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Abstract—The convergence behavior of a convolution repre-
sentation of stable linear time-invariant (LTI) systems operating
on the Zakai class of bandlimited signals is analyzed. It is shown
that there are signals in the Zakai class for which the convolution
integral diverges if the system is the Hilbert transform or the
ideal low-pass filter with bandwidth less than or equal to the
signal bandwidth. Moreover, using a previously obtained result of
Habib, it is proved that the class of stable LTI systems that map
the Zakai class into itself does not include the Hilbert transform
and the ideal low-pass filter with bandwidth less than or equal to
the signal bandwidth. Finally, it is shown that the concept of the
analytical signal, which is used in communications, is problematic
for the signal space �� , because the operator for its computation
is unbounded and discontinuous.

Index Terms—Analytical signal, bandlimited signal, convolution
integral, Hilbert transform, ideal low-pass filter, system represen-
tation, Zakai class.

I. INTRODUCTION

A SAMPLING series or convolution integral representation
of bandlimited signals is important, not only from the

theoretical point of view [1]–[3], but also for practical appli-
cations. Naturally, the convergence of such representations de-
pends on the signal space under consideration. The early results
were often obtained for the space of bandlimited signals with
finite energy [4]. Since then, much effort has been put in ex-
tending these results to a broader class of signals [5]–[10] and
to nonuniform sampling patterns [11]–[14].

An important space is the Zakai class , which consists of
all continuous signals that satisfy

and whose Fourier transform in the distributional sense is con-
tained in [6], [15]. Mathematically, this space can be
seen as a weighted -space [16] with an additional band-lim-
itation constraint. Clearly, this space is a generalization of the
commonly used space of finite-energy bandlimited signals, be-
cause it also contains signals for which no statement about the
concentration in the time-domain can be made. For this reason,
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the space has gained much attention, especially in the devel-
opment of sampling theorems for stochastic processes [6], [15],
[17], [10].

Oftentimes, the interest is not in a series or convolution in-
tegral representation of the signal itself, but in a representation
of some transformation of the signal , generated by some
linear time-invariant (LTI) system [18]–[20]. Then the goal is
to find a system representation as a series or a convolution inte-
gral.

The problem of finding representations of stable LTI systems
has been studied for a long time [21], [19]. In [19], Habib gives
a convolution representation for systems operating on the Zakai
space . He proves a convolution representation of , if is
in and is a linear system that stably maps and

. This is an interesting result, because it gener-
alizes previously obtained convolution integral representations
[21] to the large signal space .

However, in [19], no example operators that fulfill the as-
sumptions of the theorem are given. In Section IV, we will show
that the class of permissible systems, i.e., operators, is strongly
restricted in [19]. For example, two important systems are not
included: the ideal low-pass filter with bandwidth less than or
equal to the signal bandwidth and the Hilbert transform.

In Section V, we combine our findings from Section IV with
the results from [19] to show that the Hilbert transform is not
a bounded operator that maps into . This fact has conse-
quences for all applications where the Hilbert transform is used.
For example the computation of the analytic signal, which is
a commonly used concept in signal processing and communi-
cation theory [22], [23], needs the Hilbert transform. In [23],
Gabor used the analytical signal to develop a “Theory of Com-
munication”. For historical details about communication theory
we would like to refer the reader to [24]. Our results show that
the concept of the analytical signal is not meaningful for the
Zakai class .

II. NOTATION AND PRELIMINARIES

Let denote the Fourier transform of a signal , where is to
be understood in the distributional sense. ,
is the space of all th-power Lebesgue integrable functions on

, with the usual norm , and is the space of all
functions for which the essential supremum norm is finite.

For and we denote by the
Paley–Wiener space of signals with a representation

, for some . If

then . The norm for , is
given by .
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Furthermore, let the space consist of all continuous sig-
nals that satisfy
and whose Fourier transform in the distributional sense is con-
tained in . It is clear that is a dense subspace of .
An important connection between compactly supported distri-
butions and the properties of their Fourier transforms is estab-
lished by the Paley–Wiener–Schwartz theorem [25].

Paley–Wiener–Schwartz Theorem: Let be a distribution
supported in . Then is an entire function satisfying a
growth estimate

(1)

for some and . Conversely, if is an entire function satis-
fying the growth estimate (1) then it is the Fourier transform of
a distribution with support in .

Before we continue the discussion, we briefly review some
definitions and facts about stable LTI systems. A linear system

, mapping signals from the space to the space
, is called stable if the operator is bounded, i.e., if

, and time invariant if
for all and .

Remark 1: Note that our definition of stability is with respect
to the norms of the spaces and , and thus is different from the
concept of bounded-input bounded-output stability in general.

Mathematically, a system is an operator, i.e., a rule by which
an input signal is transformed into an output signal. This oper-
ator can have different representations. For example, one pos-
sible representation for stable LTI systems operating on signals
in is the following well-known frequency-domain repre-
sentation. For every stable LTI system there
exists exactly one function such that

(2)

for all , and the operator norm of is given by
. Conversely, every function defines a

stable LTI system . Thus, the space of all
stable LTI systems defined on is isometrically isomor-
phic to . Note that
and consequently . Another possible representation
for stable LTI systems operating on signals in is the fol-
lowing time-domain representation in the form of a convolution
integral. For every stable LTI system , we
have

(3)

for all , where . However, for
stable LTI systems operating on other signal spaces, such a con-
volution integral representation does not necessarily exist. For
example, it has been shown that there exist stable LTI systems

, which do not have a convolution integral
representation in the form of (3), because the integral diverges
for some signal [20]. In contrast, the frequency do-
main representation (2) is possible for all stable LTI systems

.

Before we continue the discussion, we introduce the Hilbert
transform and the ideal low-pass filter, which will be needed
subsequently and which serve as illustrative examples of two
stable LTI systems. Both systems are important in theoretical
analyses [23], [22]. Although it is not possible to realize them
exactly in practice, they can be seen as the limit case of realiz-
able systems.

The Hilbert transform of a signal is defined by

where sgn denotes the signum function. It is well known that
the Hilbert transform is an isometric
isomorphism. Hence, is a stable LTI system with

that maps onto .

The Hilbert transform has many applications [23], [22]. One
is in communication theory where the Hilbert transform is used
to define the analytical signal

(4)

By we denote the analytical signal operator that maps
according to (4). One of the key properties of the analytical

signal is the fact that its Fourier transform is zero for negative
frequencies. For the analytical signal is well
defined, and we have

In Section V, we will see that the computation of the analytical
signal is problematic for the space .

The ideal low-pass filter with band-
width is defined by

Obviously, is, like the Hilbert transform, a stable LTI
system with .

III. MOTIVATION

In this paper, we consider a convolution-type system repre-
sentation. As in the case of sampling series, the theory for stable
LTI systems operating on bandlimited signals with finite energy
is simple. It is well known [26], [27] that every stable LTI system

has the representation

(5)

with

where
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Example 1: For the ideal low-pass filter with bandwidth
and the Hilbert transform , we have

and

In [19], Habib establishes the convolution representation (5)
for signals from the Zakai space and certain stable linear
systems . If the integral is taken as an extended Riemann in-
tegral, he proves that (5) holds for all and under
the following assumptions on the linear system :

i) maps into and is bounded with respect to these
spaces;

ii) maps into .
This is an interesting generalization of the results in [21].

However, in [19], no examples of systems that fulfill the as-
sumptions i) and ii) are given. In this paper, we analyze the con-
vergence behavior of the convolution integral

(6)

for the ideal low-pass filter with bandwidth less
than or equal to the signal bandwidth and Hilbert transform

, and signals . In the next section we will
show that there exist signals such that (6) diverges
for all if is one of the above systems. Consequently,
the class of permissible systems in [19] is strongly restricted.
It does not include the ideal low-pass filter with bandwidth less
than or equal to the signal bandwidth and the Hilbert transform.

IV. DIVERGENCE RESULT FOR SIGNALS

FROM THE ZAKAI CLASS

The following result shows that the convolution integral (6)
diverges for certain signals if is the ideal low-pass
filter with bandwidth less than or equal to the signal bandwidth
or the Hilbert transform.

Theorem 1: Let and . Then there exist a
signal such that for all

(7)

and a signal such that for all

(8)

Remark 2: Theorem 1 states the existence of a signal
such that the convolution integral in (7) diverges. In the proof of
Theorem 1 we do not only prove the existence, but also give an
explicit construction of the signal .

Remark 3: In Section V, we will use Theorem 1 to derive
Corollary 1, which states that the Hilbert transform is an un-
bounded operator for the space .

For the proof of Theorem 1 we need Lemma 1.

Lemma 1: For all and , we have

(9)

Proof of Lemma 1: Let and be
arbitrary but fixed. For , we denote by the greatest
integer that is smaller or equal to . Then we have

(10)

Moreover, for , we obtain

and consequently

(11)

Combining (10) and (11) gives the assertion (9).

Now we are in the position to prove Theorem 1.
Proof of Theorem 1: We start with the proof of (7). Let

and be arbitrary but fixed. For

if
otherwise
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consider the signal

Since it follows that and that
is continuous and bounded on . Furthermore, let .
Since we have ,
and consequently . Thus,
the Paley–Wiener–Schwartz theorem implies that is a
distribution with support in . Moreover, we have

. Thus,
is a signal in .
In the following, let be arbitrary but fixed. We have

Since

where the interchange of the integrations with respect to and
is possible because is absolutely integrable, we obtain

(12)

Moreover, we have

(13)

because , and

(14)

by the Fourier inversion theorem, since is of bounded vari-
ation in a neighborhood of [28]. Further, Lemma 1 states
that

(15)

Finally, combining (12)–(15) yields

which is true for all because was arbitrary. We see that
is the desired divergence creating signal . This completes

the proof of (7).
The second part of the Theorem, i.e., (8) can be

proven similarly to the first part if the function
with

if
otherwise

is used. In this case, the divergence creating signal is given by
.

V. APPLICATIONS

We have shown that for all there are signals in
such that the convolution integral (6) diverges if is the Hilbert
transform or the ideal low-pass filter with bandwidth less than
or equal to the signal bandwidth. Based on this result we can
draw some further conclusions.

Next, we use Theorem 1 in conjunction with Theorem 3.1
from [19] to show that the ideal low-pass filter with band-
width less than or equal to the signal bandwidth and the
Hilbert transform are not bounded operators that map
in . For the further discussion we use the Hilbert transform.
Nevertheless, the same is true for the ideal low-pass filter .

To see that is not a bounded operator that maps into
, we use an indirect proof. Assume is a bounded operator

that maps into . Then it follows that is in . This
implies that

for all (16)
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Furthermore, all assumption of Theorem 3.1 in [19] are fulfilled.
According to this theorem, we have

for all , all , and all . However, in Theorem
1, we have seen that for every and there exists a
signal such that

This is a contradiction to (16). Therefore, it follows that is
not a bounded operator that maps into . This implies that
the Hilbert transform is not included in the class of systems
for which Theorem 3.1 in [19] is valid.

Next, we consider the space which is dense in ,
equipped with the norm . For this subspace, the Hilbert
transform is well defined, and we have for all

. However, as shown by the following corollary, the
Hilbert transform , taken as an
operator that maps the subspace of into , is an
unbounded operator.

Corollary 1: The Hilbert transform
and the analytical signal operator
are unbounded and, therefore, discontinuous operators.
Proof: The unboundedness of the Hilbert transform

can be easily seen, because the converse
assumption leads to a contradiction. Suppose

is a bounded operator. Then it is possible to extend this
densely defined operator to a bounded operator .
But we have already proven that is not a bounded operator
that maps in . This leads to a contradiction. Therefore,
it follows that is an unbounded
operator, that is

(17)

Since , it follows immediately
from (17) that the analytic signal operator

is not bounded.

The above discussion shows that the computation of the ana-
lytic signal is problematic for the space . Thus, the results in
this paper imply that the concept of the analytical signal, which
is extensively used in communications, cannot be generalized to
the signal space in general.
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