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Approximation of Wide-Sense Stationary Stochastic
Processes by Shannon Sampling Series
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Abstract—In this paper, the convergence behavior of the sym-
metric and the nonsymmetric Shannon sampling series is analyzed
for bandlimited continuous-time wide-sense stationary stochastic
processes that have absolutely continuous spectral measure. It is
shown that the nonsymmetric sampling series converges in the
mean-square sense uniformly on compact subsets of the real axis
if and only if the power spectral density of the process fulfills
a certain integrability condition. Moreover, if this condition is
not fulfilled, then the pointwise mean-square approximation
error of the nonsymmetric sampling series and the supremum of
the mean-square approximation error over the real axis of the
symmetric sampling series both diverge. This shows that there is
a significant difference between the convergence behavior of the
symmetric and the nonsymmetric sampling series.

Index Terms—Approximation error, mean-square conver-
gence, nonsymmetric sampling series, power spectral density,
Shannon sampling series, stochastic process, uniformly bounded,
weak-sense stationary.

I. INTRODUCTION

S AMPLING theory has a long history [1] and proved useful
in many applications, especially in communications and in-

formation theory [2]. The conversion of discrete-time signals
into continuous-time signals is a fundamental tool in informa-
tion theory and has been used in many classical papers. The ini-
tial sampling theorems were only stated for the relatively small
class of bandlimited signals with finite energy [2]. Since the be-
ginnings of sampling theory, many extensions have been consid-
ered [3]: irregular sampling [4], [5], multidimensional sampling
[6], and sampling theorems for larger signal spaces [7], only to
mention a few.

In addition to the reconstruction of deterministic signals
from their samples, the reconstruction of stochastic processes
is important because they often appear in the modeling of phys-
ical processes. By now many results for the reconstruction of
stochastic processes have been presented. In [8], Balakrishnan
gave a rigorous proof that the Shannon sampling series con-
verges in the mean-square sense for bandlimited wide-sense
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stationary stochastic processes that have either a spectral
density or a spectral distribution, which is continuous at the
endpoints of the spectrum. The almost sure convergence of
the Shannon sampling series with oversampling was proved in
[9] for wide-sense stationary processes. Zakai [7] generalized
the notion of bandlimited processes and proved almost sure
convergence for this new class. Later, [10] and [11] extended
the results to hold for a broader classes of nonstationary second
order processes. In [12], Brown analyzed the truncation error
for bandlimited wide-sense stationary stochastic processes with
continuous power spectral density, and in [13] upper bounds for
the truncation error were derived for stochastic processes which
are bandlimited in the sense of Zakai under the assumption
of a guard band. The problem of reconstructing a bandlimited
stochastic processes from nonequidistant samples was investi-
gated in [14]. In [15], Habib analyzed sampling representations
of bounded linear operators acting on stochastic processes
that are bandlimited in the sense of Zakai [7] and Lee [16].
The approximation behavior of sampling representations for a
larger class of bounded linear translation-invariant operators
and deterministic signals was analyzed in [17]. For a general
overview of sampling theorems for stochastic processes, see
for example [3], [6, Ch. 9], and [18].

In this paper, we analyze and compare the convergence be-
havior of the symmetric and the nonsymmetric Shannon sam-
pling series for the class of bandlimited wide-sense stationary
stochastic processes, that have an absolutely continuous spec-
tral measure, i.e., that have a power spectral density. We show
for this class, which is smaller than the class considered in [15],
that the nonsymmetric sampling series can have convergence
problems. This result is interesting because in some early pub-
lications [19], [20], [12] claims were made that suggested that
there is no difference in the convergence behavior of the sym-
metric and the nonsymmetric sampling series.

The paper is organized as follows. In Section II we introduce
notation and motivate the problems which will be analyzed sub-
sequently in Section III. In Section IV, we discuss the integra-
bility condition on the power spectral density that was found
to be crucial for the convergence behavior of the nonsymmetric
sampling series. We conclude the paper with Section V.

II. NOTATION AND MOTIVATION

We restrict our analyses to wide-sense stationary processes,
i.e., the class of continuous-time, complex valued stochastic
processes with zero mean and finite
second moment for all , and whose cor-
relation function , where denotes
the complex conjugate, is only a function of the difference .

0018-9448/$26.00 © 2010 IEEE



6460 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 12, DECEMBER 2010

This enables us to define the correlation function as a function
of one variable

and it can be easily seen that is nonnegative definite. Fur-
thermore, we assume that is mean-square continuous, which
implies that is continuous. Then the correlation function
has the representation

for a positive and finite measure . For details and further facts
about wide-sense stationary processes, we refer to the standard
literature, for example [21] or [22]. We additionally assume
that the measure is absolutely continuous with respect to the
Lebesgue measure , which implies that there exists a function

such that . ,
denotes the space of complex-valued measurable functions, de-
fined on that are Lebesgue integrable to the th power. Fur-
thermore, since is positive, it follows that almost
everywhere (a.e.). is called the power spectral density. We
say the wide-sense stationary process is bandlimited with
bandwidth , if can be extended to an entire function,
and for all there exists a constant with

for all . It follows that almost all
sample functions are entire functions of exponential type at most

[9].

Definition 1: We call a bandlimited wide-sense stationary
mean-square continuous process an I-process if its correlation
function has the representation

(1)

for some . Further, if has the representation
(1) then the function is unique. Note that the fact
a.e. will be essential for the proofs. “I” stands for integrability.

In this paper we analyze the reconstruction of I-processes
from their samples , using the symmetric Shannon
sampling series

(2)

, and the nonsymmetric Shannon sampling series

(3)

. One basic question, which has been studied from
the beginning, is how well the I-process can be approximated
in the mean-square sense by using (2) or (3), and whether the
approximation error converges to zero if more and more sam-
ples are used for the approximation, i.e., if , or and ,
tend to infinity in (2) and (3), respectively. Of course, such a
behavior would be desirable and is intuitively expected for the
symmetric, as well as the nonsymmetric, sampling series. The
early researchers who studied the convergence behavior of the

Shannon sampling series for stochastic processes were probably
also led by this intuition, and therefore thought that there is no
difference in the convergence behavior of the symmetric and the
nonsymmetric sampling series.

As for the symmetric sampling series, it is well known [12]
that, for all I-processes and fixed, we have

(4)

i.e., the variance of the reconstruction error of the symmetric
Shannon sampling series is bounded on all compact subsets of

and converges to zero for . It was believed that this
result is equally true for the nonsymmetric Shannon sampling
series. However, this is—as we will see—not the case.

We begin our discussion with the convergence behavior of
the nonsymmetric sampling series for deterministic signals. Of
course, when one considers the convergence of sampling se-
ries for deterministic signals, one must clearly specify the na-
ture of the signals being employed in the series. Two commonly
used classes of bandlimited signals are the Paley-Wiener spaces

and . In general we denote by
the Paley-Wiener space of signals with a representation

, for some
. Consequently, is the space of all bandlimited

signals with bandwidth , whose Fourier transform is in
, and the space of all bandlimited signals with

bandwidth , whose Fourier transform (taken in the distribu-
tional sense) is in . According to the Cauchy-Schwarz
inequality we have .

In the introduction of the paper [20], Brown argues that the
nonsymmetric Shannon sampling series

is convergent, i.e., that the truncation error
converges to zero, for all real-valued signals and all

as and tend to infinity. Although we have the con-
vergence for all signals

and all , convergence cannot be guaranteed for
signals in . In [23] a real-valued signal was
constructed such that

for all .
The double limit in the equations above is de-

fined as usual [24]. For a double sequence ,
we write if for all there exists a

such that for all and .
Moreover, we write if for all
there exist two natural numbers and such that .

The main goal of [20] was to estimate the truncation error
magnitude , as a function of , and
. Despite the imprecise claims in the introduction, which are
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too strong in this generality, the theorems in [20] are correct
because an additional guard band assumption was made in the
theorems. According to the guard band assumption, only signals

, are considered, which means that
must vanish outside the interval . This corresponds

to an oversampling of the signal because the sampling rate is
higher than the Nyquist rate. Under this guard band assumption,
the nonsymmetric sampling series converges for all
signals and all , and it is possible to give
convergence rates. Further papers which derive upper bounds
on the truncation error of the nonsymmetric Shannon sampling
series under the assumption of a guard band are [25] and [26].

All upper bounds in [20], [25], and [26] diverge as the guard
band is reduced to zero, i.e., as goes to 1. It seems likely
that various authors thought that this divergence of the upper
bounds does not reflect the actual convergence behavior of the
nonsymmetric sampling series and that the techniques used to
establish these bounds were too weak to analyze the “true” con-
vergence behavior. However, the reason for the divergence lies
clearly in the fact that there are signals in for which the
nonsymmetric Shannon sampling series diverges. Additional re-
quirements like the guard band requirement are in fact necessary
for the convergence of the nonsymmetric Shannon sampling se-
ries and not only a convenient means to obtain tighter bounds
or better convergence rates. A passage in [20] substantiates the
suspicion that this was not known: “Thomas et al. found that
tighter upper bounds could be obtained by making the additional
assumption that the signal spectrum vanishes in the so-called
’guard band’ from to and from to , where is
some fixed real number satisfying .”

At that time, one was probably convinced that the claim in the
introduction of [20] about the convergence of the nonsymmetric
Shannon sampling series for signals in was true, because
in [19] a flawed proof was given, which indicates the conver-
gence of for all signals in . The problem in
the proof arises because

cannot be bounded above on by a function in
independently of and , and thus the application of
Lebesgue’s dominated convergence theorem, as done in [19],
is not justified.

In [12], the imprecise statement about the convergence be-
havior of the nonsymmetric Shannon sampling series for sig-
nals in was repeated and, furthermore, also made for the
mean-square convergence of I-processes. Disregarding the dif-
ferences between the symmetric and the nonsymmetric Shannon
sampling series, Brown claims in the introduction to [12] that

(5)

converges to zero for all I-processes . In Theorem 1, we will
see that this is not true.

As in [20], the theorems in [12] concerning the upper bounds
on the mean-square approximation error are correct, because
in the theorems additional assumptions on the I-processes are
made. One assumption is that is continuous, and the other is
that a guard band is present. So, for a restricted class of I-pro-
cesses we have the mean-square convergence of the nonsym-
metric Shannon sampling series. In Theorem 2 we will com-
pletely characterize this subclass, i.e., the I-processes for which
the “claim” in the introduction to [12] is true, by giving a nec-
essary and sufficient condition for the convergence of (5).

III. MAIN RESULTS

It is tempting to try to reduce the analysis of the nonsym-
metric sampling series to the analysis of the symmetric sampling
series by splitting up the nonsymmetric sampling series into a
symmetric series and a remaining term according to

where we assumed without loss of generality that ,
and by bounding the contribution of the remaining term to the
mean-square approximation error. However, in Theorem 1 we
will see that it is not always possible to bound

independently of and , because there are I-processes
such that, for every and all , we have

(6)

In Theorem 1, we analyze the boundedness of the mean-square
approximation error of the symmetric and the nonsymmetric
sapling series and completely characterize the I-processes for
which we have the divergence (6) of the nonsymmetric sam-
pling series.

Theorem 1: Let be an I-process. Then we have

(7)

if and only if the power spectral density fulfills

(8)

Moreover, we have

(9)
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for all if and only if (8) is not fulfilled, and

(10)

if and only if (8) is not fulfilled.
Theorem 1 only makes an assertion about the boundedness

of the mean-square approximation error. But even if this error
is bounded, we cannot conclude the convergence of the nonsym-
metric sampling series. The convergence of the nonsymmetric
sampling series is treated in the next theorem.

Theorem 2: Let be an I-process. Then for all ,
we have

if and only if the power spectral density fulfills (8).
Theorem 2 gives a necessary and sufficient condition for the

local uniform convergence in the mean-square sense of the non-
symmetric sampling series. That is, the nonsymmetric sampling
series is locally uniformly convergent in the mean-square sense
if and only if the condition (8) on the power spectral density
is fulfilled. This highlights the difference between the nonsym-
metric and the symmetric Shannon sampling series, where we
always have—according to (4)—local uniform convergence, re-
gardless of the power spectral density .

Remark 1: By setting , (7) also implies the global
boundedness of the mean-square approximation error of the
symmetric sampling series. Thus, if (8) is fulfilled, we have

Remark 2: The symmetric sampling series is a special case
of the nonsymmetric sampling series with . Thus, some
properties of the symmetric sampling series can be inferred from
the properties of the nonsymmetric sampling series. For ex-
ample, according to the definition of the convergence of the non-
symmetric sampling series, the convergence of the symmetric
sampling series follows directly from the convergence of the
nonsymmetric sampling series. However, the divergence of the
nonsymmetric sampling series does not imply the divergence of
the symmetric sampling series. This is because and can
tend independently to infinity in the nonsymmetric sampling se-
ries. In Section IV, we will give an example of a power spec-
tral density for which the mean-square approximation error of
the nonsymmetric sampling series diverges for all ,
whereas the mean-square approximation error of the symmetric
sampling series converges to zero uniformly on all compact sub-
sets of .

Remark 3: Since condition (8) is a necessary and sufficient
condition for the global boundedness of the mean-square ap-
proximation error of the symmetric as well as the nonsymmetric
sampling series, we have completely characterized the global
boundedness of the mean-square approximation error of the
symmetric and the nonsymmetric sampling series.

Remark 4: It is interesting to note that in (10), we do not have
a limit superior, as is the case for many divergence results for
Fourier series, but a limit. Thus, the existence of a convergent
subsequence is precluded.

Remark 5: For the nonsymmetric Shannon sampling series,
we have the special situation that convergence in mean-square
sense for a fixed implies convergence in mean-square
sense for all and uniform convergence on compact subsets
of .

Remark 6: Of course we can neither expect the symmetric
nor the nonsymmetric sampling series to be globally uniformly
convergent in the mean-square sense. This is because is an
I-process and hence

where is a constant1 that is independent of . Thus, for
all , we have

and consequently

In order to prove the theorems, we need Lemmas 1 and 2, the
proofs of which are given in the Appendix.

Lemma 1: There exists a constant such that

for all , and .

Lemma 2: Given any , and ,
there exist two natural numbers and

such that for all

Now we are in the position to prove Theorem 1.

1Throughout the paper, we have to use many constants. To keep the notation
as simple as possible, we denote by � �� � � � � nonnegative constants, unless
otherwise stated.
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Proof of Theorem 1: Part I: First, we prove the “ ” direc-
tion of the first “if and only if” assertion, i.e., (8) (7). Suppose
(8) is true, and let and be arbitrary but fixed.
Using the abbreviation

(11)

we have

The second to last inequality follows from Lemma 1 and the last
inequality from the fact that and the assumption
(8). Since and were arbitrary, this completes
the proof of the “ ” direction of the first if and only if assertion.
Note that the “ ” direction of the first “if and only if” assertion
also implies the “ ” direction of the second “if and only if”
assertion.

Part II: Next, we prove the “ ” direction of the second “if and
only if” assertion, i.e., (not (8)) (9). Note that this direction
of the second “if and only if” assertion also implies the “ ”
direction of the first “if and only if” assertion. Suppose that (8)
is not fulfilled, i.e., that

(12)

Let and be arbitrary but fixed. We have

(13)

where is the abbreviation that was introduced in
(11). Further, since

with a constant that depends only on and , we
obtain

(14)

From (13) and (14), we see that it is enough to show that

(15)

for some in order to prove part II of the proof. We
choose . For , we have

because
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for all . It follows that:

(16)

where we used Fatou’s Lemma [27, p. 23] and

(17)

for . Equation (17) follows from

for , which is a consequence of [28, 1.441],
the identity

(18)

and the fact that

for . Due to our assumption (12), and since
(16) is valid for all , we have proved (15), which
completes part II of the proof.

Part III: Next, we prove the third “if and only if” assertion. We
start with the “ ” direction. By setting , (7) also im-
plies the global boundedness of the mean-square approximation
error of the symmetric sampling series. Thus, if (8) is fulfilled
we have

It remains to prove the “ ” direction of the third “if and only if”
assertion, i.e., (not (8)) (10). This proof is done analogously
to the proof of the “ ” direction of the second “if and only if”
assertion, i.e., part II of the proof, and thus is omitted.

Next we prove Theorem 2.
Proof of Theorem 2: “ ”: Let with

be arbitrary but fixed. Since (8) is fulfilled, for any there
exists a such that

(19)

and

for all . Now, let be fixed. Then for
, we have

(20)

where is the abbreviation that was introduced in
(11). The first term on the right hand side of (20) can be upper
bounded as follows: By Lemma 2 we know that, given any

, there are two constants and
such that for all and

It follows that

(21)

The second term on the right-hand side of (20) gives

The first term is smaller than , and for the second term we
obtain
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were we used Lemma 1 in the second to last inequality and (19)
in the last inequality. Combining all partial results, we get

for all , and . Since was
arbitrary, this part of the proof is complete. “ ”: This di-
rection follows from the second “if and only if” assertion of
Theorem 1.

IV. DISCUSSION

As we have seen in Theorems 1 and 2, is important to know
when (8) is fulfilled and when it is not. There are several special
cases where (8) is true. One important case is when is contin-
uous and another is the case when .
According to Hölder’s inequality, we have for

(22)

In both of the cases— is continuous or —the
first term on the right-hand side of (22) is finite. It remains to
show that the second term on the right hand side of (22) is finite.
For , we have

(23)

Since is continuous on , the
first summand on the right-hand side of (23) is finite. Further-
more, since for all , it fol-
lows that

(24)

where we used the substitution in the
second to last line. So we have (8) if is continuous or if

.

On the other hand there are power spectral densities
for which (8) is not fulfilled. One example is given

by

The short calculation

shows that . Next, we show that (8) is not ful-
filled for . We have

The second integral is finite because

according to (24). Furthermore, since

where we used the inequality
, and the substitution , we

obtain that

This shows that, in contrast to the claims in [12], there
is a significant difference in the mean-square convergence
behavior of the Shannon sampling series for I-processes with

and I-processes with .



6466 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 12, DECEMBER 2010

V. CONCLUSION

We have completely characterized the I-processes for which
the mean-square approximation error of the nonsymmetric
and the symmetric sampling series is globally bounded, by
providing the condition (8) on the power spectral density, which
is sufficient as well as necessary for the boundedness. Further,
it turned out that the same condition is sufficient and necessary
for the local uniform convergence in the mean-square sense
of the nonsymmetric sampling series. The results show that
there is a significant difference in the convergence behavior
of the symmetric and the nonsymmetric sampling series. For
example, for an I-process whose power spectral density does
not satisfy (8), we have

for all , whereas for all I-processes, irrespectively of
(8), we have

for all .
A slightly more general problem than the approximation of

I-processes by sampling series is the approximation of output
processes of energy stable linear time-invariant (LTI) sys-
tems by sampling series, according to

(25)

where . The symmetric sampling series
in this paper can be seen as a special case of the series in (25),
where the system is the identity operator. For this special
case, we characterized the I-processes for which (25) is globally
bounded as tends to infinity, and found that there are I-pro-
cesses for which the supremum of (25) over diverges. In
[29], we have characterized the systems for which (25) con-
verges pointwise to zero for all I-processes . An interesting
open problem is to characterize the I-processes for which (25)
converges pointwise to zero for all energy stable LTI systems .

APPENDIX

A. Proof of Lemma 1

The proof of Lemma 1 requires two more lemmas, namely
Lemma 3 and Lemma 4.

Lemma 3: There exists a positive constant , such that

for all and .

Proof of Lemma 3: We analyze for
, and , using

summation by parts. For , let

Then, using summation by parts, we obtain

(26)

Since

the first term in (26), i.e., , converges to zero for
. Additionally, for , we have

Thus, the sum in (26) is convergent for , and we obtain

(27)

for , and . Further, since

it follows from [28, 1.441] that

for . Thus, we have

(28)

where we used (27) in the last inequality.
Next, we have to distinguish two cases. First, we analyze the

case . We have
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Thus, using (28), we obtain

(29)

for , because

The second case is . We have

Furthermore, a simple calculation shows that

and thus, it follows that:

(30)

for . Combining (29) and (30), we
have

(31)

for , and . For , the assertion
of the lemma is trivially fulfilled.

Lemma 4: There exists a positive constants , such that

for all , and .
Proof of Lemma 4: Let arbitrary but

fixed. We have

where

and consequently

(32)

We proceed with the convention that an empty sum, i.e., a
sum where the upper summation index is less than the lower
summation index, is zero. Obviously

(33)

where we used Lemma 3 in the last inequality. Combining (32)
and (33), we obtain

which completes the proof.
Now we are in the position to prove Lemma 1

Proof of Lemma 1: Since the assertion of the lemma is
obviously true for , we can restrict our analysis to the case

. Let denote the largest integer that is smaller or
equal to . This implies that . Using the
abbreviation that was introduced in (11), we have

It follows that

(34)

Furthermore, we have

where the last inequality follows by Lemma 4. Using (18), it
follows that:

and, using (34), that

which completes the proof.
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B. Proof of Lemma 2

Proof of Lemma 2: Let and be arbitrary
but fixed. From the identity

we see that

are the Fourier coefficients of the function that is -pe-
riodic in and identical to for , where
is a parameter. Now, if

converges for to a function for
and , then for and

by the representation theorem for Fourier series and
the fact that is continuous differentiable in . It
remains to show that is uniformly convergent with
respect to and for and as .

In the following analysis, we always assume that and
. For with and

, we have

(35)

It is sufficient to analyze the case , because
for . The second term on the

right hand side of (35) can be upper bounded by

(36)

Defining and using summa-
tion by parts in the same way as in (26), we have

and since , we obtain

(37)

The right-hand side of (37) converges to zero for . Thus,
combining (36) and (37), we see that for all there exists a
natural number such that

for all , and . The first
term on the right-hand side of (35) can be treated in the same
way.

Consequently, for all , and there exist
two natural numbers and
such that for all and , we have

for all , and . It follows
that

and, therefore, the assertion of the lemma is proved.
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