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Abstract

In this paper, we consider a generalization of Ebenbauer’s differential equation for
non-symmetric matrix diagonalization to a flow on arbitrary complex semisimple
Lie algebras. The flow is designed in such a way that the desired diagonalizations
are precisely the equilibrium points in a given Cartan subalgebra. We characterize
the set of all equilibria and establish a Morse-Bott type property of the flow. Global
convergence to single equilibrium points is shown, starting from any semisimple
Lie algebra element. For strongly regular initial conditions, we prove that the flow
converges to an element of the Cartan subalgebra and thus achieves asymptotic
diagonalization.
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1 Introduction

The starting point for this paper has been the work by R. W. Brockett [2],
who introduced the double bracket flow

Ḣ = [H, [H,N ]], (1)

where [A,B] := AB − BA is the matrix commutator and N a real diagonal
matrix with pairwise distinct eigenvalues, as a means to diagonalize symmet-
ric matrices H. An extension of (1) to compact Lie algebras appeared in [3,4],
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together with a full phase portrait analysis. The double bracket flow has found
numerous applications, such as, e.g., to linear programming, symmetric and
skew-symmetric eigenvalue computations, variational problems and Hamilto-
nian systems; see e.g. [11] and the references therein. Taken this broad appli-
cability of the double bracket flow into mind, one wonders, if (1) can also be
used for diagonalization of non-symmetric matrices. This would be a major
step forward in numerical linear algebra, as globally convergent algorithms for
the non-symmetric eigenvalue problem are currently unknown. Unfortunately,
this simple idea fails, as the isospectral flow (1) on non-symmetric matrices
is not gradient anymore and thus the solutions will i.g. not converge to the
equilibrium points.

Ebenbauer [7] had the idea of adding a suitable normalization term to (1) in
order to force the flow to converge to normal matrices. Specifically, Ebenbauer
considers the isospectral matrix differential equation

L̇ = [L, [L> + L,N ]] + ρ[L, [L>, L]], L(0) = L0, (2)

on arbitrary real symmetric matrices. Here, ρ is some positive constant. Of
course, for ρ = 0 and L = H symmetric this contains the double bracket flow
as a special case. In [7], Ebenbauer shows, under the implicit condition that
L(0) is diagonalizable, that the solutions L(t) of (2) converge to the set of
normal matrices. Moreover, if the eigenvalues of L0 have distinct real parts,
then L(t) converges to the real Jordan form of L0, cf. [7,8].

In subsequent work, Ebenbauer and Arsie [8] introduced an extension of (2) to
real semisimple Lie algebras. Thus, given any Cartan decomposition g = k⊕ p

with Cartan involution θ and P ∈ p, they consider the isospectral flow on the
semisimple Lie algebra g

Ẋ = [X, [X − θX, P ]] + ρ[X, [θX,X]], X(0) = X0. (3)

In order to analyze the convergence properties of (3), Ebenbauer and Arsie
note, that the adjoint representation ad: g → gl(g) on a semisimple Lie al-
gebra defines a smooth conjugacy between the two flows (3), (2). That is, a
curve X(t) in g solves (3) if and only if L(t) := ad(X(t)) is a solution of (2)
in gl(g). Here N is assumed to be equal to ad(P). Thus the convergence prop-
erties of the two flows are equivalent. Under the assumptions that ad(P) has
distinct eigenvalues and the real parts of the eigenvalues of L0 = ad(X0) are
distinct, the authors conclude convergence of (3) to a diagonalization of X0.
However, this extrinsic approach via the embedding of g into gl(g) fails, as the
assumptions made for convergence are far too strong and are (almost) never
satisfied. In fact, except in special low dimensional cases such as e.g. sl2(R)
or sp(1), a semisimple Lie algebra does not contain any elements X ∈ g such
that ad(X) has distinct eigenvalues. Thus one cannot apply the convergence
results in [7,8] on the Ebenbauer matrix flow (2) to deduce convergence of the
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Lie algebra flow (3).

In this paper, we therefore present a different, intrinsic Lie algebra approach
to (3) that avoids these difficulties. Specifically, we consider the flow

Ẋ = [X, [X − θX, iN ]] + ρ[X, [θX,X]], X(0) = X0 (4)

on complex semisimple Lie algebras g. Here N is assumed to be a regular
element in a torus algebra of the compact real form of g. Note, that we will
strongly take advantage of the fact that two torus algebras in g are conjugate to
one another via an inner automorphism, which is not the case for general real
Lie algebras. The presented results hence do not carry over straightforwardly
to the real case.

Our results extend Ebenbauer’s results even for the matrix flow (2), by avoid-
ing not necessary genericity assumptions. In a first step, we generalize the
classical notions of normal and diagonalizable complex matrices into a Lie
algebraic setting, together with a generalization of well-known results, such
as e.g. normal matrices are unitarily diagonalizable. Similarly, the notions of
regular and strongly regular Lie algebra elements are introduced that extend
the properties of a matrix to have pairwise distinct eigenvalues, or eigenval-
ues with pairwise distinct real parts, respectively. The genericity of these two
classes in a semisimple Lie algebra is shown. To clarify the connection with
the approach in [8] we note, that the matrix ad(X), associated with a reg-
ular element X in a semisimple Lie algebra, does not have pairwise distinct
eigenvalues (except for few low-dimensional cases). Thus the correct regular-
ity condition on L0 = ad(X0), N = ad(P ) to ensure convergence of (3) would
be a suitable non-genericity condition that allows for multiple eigenvalues of
L0 = ad(X0), N = ad(P ).

We then prove that (3) converges to the set of normal elements of the adjoint
orbit of X0 if and only if X0 is semisimple. Moreover, answering a conjecture
in [8], if X0 is semisimple, global convergence to single equilibrium points is
shown. This depends on a general convergence result, Theorem 13, for Morse-
Bott type flows that is proven here and may be of independent interest; see
also [12]. We characterize the critical points as normal elements in the adjoint
orbit O(X0) such that their symmetric part X−θX is contained in a maximal
abelian subalgebra of k. Under the genericity condition that X0 is strongly
regular, we finally prove pointwise convergence of the solutions to normal
elements contained in a given Cartan subalgebra. This implies the desired
diagonalizability property of the flow.
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2 Preliminaries on complex semisimple Lie algebras

We briefly summarize some well-known facts on complex semisimple Lie alge-
bras and introduce relevant notation; see [15] for a textbook on Lie algebras
and Lie groups.

Let G denote a connected complex semisimple Lie group with maximal com-
pact subgroup K. Let g and k denote the associated Lie algebras, then g is a
finite dimensional, complex semisimple Lie algebra with compact real form k,
cf. [15] Thm. 6.11., satisfying

g = k⊕ ik. (5)

By (5), every X ∈ g decomposes uniquely into X = A + iB with A,B ∈ k.
Thus (5) yields the Cartan decomposition of g with respect to the Cartan
involution

θ : A+ iB 7→ A− iB. (6)

For every X ∈ g we have X − θX ∈ ik. For Z ∈ g, let

adZ : g→ g, X 7→ [Z,X] (7)

be the adjoint representation of g with ad(g) = {adZ | Z ∈ g}. Recall, that
the Killing form

κ : g× g→ C, (Z1, Z2) 7→ tr(adZ1 ◦ adZ2) (8)

is ad-invariant, i.e. κ(X, [Y, Z]) = −κ([Y,X], Z) holds for all X, Y, Z ∈ g.
Furthermore,

Bθ : g× g→ R, (Z1, Z2) 7→ −Reκ(Z1, θ(Z2)) (9)

defines a positive definite symmetric R-bilinear form on g. Here, Rez denotes
the real part of a complex number z. Note, that Bθ defines a norm on g

which will be denoted by ‖ · ‖. Given any g ∈ G, let X 7→ g(X) denote the
inner automorphism Ad(g) : g → g defined by g. In the special case, where
G ⊂ Cn×n is a connected matrix Lie group with matrix Lie algebra g, this
inner automorphism then takes the form

g(X) = gXg−1 for some g ∈ G. (10)

Moreover, up to conjugation with inner automorphisms, the Cartan-involution
is θ(X) = −X†, where X† is the conjugate transpose of X.

Given X0 ∈ g, we define the adjoint orbit of X0 by

O(X0) := {g(X0) | g ∈ G}. (11)
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Being a homogeneous space, O(X0) is a smooth compact manifold with tan-
gent space at X ∈ O(X0) given by

TXO(X0) = {[X,Z] | Z ∈ g}. (12)

The adjoint orbit carries a natural Riemannian metric. To this end, consider
the smooth map π : G→ O(X0), g 7→ g(X0) with

KerTgπ = Telg(Ker adX0). (13)

Here, e ∈ G is the identity, lg is multiplication from the left and T stands for
the tangent map. The tangent map of π at g

Tgπ : TgG→ Tg(X0)O(X0) (14)

maps any complement of KerTgπ isomorphically onto the tangent
space Tg(X0)O(X0). Since O(X0) = O(g(X0)) for all g ∈ G, we can construct
a Riemannian metric on O(X0) as follows. Let X ∈ O(X0) ⊂ g. Then

adX : g→ TXO(X0)

ξ 7→ adX(ξ) = [X, ξ]
(15)

is surjective with kernel Ker adX . Let

(Ker adX)⊥ := {ξ ∈ g | Bθ(ξ, η) = 0 for all η ∈ Ker adX}. (16)

A simple calculation shows

(Ker adX)⊥ = Im adθX . (17)

We define the normal Riemannian metric on O(X0) by

〈·, ·〉 : TXO(X0)× TXO(X0)→ R
(adX(U), adX(V )) 7→ Bθ(U, V )

(18)

for U, V ∈ (Ker adX)⊥.

3 A flow for normalization

3.1 Normal and semisimple Lie algebra elements

We extend the notions of normal and diagonalizable complex matrices to a
Lie algebraic setting and prove a generalization of the well-known fact from
linear algebra, that normal matrices are unitarily diagonalizable. Let g = k⊕ ik
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be a complex semisimple Lie algebra with compact real form k and Cartan-
involution θ. An element X ∈ g is normal, if

[X, θX] = 0. (19)

The following result characterizes normal elements in a Lie algebra as the
critical points of the norm function on adjoint orbits.

Theorem 1 (Kempf - Ness, 1979) Let g be a complex semisimple Lie al-
gebra. Equivalent are for X0 ∈ g:

(a) O(X0) is Zariski-closed.
(b) O(X0) is closed with respect to the standard topology.
(c) The function V : O(X0)→ R, X 7→ 1

2
‖X‖2 possesses a critical point.

In each case, the critical points are the minima of V . The normal elements of
O(X0) are exactly the critical points of the norm function V . The set of critical
points is a single K-orbit and thus is a smooth manifold. At each critical point
X, the kernel of the Hessian of V coincides with the associated tangent space
of the set of local minima of V .

Proof. Cf. [14] and [11].

The notion of a Cartan subalgebra provides the proper Lie algebraic general-
ization of the class of unitarily diagonalizable matrices. A Cartan subalgebra
h ⊂ g is a Lie subalgebra of g that is

(i) maximal Abelian;
(ii) the linear transformations {adH ∈ ad(g) | H ∈ h} are simultaneously

diagonalizable.

Note, that this definition differs from the standard one in the literature. How-
ever, in the semisimple case, they are equivalent, cf. [15], Prop. 2.10 and 2.13.
Note also, that if t is maximal Abelian in k, then h := t⊕ it is a Cartan sub-
algebra of g and that all Cartan subalgebras are conjugate to each other via
some g ∈ G.

Property (ii) implies, that the Lie algebra g decomposes into the simultaneous
eigenspaces

gα := {X ∈ g | adHX = α(H)X for all H ∈ h}, (20)

where α is a linear functional α : h→ C. A nonzero functional α with gα 6= 0
is called a root and gα the corresponding root space. By finite dimensionality
of g, the set of roots Σ is finite. Since h is maximal Abelian, g0 = h and thus
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any complex semsimple Lie algebra has the root space decomposition

g = h⊕
∑

α∈Σ−{0}
gα. (21)

Let Σ+ ⊂ Σ denote the set of positive roots, where positivity is defined by
lexicographic ordering on the set of roots. If k is a compact real form of g,
then (21) restricts to the decomposition

k = t⊕
∑
α∈Σ+

(gα + θgα). (22)

A fact that will be important in the sequel is that the roots are real valued
functions on it and purely imaginary on t.

We now prove the announced generalization that normal matrices are unitarily
diagonalizable.

Theorem 2 (Diagonalization Theorem I) For any normal element X ∈
g there exists k0 ∈ K, such that k0(X) ∈ h.

Proof. Let S := X − θX ∈ ik. There exists k1 ∈ K such that Λ := k1(S) ∈ it,
cf. [15], Thm. 6.51. Let Ψ := k1(X + θX) ∈ k and let N ∈ t be a regular
element, i.e. {H ∈ k | [H,N ] = 0} = t. Denote by

ZK(Λ) := {k ∈ K | k(Λ) = Λ} (23)

the centralizer of Λ in K and let ZK(Λ)0 be the connected component contain-
ing the identity. Note, that ZK(Λ), being a closed subgroup of the compact
group K, is itself compact. The Lie algebra of ZK(Λ) is given by

zk(Λ) := {H ∈ k | [H,Λ] = 0}. (24)

Let κ denote the Killing form on g. Since ZK(Λ) is compact,

f : ZK(Λ)→ R, k 7→ κ(k(Ψ), N) (25)

has a critical point, say k2, for which

κ([H, k2(Ψ)], N) = 0 (26)

holds for all H ∈ zk(Λ), the Lie algebra of ZK(Λ). By the ad-invariance of κ,
this implies that κ([k2(Ψ), N ], H) = 0 holds for all H ∈ zk(Λ), or, in other
words, [k2(Ψ), N ] ∈ zk(Λ)⊥. On the other hand, using the Jacobi identity,

[Λ, [k2(Ψ), N ]] = −[k2(Ψ), [N,Λ]]− [N, [Λ, k2(Ψ)]] = 0. (27)
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The first summand is zero because [N,Λ] = 0. Since [X, θX] = 0 we have
[Λ,Ψ] = 0. Therefore, k2(Λ) = Λ implies [Λ, k2(Ψ)] = k2([Λ,Ψ] = 0. Thus

[k2(Ψ), N ] ∈ zk(Λ) ∩ zk(Λ)⊥ = 0, (28)

and since N is regular in t, k2(Ψ) ∈ t. Summarizing,

h 3 Λ + k2(Ψ) = k2(Λ + Ψ)

= k2k1(X − θX +X + θX) = 2k2k1(X)
(29)

and the result follows. 2

An element X ∈ g is called semisimple, if adX : g → g is diagonalizable. By
Theorem 4.1.6 in [16], X is semisimple if and only if it belongs to some Cartan
subalgebra. Since all Cartan subalgebras are conjugate to each other, it follows
that X is semisimple if and only if it is G-conjugate to some H ∈ h, i.e. if
there exists some g ∈ G such that g(X) ∈ h. Using the Kempf-Ness-Theorem,
we now have the following result.

Lemma 3 Let g be a complex semisimple Lie algebra, t any maximal abelian
subalgebra of k and h = t⊕ it the associated Cartan subalgebra.

(1) An element X0 ∈ g is semisimple if and only if O(X0) contains a normal
element.

(2) The set of normal elements N (X0) in O(X0) coincides with the set of
global minima of V (X) = 1

2
‖X‖2.

(3) There exists H ∈ O(X0) ∩ h with

N (X0) := {k(H) | k ∈ K}. (30)

Proof. By Theorem 1, it remains to show that a critical point of V has to be
normal. But this holds trivially, since for ξ = adHX ∈ TXO(X0),

DV (X)ξ = −1
2
D
(
κ(X, θX)

)
ξ = −κ(adHX, θX) = −κ(H, [X, θX]).

The derivative thus vanishes if and only if [X, θX] = 0. This, together with
the Kempf-Ness theorem proves the first two claims. For the last one note
that the Kempf-Ness theorem asserts that N (X0) is a single K-orbit. Choose
any element H0 ∈ N (X0) and decompose it as H0 = Ω + iS, Ω, S ∈ k. Let
t0 denote a maximal abelian subalgebra in k containing Ω, S. Since H0 is
normal, we have [Ω, S] = 0 and therefore t0 exists. Since all maximal abelian
subalgebras in k are conjugate via the adjoint action of K, there exists k ∈ k

with H := k(H0) ∈ h ∩N (X0). This completes the proof. 2
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3.2 A flow for normalization on a complex semisimple Lie algebra

It is now easy to construct a flow that globally converges to the set of normal
elements in an adjoint orbit. Thus this flow achieves the normalization of a
semisimple Lie algebra element within the adjoint orbit. In a later section,
we will then discuss the more challenging problem of constructing a flow that
converges to the intersection of a given Cartan subalgebra with the set of
normal elements.

Theorem 4 Let X0 ∈ g. The solution X(t) of the flow

Ẋ = [X, [θX,X]]. (31)

converges to the set of isospectral normal elements, i.e. to the set N (X0) given
by Eq. (30), if and only if X0 is semisimple.

Proof. Let X0 be semisimple. We prove that V (X) = 1
2
‖X‖2 is a Lyapunov

function for the system (30). To see this, note that [X, θX] ∈ ik, and Bθ|ik =
κ|ik. Hence by the ad-invariance of the Killing form,

d
dt
V (X(t)) = Bθ([X, [θX,X]], X)

= κ([θX,X], [X, θX])

= −‖[X, θX]‖2.

Therefore, V (X) is monotonically decreasing along the flow (44). By Theorem
1, O(X0) is closed and therefore the sublevel sets of V are compact. Thus X(t)
is bounded and converges to the set of critical points, which is N (X0). If X0

is not semisimple, then by Lemma 3 (1) N (X0) is empty. 2

4 Diagonalization in semisimple Lie algebras

Following [15], Ch. II, Sec. 2., we introduce regular elements in g. In the special
case where g = sl(n,C), the regular elements are precisely those matrices with
pairwise distinct eigenvalues. For Z ∈ g, denote by m(Z) the dimension of the
generalized eigenspace of adZ for the eigenvalue 0. Among all Z ∈ g, there is
a lower bound

M := min{m(Z) | Z ∈ g}. (32)

An element Z ∈ g is called regular if m(Z) = M . The set gr of regular elements
in g is a Zariski open subset. In particular, it is open and dense in g; cf. proof
of Thm 2.9’, Ch. II in [15].

In a Lie algebra, the natural notion of diagonalizability is as follows. An el-
ement X ∈ g is called diagonalizable with respect to a Cartan subalgebra h,

9



if there exists g ∈ G such that g(X) ∈ h. Since all Cartan subalgebras in a
semisimple Lie algebra are conjugate, the semisimple elements of g are pre-
cisely those that are diagonalizable with respect to a given Cartan subalge-
bra. The following theorem gives a sufficient condition for diagonalizability.
It extends the well known fact, that complex matrices with pairwise distinct
eigenvalues are diagonalizable.

Theorem 5 (Diagonalization Theorem II) Let h be a Cartan subalgebra
of g. Every regular element X ∈ g is diagonalizable with respect to a Cartan
subalgebra h. In particular, regular elements are semisimple.

Proof. By [15], Theorem 2.9., every regular element lies in some Cartan sub-
algebra h′. Theorem 2.15 in [15] proves, that any two Cartan subalgebras are
conjugate to each other, i.e. that there exists some g ∈ G with g(h′) = h.
Hence g(X) ∈ h. 2

Note, that if H ∈ h is regular, then h is the centralizer of H, i.e.

h = {X ∈ g | [X,H] = 0}. (33)

Hence if Xα ∈ gα \ {0} is a nonzero root space element, then 0 6= [H,Xα] =
α(H)Xα and thus regular elements in h are exactly those with

hr := {H ∈ h | α(H) 6= 0 for all α ∈ Σ}. (34)

It follows, that the set of regular elements in g is characterized by

gr = {g(hr) | g ∈ G}. (35)

For our purposes, we have to specify a subset of regular elements. In the case of
sln(C), these matrices will be those with eigenvalues having pairwise distinct
real part.

Lemma 6 (a) The set of strongly regular elements

hsr := {H1 + iH2 ∈ h | H1, H2 ∈ t, H2 is regular}. (36)

is a subset of hr. It is open and dense in h. Moreover, let H ∈ h and
g ∈ G with g(H) ∈ h. Then g(H) ∈ hsr if and only if H ∈ hsr.

(b) The set
gsr := {g(hsr) | g ∈ G} (37)

is open and dense in g.

Proof. (a) Let H = H1 + iH2 ∈ hsr. Then Re(α(H)) = α(H2) and therefore
α(H) 6= 0 for all α ∈ Σ. Thus H ∈ hr. The set hsr is obtained from h by
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removing the finitely many hyperplanes

{H ∈ h | Reα(H) = 0, α ∈ Σ}. (38)

It is therefore open and dense in h.

(b) Since the map
σ : G× h→ g, (g,H) 7→ g(H) (39)

is open, cf. [15], proof of Thm. 2.15, it follows that the set gsr is open and
dense in g. 2

5 A flow for diagonalization

We can now state and prove the main results of this paper. For any element
N ∈ g consider the least square distance function

f : O(X0)→ R, X 7→ 1
2
‖X −N‖2. (40)

Theorem 7 The Riemannian gradient of f is given by

gradf(X) = [X, [X −N, θX]].

Proof. The differential of f at a tangent vector ξ ∈ TXO(X0) is given by

Df(X)ξ = Bθ(X −N, ξ). (41)

Hence for ξ = adX(V ) with V ∈ (Ker adX)⊥, we have

Df(X)adX(V ) = Bθ(X −N, adX(V ))

= −Bθ(adθX(X −N), V ).
(42)

There exists a unique U ∈ (Ker adX)⊥ such that gradf(X) = adX(U). Thus
for all V ∈ (Ker adX)⊥

−Bθ(adθX(X −N), V ) = Bθ(U, V )

⇔ Bθ(U + adθX(X −N), V ) = 0

⇔ U + adθX(X −N) ∈ Ker adX
⇔ gradf(X) = −adXadθX(X −N)

= [X, [X −N, θX]].

(43)

2

Corollary 8 The critical points X ∈ O(X0) are exactly those where [X −
N, θX] = 0.
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Proof. This follows by Eq. (42), since Eq. (17) yields adθX(X−N) ∈ (Ker adX)⊥.
2

The above real analytic gradient flow has the nice feature that all solutions
converge pointwise to the critical points. Unfortunately, these critical points
are not the ones we are looking for, i.e. they are not contained in a given
Cartan subalgebra. Thus, one has to modify the flow in an appropiate way.
Following Ebenbauer [7,8] we propose a combination of the above gradient flow
and the flow (31) for normalizing an element results in a differential equation
that diagonalizes semisimple elements.

Fix a Cartan subalgebra as h = t ⊕ it in g. Let ρ > 0 denote any positive
constant, θ the Cartan involution (6) and let N ∈ t be an arbitrary fixed
regular element. Let X0 ∈ g. Our goal then is to construct a flow that achieves
asymptotic conjugation into the Cartan subalgebra h = {X ∈ g | [N,X] = 0}
defined by N . Consider the flow on O(X0) defined by

Ẋ = [X, [X − θX, iN ]] + ρ[X, [θX,X]] (44)

with X(0) = X0. This is a Lie algebraic version of the flow considered by
Ebenbauer [7]. The next lemma shows, for X0 semisimple, that the flow con-
verges to the subset of normal elements X whose symmetric part X − θX is
contained in it ⊂ h.

Lemma 9 The flow (44) possesses an equilibrium point if and only if X0 is
semisimple. The set of equilibria E of (44) consists of all normal elements in
O(X0) whose projection onto k commutes with N , i.e.

E = N (X0) ∩ {X ∈ g | [N,X − θX] = 0}.

Proof. Since [iN,X − θX] ∈ k and [X, θX] ∈ ik = k⊥, we have [iN,X − θX] +
ρ[X, θX] = 0 if and only if

[N,X − θX] = 0 and

[θX,X] = 0.
(45)

The second statement follows immediately from Lemma 3. 2

The above lemma implies S := X − θX ∈ it for any equilibrium point X,
since [N,X − θX] = 0 and N is a regular element. Thus it does not exactly
achieve our main goal which is conjugation of X0 into h. Before addressing
this issue any further, we first show global, pointwise convergence of the flow
to single equilibria. An important feature here is that the set of equilibrium
points may form a continuum. Thus, we first consider the geometry of the set
of equilibria in more detail.
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Let W denote the Weyl group. Clearly, for any Weyl group element w ∈ W ,
w(X) ∈ E holds whenever X ∈ E . Since the Weyl group permutes the roots,
there exists an Xsort ∈ E such that with Ssort := 1

2
(Xsort − θXsort)

α(Ssort) ≥ 0 for all α ∈ Σ+.

Let stabW (Ssort) = {w ∈ W | w(Ssort) = Ssort} and stabK(Ssort) = {k ∈
K0 | k(Ssort) = Ssort}.

Lemma 10 Let Λ := {X ∈ E | 1
2
(X − θX) = Ssort} and X ∈ Λ. Then

Λ = {k(X) | k ∈ stabK(Ssort)}.

Moreover, the set of equilibria E decomposes into the finitely many connected
components

E =
⋃

w∈W/stabW (Ssort)

w(Λ).

Proof. If X ∈ Λ and k ∈ stabK(Ssort), then k(X) ∈ Λ and hence {k(X) | k ∈
stabK(Ssort)} ⊂ Λ. For the other inclusion, a similar argument as in the proof
of Theorem 2 shows, that for every X ∈ Λ there exists some k ∈ stabK(Ssort)
such that k(X) = Ssort+T with T ∈ t. The claim now follows since Ssort+T ∈
Λ.

For the second part, note that
⋃
w∈W/stabW (Ssort) w(Λ) ⊂ E is obvious. To see the

other inclusion, let X ∈ E be given. Then X is normal and S := 1
2
(X− θX) ∈

it. Let w ∈ W such that w(S) = Ssort. Then w(X) ∈ Λ and the result follows.
2

Lemma 11 The restriction of the flow (44) to N (X0) is the gradient vector
field of the function

φ : N (X0)→ R, X 7→ Bθ(X − θX, iN).

Proof. Let Ω ∈ k and let [X,Ω] ∈ TXN (X0) be an arbitrary tangent element.
Differentiating φ yields

Dφ(X)[X,Ω] = Bθ([X,Ω]− [θX,Ω], iN)

= κ([X − θX,Ω], iN)

= Bθ(Ω, [X − θX, iN ]).

Hence gradφ(X) = [X, [X − θX, iN ]]. 2

Lemma 12 The critical points of φ are exactly the equilibria E of the flow
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(44) and the Hessian of φ at some critical point X ∈ Λi is given by

HX([X,Ω1], [X,Ω2]) =
∑
α∈Σ+

α(S)β(iN)κ(Ω
(α)
1 ,Ω

(α)
2 ), (46)

where S := X− θX and Ωi := Ω
(0)
i +

∑
α∈Σ+ Ω

(α)
i with respect to the root space

decomposition of k, cf. Eq. (22). In particular, the rank of the Hessian is given
by

rkHX = #{α ∈ Σ | α(S) 6= 0}.

Proof. We compute the Hessian of φ along the direction [X,Ω] ∈ TXN (X0).

D2φ(X)([X,Ω], [X,Ω]) = κ([[X − θX,Ω],Ω], iN) = −κ([X − θX,Ω], [iN,Ω]).

Now S := X − θX ∈ it and hence

[S,Ω] =
∑
α∈Σ+

α(S)Ω(α)

and

[iN,Ω] =
∑
α∈Σ+

α(iN)Ω(α).

The result follows by symmetrizing and the fact that κ(Ω(α),Ω(β)) = 0 for
α 6= β. 2

The following theorem is essential for proving the pointwise convergence of
(44). See [12] for further results in this direction.

Theorem 13 Let f : M → TM be a smooth complete vector field on a Rie-
mannian manifold M and V : M → R a smooth Lyapunov function with com-
pact sublevel sets. Let A ⊂ M be a compact Riemannian submanifold of M
such that the following holds:

(i) A is the set of global minima of V and V has no other critical points.
(ii) The Hessian of V degenerates exactly on A and the bundles of positive

and negative eigenspaces of the Hessian are transversal to the tangent
bundle of A.

(iii) The restriction of f on A is a gradient vector field

f |A = gradφ

of a smooth function φ : A → R and the set Λ of equilibria of f on
A is nonempty and decomposes into finitely many connected components
Λ = Λ1 ∪ · · · ∪ Λk.

(iv) The Hessian of φ : A→ R at each critical point a ∈ Λi has constant rank
= dimA− dimΛi.

14



If assumptions (i)-(iii) hold, then any trajectory t 7→ x(t) converges to a con-
nected component of the set of equilibria in A. If assumptions (i)-(iv) hold,
then any trajectory of f in M converges pointwise to an equilibrium point in
A.

Proof. By the assumption on V , the ω–limit sets ω(x) of each x ∈ M are
non-empty, compact and connected subsets of A. Let Λ = Λ1 ∪ · · · ∪ Λk be
the disjoint decomposition of the set of critical points of φ into connected
components. Since φ is constant on each Λi and defines a gradient flow on
A, Λ is cycle-free with Λi isolated invariant sets. Moreover, any ω–limit set
ω(x) of a point x ∈ A is contained in Λ. Thus Λ = Λ1 ∪ · · · ∪ Λk is a Morse
decomposition and therefore, the Butler–McGehee Lemma [6] implies that
any ω–limit set ω(x) of a point x ∈ M is contained in some Λi. By the last
condition, the gradient flow is normally hyperbolic at Λ in A and by the second
assumption on V the flow f is even normally hyperbolic at Λ in M . The result
follows using an argument of [1], see e.g. [11] Ch. 1, Prop. 3.8 and [12] Thm.
6. 2

Theorem 14 Let X0 ∈ g be semisimple. Then the flow (44) converges from
any initial condition X(0) ∈ O(X0) to a single equilibrium point H ∈ E.

Proof. We have to check the assumptions of Theorem 13. Let X ∈ g and let
V (X) := 1

2
‖X‖2 and A := N (X0). Then assumption (i) and (ii) are just the

Kempf-Ness-Theorem 1. (iii) is Lemma 11 together with Lemma 10 and the
fact, that for X ∈ Λ, φ(X) = Bθ(X − θX, iN) = 2Bθ(Ssort, iN) = const. For
assumption (iv), by Lemma 12 the rank of the Hessian is given by rkHX =
#{α ∈ Σ | α(Ssort) 6= 0}. Now if S + T ∈ it⊕ t is some diagonalization of X0,
then

dimA = dimN (X0) = dim{k(S + T ) | k ∈ K}
= dim{[Ω, S + T ] | Ω ∈ k}
= #{α ∈ Σ | α(S + T ) 6= 0}.

If Λi is some connected component of E , then

dim Λi = dim Λ = dim{[Ω, T ] | Ω ∈ stabk(Ssort)}
= #{α ∈ Σ | α(T ) 6= 0 and α(Ssort) 6= 0}
= #{α ∈ Σ | α(T ) 6= 0 and α(S) 6= 0}.

Thus dimA− dim Λi = rkHX . 2

With the above result we have almost achieved our goal, in so far that point-
wise convergence to single equilibrium points is shown. However, the limiting
point need not be contained in a given Cartan subalgebra and thus does not
really achieve diagonalization. This property will only hold if we assume a
suitable genericity condition.
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Corollary 15 If X0 ∈ g is strongly regular, then the flow (44) converges to
some diagonalization H ∈ O(X0) ∩ h.

Proof. For regular elements, O(X0)∩h is a finite set. In fact, if H ∈ O(X0)∩h

is some diagonalization of X0, then

O(X0) ∩ h = {w(H) | w ∈ Weyl group of G},

cf. [15], Ch. IV, Sec. 6. The result follows, as for a normal element X ∈ N (X0),
the condition [X − θX,N ] = 0 implies [X + θX,N ] = 0 and therefore X ∈ h.
2

6 Numerical Examples

Since the considered differential equation (44) evolves intrinsically on the Lie
algebra, it seems reasonable to exploit this rich inherent structure for nu-
merical simulations. The development of a structure preserving integrator,
however, is beyond the scope of this paper. We refer to [5],[9] and [13] for
an introduction and beyond to the concepts of geometric numerical integra-
tion. The presented numerical simulations are done with the ODE solver of
SCILAB 5.1. In figure 1, the initial matrix is complex and of size 15×15. It has
randomly been generated with [0, 1]-uniformly distributed entries. As this is
generic, the flow diagonalizes the initial matrix. In figure 2, X0 is a randomly
chosen matrix with spectrum 0, 1, . . . , 5, i, . . . , 4i. Here, the initial matrix is
not strongly regular. A convergence of the flow to diagonality can therefore
not be expected. However, as the dotted lines illustrate, the right-hand-side of
the differential equation (44) tends to 0, indicating the pointwise convergence
in any case. Moreover, the flows converge to a normal matrix Xfinal, since at
final time ‖[Xfinal, θXfinal]‖ < 10−15.
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