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ABSTRACT
In this paper we analyze the convergence behavior of convolution-
type system representations for the Paley-Wiener space PW1

π . We
completely characterize all stable linear time-invariant (LTI) systems
for which we have convergence in the distributional sense by giving
a necessary and sufficient condition for convergence. Furthermore,
we prove that there are stable LTI systems and signals in PW1

π for
which the convolution integral and the convolution sum diverge even
in a distributional sense. In signal processing, distributions are often
used to show convergence. Surprisingly, here we are in a situation
where distributions cannot be used to justify convergence.

Index Terms— System representation, convolution, bandlim-
ited signal, distribution, convergence

1. INTRODUCTION

The representation of linear time-invariant (LTI) systems by sam-
pling series or convolution integrals is important, not only from a
theoretical point of view [1, 2], but also for practical applications,
where finite sums or integrals can be used for the approximation of
the system output. Of course, the convergence behavior of both the
sum and the integral is crucial.

Many engineering books [3, 4] give the impression that any LTI
system T can be represented as a convolution integral in the form

(Tf)(t) =

∫ ∞

−∞
f(τ)hT (t− τ) dτ, (1)

where hT is the impulse response of the system and f is the input
signal. Of course this is true for example for stable LTI systems
operating on bandlimited signals with finite energy. However, it is
not necessarily true for stable LTI systems acting on other signal
spaces. In particular, the behavior for larger spaces, e.g., the Paley-
Wiener space PW1

π , is interesting.
The problem of finding representations of stable LTI systems

has been studied for a long time, and several results for spaces of
bandlimited signals, which are larger than the space of bandlimited,
finite energy signals, have been presented [2, 5, 6]. In [2] Habib
derived a convolution integral and a series representation for systems
operating on bandlimited signals in the Zakai space [5]. In [6] it has
been shown that the integral in (1) is generally not convergent for
systems operating on the Paley-Wiener space PW1

π .
Although the integral in (1) does not necessarily converge in

the classical sense for PW1
π , it might be possible that it can still

be meaningfully interpreted in a distributional sense. Indeed, distri-
butions can provide a way out of many convergence problems that
are present in the classical non-distributional setting. Unfortunately,
many engineering textbooks about LTI systems do not treat distribu-
tions in a rigorous mathematical manner. Often heuristic arguments
prevail.

In this paper we analyze the distributional convergence behavior
of the two convolution integrals

(AT
Nf)(t) :=

∫ N

−N

f(τ)hT (t− τ) dτ (2)

and

(BT
Nf)(t) :=

∫ N

−N

f(t− τ)hT (τ) dτ, (3)

and the convolution sum

(ST
Nf)(t) :=

N∑
k=−N

f(k)hT (t− k) (4)

for signals f in the Paley-Wiener space PW1
π and stable LTI sys-

tems T . The signal space PW1
π is the largest space in the scale

of Paley-Wiener spaces. Thus, the results that are obtained for this
space can be seen as an extension of the results for the well-known
space PW2

π of bandlimited signals with finite energy. Furthermore,
the space PW1

π is important because the convergence behavior of
sampling series and convolution integrals for this space is closely
related to the mean-square convergence behavior for wide-sense sta-
tionary stochastic processes.

We show that the perception that any stable LTI system acting
on bandlimited signals can—at least in a distributional setting—be
represented as a convolution integral is problematic and not justi-
fied in general. Moreover, we completely characterize all stable LTI
systems for which the approximation processes (2), (3), and (4) con-
verge to Tf for all f ∈ PW1

π as N tends to infinity.

2. NOTATION AND DEFINITIONS

Let f̂ denote the Fourier transform of a function f , where f̂ is to be
understood in the distributional sense. Lp(R), 1 ≤ p < ∞, is the
space of all pth-power Lebesgue integrable functions on R, with the
usual norm ‖ · ‖p, and L∞(R) is the space of all functions for which
the essential supremum norm ‖ · ‖∞ is finite.

For σ > 0 and 1 ≤ p ≤ ∞ we denote by PWp
σ the

Paley-Wiener space of signals f with a representation f(z) =
1/(2π)

∫ σ

−σ
g(ω) eizω dω, z ∈ C, for some g ∈ Lp[−σ, σ].

The norm for PWp
σ , 1 ≤ p < ∞, is given by ‖f‖PWp

σ
=

(1/(2π)
∫ σ

−σ
|f̂(ω)|p dω)1/p. For p = 2 we obtain the Paley-Wiener

space PW2
σ , which is nothing else than the space of bandlimited

signals with finite energy. Moreover, it holds ‖f‖∞ ≤ ‖f‖PWp
σ

,
which implies that every signal in PWp

σ , 1 ≤ p ≤ ∞, is bounded.

We briefly review some facts about stable linear time-invariant
(LTI) systems, which will be needed afterwards. A linear system
T : PWp

π → PWp
π , 1 ≤ p ≤ 2, is called stable if the operator T
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is bounded, i.e., if ‖T‖ = sup‖f‖PWp
π
≤1‖Tf‖PWp

π
<∞. Further-

more, it is called time-invariant if (Tf(· − a))(t) = (Tf)(t − a)
for all f ∈ PWp

π and t, a ∈ R. Note that our definition of stability
is with respect to the PWp

π-norm and thus is different from the con-
cept of bounded input bounded output (BIBO) stability in general.
For every stable LTI system T : PW1

π → PW1
π there exists exactly

one function ĥT ∈ L∞[−π, π] such that

(Tf)(t) =
1

2π

∫ π

−π

f̂(ω)ĥT (ω) e
iωt dω (5)

for all f ∈ PW1
π . The operator norm of T is given by ‖T‖ =

‖ĥT ‖∞ and the impulse response hT by hT = T sinc. Conversely,

every function ĥT ∈ L∞[−π, π] defines a stable LTI system T :
PW1

π → PW1
π . Thus, the space of all stable LTI systems de-

fined on PW1
π is isometrically isomorphic to L∞[−π, π]. Note that

ĥT ∈ L∞[−π, π] ⊂ L2[−π, π] and consequently hT ∈ PW2
π .

Thus, every stable LTI system on PW1
π has a frequency domain

representation according to (5). We will see that a time domain rep-
resentation in the form (1) is not always possible, even in a distribu-
tional setting.

In order to be able to state our key results, we additionally
need the concept of distributions. Distributions are continuous
linear functionals on some space of test functions. In this paper
we deal with test functions in the Schwartz space S, consisting
of all continuous functions φ : R → C that have continuous
derivatives of all orders and fulfill supt∈R|taφ(b)(t)| < ∞ for
all a, b ∈ N0 = N ∪ {0}. S ′ denotes the dual space of S. We
have ‖φ‖∞ < ∞ and ‖φ‖1 < ∞ for all φ ∈ S. The Fourier
transform maps the space S onto itself. These properties of φ
will be used extensively in the proofs. For functions g, fulfilling∫∞
−∞|g(t)|(1 + |x|)−m for some m ≥ 0, we can define the linear

functional

φ 
→
∫ ∞

−∞
g(t)φ(t) dt (6)

on the space S. It can be proven that this functional is continuous
and thus defines a distribution [7]. Distributions of the type (6) are
called regular distributions. A sequence of distributions {fk}k∈N in
S ′ is said to converge in S ′ if for every φ ∈ S the sequence of num-
bers {fkφ}k∈N converges. Thus, a sequence of regular distributions,
which is induced by a sequence of functions {gk}k∈N according to
(6), converges in S ′ if for every φ ∈ S the sequence of numbers
{∫∞−∞ gk(t)φ(t) dt}k∈N converges. For further details about distri-
butions we would like to refer the reader to [7].

3. CONVOLUTION INTEGRAL

In this section we analyze the convergence behavior of the two con-
volution integrals (2) and (3) for stable LTI systems T and signals
f ∈ PW1

π .
The theory for stable LTI systems operating on bandlimited sig-

nals with finite energy is simple. It is well known that every stable
LTI system T : PW2

π → PW2
π has the representation

(Tf)(t) =

∫ ∞

−∞
f(t− τ)hT (τ)dτ =

∫ ∞

−∞
f(τ)hT (t− τ)dτ. (7)

However, (7) is not necessarily true for stable LTI systems oper-
ating on signals in PW1

π . In [6] it has been shown that the convo-
lution integrals (2) and (3) have a different convergence behavior in
general. This is the reason why we treat both convolution integrals
in this paper. Moreover, it has been shown that there are stable LTI

systems for which the integrals (2) and (3) diverge pointwise. More
precisely, for every t ∈ R there is a stable LTI systems T such that
(2) diverges for some signal f ∈ PW1

π as N tends to infinity. The
same is true for the convolution integral (3).

Although the convolution integrals are not necessarily conver-
gent in the classical (pointwise) sense, it may be possible that (2) and
(3), interpreted as a sequence of regular distributions, converge in the
distributional sense. If this was true the common conception that ev-
ery stable LTI system has time-domain representation in the form
of a convolution integral would get a rigorous theoretical foundation
for the space PW1

π , at least in a distributional sense. However, it
will turn out that this is not the case.

3.1. Convergence Behavior of the Convolution Integral I

Next, we analyze the distributional convergence behavior of the con-
volution integral (2). For notational convenience, we introduce the
abbreviation AT

N,φf :=
∫∞
−∞(AT

Nf)(t)φ(t) dt.
For the proof of Theorem 1 we need Lemma 1.

Lemma 1. For all stable LTI systems T , φ ∈ S, and N ∈ N we
have

sup
‖f‖PW1

π
≤1

|AT
N,φf |

= max
ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π

ĥT (ω1)φ̂(−ω1)
sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣ .
Proof. Let φ ∈ S , N ∈ N, and the stable LTI systems T be arbitrary
but fixed. For f ∈ PW1

π we have

∫ ∞

−∞
(AT

Nf)(t)φ(t) dt =

∫ ∞

−∞

∫ N

−N

f(τ)hT (t− τ)φ(t) dτ dt

=

∫ ∞

−∞

∫ N

−N

1

2π

∫ π

−π

f̂(ω) eiωτ hT (t− τ)φ(t) dω dτ dt

=
1

2π

∫ π

−π

f̂(ω)

∫ N

−N

eiωτ

∫ ∞

−∞
hT (t− τ)φ(t) dt dτ dω

=
1

2π

∫ π

−π

f̂(ω)
1

π

∫ π

−π

ĥT (ω1)φ̂(−ω1)
sin(N(ω − ω1))

ω − ω1
dω1 dω,

where we used Fubini’s theorem to interchange the order of the in-
tegrals, and the fact that

∫ ∞

−∞
hT (t− τ)φ(t) dt =

1

2π

∫ π

−π

ĥT (ω1)φ̂(−ω1) e
−iω1τ dω1,

which follows from the generalized Parseval equality. The assertion
is a direct consequence of Lemma 17 in [8].

Theorem 1. Let T be a stable LTI system and φ ∈ S . Then we have

lim
N→∞

∣∣∣∣AT
N,φf −

∫ ∞

−∞
(Tf)(t)φ(t) dt

∣∣∣∣ = 0 (8)

for all f ∈ PW1
π if and only if there exists a constant C1 =

C1(φ) <∞ such that

max
ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π

ĥT (ω1)φ̂(−ω1)
sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣ ≤ C1(φ)

(9)
for all N ∈ N. In addition, if (9) is not fulfilled, then there exists a
signal f1 ∈ PW1

π such that lim supN→∞|AT
N,φf1| =∞.
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Theorem 1 characterizes the convergence of AT
Nf in S ′. AT

Nf
converges to Tf in S ′ for all f ∈ PW1

π if and only if for all φ ∈ S
there exists a constant C1(φ) such that (9) is fulfilled for all N ∈ N.

Proof of Theorem 1. First part, “⇐”: Let f ∈ PW1
π , φ ∈ S, and

ε > 0 be arbitrary but fixed. Since PW2
π is dense in PW1

π , there
exists a function fε ∈ PW2

π with ‖f − fε‖PW1
π
< ε. According to

Lemma 1 and the assumption (9) we have AT
N,φ(f − fε) ≤ εC1(φ)

for all N ∈ N. Therefore, we obtain∣∣∣∣
∫ ∞

−∞
(Tf)(t)φ(t) dt−AT

N,φf

∣∣∣∣
=

∣∣∣∣
∫ ∞

−∞
(T (f − fε))(t)φ(t) dt

+

∫ ∞

−∞
(Tfε)(t)φ(t) dt−AT

N,φfε −AT
N,φ(f − fε)

∣∣∣∣
<ε‖T‖‖φ‖1+

∣∣∣∣
∫ ∞

−∞
(Tfε)(t)φ(t) dt−AT

N,φfε

∣∣∣∣+εC1(φ). (10)

Further, we have AT
N,φfε =

∫∞
−∞

∫ N

−N
fε(t)hT (t − τ) dτφ(t) dt.

Since fε, hT ∈ PW2
π ,∣∣∣∣

∫ N

−N

fε(t)hT (t− τ) dτφ(t)

∣∣∣∣ ≤
∫ ∞

−∞
|fε(t)hT (t− τ)| dτ |φ(t)|

≤ ‖fε‖2‖hT ‖2|φ(t)|,
and φ ∈ L1(R), we can apply Lebesgue’s dominated convergence
theorem, which, together with (7), leads to limN→∞AT

N,φfε =∫∞
−∞(Tfε)(t)φ(t) dt. Thus, there is a N0 = N0(ε) such that

∣∣∣∣
∫ ∞

−∞
(Tfε)(t)φ(t) dt−AT

N,φfε

∣∣∣∣ < ε (11)

for all N ≥ N0(ε). Combining (10) and (11), we obtain∣∣∣∣
∫ ∞

−∞
(Tf)(t)φ(t) dt−AT

N,φf

∣∣∣∣ < ε(‖T‖ ‖φ‖1 + C1(φ) + 1)

for all N ≥ N0(ε). This completes this part of the proof, because
ε > 0 was arbitrary.

Second part, “⇒”: Let φ ∈ S be arbitrary but fixed. Since

|AT
N,φf | ≤

∣∣∣∣AT
N,φf−

∫ ∞

−∞
(Tf)(t)φ(t) dt

∣∣∣∣+
∣∣∣∣
∫ ∞

−∞
(Tf)(t)φ(t) dt

∣∣∣∣
for all N ∈ N and all f ∈ PW1

π , equation (8) and the fact
that |∫∞−∞(Tf)(t)φ(t) dt| ≤ ‖T‖ ‖f‖PW1

π
‖φ‖1 < ∞ im-

ply that supN∈N|AT
N,φf | < ∞ for all f ∈ PW1

π . Hence,
by the Banach-Steinhaus theorem [9, p. 98] it follows that
supN∈N sup‖f‖PW1

π
≤1|AT

N,φf | <∞, and consequently

sup
N∈N

max
ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π

ĥT (ω1)φ̂(−ω1)
sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣<∞,

according to Lemma 1, which completes the second part of the proof.
Third part: If (9) is not fulfilled, i.e., if

lim sup
N→∞

max
ω∈[−π,π]

∣∣∣∣ 1π
∫ π

−π

ĥT (ω1)φ̂(−ω1)
sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣=∞,

we have supN∈N sup‖f‖PW1
π
≤1|AT

N,φf | = ∞, according to

Lemma 1. Thus, the Banach-Steinhaus theorem implies that there
exists a f1 ∈ PW1

π such that lim supN→∞|AT
N,φf1| =∞.

In the previous theorem we have seen that if (9) is not fulfilled
then there exists a signal f1 ∈ PW1

π such that AT
Nf1 diverges in

S ′. In Theorem 2 we will show that there really exists a stable LTI
system for which (9) is not fulfilled, i.e., that there exists a stable
LTI system T1 such that AT1

N f1 diverges in S ′ for some signal f1 ∈
PW1

π . In this case, there is not only one divergence creating signal.
In fact, the set of signals for which we have divergence is a residual
set and therefore is dense in PW1

π [10, p. 12].

Theorem 2. There exists a stable LTI system T1 and a signal f1 ∈
PW1

π such that lim supN→∞|AT1
N,φ1

f1| =∞ for some φ1 ∈ S .

The proof of Theorem 2 is based on the following Theorem,
which establishes the connection between the classical convergence
of AT

Nf and the distributional convergence. Theorem 3 is not proved
here, because of space constraints.

Theorem 3. Let T be a stable LTI system. The following statements
are equivalent.

i) AT
Nf converges in S ′ for all f ∈ PW1

π .

ii) (AT
Nf)(t) converges pointwise for all t ∈ R and all f ∈ PW1

π .

Theorem 3 shows that we do not gain anything regarding the
convergence behavior of AT

Nf for stable LTI systems T and signals
f in PW1

π if we consider the more relaxed concept of distributional
convergence. If (AT

Nf)(t) diverges in the classical (pointwise) sense
for some signal f ∈ PW1

π and some t ∈ R then AT
Nf diverges also

in S ′ for some signal f ∈ PW1
π .

Proof of Theorem 2. According to Theorem 3 in [6], for every t ∈ R

there exists a stable LTI system T1 and a signal f1 ∈ PW1
π such that

lim supN→∞|(AT1
N f1)(t)| = ∞. Thus, the assertion follows from

Theorem 3 and Theorem 1.

Here we see that a convolution type representation of stable LTI
systems in the form (2) is not possible in general for the spacePW1

π ,
even if the convergence is treated in the distributional sense. In the
next section we will see that the same is true for the second convo-
lution integral (3).

3.2. Convergence Behavior of the Convolution Integral II

In this section we analyze the second convolution integral (3). The-
orem 4 characterizes all stable LTI systems T for which BT

N con-
verges in S ′ to Tf for all f ∈ PW1

π . Theorem 4 can be proved
analogously to Theorem 1.

Theorem 4. Let T be a stable LTI system and φ ∈ S . Then we have

lim
N→∞

∣∣∣∣BT
N,φf −

∫ ∞

−∞
(Tf)(t)φ(t) dt

∣∣∣∣ = 0

for all f ∈ PW1
π if and only if there exists a constant C2 =

C2(φ) <∞ such that

max
ω∈[−π,π]

∣∣∣∣φ̂(−ω) 1π
∫ π

−π

ĥT (ω1)
sin(N(ω − ω1))

ω − ω1
dω1

∣∣∣∣ ≤ C2(φ)

(12)
for all N ∈ N. In addition, if (12) is not fulfilled, then there exists a
signal f1 ∈ PW1

π such that lim supN→∞|BT
N,φf1| =∞.
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Theorem 4 gives a necessary and sufficient condition for the
convergence of BT

Nf in S ′. BT
Nf converges to Tf in S ′ for all

f ∈ PW1
π if and only if for all φ ∈ S there exists a constant C2(φ)

such that (12) is fulfilled for all N ∈ N.
Using a result from [6], we can show that there exists a stable

LTI system T1 such that BT1
N f1 diverges in S ′ for some f1 ∈ PW1

π .

Theorem 5. There exists a stable LTI system T1 and a signal f1 ∈
PW1

π such that lim supN→∞|BT1
N,φ1

f1| =∞ for some φ1 ∈ S .

The proof of Theorem 5 is based on Theorem 6, which relates
the classical (uniform) convergence of BT

Nf and the distributional
convergence.

Theorem 6. Let T be a stable LTI system. The following statements
are equivalent.

i) BT
Nf converges in S ′ for all f ∈ PW1

π .

ii) BT
Nf converges uniformly on all of R for all f ∈ PW1

π .

Proof of Theorem 5. According to Corollary 1 in [6] there ex-
ists a stable LTI system T1 and a signal f1 ∈ PW1

π such that
lim supN→∞‖BT1

N f1‖∞ = ∞. Thus, the assertion follows from
Theorem 6 and Theorem 4.

4. CONVOLUTION SUM

The discrete counterpart of the convolution integral (2), which is
given by the convolution sum (4) naturally emerges from the finite

Shannon sampling series (SNf)(t) =
∑N

k=−N f(k) sin(π(t−k))
π(t−k)

when some LTI operator T is applied, because

(TSNf)(t) =
N∑

k=−N

f(k)

(
T
sin(π( · − k))

π( · − k)

)
(t) = (ST

Nf)(t).

The sum in (4) is important for practical applications because it uses
only the samples {f(k)}k∈Z of the signal f . If (ST

Nf)(t) converges
to (Tf)(t) for all t ∈ R as N tends to infinity, then (ST

Nf)(t)
can be used to approximate (Tf)(t). Of course the convergence
of (ST

Nf)(t) is not guaranteed and depends on the signal f and the
stable LTI system T .

For signals in PW2
π the situation is simple, because we have

(Tf)(t) =
∑∞

k=−∞ f(k)hT (t − k) for all stable LTI systems T :

PW2
π → PW2

π and all signals f ∈ PW2
π . This is due to the

convergence of the Shannon sampling series in the PW2
π-norm and

the continuity and linearity of T .
Unfortunately, (ST

Nf)(t) does not always converge to (Tf)(t)
for stable LTI systems operating on PW1

π [11]. Next, we will ana-
lyze distributional convergence behavior of (4). For this purpose we
introduce the abbreviation ST

N,φf =
∫∞
−∞(ST

Nf)(t)φ(t) dt.

Theorem 7. Let T be a stable LTI system and φ ∈ S . Then we have

lim
N→∞

∣∣∣∣ST
N,φf −

∫ ∞

−∞
(Tf)(t)φ(t) dt

∣∣∣∣ = 0

for all f ∈ PW1
π if and only if there exists a constant C3 =

C3(φ) <∞ such that

max
ω∈[−π,π]

∣∣∣∣∣
1

2π

∫ π

−π

ĥT (ω1)φ̂(−ω1)
sin

[(
N+ 1

2

)
(ω−ω1)

]
sin

(
ω−ω1

2

) dω1

∣∣∣∣∣≤C3(φ)

(13)

for all N ∈ N. In addition, if (13) is not fulfilled, then there exists a
signal f1 ∈ PW1

π such that lim supN→∞|ST
N,φf1| =∞.

Theorem 7, which can be proved analogously to Theorem 1,
completely characterizes all stable LTI systems T for which the con-
volution sum ST

Nf converges in S ′ for all f ∈ PW1
π . In Theorem 9

we will use the characterization of Theorem 7 to show that there ex-
ists a stable LTI system T1 for which ST1

N f1 diverges in S ′ for some
f1 ∈ PW1

π .

Theorem 8. If ST
Nf converges in S ′ for all f ∈ PW1

π then
(ST

Nf)(t) converges pointwise for all t ∈ R and all f ∈ PW1
π .

Proof. Using the characterization (13) in Theorem 7 for conver-
gence in S ′ and the characterization for pointwise convergence from
[11], the assertion follows after a short calculation.

Theorem 9. There exists a stable LTI system T1 and a signal f1 ∈
PW1

π such that lim supN→∞|ST1
N,φ1

f1| =∞ for some φ1 ∈ S.

Proof. From the results in [11] it can be easily seen that there exists
a stable LTI system T1 such that (ST1

N f1)(t) diverges for some t ∈ R

and f1 ∈ PW1
π . Thus, the assertion follows from Theorem 8 and

Theorem 7.

We see from Theorem 9 that there are stable LTI systems and
signals in PW1

π such that the convolution sum (4) diverges in S ′.
In this regard, we have the same situation as in Section 3, where
we analyzed the convolution integral: The divergence of the convo-
lution sum in the classical, non-distributional setting cannot be cir-
cumvented by considering the more relaxed concept of distributional
convergence. Therefore, a convolution type representation of stable
LTI systems in the form (4) is not possible in general for the space
PW1

π , even if the convergence is treated in the distributional sense.
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