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ABSTRACT

The concept of bidirectional relaying is a key technique to improve
the performance in wireless networks such as sensor, ad-hoc, and
even cellular systems. It applies to three-node networks, where a
relay node establishes a bidirectional communication between two
other nodes using a decode-and-forward protocol. We assume that
the communication is disturbed by unknown varying interference
and analyze the impact of the degree of coordination. We show
that the unknown variation of the interference has a dramatic impact
on the communication. For traditional interference coordination it
can lead to channels which completely prohibit any reliable com-
munication. Anyhow, by allowing a relay-to-receivers coordination,
communication can also be established in such situations where the
traditional approach fails.

Index Terms— Bidirectional Relaying, Wireless Network, In-
terference Coordination, Capacity

1. INTRODUCTION

To meet the performance targets of future wireless communication
systems, there is the need to significantly improve the throughput and
coverage. The use of relays is a promising approach, which is inten-
sively discussed at the moment by the Third Generation Partnership
Program’s Long-Term Evolution Advanced (3GPP LTE-Advanced)
group.

Due to practical constraints a relay cannot transmit and receive
at the same time and frequency. Consequently, the relay has to allo-
cate orthogonal resources which can be realized more efficiently, if
bidirectional communication is considered [1], [2], [3]. In this work,
we consider the scenario where a relay node establishes a bidirec-
tional communication between two other nodes. This is known as
the bidirectional relay channel.

The processing at the relay node usually classifies the relaying
strategy. Here, we consider a two-phase decode-and-forward proto-
col. In the initial phase both nodes transmit their messages to the
relay node. Since the relay decodes the messages, we end up with
the classical multiple access channel. In the succeeding phase the re-
lay broadcasts a re-encoded composition of them so that both nodes
are able to decode the other’s message using their own message as
side information. This is the bidirectional broadcast channel (BBC)
for which the optimal coding and transmit strategies are known [4].
Bidirectional relaying under channel uncertainty is analyzed in [5].

So far bidirectional relaying is studied as an isolated three-node
network. Since it shows to have the potential to significantly en-
hance the performance, the next step is to consider bidirectional re-
laying within a wireless network. Inevitably, the communication is
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Fig. 1. Bidirectional relaying in a cellular network with inter-cell
interference.

now disturbed by interference from other transmitting nodes as il-
lustrated in Figure 1. For example in a cellular system the receiving
nodes, especially at the cell edges, are confronted with interference
from other transmitting nodes that is added onto the intended signal
in a destructive way. The interference model used in this work is
introduced in Section 2.

Since the unknown interference disturbs the communication, in-
terference coordination is indispensable for reliable communication.
In Section 3 we analyze different types of coordination. Thereby,
we show that the traditional approach can lead to situations which
prohibit reliable communication, whereas a relay-to-receivers coor-
dination can enable a bidirectional communication even in such sit-
uations. Finally, a discussion is given in Section 4.1

2. INTERFERENCE MODELING

In this work, we concentrate on the bidirectional broadcast phase,
where the transmission is corrupted by unknown varying additive
interference. We call this a BBC with unknown varying interference.
Clearly, the interference at both receivers may differ so that we in-
troduce two artificial interferers, one for each receiver, to model this
behavior. Then the flat fading input-output relation between the relay
node and node k is given by

yk = x+ ik + nk, k = 1, 2,

1Notation: Random variables are denoted by capital letters and sets by
calligraphic letters; N is the set of natural numbers and R+ the set of non-
negative real numbers; P{·} denotes the probability; (·)c is the complement
of a set; the Euclidean norm is denoted by ‖ · ‖2; lhs := rhs means the value
of the right hand side (rhs) is assigned to the left hand side (lhs).
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where yk ∈ R denotes the output, x ∈ R the input, ik ∈ R the
additive interference, and nk ∈ R the Gaussian noise of the channel
distributed according to N (0, σ2).

The transmit powers of the relay and the artificial interferers are
restricted by average power constraints Γ and Λk, k = 1, 2, respec-
tively. This means, all permissible input sequences x1, x2, ..., xn of
length n must satisfy

1

n

n∑
j=1

x2
j ≤ Γ (1)

and all permissible interfering sequences ik,1, ik,2, ..., ik,n of length
n must satisfy

1

n

n∑
j=1

i2k,j ≤ Λk, k = 1, 2. (2)

From the conditions (1) and (2) follow that all permissible code-
words and interfering sequences lie on or within an n-dimensional
sphere of radius

√
nΓ or

√
nΛk, k = 1, 2, respectively.

Of course, interference in the initial multiple access phase can
be modeled and analyzed in a similar way.

3. TYPES OF COORDINATION

The aim is to analyze different approaches of coordination and to
specify their impact on the transmission in the bidirectional broad-
cast phase. Therefore we characterize all achievable rate pairs at
which reliable communication is possible for two different types of
coordination, namely the traditional interference and the relay-to-
receivers coordination.

3.1. Preliminaries

We consider the standard model with a block code of arbitrary but
fixed length n. LetMk := {1, ...,M (n)

k } be the message set of node
k, k = 1, 2, which is also known at the relay node. Further, we use
the abbreviation M := M1 ×M2. We start with the deterministic
strategy for the traditional interference coordination, where the relay
and the receivers use prespecified encoder and decoders.

Definition 1 A deterministic (M
(n)
1 ,M

(n)
2 , n)-code Ctrad for the

BBC with unknown varying interference is a family

Ctrad :=
{
(xn

m, D
(1)

m2|m1
, D

(2)

m1|m2
) : m1 ∈ M1,m2 ∈ M2

}
with codewords xn

m, one for each message m = (m1,m2), and
decoding sets at nodes 1 and 2, i.e., D(1)

m2|m1
and D

(2)

m1|m2
for all

m1 ∈ M1 and m2 ∈ M2. For given m1 at node 1 the decoding
sets have to be disjoint and similarly for given m2 at node 2 the
decoding sets have to be disjoint.

When xn
m with m = (m1,m2) has been sent, and yn

1 and yn
2

have been received at nodes 1 and 2, the decoder at node 1 is in error
if yn

1 is not inD(1)

m2|m1
. Accordingly, the decoder at node 2 is in error

if yn
2 is not in D

(2)

m1|m2
. This allows us to define the probabilities of

error for given message m = (m1,m2) and interfering sequence ink ,
k = 1, 2, at nodes 1 and 2 as

λ1(m, in1 ) := P
{
xn
m + in1 + nn

1 /∈ D
(1)

m2|m1

}
λ2(m, in2 ) := P

{
xn
m + in2 + nn

2 /∈ D
(2)

m1|m2

}

and the average probability of error for interfering sequence ink at
node k, k = 1, 2, as

λ̄
(n)
k (ink ) :=

1

|M|
∑

m∈M

λk(m, ink ). (3)

Definition 2 A rate pair (RR1, RR2) ∈ R
2
+ is said to be determin-

istically achievable for the BBC with unknown varying interference
if for any δ > 0 there exists an n(δ) ∈ N and a sequence of de-
terministic (M

(n)
1 ,M

(n)
2 , n)-codes such that for all n ≥ n(δ) we

have

logM
(n)
1

n
≥ RR2 − δ and

logM
(n)
2

n
≥ RR1 − δ

while maxin
k
λ̄
(n)
k (ink ) → 0 as n → ∞, k = 1, 2. The set of all

achievable rate pairs is the capacity region of the BBC with unknown
varying interference and is denoted by Rtrad.

The definitions above require that we have to find a universal
strategy which works for all possible interfering sequences simulta-
neously. Next, we introduce the random strategy for the relay-to-
receivers coordination, where the relay and the receivers have the
additional flexibility to coordinate their choice of the encoder and
decoders.

Definition 3 A random (M
(n)
1 ,M

(n)
2 , n,Z, μ)-code Ccoord for the

BBC with unknown varying interference is a collection of determin-
istic (M (n)

1 ,M
(n)
2 , n)-codes C(Z), Z ∈ Z , Z ∼ μ,

C(Z) :=
{
(xn

m(Z), D
(1)

m2|m1
(Z), D

(2)

m1|m2
(Z)) :

m1 ∈ M1,m2 ∈ M2}
where μ is the uniform distribution on Z .

This means that the codewords and the decoding sets are cho-
sen according to a common random experiment. The definitions of
probability of error, a randomly achievable rate pair, and the random
code capacity region Rcoord follow accordingly.

Remark 1 From the definitions it is clear that the random strategy
is more general and includes the deterministic one as a special case.
Consequently, the deterministic code capacity region Rtrad is con-
tained in the random code capacity region Rcoord. This means we
have Rtrad ⊆ Rcoord.

3.2. Traditional Interference Coordination

The traditional interference coordination is in general based on a
system design which ensures that the interference at the receivers
do not exceed a certain threshold. For example in current cellular
networks this is realized by separating cells in space which operate
at the same frequency.

Theorem 1 The deterministic code capacity region Rtrad of the
BBC with unknown varying interference with input constraint Γ
and interferer constraints Λ1 and Λ2 is the set of all rate pairs
(RR1, RR2) ∈ R

2
+ satisfying

RRk ≤
{

1
2
log

(
1 + Γ

Λk+σ2

)
if Γ > Λk

0 if Γ ≤ Λk

(4)

k = 1, 2. This means interior(Rtrad) 
= ∅ if and only if Γ > Λ1

and Γ > Λ2.
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First, we consider the case when Γ ≤ Λ1 or Γ ≤ Λ2. Let
xn
m1,m2

∈ R
n, m1 = 1, ...,M

(n)
1 , m2 = 1, ...,M

(n)
2 with M

(n)
1 ≥

2 and M
(n)
2 ≥ 2 be arbitrary codewords satisfying the input con-

straint (1). For Γ ≤ Λ1 we can consider the interfering sequences
in1,m1,m2

= xn
m1,m2

, m1 = 1, ...,M
(n)
1 , m2 = 1, ...,M

(n)
2 . Then

for each m1 ∈ M1 at node 1 the following holds. For each pair
(l, j) ∈ M2 ×M2 with l 
= j we have for the probability of error
at node 1

λ1((m1, l), i
n
1,m1,j

) + λ1((m1, j), i
n
1,m1,l

)

= P
{
xn
m1,l

+ in1,m1,j
+ nn

1 /∈ D
(1)

l|m1
}

+ P
{
xn
m1,j

+ in1,m1,l
+ nn

1 /∈ D
(1)

j|m1
}

= P
{
xn
m1,l

+ in1,m1,j
+ nn

1 ∈ (D
(1)

l|m1
)c}

+ P
{
xn
m1,l

+ in1,m1,j
+ nn

1 /∈ D
(1)

j|m1
}

≥ P
{
xn
m1,l

+ in1,m1,j
+ nn

1 ∈ (D
(1)

l|m1
)c}

+ P
{
xn
m1,l

+ in1,m1,j
+ nn

1 ∈ D
(1)

l|m1
}

= P{xn
m1,l

+ in1,m1,j
+ nn

1 ∈ (D
(1)

l|m1
)c ∪D

(1)

l|m1
} = 1.

Hence, for a fixed m1 ∈ M1 this leads for the average probability
of error to

1

M
(n)
2

M
(n)
2∑

j=1

λ̄
(n)
1 (in1,m1,j

)

=
1

M
(n)
2

1

M
(n)
1 M

(n)
2

M
(n)
2∑

j=1

M
(n)
1∑

m′

1=1

M
(n)
2∑

m′

2=1

λ1((m
′
1,m

′
2), i

n
1,m1,j

)

≥ 1

M
(n)
1 (M

(n)
2 )2

M
(n)
1∑

m′

1

M
(n)
2 (M

(n)
2 − 1)

2

=
M

(n)
1 M

(n)
2 (M

(n)
2 − 1)

2M
(n)
1 (M

(n)
2 )2

=
M

(n)
2 − 1

2M
(n)
2

≥ 1

4
.

This implies that λ̄(n)
1 (in1,m1,m2

) ≥ 1
4

for at least one (m1,m2) ∈
M1 ×M2. Since the average probability of error is bounded from
below by a positive constant, a reliable transmission from the relay
to node 1 is not possible so that we have RR1 = 0. The case Γ ≤ Λ2

leads similarly to RR2 = 0.
This is intuitively clear, if one realizes the following. Since we

have Γ ≤ Λk, it can happen that the interfering sequence looks like
another valid codeword. Node k receives now a superimposed ver-
sion of two codewords and cannot distinguish which of the code-
words was transmitted by the relay so that reliable communication
can no longer be guaranteed.

Remark 2 Interestingly, the theorem shows that the existence of
positive rates only depends on the interference and is completely
independent of the noise. Consequently, the goal of the traditional
interference coordination is to ensure that the received interference
will be small enough. Otherwise, there is no communication possi-
ble, not even at very low rates.

Now, we turn to the case when Γ > Λ1 and Γ > Λ2. To
show that the rates given in (4) are actually achievable, we follow
[6] where a similar result is proved for the corresponding single-user
scenario. The strategy is outlined in the following.

Without loss of generality we assume that Γ = 1 and further
0 < Λk < 1, k = 1, 2. Then it suffices to show that for ev-
ery small δ > 0 and sufficiently large n there exist M (n)

1 M
(n)
2

codewords xn
m1,m2

(on the unit sphere) with M
(n)
1 = exp(nRR2)

and M
(n)
2 = exp(nRR1) and Ck − 2δ < RRk < Ck − δ with

Ck := 1
2
log(1 + 1

Λk+σ2 ), k = 1, 2, cf. (4), such that the aver-
age probability (3) is arbitrarily small for all ink satisfying (2). To
ensure that the probability of error gets arbitrarily small, the code-
words must possess certain properties which are guaranteed by the
following lemma. This is a straightforward extension of [6, Lemma
1] to the BBC with unknown varying interference.

Lemma 1 For every ε > 0, 8
√
ε < η < 1, K > 2ε, and M

(n)
1 =

exp(nRR2), M
(n)
2 = exp(nRR1) with 2ε ≤ RRk ≤ K, k =

1, 2, for n ≥ n0(ε, η,K) there exist unit vectors xn
m1,m2

, m1 =

1, ...,M
(n)
1 , m2 = 1, ...,M

(n)
2 such that for every unit vector un

and constants α, β in [0, 1], we have for each m1 ∈ M1∣∣{m2 : (xn
m1,m2

, un) ≥ α
}∣∣

≤ exp(n(|RR1 +
1
2
log(1− α2)|+ + ε))

and, if α ≥ η, α2 + β2 > 1 + η − exp(−2RR1)

1

M
(n)
2

∣∣{m′
2 : |(xn

m1,m2
, xn

m1,m
′

2
)| ≥ α, |(xn

m1,m2
, un)| ≥ β,

for some m2 
= m′
2

}∣∣ ≤ exp(−nε)

and similarly for each m2 ∈ M2∣∣{m1 : (xn
m1,m2

, un) ≥ α
}∣∣

≤ exp(n(|RR2 +
1
2
log(1− α2)|+ + ε))

and, if α ≥ η, α2 + β2 > 1 + η − exp(−2RR2)

1

M
(n)
1

∣∣{m′
1 : |(xn

m1,m2
, xn

m′

1,m2
)| ≥ α, |(xn

m1,m2
, un)| ≥ β,

for some m1 
= m′
1

}∣∣ ≤ exp(−nε).

At the receiving nodes it suffices to use a minimum-distance de-
coder. Then for each m1 ∈ M1 the decoding sets at node 1 are
given by

D
(1)

m2|m1
:= {yn

1 : ‖yn
1 − xn

m1,m2
‖2 < ‖yn

1 − xn
m1,m

′

2
‖2

for m2 
= m′
2}.

(5)

The decoding sets at node 2 are defined accordingly. With the pre-
sented coding and decoding rule, the probability of error gets arbi-
trarily small for increasing block length, which can be shown analo-
gously to [6]. The details are very technical and omitted for brevity.

It remains to show that the described strategy is optimal, which
means that no other rate pairs are achievable. From Remark 1 we
already observed that the capacity region of the traditional interfer-
ence coordination is included in the capacity region of the relay-to-
receivers coordination. From the following Theorem 2 we see that
for Γ > Λk, k = 1, 2, the maximal achievable rates for both strate-
gies are equal. Since the described strategy already achieves these
rates, the optimality is proved.
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3.3. Relay-to-Receivers Coordination

Next, we study a strategy with a different degree of coordination.
We assume that the relay and the receivers are synchronized in such
a manner that they can coordinate their choice of the encoder and
decoders based on an access to a common resource which is inde-
pendent of the current message.

This can be realized by using a random code as given in Def-
inition 3. If we transmit at rates RR1 and RR2 with exponentially
many messages, i.e., exp(nRR1) and exp(nRR2), we know from
[7] that it suffices to use a random code which consists of n2 pairs of
encoder and decoders and a uniformly distributed random variable
whose value indicates which of the pair all nodes have to use. The
access to the common random variable can be realized by an external
source, e.g., a satellite signal, or a preamble prior to the transmission.
Clearly, for sufficiently large block length the (polynomial) costs for
the coordination are negligible. We call this relay-to-receivers co-
ordination. Due to the more involved coordination we expect an
improvement in the performance compared to the traditional coordi-
nation approach, especially for high interference.

Theorem 2 The random code capacity region Rcoord of the BBC
with unknown varying interference with input constraint Γ and inter-
ferer constraints Λ1 and Λ2 is the set of all rate pairs (RR1, RR2) ∈
R

2
+ satisfying

RRk ≤ 1

2
log

(
1 +

Γ

Λk + σ2

)
, k = 1, 2. (6)

The theorem can be proved analogously to [8] where a similar
result is proved for the single-user case. The random strategy which
achieves the rates given in (6) is outlined in the following.

The codewords xn
m1,m2

are uniformly distributed on the n-
sphere of radius

√
nΓ. Similar to the traditional approach, a

minimum-distance decoder as given in (5) at the receiving nodes
is sufficient. It remains to show that for all rate pairs satisfying (6)
the probability of error gets arbitrarily small for increasing block
length. This can be done similarly to [8].

The optimality of the presented random strategy, which means
that no other rate pairs are achievable, follows immediately from [8]
and can be shown by standard arguments.

Remark 3 The capacity region Rcoord is identical to the one if the
interfering sequences would consist of iid Gaussian symbols dis-
tributed according toN (0,Λk), k = 1, 2. This means, the arbitrary,
possibly non-Gaussian, unknown interference do not more affect the
achievable rates than Gaussian noise of the same power.

4. DISCUSSION

The analysis shows that unknown varying interference has a dra-
matic impact on the bidirectional communication. It can completely
prohibit any reliable communication if traditional interference coor-
dination is applied. The difficulty with the traditional approach is
that it considers the interference as some kind of additional noise.
Unfortunately, in general this is to imprecise and leads to a per-
formance loss since the interference is caused by other transmitting
nodes which maybe use the same or a similar codebook. The con-
sequence is that the interference can look like other valid codewords
so that the receivers cannot reliably distinguish between the intended
signal and the interference anymore. As we see from Theorem 1 this
occurs if the power of the interference is greater than the transmit
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Fig. 2. Achievable rates for the BBC with unknown varying inter-
ference for the traditional interference (trad) and relay-to-receivers
coordination (coord) with Λ1 = 1.5, Λ2 = 2, and σ2 = 1.

power of the relay. Consequently, a traditional interference coor-
dination is only reasonable if the interference can be made small
enough.

We see that, especially for the case of high interference, we need
a more sophisticated coordination to establish a bidirectional com-
munication. Theorem 2 shows that a coordination of the encoder
and decoders based on a common resource is sufficient to handle the
interference even if it is stronger than the desired signal.

Figure 2 depicts the maximal achievable rates for the traditional
interference and the relay-to-receivers coordination for increasing
transmit power Γ and illustrates how the transmission collapses for
the traditional interference coordination if the interference exceeds
the transmit power.
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