
respectively.
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Proposition 3.3. Let σ2 and G be as in Definition 3.2, with θ and γ not both equal to zero. If the
eigenvalues of A all have negative real parts and X0 has the same distribution as

∫ ∞

0 eAu1qdMu, then
log(σ2) and σ2 are strictly stationary.

Proof: The strict stationarity of log(σ2) follows from Proposition 2 in Brockwell andMarquardt
[6], since it is a CARMA(q, p− 1) process. Since strict stationarity is invariant under continu-
ous transformations, σ2 also has this property. 2

Remark 3.4. The solution of the continuous time state space model (3.4) and (3.5) has the representa-
tion

log(σ2
t ) = µ + bTeAtX0 +

∫ t

0
bTeA(t−u)1qdMu, t > 0.

If we choose a second Lévy process (L̃t)t≥0 independent of L and with the same distribution as L,
then we can define an extension (L∗t )t∈R of L to the real line by:

L∗t := Ltχ[0,∞)(t)− L̃−t−χ(−∞,0)(t), t ∈ R,

where χA(·) denotes the indicator function of the set A. Using L∗ instead of L in (3.2) we get an
extension M∗ of M. In the following we will write for simplicity L and M instead of L∗ and M∗. In
the strictly stationary case the log-volatility process can be defined on the whole real line

log(σ2
t ) = µ +

∫ t

−∞
g(t− u)dMu, t ∈ R, (3.7)

with kernel function

g(t) = bTeAt1qχ(0,∞)(t) (3.8)

(see section 2 of Brockwell and Marquardt [6] for more details).

From (3.6) it follows directly that the increments G(r)
. =

∫
(·−r,·] σs−dLs of G are stationary

if the volatility σ2 is stationary, since the increments of L are stationary and independent by
definition.

Corollary 3.5. If σ2 is strictly stationary, then G has strictly stationary increments.

Remark 3.6. (i) If q ≥ p + 1 the log-volatility process is (q − p − 1) times differentiable, which
follows from the state space representation of log(σ2), and hence the volatility process has continuous
sample path. In particular the volatility will only contain jumps for p = q.
(ii) The volatility of the ECOGARCH(p, q) process is positive by definition. Therefore the parameters
do not need to satisfy any constraints to assure positivity of the volatility. This is not the case for the
COGARCH(p, q) model. For higher order COGARCH(p, q) processes these condition become quite
difficult to check (see Theorem 5.1 in Brockwell et al. [5]).

3.1 Leverage effect

In empirical return data researchers have found evidence (see e.g. Section 1 in Nelson [19])
that current returns are negatively correlated with future volatility. This means that a negative
shock increases the future volatility more than a positive one of the same size or increases it
while a positive one even decreases the volatility. This phenomenon is called leverage effect in
the literature.
If we take a look at the shocks of the state process X in the ECOGARCH(p, q) model

∆Mt =

{
(θ + γ)∆Lt, ∆Lt ≥ 0
(θ − γ)∆Lt, ∆Lt < 0

,

we see that:
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(i) for −γ < θ < 0 (0 < θ < γ) a positive jump ∆Lt leads to a smaller (greater) positive
jump ∆Mt than a negative jump of the same size,

(ii) for θ > |γ| a positive jump ∆Lt leads to a positive jump ∆Mt, while a negative jump of
the same size results in a negative jump ∆Mt,

(iii) for 0 < θ < −γ (γ < θ < 0) a positive jump ∆Lt leads to a smaller (greater) negative
jump ∆Mt than a negative jump of the same size,

(iv) for θ < −|γ| a positive jump ∆Lt leads to a negative jump ∆Mt, while a negative jump
of the same size results in a positive jump ∆Mt.

If we compare this to the COGARCH(p, q) process, we see that in the COGARCH model
the innovations of the volatility process at time t are given by the squared innovations of
the log-price process (see Section 2 of Brockwell et al. [5]). Hence the volatility process of
the COGARCH model reacts in the same way to positive and negative shocks. Now we will
consider the instantaneous leverage effect, which is defined as

Cov(∆Gt, σ
2
t | |∆Lt| > ǫ)

being negative. Intuitively it is clear that this correlation can only be different from zero, if the
sample paths of σ2 exhibit jumps. But from Remark 3.6 (iv) we know that this is just the case
for p = q. The reason is that for p < q the parameter bq will be zero and therefore the jump ∆Lt

at time t just contributes to the (q− 1)th derivative of the state process X, but is not taken into
account for the log-volatility at that time point. Thus we will expect an instantaneous leverage
effect only for the ECOGARCH(p, p) models. This will be shown in the next proposition, in
particular we will show that the sign of the correlation is equal to the sign of θbq. This result
is similar to the discrete time case (see Proposition 2.9 in Surgailis and Viano [22]).

Proposition 3.7. Assume that the distribution of the jumps of L is symmetric, i.e. for all ǫ > 0,

P(∆Lt ∈ dx| |∆Lt| > ǫ) = P(∆Lt ∈ −dx| |∆Lt| > ǫ), t ≥ 0.

Conditionally on the event that |∆Lt| > ǫ, the sign of Cov(∆Gt, σ
2
t ) is equal to the sign of θbq.

Proof: Since the distribution of the jumps of L is symmetric we get

E(∆Gt | |∆Lt| > ǫ) = E(σt−)E(∆Lt | |∆Lt| > ǫ) = 0 .

This then implies

Cov(∆Gt, σ
2
t | |∆Lt| > ǫ) = E(∆Gtσ

2
t | |∆Lt| > ǫ)

= E
(
∆Gt exp

{
log(σ2

t−) + bq∆Mt

}
| |∆Lt| > ǫ

)

= E
(
σ3
t−∆Lt exp{bq(θ∆Lt + γ|∆Lt|)} | |∆Lt| > ǫ

)

Since ∆Lt is independent of σ3
t− we get

Cov(∆Gt, σ
2
t | |∆Lt| > ǫ)

= E(σ3
t−)E(∆Lt exp

{
bq(θ∆Lt+ γ|∆Lt|)

}
| |∆Lt| > ǫ)

= E(σ3
t−)

∫

x>ǫ
x exp(bqγx)(exp(θbqx)− exp(−θbqx))P(∆Lt ∈ dx| |∆Lt| > ǫ) .

From sgn(exp(θbqx)− exp(−θbqx)) = sgn(θbq) for all x > ǫ the desired result follows. 2
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Example 3.8. As a first illustrative example we consider an ECOGARCH(1, 1) process driven by a
Lévy process L with Lévy process symbol

ψL(u) = −
u2

2
+

∫

R

(eiux − 1)λΦ0,1/λ(dx) ,

where Φ0,1/λ(·) is the distribution function of a normal distribution with mean 0 and variance 1/λ.
This means that L is the sum of a standard Brownian motion W and the compound Poisson process
Jt = ∑

Nt

k=1 Zk , t ≥ 0, where (Nt)t∈R is an independent Poisson process with intensity λ > 0 and
jump times (Tk)k∈Z. The Poisson process N is also independent from the i.i.d. sequence of jump sizes
(Zk)k∈Z, with Z1 ∼ N(0, 1/λ). The Lévy process M is in this case given by the following expression

Mt =
Nt

∑
k=1

[θZk + γ|Zk|]− Ct , t > 0,

with C = γ
∫
R
|x|λΦ0,1/λ(dx) =

√
2λ
π γ. If we just consider the case that θ < −γ < 0 then the Lévy

process measure νM of M is defined by

νM((−∞,−x]) = λΦ0,1/λ

([
−

x

θ + γ
,∞

))
, x > 0,

on the negative half real line and by

νM([x,∞)) = λΦ0,1/λ

((
−∞,

x

θ − γ

])
, x > 0,

on the positive half real line. In the top row of Figure 1 a simulated sample path of the compound Pois-
son process J, with N(0, 1/2) distributed jumps, can be seen over three time scales. The corresponding
Lévy process M, with parameters θ = −0.2 and γ = 0.1, can be seen in the bottom row. Over all three
time intervals one can recognise the desired asymmetry for this set of parameters. If J jumps up, then
M jumps down and vice versa. If J does not move, then one observes the downwards drift of M, which
can bee seen on the right hand side of Figure 1.
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Figure 1: Simulated sample pathes of J (top row ) and M (bottom row ), with parameters
θ = −0.2 and γ = 0.1, over three different time scales.

The log-volatility process is then of the form

log(σ2
t ) = µ + b1e

−a1tX0 +
∫ t

0
b1e

−a1(t−s)dMs

= µ + b1e
−a1tX0 +

Nt

∑
k=1

b1e
−a1(t−Tk)[θZk + γ|Zk|]− C

b1
a1

(
1− e−a1t

)
,
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Figure 2: Observations of the log-price process Gt (top row), the return process G
(r)
t (second

row), the volatility process σ2
t (third row), with parameters b1 = 1, a1 = 0.1, µ = −4, θ = −0.2

and γ = 0.1 and the driving Lévy process Lt (last row) in the time interval (0, 700].

for t > 0, and the log-price process is given by

Gt =
∫ t

0
σs−dWs +

Nt

∑
k=1

σTk−Zk , t > 0, G0 = 0 .

with jump times Tk, k ∈ N.

Generally the simulation of a sample path of the log-price process G and the log-volatility process
log(σ2) over a time interval [0, T] is done in the following steps.

(a) Choose observation times 0 = t0 < t1 < · · · < tn ≤ T, possibly random.

(b) Simulate the jump times (Tk), k = 1, . . . , nT, with nT := max{k ∈ N : Tk ≤ T}, of the
compound Poisson process J.

(c) Approximate the state process (3.5) of the log-volatility by a stochastic Euler scheme.

(d) Compute an approximation Ĝ via the recursion

Ĝti = Ĝti−1
+ σti−1

W̃i +

Nti

∑
k=Nti−1

+1

√
exp{µ + bTX̂Tk−}Zk,

where W̃i ∼ N(0, ti − ti−1) and X̂Tk− is the Euler approximation without the jump ∆MTk .

In Figure 2 the results of the above simulation procedure are shown. The jump rate λ is now chosen
to be 1/4, which implies a variance of the jump sizes Zi of 4. For exponentially distributed interarrival
times ∆ti := ti − ti−1 ∼ expo(1) the sample path of the log-price G, the return process G(∆t.) and the
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volatility process σ2 are displayed in the first three rows of Figure 2. The sample path of the driving
Lévy process L is shown in the last row. From the plots of the return and volatility process we see the
negative correlation between the two processes. We recognise on the one hand increases in the volatility
after large negative returns and on the other a decrease in the volatility after a larger positive return.
This displays the leverage effect explained in Section 3.1.

3.2 Mixing

Mixing properties are useful for a number of applications including asymptotic statistics as the
central limit theorem is in place for mixing processes (cf. Doukhan [8] for a comprehensive
treatment of mixing properties) . For an example in this continuous time GARCH setting
compare Theorem 3 in Haug et al. [12]. Thus we will derive mixing properties of the strictly
stationary volatility process and the return process in the ECOGARCH(p, q) model.

First we recall the definition of strong mixing, which is also called α-mixing for a process
with continuous time parameter.

Definition 3.9 (Davydov [7]). For a process Y = (Ys)s≥0 define the σ-algebras
FY

[0,u] := σ((Ys)s∈[0,u]) and FY
[u+t,∞) := σ((Ys)s≥u+t) for all u ≥ 0. Then Y is called strongly or

α-mixing, if

αY(t) = sup
u≥0

α(FY
[0,u],F

Y
[u+t,∞))

:= sup
u≥0

sup{|P(A ∩ B)− P(A)P(B)| : A ∈ FY
[0,u], B ∈ FY

[u+t,∞)} → 0,

as t → ∞.

Above we denote by σ(·) the generated completed σ-algebra. The strong mixing property
with exponential rate of the log-volatility, volatility and return process is the subject of the
next theorem. Here strong mixing with exponential rate (exponentially α-mixing) means that
α(t) decays to zero exponentially fast for t → ∞ .

Theorem 3.10. Let log(σ2) be defined by (3.4) and (3.5) with θ and γ not both equal to zero. Assume
that E(L21) < ∞, the eigenvalues of A all have negative real parts and X0 has the same distribution as∫ ∞

0 eAu1qdMu, hence log(σ2) and σ2 are strictly stationary.
(i) Then there exist constants K > 0 and a > 0 such that

αlog(σ2)(t) ≤ K · e−at and ασ2(t) ≤ K · e−at , as t → ∞, (3.9)

where αlog(σ2)(t) and ασ2(t) are the α-mixing coefficients of the log-volatility and volatility process,
respectively.

(ii) Then the discrete time process (G
(r)
nr )n∈N, where G

(r)
nr is defined in (3.6), is strongly mixing with

exponential rate and ergodic.

Proof: (i) The log-volatility process is a CARMA(q, p− 1) process, which is equal to the first
component of the q-dimensional OU process V := (V1, . . . ,Vq)T ∈ Rq (see e.g. Section 4 of
Brockwell [4]) where for fixed t

Vt = eBAB−1(t−s)Vs +
∫ t

s
eA(t−u)B1qdMu a.s., (3.10)

with

B =




b1 b2 b3 · · · bq
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1




.
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Since L, hence M, has finite second moment V also has finite second moment. Therefore
the condition (4.5) in Masuda [15] is satisfied. By Theorem 4.3 in Masuda [15] V is then
exponentially α-mixing. Since every component of a multidimensional exponentially strong
mixing process is exponentially strong mixing, the log-volatility process is also exponentially
α-mixing. The property of α-mixing is invariant under continuous transformations, which
implies that σ2 also has this property.

(ii) Define the σ-algebras Fσ2 ,dL
I := σ(σ2

t , Lt − Ls : s, t ∈ I) for I ⊂ R and

FG(r)

J := σ(G
(r)
kr : k ∈ J) for J ⊂ N. From (3.6) it follows that

FG(r)

{1,2,...,l} ⊂ Fσ2 ,dL
[0,lr]

and FG(r)

{k+l,k+l+1,...} ⊂ Fσ2 ,dL
[(k+l−1)r,∞)

. (3.11)

To show the strong mixing property of the return process we will use the following relation

α(F1,F2) ≤ α̃(F1,F2) ≤ 6α(F1,F2) , (3.12)

where F1 and F2 are σ-algebras,

α̃(F1,F2) := sup
{
‖E( f |F1)− E( f )‖L1(P) : f ∈ bF2, ‖ f‖∞ ≤ 1

}

and bF denotes the set of all bounded F -measurable random variables. The left-hand inequal-
ity is easy to see (cf. Lemma B.2 in Haug et al. [12]) and the right-hand inequality follows
from Lemma 3.5 in McLeish [17]. For a stochastic process Y the corresponding α̃-mixing coef-
ficient is defined as α̃Y(t) := sups∈R+

α̃(FT
[0,s],F

Y
[s+t,∞)) , t ∈ R+ (see e.g. Section 2.1 in Masuda

[16]). Now since (G
(r)
nr )n∈N is strictly stationary we have the following

α̃G(r)(k− l) = sup
{
‖E( f |FG(r)

{1,2,...,l})− E( f )‖L1(P) : f ∈ bFG(r)

{k,k+1,... }, ‖ f‖∞ ≤ 1
}

≤ sup
{
‖E( f |Fσ2 ,dL

[0,lr]
)− E( f )‖L1(P) : f ∈ bFσ2 ,dL

[(k−1)r,∞)
, ‖ f‖∞ ≤ 1

}
,

where the inequality follows from (3.11) and an application of Jensen’s inequality (see also
Remark 1 in Masuda [16]). From the exponentially α-mixing property of σ2 and relation (3.12)
we get that there exists a constant Kσ > 0 such that

α̃σ2(t− s) = sup
{
‖E( f |Fσ2

[0,s])− E( f )‖L1(P) : f ∈ bFσ2 ,dL
[t,∞)

, ‖ f‖∞ ≤ 1
}

≤ Kσ2e−a(t−s) ,

for all 0 ≤ s ≤ t < ∞ and ‖ f‖∞ ≤ 1. Now it follows analogously to the proof of Lemma 1 in
Kusuoka and Yoshida [14] that

‖E( f |Fσ2 ,dL
[0,lr]

)− E( f )‖L1(P) ≤ Kσ2e−a((k−1−l)r)‖ f‖∞

for all f ∈ bFσ2 ,dL
[(k−1)r,∞)

. The only difference is that we do not have a Markov process, hence we

have to condition on the information over the whole time interval [0, lr] and not just on the
information at the time point lr. This implies that we have

α̃G(r)(k− l) ≤ Kσ2e−a((k−1−l)r) ,

which means that (G
(r)
nr )n∈N is exponentially α-mixing by (3.12). Since strict stationarity and

strong mixing imply ergodicity the result follows. 2
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4 Second order properties of the volatility process

In this section we derive moments and the autocovariance function of the volatility process
σ2. Since it is a non-linear transformation of a CARMA(q, p− 1) process, we will first recall
the moment structure and conditions for weak stationarity of a CARMA(q, p− 1) process.

Proposition 4.1. If X0 has the same mean vector and covariance matrix as∫ ∞

0
eAu1qdMu, then log(σ2) is weakly stationary. In the weakly stationary case the mean and autoco-

variance function of log(σ2) are given by

E(log(σ2
t )) = µ and Cov(log(σ2

t+h), log(σ
2
t )) = E(M2

1)b
TeAhΣb , t, h ≥ 0,

where Σ :=
∫ ∞

0 eAs1q1q
TeA

Tsds.

Proof: The condition for weak stationarity of log(σ2) is given in Proposition 1 in Brock-
well and Marquardt [6]. The moment expressions follow from Remark 4 in Brockwell and
Marquardt [6] and the fact that

∫
R
g(u− h)g(u)du = bTeAhΣb, with g defined in (3.8). 2

The moments of the strictly stationary volatility process are exponential moments of the
stationary distribution of the log-volatility process. In Proposition 3.3 we gave conditions
for the existence of a stationary distribution F of the log-volatility process. In the following
proposition we want to further characterise this distribution.

Proposition 4.2. Let (γM, 0, νM) be the characteristic triplet of the Lévy process M, where M is
defined in (3.2), and F is the stationary distribution of the log-volatility process. Then F is infinitely
divisible with characteristic triplet (γ∞, 0, ν∞), where

γ∞ = µ +
∫ ∞

0
g(s)γMds+

∫ ∞

0

∫

R

g(s)x[χ(−1,1)(g(s)x)− χ(−1,1)(x)]νM(dx)ds

ν∞(B) =
∫ ∞

0

∫

R

χB(g(s)x)νM(dx)ds, B ∈ B(R) ,

with g(s) = bTeAs1qχ(0,∞)(s).

Proof: In the strictly stationary case the log-volatility process is the continuous time moving
average process (3.7). Since M has finite variance, the kernel g and the driving Lévy process
M satisfy the conditions in Theorem 2.7 in Rajput and Rosiński [20] which are:

•
∫
R

∣∣∣γMg(s) +
∫
R
xg(s)

[
χ(−1,1)(xg(s))− χ(−1,1)(x)

]
νM(dx)

∣∣∣ ds < ∞

•
∫
R

∫
R
min(|g(s)x|2, 1)νM(dx)ds < ∞ .

Therefore the stationary distribution F of the log-volatility process is infinitely divisible with
characteristic triplet (γ∞, 0, ν∞). 2

Let log(σ2
∞) be a random variable with distribution F. Since F is infinitely divisible, we

can now apply Theorem 25.17 of Sato [21] to calculate the exponential moments of log(σ2
∞),

i.e. the moments of σ2
∞, in the next Proposition.

Proposition 4.3. Let F be the stationary distribution of log(σ2) with characteristic triplet (γ∞, 0, ν∞).
Then the k-th moment of σ2

t is finite, if

k ∈ K∞ = {s ∈ R :
∫

|x|>1
esxν∞(dx) < ∞}

= {s ∈ R :
∫ ∞

0

∫

x∈R,|h(x)|>1
esg(u)xνL(dx)du < ∞} .
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In this case

Ψ∞(k) := γ∞k+
∫

R

(
ekx − 1− kxχ(−1,1)(x)

)
ν∞(dx) , (4.13)

is well defined and

E(σ2k
t ) = eΨ∞(k) , ∀ t ≥ 0 . (4.14)

Proof: The k-th exponential moment of a Lévy process (Xt)t≥0 is computed in Theorem 25.17
of Sato [21]. Hence we can apply the Theorem for a Lévy process process X with infin-
itely divisible distribution F at time one to get the k-th exponential moment of log(σ2

t ). It
is then given by E(exp(log(σ2

t ))
k) = eΨ∞(k) , ∀ t ≥ 0 , with Ψ∞(k) = γ∞k +

∫
R
(ekx − 1−

kxχ(−1,1)(x))ν∞(dx) (see equation (25.11) in Sato [21]). 2

Proposition 4.4. Let log(σ2
t ) be the strictly stationary solution of (3.4) and (3.5). Assume that

E(σ4
t ) < ∞ for all t ≥ 0. Let Ψh

∞(1) and Ψh(1) be defined by (4.13) with kernel function g replaced
by gh∞(s) = bT(Iq + eAh)eAs1q and gh(s) = bTeAs1qχ(0,h)(s), respectively. Then the autocovariance

function of σ2 is given by the following expression

Cov(σ2
t+h, σ

2
t ) = eΨh

∞(1)eΨh(1) − e2Ψ∞(1) , h > 0, t ≥ 0 . (4.15)

Proof: Let FM
t = σ(Ms ,−∞ < s ≤ t) be the σ-algebra generated by the Lévy process M up

to time t, then

E(σ2
t+h|F

M
t ) = E

(
exp

{
µ +

∫ t+h

−∞
g(t+ h− s)dMs

} ∣∣∣∣F
M
t

)

= exp

{
µ +

∫ t

−∞
bTeAheA(t−s)1qdMs

}
E

(
exp

{∫ t+h

t
g(t+ h− s)dMs

})
.

Therefore we get

E(σ2
t+hσ2

t ) = E(E(σ2
t+hσ2

t |F
M
t )) = E(σ2

t E(σ2
t+h|F

M
t ))

= E

(
σ2
t exp

{
µ +

∫ t

−∞
bTeAheA(t−s)1qdMs

}
E

(
exp

{∫ t+h

t
g(t+ h− s)dMs

}))

= E

(
exp

{
2µ +

∫ t

−∞
bT(Iq + eAh)eA(t−s)1qdMs

})
E

(
exp

{∫ h

0
g(s)dMs

})

= E

(
exp

{
µ +

∫ ∞

0
bT(Iq + eAh)eAs1qdMs

})

×E

(
exp

{
µ +

∫ ∞

0
bTeAs1qχ(0,h)(s)dMs

})

= eΨh
∞(1)eΨh(1) ,

where the last equality follows from (4.14) when we substitute the kernel g in (3.7) by gh∞(s)
and gh, respectively. This together with (4.14) yields (4.15). 2

5 Second order properties of the return process

In this section we derive the moment structure of the return process

G
(r)
t = Gt − Gt−r =

∫

(t−r,t]
σs− dLs , t ≥ r > 0 .

We will only consider the case of a strictly stationary volatility process.
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5.1 Moments and autocovariance function of the return process

Proposition 5.1. Let L be a Lévy process with E(L1) = 0 and E(L21) < ∞. Assume that the
volatility process σ2 is strictly stationary with finite mean. Then E(G2

t ) < ∞ for all t ≥ 0, and for
every t, h ≥ r > 0 it holds

EG
(r)
t = 0 (5.16)

E(G
(r)
t )2 = eΨ∞(1)rE(L21) (5.17)

Cov(G
(r)
t ,G

(r)
t+h) = 0. (5.18)

If further E(L41) < ∞ and the volatility process has finite second moment, then
E(G4

t ) < ∞ for all t ≥ 0 and for every t, h ≥ r > 0 we have

Cov((G
(r)
t )2, (G

(r)
t+h)

2) = E(L21)
∫ h+r

h
Cov(G2

r , σ
2
s )ds . (5.19)

Proof: If L has no Brownian component the proof of (5.16) - (5.18) is analogously to the proof
of Proposition 5.1 in Klüppelberg et al. [13] and can be extended in the same way as in the
proof of Proposition 2.1 in Haug et al. [12] in case L has a Brownian component. Since G is a
square integrable martingale we get

E((G
(r)
r )2(G

(r)
h+r)

2) = E(G2
r (Gh+r − Gh)

2) = E(G2
r (G

2
h+r − G2

h)) .

Using this result, G2
t = 2

∫ t
0 Gs−σs−dLs +

∫ t
0 σ2

s−d[L, L]s, t ≥ 0, and the compensation for-
mula (see e.g. Section 0.5 in Bertoin [2]) we get

E((G
(r)
r )2(G

(r)
h+r)

2) = E

(
2
∫ h+r

h
G2
rGs−σs−dLs +

∫ h+r

h
G2
r σ2

s−d[L, L]s

)

= E

(∫ h+r

h
G2
r σ2

s−d[L, L]s

)
=

∫ h+r

h
E(G2

r σ2
s )τ

2
Lds+

∫ h+r

h
E(G2

r σ2
s )ds

∫

R

x2νL(dx)

= E(L21)
∫ h+r

h
E(G2

r σ2
s )ds

Hence the covariance is equal to

Cov((G
(r)
r )2, (G

(r)
h+r)

2) = E((G
(r)
r )2(G

(r)
h+r)

2)− (E(G
(r)
t )2)2

= E(L21)
∫ h+r

h

(
Cov(G2

r , σ
2
s ) + E(G2

r )E(σ2
s )
)
ds− (E(G

(r)
t )2)2

= E(L21)
∫ h+r

h
Cov(G2

r , σ
2
s )ds .

The covariance is finite if E(G4
t ) < ∞, ∀ t ≥ 0, and this follows with E(L41) < ∞ and 2 ∈ K∞

analogously as in Proposition 1.1 in Haug et al. [12]. 2

Example 5.2. Let us consider again Example 3.8. From 50 000 equidistant observations of the simu-
lated log-price we computed the empirical autocorrelation function of the returns and squared returns.
In Figure 3 the first 40 lags of both empirical autocorrelation functions are shown. One recognises
the GARCH like behaviour of zero correlation of the returns and significant correlation of the squared
returns.
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Figure 3: The first 40 lags of the empirical autocorrelation function of the return (left) and
squared return (right) process.

Remark 5.3. In Theorem 3.10 we have seen that volatility and return process are strongly mixing with
exponential rate. A consequence of this property (see e.g. Section 1.2.2 in Doukhan [8]) is that there
exist constants K1,K2 > 0 such that

|Cov(σ2
t+h, σ

2
t )| ≤ K1 · e

−ah and |Cov((G
(r)
(n+h)r

)2, (G
(r)
nr )

2)| ≤ K2 · e
−ah ,

for all h > 0, with a > 0 as in Theorem 3.10. In particular this means that the autocovariance function
of the volatility and squared returns will decay to zero at an exponential rate. Therefore we will speak
of short memory process in both cases. The model can be extended to incorporate long memory effects,
by specifying the log-volatility process by a fractionally integrated CARMA(q, p− 1) process. For
more details we refer to Haug and Czado [11].
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