
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 9, SEPTEMBER 2010 4557

Distributional System Representations on
Bandlimited Signals

Ullrich J. Mönich, Student Member, IEEE, and Holger Boche, Senior Member, IEEE

Abstract—In this paper we analyze the distributional con-
vergence behavior of time-domain convolution type system
representations on the Paley-Wiener space � . Two convolu-
tion integrals as well as the discrete counterpart, the convolution
sum, are treated. It is shown that there exist stable linear
time-invariant (LTI) systems for which the convolution integral
representation does not exist because the integral is divergent,
even if the convergence is interpreted in a distributional sense.
Furthermore, we completely characterize all stable LTI systems
for which a convolution representation is possible by giving a
necessary and sufficient condition for convergence. The classical
and the distributional convergence behavior are compared, and
differences between the convergence of the convolution integral
and the convolution sum are discussed. Finally, the results are
illustrated by numerical examples.

Index Terms—Bandlimited signal, convergence, convolution, dis-
tribution, system representation.

I. INTRODUCTION

T HE representation of bandlimited signals by sampling se-
ries or convolution integrals is important, not only from a

theoretical point of view [1]–[3], but also for practical applica-
tions, where finite sums or integrals can be used for the signal
approximation. Of course, the convergence behavior of both the
sum and the integral is crucial. Oftentimes the interest is not in a
series or convolution integral representation of the signal itself,
but in a representation of some transformation of the signal, gen-
erated by some linear time-invariant (LTI) system [4], [5]. Then
the goal is to find a system representation as a series or a con-
volution integral.

Many engineering books [6], [7] give the impression that any
LTI system can be represented as a convolution integral in the
form

(1)
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where is the impulse response of the system and is the
input signal. Of course this is true for example for stable LTI sys-
tems operating on bandlimited signals with finite energy. How-
ever, it is not necessarily true for stable LTI systems acting on
other signal spaces. Note that the stability of the systems is de-
fined always with respect to the norms of the considered signal
spaces.

The problem of finding representations of stable LTI systems
has been studied for a long time, and several results for spaces of
bandlimited signals, which are larger than the space of bandlim-
ited, finite energy signals, have been presented [5], [8]–[10]. In
[5], Habib derived a convolution integral and a series represen-
tation for systems operating on bandlimited signals in the Zakai
space [8], [11]. In [10], it has been shown that the integral in (1)
is generally not convergent for signals from the Paley–Wiener
space .

Although the integral in (1) does not necessarily exist in the
classical sense for , it might be possible that it can still
be meaningfully interpreted in a distributional sense. Indeed,
distributions can provide a way out of many convergence prob-
lems that are present in the classical nondistributional setting.
One example is given by the convergence of Fourier series: It
is well-known that there are signals in whose Fourier
series diverge almost everywhere. In a distributional sense how-
ever, the Fourier series converges for all signals in .
This example shows that there are situation where a distribu-
tional interpretation can resolve convergence problems. Unfor-
tunately, many engineering textbooks about LTI systems do not
treat distributions in a rigorous mathematical manner. Often
heuristic arguments prevail.

Another problem which has gained a lot of attention concerns
the existence of the impulse response for stable LTI systems
operating on general, not necessarily bandlimited, spaces, and
the question whether the impulse response gives a complete de-
scription of the system [12]–[15]. In [12], it was shown that the
class of stable (with respect to the -norm) LTI systems that
map bounded uniformly continuous signals into bounded uni-
formly continuous signals contains systems, whose impulse re-
sponse is the zero function, but which take certain inputs into
nonzero outputs. Consequently, there exist two different stable
LTI systems that have the same impulse response. Reference
[13] treats systems operating on bounded signals and finds a
necessary and sufficient under which a systems has the repre-
sentation (1).

The fact that the impulse response may not exist is one
reason why a representation of the form (1) can be problem-
atic. In [14] and [15], LTI systems were studied in a distribu-
tional way. The authors proved that in a distributional setting
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and under certain assumptions, it is possible to define in a certain
sense an impulse response for every stable LTI system. One as-
sumption that was made in order to obtain their results was that
the space of input signals contains the space of test functions

. Since functions in are compactly supported, they cannot
be bandlimited. Therefore, the results are not applicable for sys-
tems operating on spaces of bandlimited signals.

Fortunately, we do not have to face these problems here: Since
we consider bandlimited input signals, the impulse response is
always a well-defined bandlimited function, which uniquely de-
termines the system. However, although the impulse response
exists, it will turn out that stable LTI systems can generally not
be represented in the form (1) because the integral diverges. In
contrast to the common perception, this divergence cannot be
circumvented by considering a distributional setting.

In this paper we analyze the distributional convergence be-
havior of the two convolution integrals

(2)

and

(3)

and the convolution sum

(4)

for signals in the Paley-Wiener space and stable LTI
systems . The signal space is the largest space in the
scale of Paley-Wiener spaces. Thus, the results that are obtained
for this space can be seen as an extension of the results for the
well-known space of bandlimited signals with finite en-
ergy. Furthermore, the space is important because the
convergence behavior of sampling series and convolution inte-
grals for this space is closely related to the mean-square conver-
gence behavior for wide-sense stationary stochastic processes
[16]. We show that the perception that any stable LTI system
acting on bandlimited signals can—at least in a distributional
setting—be represented as a convolution integral is problematic
and not justified in general. Moreover, we completely charac-
terize all stable LTI systems for which the approximation pro-
cesses (2), (3), and (4) converge to for all as
tends to infinity, and compare the distributional convergence be-
havior and the classical convergence behavior.

For practical applications we need the convergence of an ap-
proximation process for all signals from the signal space be-
cause generally it is not known in advance which signal from
the signal space occurs in the application at hand. This is the
reason why we want to characterize the stable LTI systems
for which the approximation processes (2), (3), and (4) converge
for all .

The paper is organized as follows: In Section II we give some
definitions and briefly review basic properties of stable LTI sys-
tems. Section III introduces distributions and the convergence

of distributions. The main results about the distributional con-
vergence behavior of the convolution integrals (2) and (3) are
given in Section IV, whereas the discrete counterpart, the con-
volution sum (4), is treated in Section V. In Section VI some
interesting differences between the convolution integral and the
convolution sum are presented. Finally, the results are numeri-
cally illustrated in Section VII.

II. NOTATION AND DEFINITIONS

In order to continue, we need some notation and definitions.
Let denote the Fourier transform of a function , where is
to be understood in the distributional sense. ,

, is the space of all th-power Lebesgue integrable functions
on , with the usual norm , and is the space of
all functions for which the essential supremum norm is
finite. By , , we denote the set of all continuous
functions on the interval .

For and we denote by the
Paley-Wiener space of signals with a representation

, , for some . If

then . The norm for , ,

is given by . For
we obtain the Paley-Wiener space , which is nothing else
than the space of bandlimited signals with finite energy. By
Hölder’s inequality we have . Moreover, it holds

, which implies that every signal in ,
, is bounded on the real line.

We briefly review some facts about stable LTI systems, which
will be needed afterward. A linear system ,

, is called stable if the operator is bounded, i.e.,
if . Furthermore, it is

called time-invariant if for all
and .

Remark 1: Note that our definition of stability is with re-
spect to the -norm and thus is different from the concept
of bounded input—bounded output (BIBO) stability in general.

For every stable LTI system there exists
exactly one function such that

(5)

for all . The operator norm of is given by
and the impulse response by , where

Conversely, every function defines a stable
LTI system . Thus, the space of all stable
LTI systems defined on is isometrically isomorphic to

. Furthermore, it can be shown that the representa-
tion (5) with a unique function is also valid
for all stable LTI systems and that all

define a stable LTI system .
Consequently, we do not have to distinguish between stable
LTI systems that map into and stable LTI systems
that map into , because both can be identified with
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. Therefore, every stable LTI system that maps
in maps in , and vice versa. Note that

and consequently .
Thus, every stable LTI system on has a frequency-do-

main representation according to (5). We will see that a time-do-
main representation in the form (1) is not always possible, even
in a distributional setting.

III. DISTRIBUTIONS AND CONVERGENCE

In order to be able to state our key results, we additionally
need the concept of distributions. Distributions are continuous
linear functionals on some space of test functions. In this paper
we deal with two different test functions spaces. The first one
is the space of all functions that have contin-
uous derivatives of all orders and are zero outside some finite
interval. denotes the dual space of , i.e., the space of all
distributions that can be defined on . The other space of test
functions that we use in this paper is the Schwartz space of all
continuous functions that have continuous deriva-
tives of all orders and fulfill for all

. denotes the dual space of . From the
definition of the spaces and , it follows immediately that
is a proper subspace of , and that is a proper subspace of

. Furthermore, we have and for all
, and consequently for all . The Fourier transform

maps the space onto itself. These properties of will be used
extensively in the proofs.

For a locally integrable functions we can define the linear
functional

(6)

on the space . It can be proven that this functional is contin-
uous and thus defines a distribution [17]. If further fulfills

for some then (6) de-
fines also a continuous linear functional on . Distributions of
the type (6) are called regular distributions.

A sequence of distributions in is said to converge
in if for every the sequence of numbers
converges. Equally, a sequence of distributions in
is said to converge in if for every the sequence of
numbers converges. Thus, a sequence of regular dis-
tributions, which is induced by a sequence of functions
according to (6), converges in if for every the sequence
of numbers converges.

Convergence in and convergence in are connected in
the following way.

Observation 1: If is a sequence in it is also a
sequence in , and, since , convergence in implies
convergence in .

For further details about distributions, and for a definition of
convergence in the test spaces, we would like to refer the reader
to [17].

IV. CONVOLUTION INTEGRAL

In this section, we analyze the convergence behavior of the
two convolution integrals (2) and (3) for stable LTI systems .
Note that, for all , and are bounded and con-
tinuous functions and therefore can be identified with a regular
distribution according to (6).

The theory for stable LTI systems operating on bandlimited
signals with finite energy is simple. It is well known that every
stable LTI system has the representation

(7)

with .
However, the situation for signals is more dif-

ficult. In [10] it has been shown that the convolution integrals
(2) and (3) have a significantly different convergence behavior.
For example, it has been shown for the Hilbert transform that
(3) is globally uniformly convergent for all , but that
there are signals in for which the peak value of (2) di-
verges. Further, the class of systems for which (2) and (3) con-
verge pointwise has been completely characterized. It turned out
that there are stable LTI systems for which the integrals (2) and
(3) diverge pointwise. More precisely, for every there is
a stable LTI systems such that (2) diverges for some signal

as tends to infinity. The same is true for the con-
volution integral (3).

Although the convolution integrals are not necessarily con-
vergent in the classical (pointwise) sense, it may be possible that
(2) and (3), interpreted as a sequence of regular distributions,
converge in the distributional sense for all stable LTI systems
and all . If this was true the common conception that
every stable LTI system has time-domain representation in the
form of a convolution integral would get a rigorous theoretical
foundation for the space , at least in a distributional sense.

In this section we analyze this question and show that there
are stable LTI systems and signals in for which (2) and
(3) diverge even in the distributional sense. Furthermore, we
completely characterize all stable LTI systems for which we
have convergence in the distributional sense by giving a neces-
sary and sufficient condition for convergence. By characterizing
the distributional convergence behavior we extend results from
[10].

A. Convergence Behavior of the Convolution Integral I

We start our analysis with the convergence behavior of the
convolution integral (2). For notational convenience, we intro-
duce the abbreviation

In the following theorem we completely characterize the
stable LTI systems for which converges in the clas-
sical (pointwise) sense to for all . Moreover,
we characterize the stable LTI systems for which con-
verges in the distributional sense to for all .
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Theorem 1: Let be a stable LTI system.
i) For all and all we have

if and only if there exists a constant such that

(8)

for all . In addition, if (8) is not fulfilled, then for
every there exists a signal such that

(9)

ii) Moreover, we have

(10)

for all and all if and only if for all
there exists a constant such that

(11)
for all . In addition, if (11) is not fulfilled for some

, then there exists a signal such that

(12)

Since (8) does not depend on , we have the special situa-
tion that the convergence of for some and all

implies the convergence of for all
and all . Due to this special behavior we are able to
derive the interesting result in Theorem 2 that pointwise conver-
gence for some and all is equivalent to dis-
tributional convergence for all . Moreover, we will
see in Section V that the convolution sum does not possess this
behavior.

In addition to the pointwise convergence behavior, Theorem
1 characterizes the convergence of in . converges
to in for all if and only if for all there
exists a constant such that (11) is fulfilled for all .
Moreover, if (11) is not fulfilled for some then we have
distributional divergence of for some in the
sense of (12).

Note that is always some finite number,
because is bounded. For this reason (12) implies
that

For the proof of Theorem 1 we need Lemma 1, which is
proved in Appendix B.

Lemma 1: For all stable LTI systems ,
, and we have

Proof of Theorem 1: Part i) was already proved in [10]. It
remains to prove ii). First, we prove the “ ” direction of the “if
and only if” statement, and second, the “ ” direction as well as
(12).

“ ” direction: Let , , and be arbitrary
but fixed. Since is dense in , there exists a function

with . According to Lemma 1
and the assumption (11) we have

for all . Therefore, we obtain

(13)

Further, we have
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Since ,

and , we can apply Lebesgue’s dominated conver-
gence theorem, which leads to

where the last equality follows from

according to the generalized Parseval equality. Thus, there is a
such that

(14)

for all . Combining (13) and (14), we obtain

for all . This completes this part of the proof, be-
cause was arbitrary.

“ ” direction: Let be arbitrary but fixed. Since

for all and all , (10) and the fact that

imply that for all . Since
is a bounded linear operator for all ,

it follows from the Banach–Steinhaus theorem [18, p. 98] that

Consequently, we have

by Lemma 1, which completes this part of the “if and only if”
statement.

On the other hand, if (11) is not fulfilled, i.e., if

we have according to

Lemma 1. Thus, the Banach-Steinhaus theorem [18, p. 98] im-
plies that there exists a signal such that (12) is true.

Remark 2: In the previous theorem we have seen that if (11)
is not fulfilled then there exists a signal such that

diverges in . In this case, there is not only one single
divergence creating signal. In fact, the set of signals for which
we have divergence is large: It is a residual set, i.e., the com-
plement of a set of the first category, and therefore it is dense in

[19, p. 12].
From the proof of part ii) of Theorem 1 we see that the same

arguments hold if we replace with . Thus, part ii)
of Theorem 1 is also true if we replace with . With
that we also have a characterization of the convergence of
in .

Corollary 1: Part ii) of Theorem 1 remains true if is
replaced with .

In Theorem 3 we will show that there really exists a stable
LTI system such that (11) is not fulfilled for some , i.e.,
that there exists a stable LTI system such that diverges
in for some .

It would be interesting to have a connection between the
pointwise convergence of , the convergence of in

, and the convergence of in . The following lemma,
the proof of which is given in Appendix C, is the main step
towards Theorem 2, where we identify this connection.

Lemma 2: Let be a stable LTI system.
i) If for all there exists a constant

such that (11) in Theorem 1 is fulfilled for all then
there exists a constant such that (8) in Theorem
1 is fulfilled for all .

ii) Further, if there exists a constant such that (8) in
Theorem 1 is fulfilled for all then, for all
there exists a constant such that (11)
in Theorem 1 is fulfilled for all .

Theorem 2 establishes the connection between the classical
(pointwise) convergence and the distributional convergence of

.
Theorem 2: Let be a stable LTI system.

The following statements are equivalent.
i) converges in for all .

ii) converges in for all .
iii) converges pointwise for some and all

.
iv) converges pointwise for all and all

.
Proof: “iii) ii)”: This follows from Theorem 1 i),

Lemma 2 ii), and Theorem 1 ii). “ii) i)”: Observation 1.
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“i) iv)”: This follows from Corollary 1, Lemma 2 i), and
Theorem 1 i). “iv) iii)”: Obvious.

In general, convergence in is a stronger statement than con-
vergence in , because the former implies the latter. However,
in Theorem 2 we have the situation that converges in if
and only if it converges in .

Moreover, Theorem 2 shows that we do not gain anything
regarding the convergence behavior of for stable LTI sys-
tems and signals in if we consider the more relaxed
concept of distributional convergence. If diverges in
the classical (pointwise) sense for some signal and
some then diverges also in and consequently in

for some signal .
The following theorem states that there exists a stable LTI

system and a signal such that diverges in
as tends to infinity.

Theorem 3: There exists a stable LTI system
and a signal such that

(15)

for some .
Proof: We can prove this theorem by finding an explicit

system such that

(16)
Then it follows by Lemma 2 i) that there exists a such
that

which in turn implies, by Corollary 1, that there exists a signal
such that (15) is true.

Next, we construct the system . To this end, consider

and the function , defined by
. It follows that

and

because

(17)

Now let , , be a sequence of dyadic num-
bers, where is a sequence of natural numbers satisfying

, , and let be a sequence of positive
numbers with . Consider the function

(18)

Since

the operator defined by

is a stable LTI system, and the impulse response is a well
defined continuous function.

Next, we analyze the integral for arbitrary
dyadic numbers . We have

(19)
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The right-hand side of (19) is further analyzed. For all
and we have

Furthermore, for every and we can decompose
the integral into three parts by splitting the integration interval
and using the identity for the product of sine functions

By choosing it can be shown that, for
all and dyadic with ,

and

Hence, for dyadic and we have

for all . By setting , we obtain

The function , which was defined in (18), certainly depends
on the concrete choice of the sequences and .
We can choose and . Then the function

satisfies

and consequently

Moreover, since

we have (16).
In Section VII-A we will use the system that was con-

structed in the proof of Theorem 3 to illustrate the divergence
of (16) by a numerical example.

Theorem 3 shows that a convolution type representation of
stable LTI systems in the form (2) is not possible in general
for the space , even if the convergence is treated in the
distributional sense. In Section IV-C we will see that the same
is true for the second convolution integral (3).

B. Test Signals

Before we treat the second convolution integral, we give an
interesting interpretation of condition (8) in terms of test signals.
Since

(20)

we see that (8) is equivalent to
, where . Thus, we can regard the exponen-

tial function as a test signal. If is uniformly
bounded for all test signals , where the parameter ranges
from to , and all , then converges pointwise,
and due to Theorem 2 also in , for all . That is, we
have

for all and all .
However, the converse statement might be more practicable.

If we find one test signal , , such that
then we have both pointwise

divergence and divergence in . That is, there exists a signal
such that for some

.
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Note the simple structure of the test signals: They are just
scaled versions of one basic function . Obviously, this set of
test signals is neither dense in nor does it form a linear
space.

C. Convergence Behavior of the Convolution Integral II

Now we treat (3), i.e., the second convolution integral.
The next theorem analyzes the global convergence behavior

of and the distributional convergence behavior of in
. For each type of convergence, we completely characterize

the stable LTI systems for which converges to for
all , by giving a necessary and sufficient condition
for convergence.

Theorem 4: Let be a stable LTI system.
i) For all we have

if and only if there exists a constant such that

(21)

for all . In addition, if (21) is not fulfilled, then
there exists a signal such that

(22)

ii) Moreover, we have

for all and all if and only if for all
there exists a constant such that

(23)
for all . In addition, if (23) is not fulfilled for some

, then there exists a signal such that

The proof of Theorem 4 is done analogously to the proof of
Theorem 1.

We see that the conditions (8) and (21) are the same. There-
fore, converges pointwise for all if and only if

converges uniformly for all .
Moreover, Theorem 4 gives a necessary and sufficient condi-

tion for the convergence of in . converges to
in for all if and only if for all there exists
a constant such that (23) is fulfilled for all .

Since the proof of part ii) of Theorem 4 is analogously to the
proof of Theorem 1, we here have the same situation and can

replace with . This observation leads to the next
corollary about the convergence of in .

Corollary 2: Part ii) of Theorem 4 remains true if is
replaced with .

Corollary 2 provides a necessary and sufficient condition for
the convergence of in . converges to in for
all if and only if for all there exists a constant

such that (23) is fulfilled for all .
Of course, we are again interested in a connection between

the uniform convergence of , the convergence of in
, and the convergence of in . The following lemma,

the proof of which is similar to the proof of Lemma 2, is the main
step towards Theorem 5, where we identify this connection.

Lemma 3: Let be a stable LTI system.
i) If for all there exists a constant

such that (23) in Theorem 4 is fulfilled for all then
there exists a constant such that (21) in Theorem
4 is fulfilled for all .

ii) Further, if there exists a constant such that (21)
in Theorem 4 is fulfilled for all then, for all ,
there exists a constant such that (23)
in Theorem 4 is fulfilled for all .

Theorem 5 shows that again we do not have to distinguish
between convergence in and convergence in because both
are equivalent.

Theorem 5: Let be a stable LTI system.
The following statements are equivalent.

i) converges in for all .
ii) converges in for all .

iii) converges uniformly on all of for all .
Proof: “iii) ii)”: This follows from Theorem 4 i),

Lemma 3 i), and Theorem 3 ii). “ii) i)”: Observation 1. “i)
iii)”: This follows from Corollary 2, Lemma 3 i), and Theorem
4 i).

With Corollary 2 we have completely characterized all stable
LTI systems for which converges in for all

. Next we show that there actually exists a stable LTI
system such that diverges in for some .

Theorem 6: There exists a stable LTI system
and a signal such that

(24)

for some .
Proof: In the proof of Theorem 3 we have constructed a

stable LTI system such that

It follows from Lemma 3 i) that there exists a such that

which in turn implies, by Corollary 2, that there exists a signal
for which (24) is true.
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D. Comparison of the Convergence Behavior of the
Convolution Integrals I and II

In general, the convolution integrals (2) and (3) have a dif-
ferent convergence behavior. This can be seen for example, if
the stable LTI system is the Hilbert transform

, defined by

For the Hilbert transform, is uniformly convergent for all
. In contrast, is not uniformly convergent for all
, because the peak value of diverges for some

signal .
Theorem 7: We have

for all , but there exists a signal such that

For completeness, the proof of Theorem 7 is given in
Appendix D.

Next, we compare the distributional convergence behavior of
the convolution integrals. Since the conditions (8) and (21) are
the same, i.e., since converges pointwise for all
if and only if converges uniformly on all of for all

, we can combine Theorem 2 and Theorem 5 to obtain the
following interesting result about the distributional convergence
behavior of the convolution integrals and .

Corollary 3: Let be a stable LTI system.
The following statements are equivalent.

i) converges in for all .
ii) converges in for all .

iii) converges in for all .
iv) converges in for all .
Corollary 3 shows that both convolution integrals and

have the same distributional convergence behavior. Thus,
there is a difference between the classical convergence behavior
of the convolution integrals and the distributional convergence
behavior. In the classical setting, the integrals (2) and (3) exhibit
a different convergence behavior, whereas in the distributional
setting we do not have to distinguish between the integrals, be-
cause both have the same convergence behavior.

V. CONVOLUTION SUM

The discrete counterpart of the convolution integral (2),
which is given by the convolution sum (4), naturally emerges
from the finite Shannon sampling series

when some LTI operator is applied, because

The sum in (4) is important for practical applications because it
uses only the samples of the signal . If
converges to for all as tends to infinity, then

can be used to approximate . Of course the
convergence of is not guaranteed and depends on the
signal and the stable LTI system .

For signals in the situation is simple, because we have

for all stable LTI systems and all signals
. This is due to the convergence of the Shannon sam-

pling series in the -norm and the continuity and linearity
of .

Unfortunately, for signals and stable LTI systems
operating on , does not always converge to

. There are stable LTI systems for which
diverges for some signal [20]. In part i) of Theorem
8 we characterize the stable LTI systems for which
converges pointwise to for all .

Further, we analyze the distributional convergence behavior
of . For this purpose we introduce the abbreviation

In part ii) of Theorem 8 we characterize the stable LTI systems
for which the convolution sum converges in for all

.
Theorem 8: Let be a stable LTI system.
i) For all and all we have

if and only if there exists a constant
such that

(25)

for all . In addition, if (25) is not fulfilled, then
there exists a signal such that
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ii) Moreover, we have

for all and all if and only if for all
there exists a constant such that

(26)

for all . In addition, if (26) is not fulfilled for some
, then there exists a signal such that

Part i) of Theorem 8 was proven in [20], and the proof of part
ii) is done analogously to the proof of part ii) of Theorem 1.

Like the proofs of the Theorems 1 and 4, the proof of Theorem
8 does not rely on the fact that . All arguments also hold if

. This observation leads to the following corollary about
the convergence of in .

Corollary 4: Part ii) of Theorem 8 remains true if is
replaced with .

In Theorem 11 we will use the characterization that is pro-
vided by Corollary 4 to show that there exists a stable LTI system

for which diverges in for some .

VI. DIFFERENCE BETWEEN THE CONVOLUTION INTEGRAL

AND THE CONVOLUTION SUM

In Theorem 1 we have the special situation that the conver-
gence of for one and all implies the
convergence of for all and all . In
this section we investigate the question whether the convolution
sum exhibits the same behavior, i.e., whether the convergence
of for one and all implies the con-
vergence of for all and all . Despite
the obvious similarities between the convolution integral and the
convolution sum, the surprising to this question is no.

Theorem 9: For every and every there
exists a stable LTI system such that

(27)

for all and

(28)

for some .

Proof: Let and be arbitrary but
fixed. According to Theorem 8 i) and the equality

we have (27) for all if and only if

(29)

Furthermore, we have (28) for some if and only if

(30)

Thus, we have to show that there exists a stable LTI system
such that (29) and (30) is true.

To this end, we consider the space that consists of all func-
tions with a representation ,

, for some and with finite norm

The space , equipped with the norm is a Banach space.
Next, we consider the sequence of bounded linear operators

that map into , defined
by

Further, we need the functions , , given by

Since

we have
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for all . Moreover, we have that

which implies that . Thus, according to the
Banach–Steinhaus theorem [18, p. 98] there exists a function

such that

By the definition of the space , fulfills

So is the desired stable LTI system.
In Section VII-B, we will illustrate Theorem 9 with a numer-

ical example that shows the behavior of .
According to Theorem 9 we cannot conclude the convergence

of for all and all from the conver-
gence of for some fixed and all . This
is in contrast to the situation in Section IV-A, where exactly this
was possible. Consequently, for we cannot obtain an
equivalence like the equivalence between item iii) and item iv)
in Theorem 2.

Nevertheless, it would be satisfying if the following conver-
gence types could be set in relation:

S1) converges in for all ;
S2) converges in for all ;
S3) converges pointwise for all and all

;
S4) converges uniformly on all compact subsets

of for all .
In general, the analysis of the convolution sum is more
intricate than the analysis of the convolution integral, because of
the periodicity of the Dirichlet kernel

We do not fully know the relation between S1, S2, S3, and S4.
However, we have the following connections.

Theorem 10: Let be a stable LTI system.
i) S2 implies S1.

ii) S2 implies S3.
iii) S4 implies S1.

Proof:
i) Observation 1.

ii) Let be arbitrary but fixed. Since converges in
for all there exists, according to part ii) of

Theorem 8, for every a constant such that

(26) is true for all . For the specific with
for we obtain

for all . Thus, the assertion follows from part i) of
Theorem 8.

iii) Let be arbitrary but fixed. Since is concentrated
on some compact set , we have

It follows that

(31)

because converges uniformly on by assump-
tion. Since was arbitrary, the proof is complete.

From the results in [20] it can be seen that there exists a stable
LTI system such that diverges for some
and . Hence, item ii) of Theorem 10 implies that

diverges in for some . This shows that there
are stable LTI systems for which the convolution sum diverges
even in . However, since we do not know whether S1 implies
S3, we cannot immediately conclude the divergence of
in . Anyhow, the following theorem shows that we have this
divergence.

Theorem 11: There exists a stable LTI system
and a signal such that

for some .
Proof: Using the characterization that was provided by

Corollary 4, we have to show that there exists a stable LTI
system and a function such that

(32)

Let
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and choose some such that is real valued and
for all . Next, we analyze the sequence

of bounded linear functionals , ,
given by

For , we have

where the last inequality follows from the well-known diver-
gence of the -norm of the Dirichlet kernel [18, p. 102]. It
follows that

for all , and consequently that .
Thus, the Banach–Steinhaus theorem [18, p. 98] implies that
there exists a such that

(33)
The proof is complete, because (33) implies (32).

Although we cannot say whether S3 is a necessary condition
for S1, we see from Theorem 11 that there are stable LTI sys-
tems and signals in such that the convolution sum (4) di-
verges in . In this regard, we have the same situation as in
Section IV, where we analyzed the convolution integral: The
divergence of the convolution sum in the classical, nondistribu-
tional setting cannot be circumvented by considering the more
relaxed concept of distributional convergence. Therefore, a con-
volution type representation of stable LTI systems in the form
(4) is not possible in general for the space , even if the
convergence is treated in the distributional sense.

VII. NUMERICAL EXAMPLE

A. Example 1: Convolution Integral

In this section we numerically illustrate the divergence of the
convolution integral (2). We use the same system that was con-

Fig. 1. Divergence of � �� � � � �� �.

structed in the proof of Theorem 3. In Theorem 1, we have seen
that

plays an important role for the convergence of .
has to be uniformly bounded with respect to

for all in order that converges in for all
. Otherwise, there exists a signal such

that diverges in .
Next, we illustrate the divergence of

for the stable LTI system , given by
for ,

and the function with for
. To this end, we consider the approxima-

tion of . We
cannot use directly, because of computational complexity
reasons. In the simulation we evaluate for

. The increase of is clearly
visible in Fig. 1.

B. Example 2: Convolution Sum

Our second numerical example illustrates the behavior of the
convolution sum (4). The important element in the proof of The-
orem 9 was the norm . Since

we numerically evaluate for

Without loss of generality we set in the simulation.
According to the theory, we expect to be uniformly
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Fig. 2. Plot of � ��� ���� and � ��� ��.

bounded with respect to for all , and divergent for all
. In Fig. 2 it can be seen that is constant

1/2, independently of , and that increases with
increasing .

VIII. CONCLUSION

In this work, we analyzed the convergence behavior of two
commonly used time-domain convolution type system represen-
tations for the Paley–Wiener space . Although the convo-
lution integrals have a different classical convergence behavior,
it turned out that they have the same distributional convergence
behavior. Unfortunately, there exist stable LTI systems and sig-
nals for which the convolution integrals diverge even in a dis-
tributional sense. Hence, the more relaxed concept of distribu-
tional convergence cannot circumvent the convergence prob-
lems of the convolution integrals, encountered in the classical,
nondistributional setting. This results is interesting because it
shows that a convolution type time-domain representation of
stable LTI systems operating on is not always possible,
even though such systems always have a frequency-domain rep-
resentation. Further, we completely characterized all stable LTI
systems for which a convolution type system representation is
possible.

Although the convergence of the analyzed convolution type
system representations (2)–(4) is problematic, it is not obvious
what other—more complicated—representations exist, which
are convergent for all stable LTI systems and all signals in

. To find such representations, especially for important
systems like the Hilbert transform, would be a challenging task
for further research.

APPENDIX

A. An Auxiliary Lemma

The following lemma is needed for several proofs in the ap-
pendix.

Lemma 4: For the operator defined by
, where , we have

.
Proof: Lemma 4 is a direct consequence of Lemma 17 in

[21].

B. Proof of Lemma 1

Proof: Let , , and the stable LTI systems
be arbitrary but fixed. For we have

where the order of the integrals was interchanged according to
Fubini’s theorem, which is applicable because

(34)

Moreover, since and , we obtain

by applying the generalized Parseval equality. Thus, it follows
that

C. Proof of Lemma 2

Proof: First, we derive a preliminary statement, which will
be used in the proof of i) and ii). For and
consider the difference

(35)
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Since it follows that and . In particular,
is Lipschitz continuous because , and we have

for all and . Therefore, we obtain

(36)

for all and all , where is some
positive constant that does not depend . Since , (36) is
also true for all .

“i)”: Let be arbitrary but fixed. Since (11) is true for
all it is in particular true for the specific function
with real valued and for . Therefore,
it follows from (35) and (36) that

for all . Dividing by and taking the max-
imum on both sides yields

where .
“ii)”: Let be arbitrary but fixed. Suppose (8) is true,

and let be arbitrary but fixed. From (35) and (36), it
follows that

for all . Taking the maximum on both sides yields

which completes the proof.

D. Proof of Theorem 7

We have

for all and all , because
, independently of . Using (20) and Theorem 4 gives

.
Similar to Theorem 1 it can be shown that

if and only if

But choosing and , and using

where the last inequality follows from (17), shows exactly this.
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