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Abstract—We consider the performance of tone reservation
for reduction of the Peak-to-Average Power Ratio (PAPR) in
OFDM signals. Tone reservation is unique among methods for
reducing PAPR because it does not affect information bearing
coefficients and involves no additional coordination of transmitter
and receiver. It is shown that if the OFDM system always satisfies
a given peak-to-average power ratio constraint, then the efficiency
of the system, defined as the ratio of the number of tones used for
information to the entire number of tones used, must converge
to zero as the total number of tones increases.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is
one of today’s most widely used and promising informa-
tion transmission schemes. One of the main disadvantages
of OFDM, however, is large Peak-to-Average Power Ratios
(PAPR) of the transmit signals. Reducing the PAPR, which
we will call the PAPR reduction problem, has been an area
of extensive research over the last ten years, and various
techniques have been proposed. These include, among others,
clipping and filtering, selected mapping, active constellation
extension, and tone reservation. See [1] for an overview.

All of these schemes begin with a set of coefficients to be
transmitted to the receiver. One may adjust these coefficients
in some way or add new coefficients on frequencies that have
not been used. If coefficients are manipulated, then the receiver
must convert the received coefficients back to the original
coefficients; however, if coefficients are added on frequencies
that do not carry information, the received information bearing
coefficients do not have to be converted. Tone reservation,
which was introduced in [2], and is one of the popular
techniques to mitigate against high PAPR, takes the latter
approach.

In this scheme, the set of available tones is divided into two
subsets. One set is used to carry information, while the other
is used to reduce the peak value. We will call these two sets
the information set and the compensation set. Given a set of
coefficients for the tones in the information set, coefficients
are chosen for tones in the compensation set, so that the peak
value of the combined signal is reduced. the location of these
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two sets remain fixed for all codewords and over all uses of
the channel.

Of the handful of methods to reduce PAPR, tone reservation
is particularly robust and canonical. This is because the only
information that the receiver requires is the location of the
information set. The receiver may simply ignore whatever
arrives on the entries of the compensation set. With other
schemes, such as active constellation extension or selected
mapping, not only does the receiver have to be informed of
the modifications made to each possible set of coefficients, but
the receiver also has to convert the coefficients back to their
original values. Thus there is additional overhead involved in
establishing setting up and then performing the information
transmission. Both of these are avoided in tone reservation.

However, tone reservation exhibits a trade-off between the
best attainable PAPR and the number of tones in the infor-
mation set. The main result presented here is: if the OFDM
system satisfies a strict bound on the peak to average ratio,
then as the number of total tones used increases, at some
point the proportion of tones used to carry information must
decrease and eventually converge to zero. Equivalently, we
find a scaling law: if the size of the information set and
the total set increase proportionally, signals with larger peaks
can be constructed that cannot be compensated for by any
compensation signal.

The result presented here certainly does not state that tone
reservation does not deliver strong improvements in PAPR. An
efficient algorithm for computing compensation coefficients
is given in [3], and the reductions it delivers in PAPR are
significant. Much experimentation has been done, in particular
in searching for subsets with good performance, but the
structure of good sets is still not understood. However, there
has been little theoretical work on the performance bounds
of tone reservation. The authors are unaware, for example, of
any work that addresses the behavior of tone reservation as
the number of tones increases. This paper provides insight to
the scheme as the number of tones involved becomes large.

In Section II we prove our main result on tone reservation
for finite-dimensional OFDM systems. In Section III we
prove the same type of result for infinite-dimensional systems.
Finally, in Section IV we discuss the analogous questions in
the discrete setting.
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II. THE FINITE SET OFDM CASE

We first define our signals: an OFDM signal has the form

s(t) =

N∑

k=−N
ake

ikt, (1)

where the coefficients ak either carry information or, in the
tone reservation scheme, are used to reduce the peak value of
s(t). The PAPR is

PAPR(a) = sup
t∈[0,2π]

|∑N
k=−N ake

ikt|
‖a‖l22N+1

. (2)

When using tone reservation, we split {−N, ..., N} into two
subsets IN , an information set, and RN = {−N, ..., N}\IN ,
a compensation set. We call the ratio of the number of tones
in the information set to the total number of tones available
the efficiency of the system. Using |A| to denote the number
of elements in the set A, the efficiency is |IN |/(2N + 1).

Given a set of information coefficients, one then seeks to
choose coefficients b supported on the compensation set to
reduce the peak of the combined signal. Before we formally
state the problem we define our spaces.

Definition 2.1: lpN denotes CN viewed as a linear space
with the norm

‖x‖lpN = (

N∑

k=1

|xk|p)1/p. (3)

If A is a subset of {−N, ..., N}, lp(A) denotes vectors lp2N+1

supported on A. Lp(T) denotes p-integrable functions defined
on T with norm

‖f‖Lp(T) =

(
1

2π

∫

T
|f(t)|pdt

)1/p

, (4)

for 1 ≤ p <∞ and

‖f‖L∞(T) = ess.supt∈T|f(t)|. (5)

L2(IN ) denotes the subspace of L2(T) spanned by
{eik·}k∈IN .

Tone reservation works as follows: given a subset IN of
{−N, ..., N}, and a vector a ∈ l2(IN ), we seek a vector
b ∈ l22N+1 supported on RN and satisfying ‖b‖l22N+1

≤
CEx‖a‖l22N+1

, such that

sup
t∈[0,2π]

|
∑

k∈IN
ake

ikt +
∑

k∈RN
bke

ikt| ≤ CEx‖a‖l22N+1
, (6)

for some constant CEx.
The condition ‖b‖l22N+1

≤ CEx‖a‖l22N+1
is made so that the

infimum over all possible b supported on RN is well-defined.
We note, though, that any vector b that satisfies (6) must have
this property. To see this, we observe that

(‖a‖2l2 + ‖b‖2l2)1/2 = ‖
∑

k∈IN
ake

ik· +
∑

k∈RN
bke

ik·‖L2(T)

≤ sup
t∈[0,2π]

|
∑

k∈IN
ake

ikt +
∑

k∈RN
bke

ikt|,

so that if inequality (6) holds, then the condition ‖b‖l22N+1
≤

CEx‖a‖l22N+1
is also satisfied. We comment that for finite N ,

a constant C can always be found that satisfies inequality (6).
Here we address the relationship between N , the size of IN
and the best possible constant CEx.

Determining the signal with reduced peak value given the
vector a can be viewed as a nonlinear operator, which we will
call the extension operator and denote EIN . This operator is
a map from l2(IN ) to L2({−N, ..., N}), given by

EINa =
∑

k∈IN
ake

ikt +
∑

k∈RN
bke

ikt. (7)

An initial formulation of solvability is: the PAPR reduction
problem is solvable for the subset IN ⊂ {−N, ..., N} with
bound CEx if there exists an operator EIN : l2(IN ) →
L∞({−N, ..., N}) such that for all a ∈ l2(IN ) satisfying
‖a‖l22N+1

≤ 1,
‖EINa‖L∞(T) ≤ CEx. (8)

Such an operator will, in general, be non-linear since cases
where EIN (a + b) 6= EINa + EIN b will exist. However, the
operator scales sub-linearly. That is, suppose that the PAPR
reduction problem as just defined is solvable for IN with
constant CEx. If ‖a‖l22N+1

> 1, we define a′ = a
‖a‖

l2
2N+1

.

Then
‖EINa′‖L∞(T) ≤ CEx, (9)

and we may simply rescale EINa
′ by ‖a‖l22N+1

to determine
an extension for a with bound CEx‖a‖l22N+1

. Thus, solvability
on all of l2(IN ) and solvability on the unit ball of l2(IN ) are
equivalent, though the best constant in the latter case may be
smaller.

Definition 2.2: The PAPR reduction problem is solvable for
IN with bound CEx if there exists an operator EIN : l2(IN )→
L∞({−N, ..., N}) such that

‖EINa‖L∞(T) ≤ CEx‖a‖l22N+1
(10)

for every a ∈ l2(IN ).
Now we proceed as follows: in Theorem 2.4 we give a

necessary condition for solvability. With Theorem 2.6 we
show that if it is required that the peak-to-average power ratio
remains bounded, then the efficiency of the OFDM system
converges to zero as the system size increases. Equivalently,
if the PAPR reduction problem remains solvable for a sequence
of sets {IN} as N →∞, then the efficiency of the sets must
converge to zero.

Definition 2.3: For a subset IN ⊂ {−N, ..., N} we define

F(IN ) = {f ∈ L1(T), f(t) =
∑

k∈IN
ake

ikt}. (11)

Theorem 2.4: If the PAPR problem is solvable for the
subset IN with extension norm CEx then

‖f‖L2(T) ≤ CEx‖f‖L1(T) (12)

for all f ∈ F(IN ).
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Proof: By assumption, for all s(t) =
∑
k∈IN ake

ikt,
‖a‖l22N+1

≤ 1,

‖EINa‖l∞2N+1
≤ CEx‖a‖l22N+1

≤ CEx. (13)

Again by assumption,

(EINa)(t) =
∑

k∈IN
ake

ikt +
∑

k∈RN
bke

ikt. (14)

Let f ∈ F(IN ), f(t) =
∑
k∈IN cke

ikt, be arbitrary. Then

|
∑

k∈IN
akck| = |

∑

k∈IN
akck +

∑

k∈RN
bkck|

= | 1

2π

∫

T
f(t)(EINa)(t)dt|

≤ ‖f‖L1(T)‖EINa‖L∞(T )

≤ ‖f‖L1(T)CEx‖a‖l22N+1

≤ CEx‖f‖L1(T).

Set

ak =
{ ck
‖c‖

l2
2N+1

ck 6= 0

0 ck = 0
. (15)

Then

‖
∑

k∈IN
akck| = ‖c‖l22N+1

= ‖f‖L2(T) ≤ CEx‖f‖L1(T). (16)

The following definition gives the efficiency of the best
subset selection for which the PAPR reduction problem is
solvable for a given bound.

Definition 2.5 (Optimal subset size):

EN (CEx) = max{|IN |; IN ⊂ {−N, ..., N}, such that
PAPR is solvable for INwith constant CEx}.

Now we may state the following theorem.
Theorem 2.6: For all 0 < CEx < ∞, the following limit

holds:

lim sup
N→∞

EN (CEx)

2N + 1
= 0 (17)

In words, the theorem states that if a PAPR bound is always
satisfied, then the system efficiency converges to 0 as the total
size increases. Thus the number of tones that may be used to
carry information does not scale with N .

The proof will use arithmetic progressions and Szemerédi’s
Theorem.

Definition 2.7: An arithmetic progression of length k is a
subset of Z that has the form {a, a+d, a+2d, ...., a+(k−1)d}
for some integer a and some positive integer d.

Theorem 2.8: (Theorem 1.2 in [4]) For any integer k ≥ 1
and any 0 < δ ≤ 1, there exists an integer NSZ(k, δ) ≥ 1
such that for every N ≥ NSZ(k, δ), every set A ⊂ {1, ..., N}
of cardinality |A| ≥ δN contains at least one arithmetic
progression of length k.

Proof of Theorem 2.6: Assume that the claim is not true.
Then there exists a subsequence {Nk}∞k=1 ⊂ N and a constant
G(CEx) such that

ENk(CEx)

2Nk + 1
≥ G(CEx) (18)

for all k = 1, 2, .... Now we set δ = G(CEx)
2 and apply

Szemerédi’s Theorem. Thus, for any m there exists some large
N ∈ {Nk}∞k=1 such that IN contains an arithmetic progression
of length m. Denote this progression {a+ dl}m−1l=0 . Now note
that

‖ 1√
m

m−1∑

l=0

ei(a+dl)·‖L2(T) = 1, (19)

while

‖ 1√
m

m−1∑

l=0

ei(a+dl)·‖L1(T) ≤
log(m2 )√

m
. (20)

(This is the usual bound for the Dirichlet kernel.) Applying
Theorem 2.4, for any fixed constant CEx, lines (19) and (20)
lead to the contradiction

1 = ‖ 1√
m

m−1∑

l=0

ei(a+dl)·‖L2(T)

≤ CEx‖
1√
m

m−1∑

l=0

ei(a+dl)·‖L1(T)

≤ CEx
log(m2 )√

m

when m is large.
Thus, if a bound on the peak of all transmission signals is

given, as one increases the number of total tones available, at
some size N the proportion of tones allocated to carry infor-
mation must decrease in order to satisfy the PAPR constraint.

From this theorem we also see that when tone reservation is
used, the subsets chosen as information and compensation sets
are very important. In particular, the information set should not
have any long arithmetic progressions; however, determining
subsets with little additive structure is a very challenging
problem.

III. THE INFINITE SET CASE

Our first step en route to proving the infinite-dimensional
form of Theorem 2.6 is again to prove an equivalence between
the PAPR reduction problem and a norm equivalence. This
equivalence holds for arbitrary orthonormal systems, so we
state it in that generality. We give the equivalence statement
in Theorem 3.1. In Theorem 3.2 we prove that the PAPR
problem is not solvable at positive efficiencies for sets of
infinite cardinality.

Let {ψk}k∈Z be an orthonormal basis for L2(T). Let K be
a subset of Z, and define

X := {f ∈ L1(T) : f(t) =
∑

k∈K
akψk(t)}. (21)

Given a function s ∈ X , we are interested in finding a
compensation function g, g(t) =

∑
k∈Kc bkψk, such that
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‖s + g‖∞ ≤ CEx‖s‖2. Here we may view the non-linear
operator as a map from L2(T) to L2(T), so that EKs = s+g.
If a map exists so that such a g can be found for every s ∈ X ,
then we say that the PAPR reduction problem is solvable for
the pair K and {ψk}k∈Z with extension norm CEx.

Theorem 3.1: The PAPR problem is solvable for the pair
K and {ψk}k∈Z with extension norm CEx if and only if

‖f‖L2(T) ≤ CEx‖f‖L1(T) (22)

for all f ∈ X .
Note that, in constrast to the finite set case of Theorem 2.4,
here we have a necessary and sufficient condition for solvabil-
ity. A necessary and sufficient condition will also be given for
the discrete finite set case, which is given in Theorem 4.3.

Proof: i.) Assume that the PAPR problem is solvable.
Then for all s(t) =

∑
k∈K akψk(t), ‖a‖l2(Z) ≤ 1,

‖EKs‖L∞(T) ≤ CEx‖s‖L2(T) ≤ CEx. (23)

Since L∞(T) ⊂ L2(T),

EKs =
∑

k∈K
akψk +

∑

k∈Z\K
bkψk. (24)

Let f ∈ X , f(t) =
∑
k∈K ckψk(t), be arbitrary. Then

|
∑

k∈K
akck| = |

∑

k∈K
akck +

∑

k∈Z\K
bkck|

= | 1

2π

∫

T
f(t)EKs(t)dt|

≤ ‖f‖L1(T)‖EKs‖L∞(T)
≤ CEx‖f‖L1(T).

Set

ak =
{ ck
‖c‖l2

ck 6= 0

0 ck = 0
. (25)

Then |∑k∈K akck| = ‖c‖l2 = ‖f‖L2(T) ≤ CEx‖f‖L1(T).
ii.) Assume ‖f‖L2(T) ≤ CEx‖f‖L1(T) for all f ∈ X .

Let a ∈ l2 be a sequence, supported in K, with only
finitely many nonzero terms satisfying ‖a‖l2 ≤ 1. Set s(t) =∑
k∈K akψk(t). For f ∈ X , f(t) =

∑
k∈K ckψk(t), define

the functional Ψa by

Ψaf =
∑

k∈K
akck. (26)

Since

|Ψaf | ≤ ‖a‖l2‖c‖l2 ≤ ‖f‖L2(T) ≤ CEx‖f‖L1(T), (27)

Ψa is continuous on X . Since X is a closed subspace of
L1(T), by the Hahn-Banach Theorem [5], the functional Ψa

has the extension ΨE to all of L1(T), where ‖Ψa‖ = ‖ΨE‖.
The dual of L1(T) is L∞(T). Thus, for some r ∈ L∞(T),

ΨEf = 〈f, r〉, (28)

for all f ∈ L1(T), so that ‖ΨE‖ = ‖r‖L∞(T). Since L∞(T) ⊂
L2(T), r possesses the unique expansion

r(t) =
∑

k∈Z
dkψk(t). (29)

The sequences d and a agree on K, and we define EKs := r.

Theorem 3.2: For K ⊂ Z, let S(N) = K ∩
{−N, ..., 0, ..., N}. If lim supN→∞

|S(N)|
2N+1 > 0, then the PAPR

problem is not solvable for K and the Fourier basis {eik·}k∈Z.
In particular, this theorem states that if the ratio of the num-

ber of basis functions used for transmission to the total number
of basis functions does not tend to zero, then arbitrarily high
peeks can be constructed that can not be dampened by any
compensation function.

Similar questions concerning the sizes of subsets of or-
thonormal bases that have a norm equivalance have been stud-
ied. In [6], Bourgain addresses an L2 −Lp norm equivalence
for p > 2. The general technique used here to determine a
norm equivalence is well-known in the functional analysis and
local Banach space community.

Proof: First suppose that the PAPR problem is solvable
for K and {eik·}k∈Z. We develop a contradiction to the
equivalence given in Theorem 3.1. Suppose that arbitrary
subsets S(N) of {−N, ..., N} are chosen such that

lim sup
N→∞

|S(N)|
2N + 1

= δ > 0. (30)

For any positive integer k, using Szemerédi’s theorem (The-
orem 2.8) again, there exists a large integer N such that
S(N) has an arithmetic progression of length k. Denote the
arithmetic progression {a+ dl}k−1l=0 . We again have

‖ 1√
k

k−1∑

l=0

ei(a+dl)·‖L2 = 1, (31)

while

‖ 1√
k

k−1∑

l=0

ei(a+dl)·‖L1 ≤ log(k2 )√
k

. (32)

Applying Theorem 3.1, for any fixed constant CEx, for k large
enough lines (31) and (32) give the contradiction

1 = ‖ 1√
k

k−1∑

l=0

ei(a+dl)·‖L2

≤ CEx‖
1√
k

k−1∑

l=0

ei(a+dl)·‖L1

≤ CEx
log(k2 )√

k
.

We point out that the sequence of coefficients used to give
the contradiction is not at all exotic–it is just a sequence of
1’s placed at the right locations.

If we work with a finite total number of tones and have an
extension constant CEx, then since the constant CEx in both
aspects of Theorem 3.1 is the same, we can deduce a bound
on the longest arithmetic progression in IN . Namely, denoting
by k the length of the longest arithmetic progression, we have
1 ≤ CEx log(k)√

k
.
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To emphasize the role of the density, we contrast Theo-
rem 3.2 with the following theorem.

Theorem 3.3: (Theorem 7 in [7]) Let λ > 1 be a real
number and assume that the subset K = {nk}∞k=1 ⊂ Z has the
property |nk+1| ≥ λ|nk| for all k ≤ 1. Then there exists a con-
stant CK such that for all a ∈ l2 supported on K there exists a
continuous function g ∈ L2(T) satisfying ‖g‖L∞ ≤ CK‖a‖l2
with Fourier coefficients satisfying ĝhk = cnk . That is, a
compensation signal exists.

In the case addressed in Theorem 3.3, a compensation signal
can always be found. But, of course, the difference is that the
density of K is zero: for every k elements of K we have
roughly λk elements in the complement.

IV. THE DISCRETE CASE

It is interesting to consider the analogous discrete case
for several reasons. First of all, the problem considered is
applicable to a large number of areas and is valuable in its own
right. The discrete case is important for the PAPR problem
because much of the work done with signals is, of course,
done with discretized versions of the signals. For example,
oversampling and zero-padding are used in the papers [8], [3].
Lastly, in some settings it is possible, using sampling results,
to relate discrete properties to analog properties, and therefore
it is valuable to understand the behavior in the discrete setting.

Definition 4.1: The N × N inverse discrete Fourier trans-
form (DFT) matrix is given by

Fjk =
1√
N
e−2πi(j−1)(k−1)/N . (33)

This matrix is denoted F , and for x ∈ l2N , Fx denotes this
matrix applied to x.

Definition 4.2: lpN denotes CN viewed as a linear space
with norm ‖x‖lpN = (

∑N
i=1 |xi|p)1/p. The unit ball in lpN is

denoted BpN , i.e.

BpN = {x ∈ lpN : ‖x‖lpN ≤ 1}. (34)

Let {Nk}∞k=1 be a subsequence of N, and for each Nk let
INk be a subset of {1, ..., Nk}. IcNk denotes {1, ..., Nk}\INk .
We say the the discrete PAPR problem is solvable for the
sequences {Nk}∞k=1 and {INk}∞k=1 if there exists a constant
CEx, such that for each k, for all x ∈ l2Nk with supp(x) ⊂ INk
there exists a compensation vector r ∈ l2Nk supported in IcNk
such that

‖F (x+ r)‖l∞Nk ≤
CEx√
Nk
‖x‖l2Nk . (35)

Theorem 4.3: Let {Nk}∞k=1 be a subsequence of N, and
let INk be a subset of {1, ..., Nk}. Let Yk = {y ∈ l2Nk :
supp(F ∗y) ⊂ INk}. The discrete PAPR problem is solvable
for the sequence of sets {INk}∞k=1 with constant CEx if and
only if

‖y‖l2Nk ≤
CEx√
Nk
‖y‖l1Nk (36)

for all y ∈ Yk.

In general one has ‖y‖l2Nk ≤ ‖y‖l1Nk for any vector y. Here,
though, as k increases, we eventually have CEx/

√
Nk < 1,

and so the important point is that C remains fixed.
While the proof is very similar to the proof of Theorem 3.2,

we include it so that both the analog and discrete cases
are presented clearly. We note as well that here, just as
in Theorem 3.2 we have both a necessary and a sufficient
condition for solvability.

Proof: i.) Assume that PAPR is solvable. Let N be
an element of {Nk}∞k=1. For IN ⊂ {1, ..., N}, let IcN =
{1, ..., N}\IN . Then for any x ∈ CN with supp(x) ⊂ IN ,
we can find an extension r ∈ CN with supp(r) ⊂ IcN , such
that

F (x+ r) ∈ C√
N
B∞N . (37)

We denote by lpN (IN ) elements of lpN with support contained
in IN . Denote by EIN the operator that maps x to the
compensated vector x+ r. Then

‖FEINx‖l∞N ≤
CEx√
N
‖x‖l2N , (38)

and so ‖FEIN ‖l2N (IN )→l∞N ≤
CEx√
N

. As in the analog case, we
take a vector b with supp(b) ⊂ IN , and observe

|〈b, EINx〉| = |〈Fb, FEINx〉|
≤ ‖Fb‖l1N ‖FEINx‖l∞N
≤ ‖Fb‖l1N

CEx√
N
‖x‖l2N .

By setting

xk =
{ bk
‖b‖

l2
N

bk 6= 0

0 bk = 0
, (39)

we obtain

‖b‖l2N = |〈b, b〉|2
= |〈b, EINx〉|
≤ CEx√

N
‖Fb‖l1N .

ii.) Let N be an element of {Nk}∞k=1. We take an element
c ∈ l2N with supp(c) ⊂ IN . Let Ψc be the functional acting
on Y by

Ψcy = 〈c, F ∗y〉. (40)

We then have |Ψcy| ≤ ‖c‖l2N ‖y‖l2N ≤
CEx√
N
‖y‖l1N ‖c‖l2N , so that

‖Ψc‖ ≤
CEx√
N
‖c‖l2N . (41)

Since Y is a closed subspace of l1N , by the Hahn-Banach
Theorem there exists an extension ΨE of Ψc to all of l1N
such that ‖Ψc‖ = ‖ΨE‖. ΨE can be represented by a vector
r so that

ΨEy = 〈r, y〉 (42)

for all y ∈ l1N . Let c = Fr. If y ∈ Y and y = Fx, then
〈r, y〉 = 〈c, x〉. Comparing this with equation (40), we see
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that c and c must agree on IN . That is, c is an extension of
c. Lastly, using equation (41),

‖ΨE‖ = ‖r‖∞
= ‖Fc‖∞
≤ CEx√

N
‖c‖l2N .

Theorem 4.4: Let {Nk}∞k=1 be a subsequence of N and let
INk be the corresponding sets as defined earlier. If

lim sup
n→∞

|INk |
Nk

> 0, (43)

then the discrete PAPR problem is not solvable.
Proof: As in the proof of Theorem 3.2, there exists an

integer N included in the subsequence of N that contains an
arithmetic progression of length k. Assume that this progres-
sion is {a + bl}k−1l=0 . Let D denote the vector of length N
with the value 1√

k
e2πi(a+bl)t at the entries of the arithmetic

progression, where t will be addressed shortly. Then

‖FD‖l1N =

N∑

j=1

|(FD)j |

=

N∑

j=1

| 1√
N

N∑

l=1

e−
2πilj
N Dl|

=

N∑

j=1

| 1√
N

1√
k

k−1∑

l=0

e−
2πi(a+bl)j

N e2πi(a+bl)t|

=

N∑

j=1

| 1√
N

1√
k

k−1∑

l=0

e−
2πiblj
N e2πiblt|

=
1√
k

1√
N

N∑

j=1

|
k−1∑

l=0

e2πibl(t−
j
N )|. (44)

This calculation holds for any t, so we may take the t that
minimizes the absolute value:

min
t∈[0,1]

N∑

j=1

|
k−1∑

l=0

e2πibl(t−
j
N )| = min

t∈[0,1]

N∑

j=1

∣∣∣∣∣
sinπbk(t− j

N )

sinπb(t− j
N )

∣∣∣∣∣

≤
∫ 1

0

N∑

j=1

∣∣∣∣∣
sinπbk(t− j

N )

sinπb(t− j
N )

∣∣∣∣∣ dt

=

∫ 1

0

N∑

j=1

∣∣∣∣
sinπbkt

sinπbt

∣∣∣∣ dt (45)

= N

∫ 1

0

∣∣∣∣∣
sin πbkt

N

sin πbt
N

∣∣∣∣∣ dt

= N
1

b

∫ b

0

∣∣∣∣∣
sin πkt

N

sin πt
N

∣∣∣∣∣ dt (46)

= N

∫ 1

0

∣∣∣∣∣
sin πkt

N

sin πt
N

∣∣∣∣∣ dt (47)

≤ N log k,

where in lines (45), (46) and (47) we use the periodicity and
that b is an integer, and where the last step is the bound on
the Dirichlet kernel. Now, returning to line (44), and defining
D using the t that results in the minimum in the calculation
above, we have ‖FD‖l1N ≤

log k√
k

√
N . If the discrete PAPR

problem is solvable, then by Theorem 4.3, we have a norm
equivalence with a factor CEx/

√
N . However, we have just

shown that CEx must be arbitrarily small. This contradiction
proves the theorem.

V. CONCLUSION

We have addressed the scaling laws of tone reservation as a
method to decrease PAPR in OFDM signals. We have shown
that when a PAPR constraint is satisfied, then the number of
tones used to carry information cannot scale with the total
number of tones available. In fact, the ratio of the number of
information tones to total tones converges to zero. One may
view this result as giving the trade-off between efficiency and
PAPR; but, more generally, it shows that there is a trade-off
between complexity and PAPR. That is, if a certain strategy
yields a bound on PAPR that is independent of the total
number of tones, then the strategy must require a greater
overhead than tone reservation.
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