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Abstract—We characterize the capacity region of the com-
pound Discrete Memoryless Multiple Access Channel, where both
transmitters have an additional common message. The channel
state information is as follows: for each transmitter, there is a
finite partition of the set of channels. Each transmitter knows
which element of his partition the channel actually used belongs
to. The capacity region is not affected by the amount of channel
state information at the receiver, which may be arbitrary.

I. INTRODUCTION

The capacity region of the Discrete Memoryless Multiple
Access Channel (DM-MAC) with common message has first
been characterized by Slepian and Wolf in [5]. For the
compound DM-MAC with common message, where the class
of channels consists of two elements and where the channel
is known at the receiver only, the capacity region has been
obtained in [3]. In this paper, we find the capacity region of
the compound DM-MAC with common message, where the
number of channels is arbitrary. Various degrees of channel
state information (CSI) are assumed at the transmitter (CSIT)
and at the receiver (CSIR). For each sender, there is a finite
partition of the set of channels. Each sender has partial CSIT
in that he knows which element of his partition the channel
actually used for transmission belongs to. The receiver may
have any amount of CSIR between full channel knowledge and
none at all. It will be seen that CSIR has no influence on the
capacity region. The above definition of CSI includes scenarios
with asymmetric distribution of CSI between all nodes as well
as complete lack of CSI. By letting the partitions defining
CSIT become finer and finer, one sees how the capacity region
scales with increasing CSIT.
As shown in [6] and [7], the achievability of the capacity

region of the DM-MAC with conferencing encoders, where the
transmitters are able to cooperate over noiseless channels with
finite capacities, can be obtained via the capacity region of the
DM-MAC with common message. The result shown in the
present paper is the first step towards a characterization of the
capacity region of the compound DM-MAC with conferencing
encoders and with partial CSI. Such a characterization would
constitute a theoretical analysis of the downlink performance
that can be achieved using cooperating base stations with
imperfect and possibly different CSIT, as will be incorporated
in future wireless systems.
The rest of the paper is organized as follows: in Section

II, we describe the channel model and state the theorem

Fig. 1. The compound MAC with common message

characterizing the capacity region of the compound DM-MAC
with common message and partial CSI. Section III proves the
achievability of the asserted capacity region. In Section IV,
a weak converse is proved. A numerical example is given in
Section V. In Section VI, we discuss the result and conclude
the paper. Several auxiliary lemmata are collected in the
Appendix.
Some notation: for a positive integer m, define [1,m] :=

{1, . . . ,m}. For real numbers x, y, define x∨y := max(x, y).
For a finite set G, let Gc denote the complement of G. Let
P(G) denote the set of probability measures on G. For p ∈
P(G), pn denotes the n-fold tensor product of p on the set
Gn.

II. CHANNEL MODEL AND THEOREM

Let A,B,C be finite sets and let H be an arbitrary set. For
η ∈ H , let Wη be a stochastic matrix with entries Wη(c|a, b),
where (a, b, c) ∈ A×B × C. This defines a compound DM-
MAC with input alphabets A for transmitter 1 and B for
transmitter 2 and output alphabet C. For input words x ∈ An

and y ∈ Bn, the probability that the corresponding output
equals z ∈ Cn if the channel realization is η ∈ H is

Wn
η (z|x, y) :=

n∏

i=1

Wη(zi|xi, yi).

Let T1, T2 be finite sets and let the surjective CSIT-functions
tν : H → Tν , ν = 1, 2, be given. These functions induce two
finite partitions of the set H . For τ = (τ1, τ2) ∈ T1 × T2 we
set Hτ := Hτ1τ2 := t−1

1 (τ1) ∩ t−1
2 (τ2). Let another function

r : H → R be given, where R is an arbitrary set. This is the
CSIR-function. If channel η is used for transmission, sender
ν knows tν(η) and the receiver knows r(η). We denote the
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compound DM-MAC {Wη : η ∈ H} together with the CSI-
functions t1, t2, r by W(H, t1, t2, r).
Now fix a compound DM-MAC W(H, t1, t2, r). Let

M0,M1,M2 be positive integers and set Rν := (1/n) logMν

for ν = 0, 1, 2. A code(n,R0, R1, R2) for W(H, t1, t2, r) is
a triple (f1, f2, (Cρ)ρ∈R). Here,

f1 : [1,M0]× [1,M1]× T1 → An,

f2 : [1,M0]× [1,M2]× T2 → Bn

are encoding functions. Each Cρ is a collection {Cρ
ijk :

(i, j, k) ∈ [1,M0] × [1,M1] × [1,M2]} of disjoint subsets of
Cn. Cρ is the family of decoding sets used by the receiver if
it has CSIR ρ. If η ∈ Hτ1τ2 , where (τ1, τ2) ∈ T1 × T2, and
if the message triple (i, �1, �2) is to be transmitted, sender ν
uses the codeword fν(i, �ν , τν), for ν = 1, 2. This means that
the codeword chosen for transmission depends on the CSIT.
We also write

f1(i, �1, τ1) = xτ1
i�1

,

f2(i, �2, τ2) = yτ2i�2 .

If the receiver knows that the index of the channel used for
transmission is contained in r−1(ρ) and if the received element
z ∈ Cn is contained in the set Cρ

ijk , the receiver decides that
the message triple (i, j, k) has been sent.
The code(n,R0, R1, R2) is a code(n,R0, R1, R2, λ) if

1

M0M1M2

∑

i,j,k

Wn
η ((C

ρ
ijk)

c|xτ1
ij , y

τ2
ik ) ≤ λ

for every (τ1, τ2, ρ) ∈ T1 × T2 × R and every η ∈ Hτ1τ2 ∩
r−1(ρ), i. e. if the average error is smaller than λ for all
η ∈ H .
A rate triple (R0, R1, R2) is achievable if for every λ > 0

and for every ε > 0, there is an n0 such that for every n ≥ n0,
there is a code(n,R′0, R′1, R′2, λ) with R′ν ≥ Rν − ε for every
ν = 0, 1, 2. Denote the set of rate triples which are achievable
by C.
Next, we introduce the notation used for the parametrization

of the capacity region. Let Π0 be the set of pairs (D, p0),
where D is a finite set and p0 ∈ P(D). Further, for a finite
set D, let Π(D) be the set of pairs (p1, p2), where pν is a
mapping from Tν to the set of stochastic matrices with input
alphabet D and output alphabet A (ν = 1) or B (ν = 2).
Let (D, p0) ∈ Π0, (p1, p2) ∈ Π(D), τ := (τ1, τ2) ∈ T1×T2,

and η ∈ Hτ . For ν = 1, 2, we write pν(τν) = pντν . Define
the probability distribution rη on D ×A× B × C by

rη(d, a, b, c) = p0(d)p1τ1(a|d)p2τ2(b|d)Wη(c|a, b). (1)

Let the quadruple of random variables (U,Xτ1 , Yτ2 , Zη) take
values in D ×A×B × C with joint probability rη . Set

R(p0, p1, p2, τ1, τ2, η) :=
{
(R0, R1, R2) ∈ R3

≥0 :

R1 ≤ I(Zη;Xτ1 |Yτ2 , U),

R2 ≤ I(Zη;Yτ2 |Xτ1 , U),

R1 +R2 ≤ I(Zη;Xτ1 , Yτ2 |U),

R0 +R1 +R2 ≤ I(Zη;Xτ1 , Yτ2)
}
.

Further, we define the set

C∗ =
( ⋃

(D,p0)∈Π0

⋃

(p1,p2)∈Π(D)

⋂

(τ1,τ2)∈T1×T2

⋂

η∈Hτ1τ2

R(p0, p1, p2, τ1, τ2, η)

)
.

Theorem 1. For the capacity region C of the DM-MAC
W(H, t1, t2, r), one has

C = C∗.

C is convex. It can be assumed for the sets D in the definition
of C∗ that |D| ≤ min{|A||B|+ 2, |C|+ 3}.
Remark 1. Note that the capacity region is independent of r,
the CSIR function. This is implied by the fact that for any
fixed pair of CSIT functions (t1, t2), the inner bound for the
case of no CSIR from Section III coincides with the outer
bound for the case of full CSIR from Section IV. Further note
that the result of [3] describes the case |H | = 2 with no CSIT
and full CSIR.
Remark 2. The convexity of C∗ is seen easily using the
convexity properties of mutual information. The bound on the
cardinality of D follows as in [6, Appendix B].

III. ACHIEVABILITY

As noted in Remark 1, it suffices to prove the achievability
part of Theorem 1 for the case of no CSIR. As r is trivial in
this case, we leave it away completely to simplify notation.
First assume that the number of channels is finite. To prove

the achievability of the rates in C∗, we use the random coding
method. This means that we randomly generate a code. Then
we show that if its rate triple is within C∗, the probability
that its average error is exponentially small in blocklength is
greater than zero. This implies the existence of a deterministic
code with exponentially small average error probability.
For some (D, p0) ∈ Π0 and (p1, p2) ∈ Π(D), choose a

triple (R0, R1, R2) contained in the interior of
⋂

(τ1,τ2)∈T1×T2

⋂

η∈Hτ1τ2

R(p0, p1, p2, τ1, τ2, η). (2)

Let λ > 0, and without loss of generality, let ε <
min{R0, R1, R2}. Choose positive integers n,M0,M1,M2

with

Rν − ε

2
> R′ν :=

1

n
logMν ≥ Rν − ε, ν = 0, 1, 2. (3)

(This is possible for all large n.) We now define the probability
space on which codes(n,R′0, R′1, R′2) are generated randomly.
Let (Ω,A,P) be a probability space on which for each i ∈
[1,M0], the family of random variables

{Ui, X
τ1
ij , Y

τ2
ik : j ∈ [1,M1], τ1∈T1, k ∈ [1,M2], τ2∈T2}

(4)
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is defined. These families are independent for different i. For
every i, the Ui is distributed on Dn according to pn0 . Further,
the Xτ1

ij take values in An, the Y τ2
ik take values in Bn, and

P
[
Xτ1

ij = xτ1
ij , Y

τ2
ik = yτ2ik for all i, j, k, τ1, τ2

∣∣Ui = u
]

=

M1∏

j=1

∏

τ1∈T1

pn1τ1(x
τ1
ij |u)

M2∏

k=1

∏

τ2∈T2

pn2τ2(y
τ2
ik |u).

The pair (Xτ1
ij , Y

τ2
ik ) is the pair of random codewords sent

if the message triple (i, j, k) is to be transmitted and if
transmitter ν knows that the channel is contained in t−1

ν (τν)
for ν = 1, 2.
Before we can define the corresponding decoding sets, we

need to introduce some more notation. Let G be a finite set
and let x = (x1, . . . , xn) ∈ Gn. The type of x then is the
probability measure px ∈ P(G) given by

px(g) :=
1

n
|{i : xi = g}|.

For p ∈ P(G) and δ > 0, let T n
p,δ be the subset of x ∈ Gn

such that |px(g) − p(g)| ≤ δ for all g ∈ G and such that
p(g) = 0 implies px(g) = 0. (For more on types etc., see [2].)
Now, for the message triple (i, j, k) and for η ∈ Hτ1τ2 ,

define the set

Eη
ijk := {z ∈ Cn : (Ui, X

τ1
ij , Y

τ2
ik , z) ∈ T n

rη,δ},

where the probability distribution rη is defined as in (1). Then,
the decoding set for the message triple (i, j, k) is defined as

Cijk :=

( ⋃

η∈H
Eη

ijk

)
\
( ⋃

(i′,j′,k′)
�=(i,j,k)

⋃

η∈H
Eη

i′j′k′

)
. (5)

Note that the Cijk depend on the families (4), but not on η.
Up to now, we have defined the random code. In the

following, we bound the expected average error from above.
Once that is done, it will be easy to infer the existence of a
good code. We define the random variable P η

e depending on
the families (4) and giving the average probability of error
when channel η ∈ Hτ1τ2 is used,

P η
e :=

1

M0M1M2

∑

i,j,k

Wn
η

(
Cc

ijk |Xτ1
ij , Y

τ2
ik

)
.

Denote by E the expectation with respect to P. By (5) and
using the symmetry in (i, j, k), the mean average probability of
making an error if channel η ∈ Hτ1τ2 is used can be estimated

as follows:

E [P η
e ] = E

[
1

M0M1M2

∑

i,j,k

Wn
η

(
Cc

ijk |Xτ1
ij , Y

τ2
ik

)]

= E
[
Wn

η (Cc
111|Xτ1

11 , Y
τ2
11 )

]

≤ E
[
Wn

η ((Eη
111)

c|Xτ1
11 , Y

τ2
11 )

]
(6)

+
∑

i,j,k:
i�=1

∑

η̃∈H
E
[
Wn

η

(
Eη̃

ijk |Xτ1
11 , Y

τ2
11

)]
(7)

+
∑

j,k:
j �=1�=k

∑

η̃∈H
E
[
Wn

η

(
Eη̃

1jk|Xτ1
11 , Y

τ2
11

)]
(8)

+
∑

j �=1

∑

η̃∈H
E
[
Wn

η

(
Eη̃

1j1|Xτ1
11 , Y

τ2
11

)]
(9)

+
∑

k �=1

∑

η̃∈H
E
[
Wn

η

(
Eη̃

11k|Xτ1
11 , Y

τ2
11

)]
. (10)

For each τ = (τ1, τ2) and for each η ∈ Hτ , define a quadru-
ple of generic random variables (U,Xτ1 , Yτ2 , Zη) with values
inD×A×B×C and joint distribution rη . We use the following
notation: if G is the Cartesian product of the elements of
a subset of the set {A,B,C,D}, denote the projection onto
the corresponding components by πG. The marginal of rη on
G then is rη ◦ π−1

G . We use analogous notation for rnη . For
bounding (6), note that Lemma 3 (Appendix) implies

E
[
Wn

η ((Eη
111)

c|Xτ1
11 , Y

τ2
11 )

]

= 1− rnη (T
n
rη,δ)

≤ (n+ 1)|A||B||C||D|2−ncδ2 .

Set τ̃ := (τ̃1, τ̃2). For bounding the term in (7) correspond-
ing to η̃ ∈ Hτ̃1τ̃2 , write

E
[
Wn

η

(
Eη̃

ijk|Xτ1
11 , Y

τ2
11

)]
=

∑

(u,x,y,z)∈Tn
rη̃,δ

rnη̃
(
π−1
Dn×An×Bn(u, x, y)

)
rnη

(
π−1
Cn(z)

)
.

(u, x, y, z) ∈ T n
rη̃,δ

implies (u, x, y) ∈ T n
rη̃◦π−1

D×A×B
,|C|δ and

z ∈ T n
rη̃◦π−1

C
,|D||A||B|δ. Thus, by Lemma 1 a) (Appendix),

rnη̃
(
π−1
Dn×An×Bn(u, x, y)

)
≤ 2−n

(
H(U,Xτ̃1 ,Yτ̃2 )−ζ11

)

and
rnη

(
π−1
Cn(z)

)
≤ 2−n

(
H(Zη̃)−ζ12

)
.

Lemma 2 (Appendix) implies

|T n
rη̃,δ| ≤ (n+ 1)|D||A||B||C|2n(H(U,Xτ̃1 ,Yτ̃2 ,Zη̃)+ζ13).

Thus, each term in (7) with η̃ ∈ Hτ̃1τ̃2 can be bounded by

(n+ 1)|D||A||B||C|

2−n
(
H(U,Xτ̃1 ,Yτ̃2)+H(Zη̃)−H(U,Xτ̃1 ,Yτ̃2 ,Zη̃)−ζ1

)

= (n+ 1)|D||A||B||C|2−n
(
I(Zη̃ ;Xτ̃1 ,Yτ̃2 )−ζ1

)
, (11)
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where ζ1 = ζ1(|A|, |B|, |C|, |D|, δ) tends to zero as δ tends to
zero. Equality (11) follows from

I(Zη̃;U,Xτ̃1, Yτ̃2) = I(Zη̃;Xτ̃1 , Yτ̃2),

which is fulfilled because the sequence (U, (Xτ̃1 , Yτ̃2), Zη̃)
forms a Markov chain.
The terms (8)-(10) can be bounded in a similar fashion. In

the calculations necessary to do so, instead of rnη (π
−1
Cn(z)),

there appear conditional probabilities of z, which require
using Lemma 1 b). Collecting the bounds thus obtained, and
recalling the choice of M0,M1,M2 in (3), one sees that for
the mean average probability of error when channel η is used,

E[P η
e ] ≤ (n+ 1)|D||A||B||C|(2−ncδ2

+|H |2−n(minτ̃1,τ̃2minη̃∈Hτ̃1 τ̃2
I(Zη̃ ;Xτ̃1 ,Yτ̃2 )−R0−R1−R2+

3ε
2 −ζ1)

+|H |2−n(minτ̃1,τ̃2 minη̃∈Hτ̃1 τ̃2
I(Zη̃ ;Xτ̃1 ,Yτ̃2 |U)−R1−R2+ε−ζ2)

+|H |2−n(minτ̃1,τ̃2 minη̃∈Hτ̃1 τ̃2
I(Zη̃ ;Xτ̃1 |Yτ̃2 ,U)−R1+

ε
2−ζ3∨ζ2)

+|H |2−n(minτ̃1,τ̃2 minη̃∈Hτ̃1 τ̃2
I(Zη̃ ;Yτ̃2 |Xτ̃1 ,U)−R2+

ε
2−ζ4∨ζ2)).

Here, ζ2, ζ3, ζ4 have the same properties as ζ1. Now we are in a
position which allows us to choose δ and n such that from the
ensemble of random codes, we can extract one deterministic
code whose average error probability is exponentially small
in blocklength. First, choose δ small enough such that the
above sum decreases in n. This is possible by the choice of
(R0, R1, R2). Hence there is a ζ > 0 such that

E [P η
e ] ≤ 2−nζ ≤ λ

for all n ≥ n0(ζ, λ). For η ∈ Hτ1τ2 , 0 < ζ̃ < ζ, set

Aη :=
{
ω ∈ Ω : P η

e (ω) ≤ 2−nζ̃
}
.

This is the set of randomly generated codes with rate triple
(R′0, R

′
1, R

′
2) and average probability of error smaller than

2−nζ̃ if channel η is used. As

P[Ac
η] ≤ 2nζ̃E

[
P η
e ({Ui}, {Xτ1

ij }, {Y τ2
ik })

]

by the Markov inequality, one has the inequality

P
[ ⋂

η∈H
Aη

]
≥ 1−

∑

η∈H
P[Ac

η]

≥ 1− 2nζ̃
∑

η∈H
E[P η

e ] ≥ 1− |H |2−n(ζ−ζ̃) > 0,

for n large enough. Any code contained in the non-empty
intersection

⋂
η∈H Aη is a code(n,R′0, R′1, R′2, λ). Thus the

rate triple (R0, R1, R2) is achievable, and as the set of
achievable rates is closed, the whole set (2) is achievable.
Varying (D, p0) ∈ Π0 and (p1, p2) ∈ Π(D) concludes the
proof of the achievability part of Theorem 1 for no CSIR and
finite |H |.
In the case of an arbitrary number of channels, the achiev-

ability can be established using a refinement of the argument
of [1]. Here, it is crucial that T1 and T2 are finite sets and
that the average error probability can be made to decrease
exponentially in blocklength for the finitely many channels
case.

IV. CONVERSE

In this section, we prove a weak converse for Theorem 1.
For this, we need to show that for every ε > 0 there is a
λ(ε) such that the rate triple of every code(n,R′1, R′2, R′3, λ)
is within distance ε from C∗ if λ ≤ λ(ε) and n is large. We
assume full CSIR (cf. Remark 1). That means that we can set
R = H and r = identity. Instead of r(η), we just write η.
Let ε > 0. Let n ∈ N and let a code(n,R′0, R′1, R′2, λ)

for the compound DM-MAC W(H, t2, t2) be given. Define
(M0,M1,M2) by R′ν = (1/n) logMν for ν = 0, 1, 2. The
code has the form

((
{xτ1

ij }
)
τ1∈T1

, ({yτ2ik})τ2∈T2
,
(
{Cη

ijk}
)
η∈H

)
, (12)

where xτ1
ij ∈ An, yτ2ik ∈ Bn, Cη

ijk ⊂ Cn, and Cη
ijk ∩Cη

i′j′k′ =
∅ if (i, j, k) �= (i′, j′, k′), and where in each of the sets in
(12), i, j, k vary over [1,M0]× [1,M1]× [1,M2].
We need to define an appropriate probability space again.

Here, the probability space reflects the fact that the perfor-
mance criterion of average error corresponds to a uniform
distribution of the messages. Let (Ω,A,P) be a probability
space on which the following random variables are defined:
let (V0, V1, V2) be a triple of random variables uniformly
distributed in [1,M0] × [1,M1] × [1,M2]. Given (V0, V1, V2)
and τ := (τ1, τ2) = (t1(η), t2(η)), let (Xτ1, Y τ2) be the pair
of random variables on An×Bn that deterministically chooses
the pair of codewords encoding the message triple (V0, V1, V2)
with channel knowledge τ , so (Xτ1 , Y τ2) = (xτ1

V0V1
, yτ2V0V2

).
Finally, given (Xτ1 , Y τ2), let Zη be distributed on Cn accord-
ing to

P[Zη = z|Xτ1 = x, Y τ2 = y, V0 = i, V1 = j, V2 = k]

= Wn
η (z|x, y) ,

where x ∈ An and y ∈ Bn.
We present the complete calculations only for the upper

bound on R′1. The bounds on R′2, R′1+R′2, and on R′0+R′1+
R′2 can be derived in a similar fashion. Fix a τ = (τ1, τ2) ∈
T1 × T2. For every η ∈ Hτ1τ2 , define a channel Wn

η,1 with
input alphabet [1,M1] and with output alphabet Cn by setting

Wn
η,1 (z|j) := P[Zη|V1 = j].

Then, consider the average error probability λη
1 defined by

1

M1

∑

j

Wn
η,1

(⋃

i,k

Cη
ijk

∣∣∣∣j
)

= 1− λη
1 .

Fano’s inequality (Theorem 7.4.1 in [8]) implies

H(V1|Zη, V0, V2) ≤ H(V1|Zη) ≤ λη
1 log(M1 − 1) + h(λη

1),
(13)

where h denotes binary entropy. The uniform distribution of
the messages and (13) imply

logM1 ≤ h(λη
1) + λη

1 logM1 + I(Zη;Xτ1 |V0, Y
τ2). (14)
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The next step is to obtain a single-letter description from (14)
by considering the codewords and the output coordinate-wise:

Xτ1 = (Xτ1
1 , . . . , Xτ1

n ),

Yτ2 = (Y τ2
1 , . . . , Y τ2

n ),

Zη = (Zη
1 , . . . , Z

η
n),

Zη
[1,m] = (Zη

1 , . . . , Z
η
m), (m ≤ n);

Consider the mutual information term in (14). By the chain
rule for entropy, it can be expanded as

I(Zη;Xτ1 |V0, Y
τ2) =

n∑

m=1

(
H(Zη

m|V0, Y
τ2 , Zη

[1,m−1])

−H(Zη
m|Xτ1 , V0, Y

τ2 , Zη
[1,m−1])

)
. (15)

As (T0, Y
τ2
m ) is a function of (T0, Y

τ2 , Zη
[1,m−1]), one has

H(Zη
m|V0, Y

τ2 , Zη
[1,m−1]) ≤ H(Zη

m|V0, Y
τ2
m ). (16)

Further, note that given Xτ1 and Y τ2 , the random variables
Zη
m and Zη

[1,m−1] are independent. Thus

H(Zη
m|Xτ1 , V0, Y

τ2 , Zη
[1,m−1])

= H(Zη
m|Xτ1

m , V0, Y
τ2
m ).

(17)

(16) and (17) imply

1

n
I(Zη;Xτ1 |V0, Y

τ2) ≤ 1

n

n∑

m=1

I(Zη
m;Xτ1

m |V0, Y
τ2
m ). (18)

Define the following (D, p0) ∈ Π0 and (p1, p2) ∈ Π(D): let

D := [1, n]× [1,M0];

p0(m, i) :=
1

nM0
;

p1τ1(a|m, i) := P[Xτ1
m = a|V0 = i];

p2τ2(b|m, i) := P[Y τ2
m = b|V0 = i].

For η ∈ Hτ , let U,Xτ1, Yτ2 , Zη be random variables defined
on a probability space (Ω′,B,Q) and taking values in D, A,
B, and C, respectively, such that

Q[U = (m, i), Xτ1 = a, Yτ2 = b, Zη = c]

= p0(m, i)p1τ1(a|m, i)p2τ2(b|m, i)Wη(c|a, b). (19)

Then, by (18) and (19),
1

n
I(Zη;Xτ1 |V0, Y

τ2) = I(Zη;Xτ1|Yτ2 , U). (20)

Now observe that λη
1 ≤ λ. From the definition of the Mν and

from (14) and (20),

R′1 ≤ h(λ)

n
+ λR′1 + I(Zη;Xτ1 |Yτ2 , U) + ε.

Now one sees easily that (R′0, R′1, R′2) is close to C∗ for
large n: assume that n ≥ (log 2)/ε. For this n, assume that
λ < ε/(R′0+R′1+R′2). Imitating the above procedure for R′2,
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Fig. 2. The capacity region of the compound channel {W1,W2} with
common message.

R′1+R′2, and R′0+R′1+R′2, one sees that all of the following
equations must hold:

R′1 ≤ I(Zη;Xτ1 |Yτ2 , U) + 3ε; (21)
R′2 ≤ I(Zη;Yτ2 |Xτ1 , U) + 3ε; (22)

R′1 +R′2 ≤ I(Zη;Xτ1 , Yτ2 |U) + 4ε; (23)
R′0 +R′1 +R′2 ≤ I(Zη;Xτ1 , Yτ2) + 5ε. (24)

(21)-(24) must hold for all η ∈ Hτ1τ2 , and for all (τ1, τ2) ∈
T1×T2. Thus the triple (R′0, R′1, R′2) must be within distance
3ε of the set

⋂

(τ1,τ2)

⋂

η∈Hτ1τ2

R(p0, p1, p2, τ1, τ2, η).

Choosing p1τ1 and p2τ2 for every (τ1τ2) defines a pair of
functions (p1, p2) ∈ Π(D). As (D, p0) ∈ Π0, one obtains
that the rate triple (R′0, R

′
1, R

′
2) must be within distance 3ε

from the asserted region, thus proving the weak converse for
Theorem 1 in the case of full CSIR. Together with Remark 1,
this completes the proof of Theorem 1.

V. EXAMPLE
Here we give an example of a compound DM-MAC con-

sisting of two channels, i.e. H = {1, 2}. For the input and
output alphabets we set A = B = C = {0, 1}. Writing the
input combination (a, b) in row 2a + b + 1, the transmission
matrices are

W1 =

⎛
⎜⎜⎝

.9 .1

.4 .6

.6 .4
0 1

⎞
⎟⎟⎠ and W2 =

⎛
⎜⎜⎝

.9 .1

.6 .4

.4 .6
0 1

⎞
⎟⎟⎠ .

We assume no CSI.
The rate region of the compound channel {W1,W2} is

shown in Figure 2. Its projection into the (R1, R2)-plane
equals the capacity region of the compound DM-MAC
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Fig. 3. The (R1, R2)-projections of the capacity regions of the constituent
channels W1 and W2 and of the compound channel {W1,W2}.

{W1,W2} without common message. Figure 3 shows this
projection together with the projections of the capacity regions
of the constituent DM-MACs W1 and W2. Note that the
projection corresponding to the compound channel is strictly
contained in the intersection of the projections of the con-
stituent channels’ rate regions. This fact carries over to the
complete rate regions, but cannot be illustrated well.

VI. DISCUSSION
We have characterized the capacity region of the compound

DM-MAC with common message and with partial CSI. Partial
CSI here means for the senders that each of them knows
which element of a finite partition of the set of channels
the channel actually used belongs to. CSIR can be arbitrary.
This definition can incorporate asymmetric CSIT. Further, by
gradually refining the partitions of the set of channels, one sees
how the capacity region scales with increasing CSIT. CSIR has
no influence on the achievable rate region.
Apart from the relevance this result has on its own, it is a

first step towards the capacity region of the compound DM-
MAC with partial CSI and with conferencing encoders. In the
conferencing encoders case, the transmitters can communicate
via a noise-free finite-capacity link in order to coordinate
their transmission to some extent. The resulting capacity
region lies between the one obtained with full cooperation
and the region where the transmitters cannot cooperate at
all. The characterization of this region will be a contribution
to the analysis of future wireless systems which incorporate
base station cooperation via backbones with high, but finite
capacities.

APPENDIX
Lemma 1. a) Let A be a finite set. Let p, p̃ ∈ P(A). Let
0 < δ < 1/(2|A|). Then, for all n ∈ N, for every x ∈ T n

p̃,δ,

pn(x) ≤ 2−n(H(p̃)−φ(|A|,δ)).

φ is a universal function (i. e. independent of everything),
positive if |A| ≥ 1 and 0 < δ < 1, and limδ→0 φ(|A|, δ) = 0
for all values of |A|.
b) Let A,B be finite sets. Let p ∈ P(A) and W, W̃

stochastic matrices with input alphabet A and output alphabet
B. Let 0 < δ < 1/(2|A||B|). Let r̃ ∈ P(A× B) be the joint
distribution corresponding to p and W̃ . Then, for all n ∈ N,
for all (x, y) ∈ T n

r̃,δ,

Wn(y|x) ≤ 2−n(H(W̃ |p)−ψ(δ,|A|,|B|)).

ψ is a universal function (i. e. independent of everything), pos-
itive if |A|, |B| ≥ 1, 0 < δ < 1, and limδ→0 ψ(δ, |A|, |B|) = 0
for arbitrary |A|, |B|.

Proof: From [2], Lemma I.2.6 and I.2.7.

Lemma 2. Let A be a finite set. Let p ∈ P(A). Let 0 < δ <
1/(2|A|). Then

|T n
p,δ| ≤ (n+ 1)|A|2n(H(p)+φ(|A|,δ)).

for the same φ as in Lemma 1 a).

Proof: Like the proof of [2], Lemma I.2.13.

Lemma 3 ([4], Lemma III.1.3). Let A be a finite set and let
p ∈ P(A). Then, there is a universal constant c > 0 such that

pn((T n
p,δ)

c) ≤ (n+ 1)|A|2−ncδ2 .
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