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Abstract

A wall-modeling method is proposed for implicit large-eddy simula-

tion (LES) using an adaptive local deconvolution methods (ALDM),

to simulate flows along complex geometries at high Reynolds numbers.

The wall-shear stress is employed as approximate boundary condition,

resulting in the wall-shear force as a source term in the momentum

equations of the exterior LES in the framework of a conservative im-

mersed interface method (CIIM). Three kinds of wall-stress models

are investigated in detail for attached and separated flows, including

a generalized wall function with pressure correction, an integral form

of the Werner and Wengle two-layer power law and a wall-layer model

based on the simplified turbulent boundary layer equations (TBLE).

The effect of wall modeling is to compensate the SGS-modeling error,

especially in the near-wall cells through the wall-tangential momen-

tum balance, in comparison with a coarse-mesh LES without wall

modeling. The SGS-modeling and the wall-modeling errors should

be distinguished clearly and should be eliminated/compensated sep-

arately. The former is accomplished by using a physically moti-

vated coherent-structures based SGS-modeling parameter instead of

the van-Driest damping function, which leads to improved streamwise-

momentum balance at high Reynolds numbers. The latter is realized

by using a TBLE-based model to account for the wall-layer flow dy-

namics at very low computational cost.

Secondary flow features are very sensitive to wall-modeling and nu-

merical errors. In the framework of CIIM, LES of exterior flows is

insensitive to the modeled wall-shear stress when massive separation

occurs, either induced by an abrupt change of wall geometry or by a
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strong adverse pressure gradient at a smooth surface. However, it is

sensitive to the modeled wall-shear stress when shallow separations at

a smooth surface occur, especially in the recovery region. The simu-

lation results can only recover direct numerical simulation (DNS) or

resolved LES for increasing grid resolution in a global sense, if the wall

model can account for the near-wall flow dynamics. All turbulence

states are realizable in wall-modeled LES, and the grid resolution can

be evaluated a posteriori by spectral analysis of the time sequence of

velocity components.

The TBLE based model is superior to the other two wall models con-

cerning its ability to account better for the near-wall flow dynamics.

However, its deficiencies can be attributed to dependent on the pres-

sure gradient term due to the omission of nonlinear convective terms.

We also confirm a prior finding that only the wall-shear stress is not

enough as an approximate boundary condition for exterior LES, even

if the wall-shear stress from the DNS is used, but additional turbu-

lence information is required.

With these wall models reasonable results are obtained. The applica-

tion on a flow over a circular cylinder combined with adaptive mesh

refinement (AMR) at very high Reynolds number shows that a proper

wall modeling procedure for implicit LES using ALDM in the frame-

work of CIIM and AMR method is a valid simulation tool for practical

engineering problems.
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Chapter 1

Introduction

1.1 Background and motivation

Turbulent flows are encountered in daily life and are very important in practical

engineering, where they are crucial for the performance of a system. Such as with

the flow over an airplane, the turbulence is responsible for the high friction drag

generation, and directly relates to the fuel consumption. On the other hand, the

transportation and mixing in a turbulent flow are much more effective than in a

comparable laminar flow. The turbulent flow field u(x, t) is characterized by its

significant and irregular variations both in space x and time t, and exhibits rich

multiple ranges of space and time scales. Statistical methods are traditionally

used to describe turbulence. However, turbulence can not be viewed as fully

random field, but has an inner structure defined by Navier-Stokes dynamics and

boundary conditions. For an incompressible constant-property Newtonian fluid,

the Navier-Stokes Equations

∂u

∂t
+∇ · (uu) = −

1

ρ
∇p+ ν∇2u, (1.1a)

∇ · u = 0. (1.1b)

describe the instantaneous turbulent flow under the continuum hypothesis. Proper

initial and boundary data are required for a well-posed problem. Only for very
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1.1 Background and motivation

simple cases there are analytical solutions of these equations. Otherwise, in order

to understand, use and control turbulence, numerical methods have to be used to

solve them. With these methods, three problems occur concerning the turbulent

kinetic energy production and transportation, the anisotropy of the turbulent field

representation, and the reduction of the necessary number of degrees of freedom.

In turbulence theory the Kolmogorov hypotheses provide us productive infor-

mation on the scaling of a series of turbulence scales l which have characteristic

velocity scale u(l) and time scale τ(l) ≡ l/u(l), and quantify Richardson energy

cascade [146] at sufficiently high Reynolds number. Based on the local isotropic

assumption of small-scale turbulent motions, the smallest dissipation scales are

supposed to be uniquely determined by the kinematic viscosity ν and the local

mean dissipation rate ε, which results in the Kolmogorov scales

η ≡
(
ν3/ε

)1/4
, u(η) ≡ (εν)1/4 , τ(η) ≡ (ν/ε)1/2 , (1.2)

where ε is proportional to (u(l0))
3/l0 and is imposed by the large energy-containing

scales l0 which are proportional to the flow scale L. The ratio of the largest scales

and smallest ones L/η is proportional to Re
3/4
L , where ReL is Reynolds number

based on the flow scale. This ratio indicates the number of degrees of freedom in

a certain spatial direction. For the scales η ≪ l ≪ L, their statistic is uniquely

determined by ε, independent of ν,

u(l) = (εl)1/3 = u(η) (l/η)1/3 ,

τ(l) =
(
l2/ε

)1/3
= τ(η) (l/η)2/3 ,

(1.3)

which indicate scale similarity. The energy transfer rate from eddies larger than

l to those smaller than l can be expected to be order of (u(l))2/τ(l) = ε, which

is constant through this inertial range. The energy cascade can be summarized

as the turbulent kinetic energy is driven from mean flow of rate ε at large scales,

then it is transferred at that constant rate through the inertial range by turbulent

transport, at last it is dissipated into internal energy by molecular viscosity in

the dissipation range. As the time scales in the inertial and dissipation ranges are

much shorter than that in the energy-containing range, these small scales adjust

themselves almost immediately to the change of the large scales, therefore, they

2
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Figure 1.1: Model energy spectrum [143] for isotropic turbulence at Reλ =
10, 000 normalized by Kolmogorov scales. Solid line: model energy spectrum;
dashed line: the line with slope −5/3.

can be considered to be in equilibrium. The energy distribution among these

three scale ranges using a model energy spectrum in Ref. [143] is sketched in Fig.

1.1 for isotropic turbulence.

1.1.1 Motivation for wall modeling

The Navier-Stokes equations can be solved directly. The energy transfer up to

the dissipation range is fully represented, and the anisotropy of the flow can

be taken into account on suitably fine grids. Therefore, all turbulence scales

are resolved directly without any modeling, consequently this method is called

Direct Numerical Simulation (DNS). However, some difficulties are encountered

as described in the following.

Since partial derivatives have to be represented numerically, on one hand, spe-

cial high-order low-dissipation discretization schemes, such as spectral schemes,

are required. These high-order numerical schemes are not suitable for complex

boundaries and complex geometries. On the other hand, to resolve all the turbu-

lence scales, the discretization grids need to be fine enough to represent all small

dynamically important flow structures up to the dissipation scale, and the number

of grid points is proportional to Re
9/4
L due to the three space directions [143]. The

ratio of time scale between largest turbulence structures and the smallest ones is

3

Introduction/IntroductionFigs/EnergySpectra.eps


1.1 Background and motivation

proportional to Re
1/2
L , and the use of an explicit time-integration scheme leads to

a linear dependency of the time step with respect to the mesh size. Therefore, in

order to simulate the flow evaluation on the order of the characteristic time of the

largest flow structures, the required total computational resources is proportional

to Re3L, which is not affordable for high Reynolds numbers according to current

computer systems [86].

One alternative to overcome these difficulties is to solve the Reynolds-Averaged

Navier-Stokes equations (RANS) for obtaining a statistically averaged flow field,

while modeling all turbulence scales by a statistical turbulence model. The tur-

bulent kinetic energy is modeled, and the anisotropy of turbulence scales are also

left to the turbulence model. Hence the number of degrees of the freedom is

largely reduced and the number of grid points depends only weakly on ReL. This

method is well developed [183] and is widely used in practical engineering.

Most of the statistical turbulence models are of eddy-viscosity type based

on the Boussinesq hypothesis, or of second-order-moment-closure type based on

Reynolds stress transport equations, which focus on different modeling quanti-

ties and spatial information, respectively. For the former, it is very difficult to

set length scales and/or turbulent energy dissipation rate. The principle axes of

the Reynolds-stress tensor are empirically related to the mean strain-rate tensor,

which is only valid for simple shear flows. The latter invokes more consistent

models for the physics of turbulence, e.g. based on tensor invariants, and espe-

cially requires accurate modeling of the pressure-strain rate tensor [57]. Most of

this kind of models are calibrated for specific flows, which links their preferred

capability to flows of similar kind [80]. Another obvious shortcoming for this kind

of method is their inability to account for flows under strong adverse pressure gra-

dient, the process of flow separation and highly unsteady flows, due to its basic

modeling and Reynolds average assumptions [80, 83, 115]. Few statistical models

can reliably predict even fixed 2D flow separation induced by a sharp corner of a

backward-facing step [160].

An intermediate method called Large-Eddy Simulation (LES) has been inves-

tigated intensely during last three decades [137, 152], in which only the energy-

containing boundary-dependent large structures are resolved directly, while the

more universal small scales are left to a model. The separation of large scales from
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Figure 1.2: Model energy and dissipation spectra [143] for isotropic turbulence.
Solid line: Reλ = 10, 000; dashed line: Reλ = 100.

the full scale range is obtained by a low pass filter operating on the Navier-Stokes

equations, which leaves the filtered Navier-Stokes equations for large flow scales

with subfilter-stress terms. (Mostly filter operations are not carried out explicitly,

but by implicit projection onto the background grids and by the discretization

scheme, therefore, the subfilter scale is mostly called subgrid scale, and subfilter

stresses are called subgrid scale stresses). This low-pass filter operation leads to a

large reduction in the number of degrees of freedom due to the filtered-out high-

frequency motions. Therefore, a large number of grid points required to resolve

the scales below the filter width can be saved compared with DNS.

The subgrid scale (SGS) stress has to be modeled by a SGS model to account

for the effect of the subgrid scales on the resolved large scales. The SGS model is

expected to be universal for all turbulent flows due to the isotropy and universality

of the filtered subgrid scales, when the filter-width is far enough within the inertial

range. This expectation is reasonable for flows without wall boundaries at high

Reynolds numbers, such as free shear flows and isotropic turbulence, due to the

existence of a long inertial range. However, in the wall layer, there is no long

inertial range that separates the large energy-containing scales and the small

dissipative ones, but there is some overlap between them [77], resembling isotropic

turbulence at low Reynolds numbers, as shown in Fig. 1.2.

5
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On the other hand, in the wall layer, the small scales are highly anisotropic

and are far from local equilibrium. Therefore, differences between near-wall and

isotropic turbulence can not be totally attributed to the low Reynolds number

effect, but some dynamically important anisotropic small structures, such as lon-

gitudinal streaks [85, 134] with high aspect ratio. They develop in the wall layer

and are scaled with wall units. These small scales are responsible for high local

energy production and transport. Since these highly anisotropic small structures

are beyond the scope of the original concept of LES, and most of the SGS model

are based on a homogenous spatial filter, there is no SGS model that can handle

reliably the effect of these small scales. To represent them directly, the filter

width should be as small as the dissipation scale, which requires the number of

grid points to be proportional to Re2τ (Reτ = δuτ/ν based on the friction ve-

locity uτ , boundary layer thickness δ and kinematic viscosity ν), approaching

the resolution requirement of DNS [8]. This is not affordable at high Reynolds

numbers.

In the spirit of LES, when the large scales are well resolved, the statistical vari-

ables that are crucial in practical engineering, such as first- and second-order mo-

ments of velocities, can be obtained directly from the resolved scales. This means

that stress-production events are contained within the large energetic structures

or comparable with them, and are well separated from the small dissipative struc-

tures, as sketched in Fig. 1.3. This is also not true for wall-bounded turbulence

within the wall layer [86], where the near-wall small coherent structures scale

with wall units and should be resolved to represent correctly the kinetic-energy

production and transportation events. Therefore, the resolution should be high

enough to resolve these crucial coherent structures.

To overcome the prohibitive resolution requirement, at high Reynolds num-

bers, there are generally four ways. First, wall layer resolved LES are carried out

on adaptively refined grids by multi-resolution methods [105, 155]. Because it is

difficult to construct compact discretization schemes and as it is complicated to

measure necessary refinement, this method has limited robustness and grid-point

reduction capability. Another alternative is to use a robust SGS model on coarse

grids (at least in wall-tangential directions) with the framework of LES. In the

simulations no-slip boundary conditions are used without resolved wall layer, by

6
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Figure 1.3: Spectra for the turbulent kinetic energy, Reynolds stresses, and
dissipation in the logarithmic region of a turbulent boundary layer flow at Reθ =
370, 000 [151]. Solid line: turbulent kinetic energy; dashed line: Reynolds stresses;
dashdotted line: dissipation.

which the anisotropy and inhomogeneity of near-wall turbulence enter into the

subgrid scales. Therefore, this method requires a very robust SGS model that can

account well for the anisotropy of subgrid scale stresses and the production and

transport of turbulent kinetic energy [148]. When such dynamically important

events are not well resolved, the SGS model depends strongly on the boundary

conditions and becomes strongly configuration dependent, similarly as statisti-

cal turbulence models for RANS. Although some attempts, e.g. very large-eddy

simulation [82, 106] inspired from the statistical turbulence modeling have been

made, there is no such SGS model well established until now [111, 166]. A third

alternative is when a SGS model is used to describe the dynamics of near-wall co-

herent structures. The simulation is carried out on coarse grids without resolved

wall layer. Starting from the information of resolved scales the dynamic process

of subgrid scales can be modeled. This requires the deep understanding of wall

turbulence and phenomenological descriptions of the near-wall structures, which

at the time is still incomplete. The last alternative is to bypass the wall layer

with its effect approximated by a wall model [138, 139] or another well established

method such as RANS [53], which reduces the wall layer to an approximate wall

boundary condition for the exterior LES or a hybrid LES/RANS method, respec-

7
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tively. Here the key issue is what information is required for the exterior LES.

Among these alternatives the last one is feasible, and can be based on established

near-wall turbulence knowledge. The technical and modeling difficulties are to

assess the suitable coupling and information between wall layer and exterior LES.

1.1.2 Knowledge of wall turbulence for wall modeling

Wall turbulence can be described by turbulent boundary layer theory, scaling

laws, near-wall coherent structures and the interaction between the wall layer

and exterior flows. These subjects are related to wall modeling and are reviewed

with main focus on their applicabilities to wall modeling in this subsection.

The boundary layer concept was pioneered by Prandtl [144] under the as-

sumptions that in the very thin wall region the wall-tangential length scales are

much larger than the wall-normal ones, and wall-normal derivatives are much

larger than the wall-tangential ones at high Reynolds numbers. Since, bound-

ary layer theory has been well developed [153]. In the framework of this theory,

laminar and turbulent boundary layer with moderate pressure gradient can be

treated until flow separation occurs. Transition from laminar to turbulent flow

can not be taken into account without empirical theory. In turbulent boundary

layer calculations the Reynolds shear stress should be modeled by a turbulence

model for closure of the equations, which limits the capability of this method.

For certain reattached boundary layers the flow is far from equilibrium and a

secondary near-wall layer develops, for which methods based on mixing-length

eddy-viscosity models fail. Nevertheless, this method is widely used in combi-

nation with potential method for flow simulations because of its more physical

reasonability and high efficiency [31].

With RANS a higher order approximation of the turbulent boundary layer is

obtained. As introduced in last section, this method is limited by the available

statistical turbulence models. The pressure Poisson equation must be solved

within the thin layer, which results in comparably high computational cost.

The turbulent boundary layer under a mild pressure gradient can be separated

into viscous sublayer, buffer layer, logarithmic layer and wake region [143]. There

are scaling laws for the mean streamwise velocity within the viscous sublayer,

8
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logarithmic layer and wake region, the law of the wall, the logarithmic law, and

the wake-defect law, respectively. These laws are deduced using asymptotical

analysis and empirical correlations. Therefore, there is no a closed formulation

that can represent the mean velocity of the entire boundary layer. The buffer

layer can be formulated as smooth transition from sublayer to the logarithmic

layer using a single formulation [165], or be omitted using only a two-layer power

law [182]. There is still some debate on the validity of the standard logarithmic

law [22, 59]. Several generalized wall functions have been constructed and applied

in RANS computation [156, 179]. Although there are scaling laws for the mean

velocity profile of separated flows [159], they are still under debate [5, 112]. The

laws for attached boundary layers under mild pressure gradients can be adopted

as wall functions to calculate the wall-shear stress using the mean velocity within

the logarithmic region, especially in statistical turbulence models to avoid exces-

sive grid resolution [92, 124] in the wall-normal direction. The scaling laws for

separated boundary layer are rarely used as wall functions [94].

Besides asymptotical analyses near-wall coherent structures are subject of

research to understand the dynamics of near-wall turbulence [134]. Although

structures such as longitudinal streaks are well established, their self-sustaining

mechanism is not fully understood. Modeling of sublayer streaks has been ac-

complished with some encouraging results [29]. Based on self-sustaining coherent

structures, it can be expected that the near-wall layer is autonomous and is only

weakly affected by the footprint of the large scales in the outer layer [28, 87, 88].

It is found, however, that this dependence becomes stronger when the Reynolds

number increases [79, 118]. These particular characteristics of the wall layer

constitute the basis of the wall-layer modeling.

The buffer layer, where most of streamwise streaks are located, can be viewed

as the motor of wall turbulence [116] as most of the turbulent kinetic energy

is produced there. Some part of turbulent kinetic energy is dissipated locally,

but most is transported both to the wall by diffusion and away from the wall

through the logarithmic region. The outward transport sustains the turbulence

of the exterior flow. The net energy transport in the buffer layer is from the small

scales to the large scales, which is called backscatter.

From the above analysis, a feasible way to construct a wall model for LES

9
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is based on classical methods, such as boundary layer theory, laws of the mean

velocity and RANS. Although detailed physics of the wall layer can be obtained

by DNS, wall-resolved LES or experiments [52, 108], it needs to be assessed what

information can be directly incorporated in a wall model [19, 20], which will be

discussed in the next section.

1.2 Wall modeling for LES

Three points are discussed in this section. The first one is what the problem is

encountered in the coarse LES of wall-bounded flows and what should be focused

on. The second one is what information the exterior LES requires and what a

wall model can supply. Finally wall models are reviewed.

1.2.1 Coarse LES

When only the exterior flow is resolved, the grid size is based on the outer length

scale δ (boundary layer thickness), and the grid resolution is weakly dependent on

the Reynolds number as Re0.4L [32, 139]. Since in the wall layer the length scales

decrease dramatically as the wall is approached, the near-wall grid size is so large

that it can be interpreted as an ensemble average. Therefore, it is appropriate to

consider the near-wall turbulence in a statistical sense.

When LES are implemented on coarse grids without resolved wall layer, er-

rors arise from numerical discretization and SGS modeling. On one hand, the

velocity gradient is large in the near-wall region, and it is under predicted by a

discretization scheme using no-slip boundary conditions on coarse grids, which

leads to an underestimation of the wall-shear stress and incorrect kinetic energy

production, and distorts the exterior LES. On the other hand, the SGS model

cannot account for the near-wall anisotropic turbulence and cannot model the

correct dissipation.

1.2.2 Information supplied by a wall model

A question arises naturally as to what kind of information is enough for the

coarse LES of the exterior flow. For the synthetic boundary conditions shifted to

10
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a plane away from the wall, proposed by Baggett [6], Dirichlet velocity boundary

conditions are sufficient for an accurate exterior flow, however the imposed ve-

locity needs to have correct spectral distributions of auto- and cross-correlations.

Investigations of Nicoud et al. [129] and Jiménez et al. [89] confirm that some

information of near-wall turbulence structures needs to be passed to the exterior

flow. Although this condition is better than the mixed boundary condition with

transpiration velocity and wall-normal gradients of the horizontal velocities, in

practice it is very difficult to generate accurate velocities with these turbulence

structures. Therefore, the wall stress is widely used as an option, as it leads to

simple and robust synthetic boundary data. As boundary conditions one com-

monly imposes the wall-parallel stress components, while the wall-normal velocity

component is set to zero.

Cabot [25] has used instantaneous accurate wall stresses as approximate wall

boundary condition in the simulation of flow over a backward-facing step, how-

ever the result for the exterior flow is not better than that using wall stresses

supplied by the Thin Boundary Layer Equations (TBLE). The SGS modeling

errors and numerical errors on the coarse mesh are supposed to be responsible for

some of the modeling failures, which is often overlooked in the framework of wall

modeling [138] . Even in the simulation of canonical plane Turbulent Channel

Flow (TCF), the effect of numerical errors can be so significant that the logarith-

mic velocity profile is not well predicted by algebraic or TBLE based wall-stress

models, especially at high Reynolds numbers [26, 27, 128]. By the contamination

due to these errors an artificial layer develops in several near-wall cells, which

makes the velocity away from these cells under-predicted.

In the work of Medic [119] the near-wall model consists of imposing wall

stress and an eddy viscosity and is investigated on turbulent channel flow. The

eddy viscosity is obtained from an averaged LES velocity profile and is tabulated

for instantaneous usage. Improved mean velocities are obtained using this wall

model compared with that of just using wall stress as boundary conditions. A

further improvement is obtained with a corrected eddy viscosity using the resolved

turbulent stress. This also shows that just the wall-shear stress is not sufficient

information for coarse LES. What is learned from these investigations is in the

following. First, numerical and modeling errors should be reduced in the near-wall

11
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region or compensated by other methods [128, 172, 173]. Second, it is not feasible

to adopt Dirichlet velocity boundary with correct turbulent information, rather

one should impose the wall stress with zero transpiration velocity as approximate

boundary condition, although even that does not appear to be sufficient.

1.2.3 Review of wall models

In this subsection, wall stress model, hybrid LES/RANS method and some specific

near-wall treatments are reviewed.

1.2.3.1 Wall-stress models

Generally a wall stress model can be written as

τw = f(uo, po, ν,xo), (1.4)

where f is used to relate the wall stresses in wall-tangential directions to the

velocity uo and the pressure po of the exterior flow at the coupling position

xo = (x1o, x2o, x3o). f can be an algebraic function such as a logarithmic law, or

a differential equations such as the thin boundary layer equation with a simple

algebraic turbulence model, or even RANS with various turbulence models, solved

on embedded grids. Even an experiment was set up to search for the relationship

Eq. 1.4 between the instantaneous wall-shear stress and streamwise velocities

[147].

When algebraic functions are used to relate the wall stresses to the exterior

flow parameters, there are several ways according to classical turbulent boundary

layer theory. In the pioneering work of Schumann [154], the wall stresses were

related to the instantaneous exterior velocities at first off-wall grid point

τw12(x1,x3) =
u1(x1, x2o, x3)

〈u1(x1, x2o, x3)〉
〈τw12〉 ,

uw2 = 0,

τw32(x1,x3) =
2

Reτ

u3(x1, x2o, x3)

x2o
, (1.5)
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where 〈·〉 is some type of averaging operation, and 〈τw12〉 should be known a

priori, as in plane turbulent channel flow driven by a known pressure gradient.

This mean wall stress can be obtained using the logarithmic law [65] or by a

priori RANS calculation [184]. Piomelli et al [142] suggested an improvement to

this model by shifted correlation based on the observation that the correlation

between the wall-shear stress and the velocity increases when a relaxation time

is considered. While this formulation and its extensions are only effective for

attached boundary layers in approximate equilibrium, for separated and non-

equilibrium flows it does not perform well [10, 181].

The logarithmic law can be adopted directly to calculate the instantaneous

wall stress using the exterior velocity without the mean operation discussed above.

Werner and Wengle proposed a model based on a power law of the mean velocity

profile and the instantaneous tangential velocities are associated with wall-shear

stresses directly [182]. For separated flows, the wall-shear stress can also be

related to the maximum backflow velocity [160] by an algebraic function.

To include more physics in the wall modeling the thin boundary layer equa-

tions can be adopted to relate the wall stress to the exterior flow parameters.

These equations are written as

∂

∂x2

(ν + νt)
∂ui

∂x2

=
∂ui

∂t
+

1

ρ

∂p

∂xi

+
∂uiuj

∂xj

, (i = 1, 3; j = i, 2), (1.6)

where (·) denotes the averaging operation, x2 is the wall-normal coordinate, and

xi(i = 1, 3) are wall-tangential coordinates. The mixing-length eddy-viscosity

model with a damping function is adopted which accounts for near-wall turbu-

lence

νt = κx2uτ (1− e−x+

2
/A)2, (1.7)

where κ = 0.4, A = 19.0 and x+
2 = x2uτ/ν. The wall-normal velocity can be

obtained from the continuity equation as

v2(x1, x2, x3) = −

∫ x2

0

(
∂u1

∂x1

+
∂u3

∂x3

) dx
′

2 . (1.8)
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1.2 Wall modeling for LES

These equations are solved on embedded grids all the way down to the wall, to

obtain the gradients of the tangential velocities in the wall-normal direction. No-

slip boundary conditions are used at the wall, and the outer boundary conditions

are predicted by the exterior LES. The computational savings come from avoiding

solving the pressure Poisson equation within the near wall region, and from the

coarse grids in the wall-tangential directions. However, if the convective terms

are retained, an iterative solver needs to be used. In order to resolve the wall-

normal velocity gradient, the first off-wall grid points must have a small wall

distance in wall units, typically of the order unity. If geometric grid stretching

is used the number of grid points is proportional to log(Reτ ) [131], which is

weakly dependent on the Reynolds number. This approach was investigated in

detail by Cabot [23, 24] to find out the relative importance of terms in TBLE

of the backward-facing step flow. The results suggest that the separation and

reattachment regions are very sensitive to the near-wall balance between pressure

gradients and advection terms in the sublayer. Similar methods without using

right hand of Eq. 1.6 and only keeping the pressure gradient are applied to a

flow over an asymmetric trailing edge with separation [181]. Improved results

are reported compared to algebraic function based models, especially near the

small separation zone. From canonical attached plane turbulent channel flow to

separation on a 3D axisymmetric hill [176] this method has performed well for a

reasonably wide range of flows. Note that RANS can also be used to provide the

wall-shear stress for coarse LES as approximately boundary conditions, however,

there is no usage of this method reported in literature.

To compensate unknown numerical and SGS modeling errors in coarse LES

a wall model based on the suboptimal control theory is constructed to supply

an optimized wall-shear stress for exterior flow simulations [128, 172, 173]. The

resulting wall-shear stress is of no physical meaning but rather a numerical value

to drive the exterior mean velocity to a desired distribution. Although improved

results are obtained, this method is limited by its additional computational cost

and the requirement of a priori mean velocity to generate the desired cost func-

tion.
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1.2 Wall modeling for LES

1.2.3.2 Hybrid LES/RANS

This group of methods is based on the idea that using RANS to simulate the

near-wall region and LES in the exterior region on a single mesh and is called

hybrid LES/RANS [53] or Detached Eddy Simulation (DES) [163] (In some lit-

eratures, these two methods are defined differently depending on the turbulence

model adopted and the region simulated by RANS). The wall-tangential grid

sizes are determined by the resolution requirement of exterior LES, and the num-

ber of wall-normal grids required by RANS to resolve the wall-normal velocity

gradient is proportional to log(Reτ) with grid stretching. But its computational

cost is much higher than the TBLE based wall stress model as the full evolution

equations must be solved all the way down to the wall. An advantage of this

kind of method is the possibility to adopt different turbulence models in different

RANS and LES regions. This means that proper turbulence models can be cho-

sen in different regions when approaching the wall. In theory this method could

provide accurate results for a wide range of flows, as the range of applicability

is determined by the specific turbulence models used. In practice most studies

have shown that the results are significantly improved compared to simulations

without any near-wall modeling on similar coarse grids, especially for separated

flows. But the skin friction is consistently underpredicted by around 10-15% for

attached boundary layers [131, 141], which is caused by the interface mismatch

between the RANS and LES zones. There are artificial structures so called ‘su-

perstreaks’ generated. From several investigations [7, 41, 67, 141, 169, 177], it

can be concluded that such unphysical structures are typical feature of hybrid

LES/RANS methods. Although this problem was mitigated by using stochastic

forcing [97, 141], the results are very sensitive to the forcing term. In author’s

opinion, this is caused by the inconsistent turbulence modeling methodology and

by the fact that the velocity requirement of correct spectral distributions of auto-

and cross-correlations can not be satisfied at the interface.

1.2.3.3 Other specific treatments

There are some other wall-modeling methods based on the DNS or highly resolved

LES for specific flows [19], which are not generally applicable. An alternative
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1.3 Objectives

approach employing approximation theory, such as the filtered representation of

the boundary condition [15], has led to considerable new insight but has not yet

resulted in practically useful wall models.

1.3 Objectives

So far, wall models are almost exclusively used in combination with explicit

subgrid-scale models and on body-conforming structured grids limited by the

contamination of numerical and modeling errors. A notable exception to the for-

mer observation is the work of Grinstein and Fureby, see [63]. However, on one

hand, a detailed investigation of wall models within the framework of implicit

LES has not yet been performed, where the SGS model is functioned implicitly

by the truncation error of discretization schemes [64]. On the other hand, these

wall models are constrained to body-fitted grids. There are a very few works

[37, 40, 149, 175] focusing on the wall modeling for LES in the framework of Im-

mersed Boundary (IB) methods to overcome this difficulty, despite the fact that

IB methods are rather well established [81, 123]. All existing works use explicit

SGS models and have adopted the discrete-forcing method [49, 125] using local

velocity reconstruction and finite difference methods. This method cannot ensure

mass conservation near the IB, although this is crucial for viscous flow prediction

[95, 96, 99]. It is found that a large extent of flow field is affected by the loss

of mass conservation near the IB [96]. This influence becomes severe at high

Reynolds numbers, because the boundary layers tend to be very thin and the

inaccuracies introduced at the IB can completely modify the flow development.

Therefore, the main objective is to construct a wall modeling methodology for

the implicit LES in the framework of a Conservative Immersed Interface Method

(CIIM) at high Reynolds numbers on complex geometries towards practical engi-

neering applications. With implicit LES the truncation error functions as implicit

SGS model. Here the Adaptive Local Deconvolution Method (ALDM) [3], based

on the approximate deconvolution concept [168] is used. CIIM is used to deal

with complex geometries and can ensure the discrete conservation of mass and

momentum [121]. Local grid refinement is accomplished using Adaptive Mesh

Refinement (AMR) method.
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The main objectives and accomplishments are:

a. A wall modeling framework for implicit LES is established on body-conforming

grids. Two wall functions and a simplified TBLE based wall-layer model

are used to supply the wall-shear stress to exterior implicit LES as approx-

imated boundary conditions. The near-wall SGS-modeling errors of coarse

LES and wall-modeling errors are distinguished and investigated in detail

on canonical plane turbulent channel flows at very high Reynolds numbers.

A method to compensate or eliminate SGS-modeling errors is promoted.

The characteristics of different wall models are emphasized. In order to

know the capability of different wall models to represent separated flows,

they are assessed for a flow along a backward-facing step, where a separated

bubble is induced by the sharp corner.

b. A wall modeling method within the framework of CIIM is proposed to deal

with complex geometries. Three wall models are adopted to calculate the

wall-shear force as a source term in the momentum equations and to supply

the exterior LES with an approximate boundary condition. First, they

are validated with plane turbulent channel flow and the backward-facing

step flow, and are compared with the cases on the body-conforming grids.

Then the wall models are applied to different separated flows, including a

bump with shallow separation, and a periodic hill with massive separation.

At last, the wall modeling methodology is applied to a flow over a circular

cylinder in the framework of adaptive mesh refinement method at very high

Reynolds number ReD = 1.0 × 106, to show its potential as a simulation

tool for practical engineering.
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Chapter 2

Implicit LES using ALDM and

CIIM

First, the mathematic framework of LES is introduced, then the motivation of

implicit subgrid-scale (SGS) modeling is analyzed, and the construction of ALDM

is described in detail. In the following sections, immersed boundary methods are

reviewed briefly, and the associated difficulties are highlighted. To apply ALDM

to complex geometries, a conservative immersed interface method (CIIM) has

been developed and is presented in detail. An adaptive mesh refinement method

(AMR) is outlined which allows to overcome the difficulty of local grid refinement.

At last the formulations of boundary conditions are described.

2.1 Implicit LES using ALDM

2.1.1 Motivation of implicit SGS modeling

2.1.1.1 Conventional explicit SGS modeling

SGS modeling is based on the separation of a flow variable φ(x, t) into a large-

scale resolved part φ(x, t) and a small-scale residual part φ
′

(x, t) by a spatial
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2.1 Implicit LES using ALDM

convolution filter G(x),

φ(x, t) = φ(x, t) + φ
′

(x, t), (2.1)

φ(x, t) =

∫ +∞

−∞

φ(ξ, t)G(x− ξ)d3ξ. (2.2)

To obtain the governing equations of the resolved flow quantities, convolution

filter is applied to the Navier-Stokes equations, Eqs. 1.1. The following filtered

equations are obtained

∂u

∂t
+∇ · (uu) = −

1

ρ
∇p+ ν∇2u, (2.3a)

∇ · u = 0. (2.3b)

The non-linear term uu in the momentum equations is not expressed as a function

of the resolved velocity u, which makes these equations unclosed. A subgrid stress

τ can be introduced into the momentum equation as

τ = uu− g(u), (2.4)

which requires modeling, where the function g(u) is defined on the filtered ve-

locity. Mostly, the relation g(u) = uu is used, and the momentum equation Eq.

2.3a becomes
∂u

∂t
+∇ · (uu) = −

1

ρ
∇p+ ν∇2u−∇ · τ . (2.5)

Most SGS models are based on this framework, assume isotropic spatial filter

(i.e. G only depends on |x− ξ|) and uniform Cartesian coordinates. However,

in practice, inhomogeneous flows are always simulated on non-uniform grids on

a bounded computational domain. Inhomogeneous spatial filters arise at the

boundaries so that commutation errors between filter and derivative operation

can not be neglected [61]. An alternative non-uniform filter that can be applied

to an arbitrary computational domain has been proposed in Ref. [61]. Well-

defined filters commute with the derivative to second order in space. Higher-order

commutative filters are analyzed by Van der Ven [43], and this analysis has been
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2.1 Implicit LES using ALDM

generalized by Vasilyev et al. [180]. Although these methods result in high order

commuting filters, they are rarely used in practice.

The explicit modeling paradigm is mainly followed in SGS model development

for LES, where an explicit model expression is performed to the unclosed term

∇ · τ or τ . For this purpose functional or structural approaches can be used.

The former follows resolved energy-transfer consideration based on the knowledge

about the interaction of resolved scales and subgrid scales, leading e.g. to eddy-

viscosity models. With the latter one tries to reproduce the eigenvectors of the

statistical correlation tensors of the subgrid modes based on some assumptions

about the subgrid structures, leading e.g. to scale-similarity models [152].

2.1.1.2 Contamination by discretization errors

With the explicit SGS modeling paradigm a presumption is that the associated

numerical errors are small compared to the contribution of the explicit SGS model.

However, in practice the significant numerical errors contaminate the effect of ex-

plicit SGS modeling terms, especially at high wavenumbers. The most important

contamination is due to the spatial-truncation error [38, 60, 104]. This situation

can not be improved by increasing the grid resolution as long as DNS resolution

is not reached, because the errors can increase faster than the subgrid terms when

no explicit filtering is used [60]. An explicit filter operation with a proper filter

to grid width ratio or high order discretzation schemes can be used to diminish

these errors. The required filter to grid ratio results in a substantial increase of

computational cost for explicitly filtered LES. In practice, it is hard to use the

high-order discretization scheme for simulations of flow along complex geome-

tries. However, numerical errors can be exploited as an implicit SGS model. This

approach is proposed by Boris et al. [16] using nonlinearly stable schemes and it

is presented in Ref. [64].

An important theoretical tool to exploit the interference between truncation

error and SGS model is the Modified-Differential Equation Analysis (MDEA)

method. Using Taylor series expansions of the solution, MDEA allows to analyze

the relation between the implicit model and a given explicit SGS model [3, 54].

However, it becomes tedious when MDEA is used to analyze more complicated
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2.1 Implicit LES using ALDM

nonlinear discretization schemes of nonlinear three-dimensional differential equa-

tions. An alternative using an effective spectral eddy viscosity concept proposed

by Domaradzki et al. [44] can match numerical dissipation to a given explicit

SGS model or to theoretical models. However, most of the implicit SGS models

are using discretization schemes off-the-shelf by a posteriori validation. Without

strict physical motivation, implicit SGS models have been considered as infe-

rior to explicit models by construction, since SGS dissipation is generated essen-

tially by a nonlinear numerical stabilization mechanisms, such as that provided

by shock-capturing schemes. It has been shown by Garnier et al. [56] that a

straightforward application of shock-capturing schemes for implicit LES does not

lead to satisfactory results in general. Despite theoretical limitations, in practice,

however, often good results with such implicit SGS models have been obtained

[46, 54, 55, 63, 66].

A systematic approach for a general, nonlinear-discretization framework that

allows for physically motivated implicit SGS modeling, has been introduced by

Adams et al. [3], based on the approximate deconvolution concept [168]. It has

been developed for solving three-dimensional Navier-Stokes equations by ALDM.

ALDM is nonlinear and solution adaptive and incorporates a physically motivated

implicit SGS model [71].

2.1.2 Adaptive Local Deconvolution Method

The adaptive local deconvolution method (ALDM) is based on a nonlinear decon-

volution operator and a numerical flux function which are formulated such that

the truncation error functions as an implicit SGS model [71]. In this method,

the filtering operation is not performed explicitly, but by using a finite-volume

discretization as a top-hat filter on the background staggered Cartesian mesh.

The filter can be written as

G(xi,j,k,x) =
1

∆xi∆yj∆zk

{
1, if (xi,j,k + x) ∈ Ii,j,k,

0, otherwise,
(2.6)
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2.1 Implicit LES using ALDM

where a computational cell is

Ii,j,k = [xi− 1

2

, xi+ 1

2

]× [yj− 1

2

, yj+ 1

2

]× [zk− 1

2

, zk+ 1

2

], (2.7)

and ∆xi, ∆yj and ∆zk are the widths of the cell in three coordinate directions.

This filter returns a cell average of a function

ϕ(xi,j,k, t) =
1

∆xi∆yj∆zk

∫∫∫

Ii,j,k

ϕ(xi,j,k − x, t)dx. (2.8)

When this filter is applied to Eqs. 1.1, the governing equations of the resolved

velocity are obtained as

∂ui,j,k

∂t
+G(xi,j,k,x) ∗ (∇ · F(u))− ν∇2(ui,j,k) +∇pi,j,k = 0, (2.9a)

∇ · ui,j,k = 0, (2.9b)

where F(u) = uu is the convective flux. Since the unfiltered velocity u is un-

known, these equations are not closed. Using the deconvolved velocity uN =

G−1 ∗ uN to approximate the unfiltered velocity u in Eq. 2.9a results in

∂ui,j,k

∂t
+G(xi,j,k,x)∗ (∇·F(uN))−ν∇2(ui,j,k)+∇pi,j,k = G(xi,j,k,x)∗ (∇·τSGS),

(2.10)

where N indicates the grid functions obtained by projecting continuous functions

onto the numerical grid, and the subgrid stress is τ SGS = F(uN)− F(u). The

subgrid stress is τ SGS 6= 0, because the non-represented scales cannot be recov-

ered by soft deconvolution. With ALDM the explicit modeling of this term is

avoided by the following construction. First, the volume integral of G is evalu-

ated using Gauss’ and Green’s theorems, then the nonlinear term can be written

as

G(xi,j,k,x) ∗ (∇ · F(uN)) =
1

Vi,j,k

∫∫

∂Ii,j,k

n · F(uN)dS, (2.11)

where n is the outward unit normal vector on the cell faces, Vi,j,k = ∆xi∆yj∆zk

is the control volume, ∂Ii,j,k is the boundary of the control volume. To evaluate
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2.1 Implicit LES using ALDM

this integral, one has to define the average of the flux over the cell face at the

face center. Denote F = [f1, f2, f3], and the face-averaged flux F̂ = [f̂1, f̂2, f̂3],

where the operation ( ·̂ ) indicates the face average. The numerical computation

of f l (l = 1, 2, 3) involves approximations, which are explained on the example of

the flux in x-direction

f̂1(xi+ 1

2

, yj, zk) =
1

∆y∆z

∫ y
j+1

2

y
j− 1

2

∫ z
k+1

2

z
k− 1

2

f1(xi+ 1

2

, y, z)dydz. (2.12)

This integral can be computed numerically using a Gaussian quadrature rule with

(2m+ 1)2 numerical integration points,

f̂1(xi+ 1

2

, yj, zk) ≈
2m+1∑

α=1

2m+1∑

β=1

Cαβf
1(xi+ 1

2

, yj+α−m, zk+β−m). (2.13)

With 32 nodes it reduces to two different integration schemes, the corresponding

coefficient matrixes are

C2 =



0 0 0

0 1 0

0 0 0


 and C4 =



0 1 0

1 20 1

0 1 0


 . (2.14)

The coefficient matrix C2 yields a second-order accurate solution on equidistant

grids, and the coefficient matrix C4 leads to a fourth-order integration scheme.

Second, since an exact inverse filter operation is ill-posed, a solution adaptive

deconvolution scheme G̃−1 is designed to approximate G−1, which results in

the approximately deconvolved velocity ũN = G̃−1 ∗ uN used in numerical flux

computation. At last, a modified Lax-Fridriches flux function F̃N is adopted to

approximate the physical flux function F. The Eq. 2.10 becomes

∂ui,j,k

∂t
+

1

Vi,j,k

∑

∂Ii,j,k

̂̃
FN(ũN) · n∆S − ν∇2(ui,j,k) +∇pi,j,k =

G(xi,j,k,x) ∗ (∇ · τ SGS)− ǫnumi,j,k , (2.15)
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where the numerical errors

ǫnumi,j,k = G(xi,j,k,x) ∗ (∇ · F(uN))−
1

Vi,j,k

∑

∂Ii,j,k

̂̃
FN(ũN) · n∆S (2.16)

are expected to function as an implicit SGS model. ∆S is the cell-face area. The

discretized equations then become

∂ui,j,k

∂t
+

1

Vi,j,k

∑

∂Ii,j,k

̂̃
FN(ũN) · n∆S − ν∇2(ui,j,k) +∇pi,j,k = 0, (2.17a)

∇ · ui,j,k = 0. (2.17b)

The numerical discretization and the SGS model are merged entirely.

The approximated deconvolved velocity ũN = G̃−1 ∗ uN is computed locally

by a solution-adaptive combination of deconvolution polynomials, which is in-

spired by the idea of the Weighted-Essentially-Non-Oscillatory (WENO) scheme

[158]. And the deconvolution operator can be decomposed as successive decon-

volution in three directions

G̃−1(x) = G̃−1
x (x) ∗ G̃−1

y (y) ∗ G̃−1
z (z). (2.18)

The adaptive local deconvolution of the solution is obtained at the left and right

cell faces and at the cell centers, e.g. in x direction as

ũλ
N(xi+λ) = G̃−1

x (xi+λ) ∗ uN =
K∑

k=1

k−1∑

r=0

ωλ
k,r(uN , xi)p̃

λ
k,r(xi+λ), (2.19)

with λ = ∓1/2 and λ = 0 respectively, where the approximation polynomials are

p̃λk,r(xi+λ) =

k−1∑

l=0

cλk,r,l(xi)ui−r+l. (2.20)
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The grid-dependent coefficients cλk,r,l are chosen as given by Shu [158], such that

p̃λk,r(xi+λ) = u(xi+λ) + O(∆xk
i ). (2.21)

Therefore different-order polynomials in the range [1, K] are permitted to con-

tribute to the truncation error. For consistency, the sum of the weights should

be unity. Specifically, the following restrictions

k−1∑

r=0

ωλ
k,r =

1

K
, (2.22)

are used. And the weights are designed as

ωλ
k,r(uN , xi) =

1

K

γλ
k,rβk,r(uN , xi)∑k−1

s=0
γλ
k,rβk,s(uN , xi)

, (2.23)

where the free discretization parameters γλ
k,r are introduced to control the error

cancelations. For K = 3, they are reduced to four independent modeling param-

eters
{
γ
+1/2
2,0 , γ

+1/2
3,0 , γ

+1/2
3,1 , γ0

3,1

}
, due to the restrictions of symmetries required by

an isotropic discretization for the statistically homogeneous case

γ
−1/2
k,r = γ

+1/2
k,k−1−r and γ0

k,r = γ0
k,k−1−r, (2.24)

and the consequence of Eq. 2.22

k−1∑

r=0

γ
+1/2
k,r = 1 and

k−1∑

r=0

γ0
k,r = 1. (2.25)

The solution adaptivity of ALDM is accomplished by the smoothness-measure

function

βk,r(uN , xi) =

(
εβ +

k−r−2∑

l=−r

(ui+l+1 − ui+l)
2

)−2

(2.26)

where εβ ia s small parameter to prevent division by zero values.

The 3D adaptive local deconvolution operator G̃−1(x) can be accomplished
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Table 2.1: Interpolation directions for 3D reconstruction of ALDM
Positions Relative target index λ Example
(R) rightward [+1

2
, 0, 0] ũR

i,j,k ≈ u(xi+ 1

2

, yj, zk)

(L) leftward [−1

2
, 0, 0] ũL

i,j,k ≈ u(xi− 1

2

, yj, zk)

(F) forward [ 0,+1

2
, 0] ũF

i,j,k ≈ u(xi, yj+ 1

2

, zk)

(B) backward [ 0,−1

2
, 0] ũB

i,j,k ≈ u(xi, yj− 1

2

, zk)

(U) upward [ 0, 0,+1

2
] ũU

i,j,k ≈ u(xi, yj, zk+ 1

2

)

(D) downward [ 0, 0,−1

2
] ũD

i,j,k ≈ u(xi, yj, zk− 1

2

)

by three successive 1D operators,

ũλN (xi+λ1
, yj+λ2

, zk+λ3
) = G̃−1

z (zk+λ3
) ∗
(
G̃−1

y (yj+λ2
) ∗
(
G̃−1

x (xi+λ1
) ∗ uN

))
,

(2.27)

where λ = (λ1, λ2, λ3) denotes the relative target-reconstruction positions. The

required operations are performed at the centers of the cell faces, as summarized in

Tab. 2.1. Note that each operator consists of two centered and one shifted steps,

reconstruction operations with λ = ±1/2 should be performed last. Additionally,

the order should be chosen by cyclic permutation to achieve rotational invariance

of the implicit SGS model. The reconstructed velocities at these positions can be

used in the following flux computation.

There are two steps in the numerical flux construction. The flux function F̃N

is defined as in Eq. 2.28, and the face-averaged numerical flux
̂̃
FN is approximated

using Eq. 2.13 . First, the consistent flux function F̃N =
[
f̃1, f̃2, f̃3

]
is constructed

as

F̃N = F((ũ−
N
+ ũ+

N
)/2) + σ|δuN|(δũN). (2.28)

Its components can be expressed on staggered Cartesian grids in detail as

f̃1i+ 1

2
,j,k =

1

4



(ũL

i+1,j,k + ũR
i,j,k)(ũ

L
i+1,j,k + ũR

i,j,k)

(ũB
i,j+1,k + ũF

i,j,k)(ṽ
L
i+1,j,k + ṽRi,j,k)

(ũD
i,j,k+1 + ũU

i,j,k)(w̃
L
i+1,j,k + w̃R

i,j,k)


 (2.29a)

− σ1
i,j,k



|ui+1,j,k − ui,j,k|(ũ

L
i+1,j,k − ũR

i,j,k)

|vi+1,j,k − vi,j,k|(ṽ
L
i+1,j,k − ṽRi,j,k)

|wi+1,j,k − wi,j,k|(w̃
L
i+1,j,k − w̃R

i,j,k)


 ,
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f̃2i,j+ 1

2
,k =

1

4



(ṽLi+1,j,k + ṽRi,j,k)(ũ

B
i,j+1,k + ũF

i,j,k)

(ṽBi,j+1,k + ṽFi,j,k)(ṽ
B
i,j+1,k + ṽFi,j,k)

(ṽDi,j,k+1 + ṽUi,j,k)(w̃
B
i,j+1,k + w̃R

i,j,k)


 (2.29b)

− σ2
i,j,k



|ui,j+1,k − ui,j,k|(ũ

B
i,j+1,k − ũF

i,j,k)

|vi,j+1,k − vi,j,k|(ṽ
B
i,j+1,k − ṽFi,j,k)

|wi,j+1,k − wi,j,k|(w̃
B
i,j+1,k − w̃F

i,j,k)


 ,

f̃3i,j,k+ 1

2

=
1

4



(w̃L

i+1,j,k + w̃R
i,j,k)(ũ

D
i,j,k+1 + ũU

i,j,k)

(w̃B
i,j+1,k + w̃F

i,j,k)(ṽ
D
i,j,k+1 + ṽUi,j,k)

(w̃D
i,j,k+1 + w̃U

i,j,k)(w̃
D
i,j,k+1 + w̃U

i,j,k)


 (2.29c)

− σ3
i,j,k



|ui,j,k+1 − ui,j,k|(ũ

D
i,j,k+1 − ũU

i,j,k)

|vi,j,k+1 − vi,j,k|(ṽ
D
i,j,k+1 − ṽUi,j,k)

|wi,j,k+1 − wi,j,k|(w̃
D
i,j,k+1 − w̃U

i,j,k)


 ,

where σ is used to compensate for different grid-size effects and is obtained as

σi,j,k = σ

(
L0

∆0

∆xi,j,k

Li,j,k

)−1/3

. (2.30)

L0 and ∆0 denote a reference integral length scale and a reference grid size re-

spectively. As a result of the parameter optimization process, it is L0/∆0 = 32.

The σ introduced here is another modeling parameter of ALDM.

All the values of the five free parameters are determined so that the truncation

error ǫnumi,j,k functions as physically motivated implicit SGS model. This purpose is

achieved by a spectral analysis of the effective numerical viscosity of ALDM. The

model parameters are optimized to minimize the difference between the effective

numerical viscosity of ALMD and that of the Eddy-Damped Quasinormal Marko-

vian (EDQNM) theory for isotropic turbulence in spectral space in the limit of

vanishing molecular viscosity [71]. The resulting modeling parameters are listed

in the Tab. 2.2.

For wall-bounded flows, for ALDM it is found that it can reproduce flow

anisotropy in the near-wall region. However, the implicit SGS dissipation there is

overestimated so that it leads to an under-estimated wall-shear stress. Therefore
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2.1 Implicit LES using ALDM

Table 2.2: Modeling parameters of ALDM
Parameter Optimal value
γ0
3,1 0.0500300

γ
+1/2
2,0 1.0000000

γ
+1/2
3,0 0.0190200

γ
+1/2
3,1 0.0855000

σ 0.0689100

the van Driest damping function is used to correct the local length scale Li,j,k as

Li,j,k = L0

(
1− exp

[
−

(
lwuτ

50ν

)3
])

, (2.31)

where lw is the wall distance and uτ is the friction velocity that is calculated from

a general wall function [69]. Note that Eq. 2.31 is not a wall model but corrects

near-wall SGS dissipation and holds for complex flows.

2.1.3 Numerical method

A projection method is used to solve the incompressible Navier-Stokes equations.

The solution procedure consists of the following steps.

Step1 : Use ALDM to compute the convective flux
̂̃
FN and a second-order

central discretization scheme to calculate the diffusive flux and pressure

gradient at time step n.

Step2 : Use a third-order Runge-Kutta scheme to advance the semi-discretization

equations Eq. 2.17a in time and obtain the intermediate velocity u∗.

Step3 : Solve the pressure-correction Poisson equation in divergence form as

∫∫

∂Ωi,j,k

∇φ · ndS =
1

∆t

∫∫

∂Ωi,j,k

u∗ · ndS, (2.32)

with Neumann boundary condition ∇φ·n = 0 on the fixed solid wall. ∂Ωi,j,k
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is the boundary of the pressure cell and ∆t is the time step.

Step4 : Update the velocity and pressure as

un+1 = u∗ −∆t∇φ, (2.33)

pn+1 = pn + φ. (2.34)

The pressure Poisson equation can be solved every sub-step of the Runge-Kutta

scheme. Several highly efficient methods are employed to solve the pressure Pois-

son equation, including Fast Fourier Transform (FFT) solvers, Conjugate Gradi-

ent (CG) solver, and Krylov subspace solver with algebraic multigrid precondi-

tioning.

The validity of the implicit SGS model has been demonstrated for a wide range

of increasingly complex flows, such as isotropic turbulence [71], plane turbulent

channel flow [69], passive-scalar mixing in a wide range of Schmidt numbers [72],

turbulent channel flow with periodic constrictions [73], zero-pressure gradient

boundary layer transition and turbulent boundary layer separation under strong

adverse pressure gradient [70]. All the results show excellent agreement with the

reference data from theory, DNS or experiments. The simplified version of ALDM

is accomplished to reduce the amount of computational operations. It performs

similarly to the ALDM without affecting the quality of the results [68]. All these

validation cases are carried out using the same modeling parameters optimized

from the isotropic turbulence at infinite Reynolds number, which indicates that

the implicit SGS using ALDM is insensitive to the modeling parameters and is

robust for a wide range of flows.

2.2 Conservative Immersed Interface Method

2.2.1 Motivation of immersed boundary methods

In LES of complex flows along complex geometries, large computational cost are

required to generate suitable body-fitted grids, and the accuracy of the discretiza-
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2.2 Conservative Immersed Interface Method

tion schemes deteriorate due to the limited grid smoothness and orthogonality.

The time-consuming preprocessing has two problems: to simplify and patch the

CAD geometry for surface mesh generation, and to improve the orthogonality and

smoothness of spatial grids always by solving partial differential equations. Al-

though overlapping orthogonal grids (Chimera grids) and multi-block techniques

for structured grids are used to deal with complex geometries, some difficulties

associated with conservative interpolation and information transformation across

grid interfaces are encountered. The grid quality of unstructured meshes dete-

riorates with increased geometrical complexity especially in the boundary-layer

regions, and the numerical truncation error can exhibit large local variations and

pollutes the effect of either implicit or explicit SGS models. In particular for

implicit LES approaches, where the spatial truncation error of the discretization

scheme functions as SGS model, regular meshes are desirable. When simulations

on moving boundaries are required, grid regeneration or deformation is neces-

sary, which makes the traditional body-conformal method much more complex

and inaccurate.

In order to decouple the grid generation with the complexity of the geometry,

and to maintain the accuracy of high order numerical schemes an alternative

approach combining the advantage of Cartesian mesh with the ability to deal

with complex geometries has been well developed in recent years [81, 123]. These

methods can simulate viscous flows with mapping of complex boundaries onto

the background Cartesian meshes that do not conform to the boundary of the

geometry. They are usually named according to the way to impose the boundary

condition, generally immersed boundary (IB) methods. They can automatically

generate underlying grids for complex geometries and are allowed for local grid

refinement. This approach can treat moving geometries, multiphase or multi-

material problems in a natural way while keeping the background grids fixed.

2.2.2 Brief review of IB methods

Immersed boundaries are generally not aligned with the grids, therefore, there are

two key issues with IB methods: the way to impose the boundary condition and

the grid refinement near the wall to resolve the near-wall region at high Reynolds

30



2.2 Conservative Immersed Interface Method

numbers. In most IB methods it is difficult to impose the boundary condition

directly and sharply as using body-conformal grid. Among various boundary

treatments, momentum forcing and Cartesian cut-cell methods are well devel-

oped and widely used. In the momentum forcing method, the complex object

is accounted for by prescribing an appropriate continuous or discrete body force

in the momentum equations. The discrete forcing method is easy to implement

and more stable, which is pioneered by Mohd-Yosuf [125] and is developed by

Fadlun et al. [49]. In this kind of method, the momentum forcing are realized

implicitly by reconstruction of the flow variables using interpolation or extrap-

olation method in the vicinity of IB. This can eliminate the stability constraint

and a delta distribution function of the continuous forcing methods as in works of

Peskin [136] and Goldstein et al. [62], hence it is more robust and can avoid the

artificial diffusion by the delta distribution function. Various linear interpolation

methods are used to reconstruct the velocity which base on the assumption that

the first off-wall grid points lie in the viscous sublayer. Therefore, these methods

are limited to laminar flow simulations and DNS or LES computations at low

to moderate Reynolds numbers [9, 49, 121, 185]. Although various multidimen-

sional and high order polynomial interpolation schemes are investigated, they are

keen to introduce wiggles and spurious extrema, and show no superiority over

linear interpolation at low to moderate Reynolds numbers[114]. All the momen-

tum forcing methods can not guarantee mass and momentum conservation near

the IB, which is crucial for viscous flow simulation, especially at high Reynolds

numbers. It is more challenging for LES to satisfy the requirement of mass and

momentum conservation and high-order accuracy near the IB.

In the Cartesian cut-cell method, rather than adding forcing terms to the

governing equations, the grid cells intersecting with the boundary are truncated

to conform to the local shape of the geometry, called cut cells. The Dirichlet

boundary condition can be directly adopted in the convective fluxes calculation on

immersed boundary, and the mass conservation can be naturally achieved in the

framework of the finite volume method. Difficulties encountered are viscous-flux

reconstruction on the boundary, arbitrary shape of the cut cells and the stability

constraint caused by very small cut cells, which need specific treatments. The

cell-merging method in 2D [186], cell-linking [100] and mass-redistributing [39]
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methods in 3D are formulated to address the stability constraint for viscous flow

simulation. Very recently, the conservative immersed interface method (CIIM)

using momentum-mixing procedure for small cut cells on complex geometries

[121] has been constructed to remedy the difficulties of previous methods and

can solve the stability problem, which is adopted here for its simplicity and high

order accuracy.

Another key issue for all the aforementioned IB methods is grid refinement

near the wall boundary, which can be done easily by body-conforming grids using

directional refinement. There are three levels of near-wall grid refinement. The

basic requirement is that the grid should represent the geometry well. This is

easy to accomplish near a smooth immersed boundary, but it becomes challenging

when the curvature of immersed boundary is high or has singularity, such as sharp

corners. The grid should be fine enough to accurately calculate the high gradient

of variables near the IB. This always requires grid refinement in the wall-normal

direction. At last, when DNS or LES are used, the grid should fine enough to

physically simulate the dynamics of small scales near the wall. This limits the

capability of the IB method in DNS or LES at high Reynolds numbers. Adaptive

mesh refinement [13], octree based methods [33], unstructured grid methods [12]

and local grid refinement [48] are established to refine local grids using different

data structures. Also, the IB method can be combined with curvilinear structured

grids [58, 150]. This makes the grid refinement near the immersed boundary easy,

but compromises the advantages of IB methods on Cartesian grids.

2.2.3 Realization of the CIIM

With CIIM, the surface of the configuration is described by a standard CAD

file using STL format. A signed wall-distance level-set function is computed on

Cartesian grids based on the geometry and its zero value corresponds to the im-

mersed interface. The use of level-set function makes CIIM easy to be extended to

moving boundaries, fluid-solid interaction and multi-fluid problems. The Carte-

sian grid cells are categorized by level-set values at their nodes, and fall into

three different groups: fluid cells, solid cells and cut cells containing both fluid

and solid. For fluid cells the momentum equations and pressure Poisson equation
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Figure 2.1: Flux calculation on a cut cell.

are solved using the same algorithm as in section 2.1.3. Solid cells are blocked

out in the computation. However, the cut cells as sketched in the Fig. 2.1 need

specific treatments, and the Eq. 2.17 is modified as

∂ui,j,k

∂t
+

1

Vi,j,k

∑

∂Ii,j,k

[
̂̃
F(ũN)− ν∇(u)] · n∆S +∇pi,j,k +Mi,j,k = 0. (2.35)

The control volume Vi,j,k immersed in the fluid is computed using the volume

fraction αi,j,k,

Vi,j,k = αi,j,k∆xi∆yj∆zk. (2.36)

The area of cell faces ∆S immersed within the fluid is obtained by the face

apertures Al,m,n, as sketched in Fig. 2.1,
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∆S =





Ai− 1

2
,j,k∆yj∆zk, west,

Ai+ 1

2
,j,k∆yj∆zk, east,

Ai,j− 1

2
,k∆xi∆zk, south,

Ai,j+ 1

2
,k∆xi∆zk, north,

Ai,j,k− 1

2

∆xi∆yj , back,

Ai,j,k+ 1

2

∆xi∆yj , front,

Γi,j,k, immersed interface,

(2.37)

The convective fluxes and diffusive fluxes are calculated at the face centers of cut

cells as with normal fluid cells, which allows the computation to use ALDM and

central discretization scheme without modification. The convective flux CΓi,j,k

across the immersed interface

CΓi,j,k
=
̂̃
F(ũN)|Γi,j,k

· nΓi,j,k (2.38)

can be directly calculated when the Dirichlet boundary conditions are used. It

is exactly zero when applying a no-slip boundary condition. The diffusive flux

DΓi,j,k
across the immersed interface can be calculated from the wall-shear stress

as

DΓi,j,k
= −ν∇(u)|Γi,j,k

· nΓi,j,k = τwΓi,j,k. (2.39)

For a rigid immersed interface the wall-shear stress can be expressed on a local

frame of reference as

τw = ν∇(u)|Γi,j,k
· n⊥. (2.40)

A linear approximation of the wall-normal velocity gradient is used to calcu-

late the wall-shear stress [121], as shown in Fig. 2.2. To implement the linear

approximation the wall-parallel velocities are required. Since the immersed in-

terface generally does not align with the cell faces these velocities have to be

interpolated from the background Cartesian grids. For this purpose trilinear in-

terpolation method is used. As mentioned before it is very hard to refine the mesh

near the boundaries having high curvature. The linear approximation has a large

error when the interpolation points are located outside of the viscous sublayer,

especially at high Reynolds numbers.
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Figure 2.2: Wall-parallel velocity interpolation.

For very small cut cells that do not contribute to the pressure Poisson equa-

tion, the impermeability condition of the interface can not be achieved by a

Neumann condition on the pressure, but by an acceleration of the wall-normal

velocity to satisfy the wall-normal momentum balance. This is accomplished by

a momentum-exchange term in the wall-normal direction

Mi,j,k = −
u⊥,i,j,k

∆t
. (2.41)

For small cut cells the time step is restricted due to the small cell size. It is hard

to obtain a stable solution using the time step calculated according to the full

cell size. To alleviate this constriction a conservative-mixing procedure proposed

by Hu et al. [78] is adapted for staggered grids. The mixing is carried out on the

small cut cells and its neighbors, so-called target cells in the fluid. The target cells

are determined from the interface-normal vector n⊥ = [n⊥,x, n⊥,y, n⊥,z]. There

are three target cells in two dimensions, as shown in Fig. 2.3, and seven target

cells in three dimensions. In the x direction, the conservative exchange of flow

properties between the small cell, say (i, j, k), and its target cells is calculated by

Xx
i,j,k =

βx
i,j,k

βx
i,j,kVi,j,k + Vtgt

[Vi,j,k(V q∗)tgt − Vtgt(V q∗)i,j,k], (2.42)
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Figure 2.3: Conservative mixing procedure.

where ‘tgt’ is the index of the target cells and q∗ is the mixed conservative quan-

tity, which can be the divergence of flux, the velocity or a scalar concentration.

And βx
i,j,k is the weight of mixing with the target cell in the x direction. In the

other directions the conservative exchange can be formulated in the same way.

The mixing weights of the seven target cells in three dimensions are defined as

βx
i,j,k = n2

⊥,xα
x
tgt

γ , βy
i,j,k = n2

⊥,yα
y
tgt

γ,

βz
i,j,k = n2

⊥,zα
z
tgt

γ , βxy
i,j,k = |n⊥,xn⊥,y|α

xy
tgt

γ ,

βyz
i,j,k = |n⊥,yn⊥,z|α

yz
tgt

γ
, βzx

i,j,k = |n⊥,zn⊥,x|α
zx
tgt

γ,

βxyz
i,j,k = |n⊥,xn⊥,yn⊥,z|

2/3αxyz
tgt

γ
. (2.43)

They are normalized subsequently in order to satisfy

βx
i,j,k + βy

i,j,k + ...+ βxyz
i,j,k = 1. (2.44)

The parameter γ > 1 is used to amplify the contributions of target cells with large

volume fractions. This can enhance numerical stability due to the stronger con-

tribution of target cells having large volume fractions. A small cell obtains each

conservative quantity Xi,j,k from its target cell in the corresponding direction,

36

Chapter1/Chapter1Figs/EPS/mixing.eps


2.2 Conservative Immersed Interface Method

which is exactly the same as the loss Xtgt of that target cell, hence conservation

is ensured.

When the mixing exchanges are determined for all small cells the solution q

is then obtained by

qi,j,k = q∗i,j,k +
1

Vi,j,k
(
∑

Xx +
∑

Xy + ...+
∑

Xx,y,z), (2.45)

where q∗ is the solution before mixing. The mixing is carried out before the final

pressure projection, therefore, the solution is divergence free after each time step.

In cut cells the pressure-correction Poisson equation is modified by the face

apertures of pressure cell as shown in Fig. 2.1. It can be written in discretized

form as ∑

∂Ωi,j,k

∇φ · n∆S =
1

∆t

∑

∂Ωi,j,k

u∗ · n∆S, (2.46)

where ∆S has the same form as in Eq. 2.37, while the face apertures are different

due to the staggered grids. The pressure gradients are calculated using the second-

order central scheme on the cell faces as normal fluid cells. An extra term ∇φ ·

nΓi,j,k comes from the immersed interface, which is zero under homogeneous

Neumann condition ∇φ · n = 0. The intermediate velocities at centers of cell

faces are used to calculate the divergence and corrected by the face apertures.

Another extra term u∗
Γi,j,k

·nΓi,j,k appears on the right-hand side of the equation,

and it has no contribution under the no-slip boundary condition.

Note that for fluid cells the volume fraction and face apertures are unity,

therefore the fluxes and divergence of fluxes can be uniformly computed in fluid

cells and cut cells. Hence, the solution procedure is as follows:

Step1 : Compute the level-set function using CAD geometry. Based on level-set

function calculate the volume fractions and face apertures.

Step2 : Calculate the convective and diffusive fluxes using ALDM and central

discretization scheme respectively. Then correct the fluxes using face aper-

tures. Obtain the divergence of fluxes using volume fractions after applying

the friction term.

Step3 : Perform the momentum-mixing procedure, and add the pressure gradi-
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ent terms. Then apply the momentum-exchange term for small cut cells.

Step4 : Solve the semi-discretization momentum equations using third-order

Runge-Kutta scheme to get the intermediate velocity.

Step5 : Solve pressure-correction Poisson equation with face-aperture correc-

tion.

Step6 : Update the velocity and pressure to the next time step.

This method has been introduced in Ref. [121] and is validated on several com-

plex turbulent flows, including the flow over a circular cylinder at ReD = 3900

and the flow along a periodic hill with massive separation. The results indicate

that this method is suitable for implicit LES using and exhibits second order

accuracy. The implicit LES using ALDM has been successfully implemented for

incompressible Navier-Stokes equations on three-dimensional block-structured,

body-fitted grids [74]. The CIIM is further compared with the body-fitted meth-

ods [122] to assess its accuracy. The assessment is carried out on the flow over

the same circular cylinder using comparable numerical resolution. The results

of both methods have similar accuracy for turbulence statistics and mean inte-

gral quantities comparing experimental reference data, which demonstrates that

CIIM is a feasible and efficient approach to simulate turbulent flows on complex

domains.

2.3 Adaptive Mesh Refinement method

At high Reynolds numbers the grid resolution near the wall is required to be high

enough to resolve the near-wall flow dynamics, especially in the wall layer. When

a single computational domain is used the grid refinement near the boundary

should be extended to the boundary of the domain, which increases the grid

resolution in all areas of the computational domain. Adaptive mesh refinement

(AMR) is adopted to refine the grids locally.

There are several crucial issues for AMR, such as the data structure, re-

fining/coarsening process and interface information communication. A pointer

chain is used to link one block to another. Each block is assigned a different
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integer number which corresponds to a pointer. For all blocks the integer number

is continuous. The topologies including two blocks with common block vertex,

common edge and common face, are explicitly established. This is different from

the traditional octree data structure to index blocks. When the loop over all

the blocks is required, there is no need to search tree branches but the pointer

chain or the sequence of the block numbers is looped. In each block, a structured

Cartesian mesh is used and its size is Nx × Ny × Nz. Every grid point can be

easily established using its integer index i, j, k in three directions. Therefore, the

same solver can be used for all blocks.

In the refinement process first a refinement criterion is checked. Based on

the criterion a block can be refined, coarsened or divided. The refinement level

of a new block is maintained correspondingly. When a block is refined, the

solution on the finer block is predicted from the old coarser block using high-

order conservative interpolation. If a block is coarsened, the solution on the

coarser block is restricted from the old finer block conservatively. If a block

is divided, the solutions on the sub-blocks are copied from the original block

directly. Second, the boundaries of the new blocks are reinitialized. The old

block is deleted from the block pointer chain, the new ones are added to it. The

global blocks are balanced to ensure that the difference of refinement levels of

two neighboring blocks is not large than one. At last, the topologies of the blocks

are reestablished. This process is looped until the required refinement criterion

is satisfied. The criterion could be the cut-cell size near the immersed interface,

a gradient of flow variables, or some specified regions.

The inner interfaces are communicated by sending and receiving buffer regions.

There are two different situations either the resolutions of two neighboring blocks

having a common face are the same or may differ. In the former situation flow

data in the sending-block buffer are copied to the sending buffer directly. If these

two blocks are on the same computational node, the receiving buffer points to

the sending buffer. If the sending and receiving blocks are on different nodes the

flow data of the sending buffer are sent to the receiving buffer using MPI. At last

flow data in the receiving buffer are copied to the receiving-block buffer. The

communication is accomplished now. This process is sketched in Fig. 2.4.

In the latter situation conservative interpolation has to be used when the flow
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Figure 2.4: Communication of two blocks having the same resolution.

data are communicated. In order to minimize the communication bandwidth, the

size of the sending and receiving buffer is the same as that of the coarser resolu-

tion of the two blocks. If the receiving block has finer resolution, the flow data

in the sending-block buffer are copied to the sending buffer directly, otherwise,

the flow data in the sending-block buffer are reconstructed on the sending buffer

using conservative interpolation. The receiving buffer obtains the flow data by

pointing to the sending buffer when both blocks are in the same computational

node, or by MPI when both blocks are in different nodes. Because the reso-

lution of the receiving buffer is coarse, when the receiving block is the coarse

one, the flow data in the receiving buffer are copied to the receiving-block buffer

directly, otherwise an interpolating buffer is required. The interpolating buffer

has the same resolution as the fine block, and the flow data are predicted using

conservative interpolation from the receiving buffer, then they are copied to the

receiving-block buffer. The communication is finished now. This procedure is

sketched in Fig. 2.5 for clarity. One should note that before the communication

between two blocks, a regularization is applied to fluxes at hanging nodes on the

fine side.

This interface communication method is very convenient for parallel imple-

mentation, and has been used in Ref. [121, 122] successfully with a large number

of blocks. The flow-field continuity is preserved across interface and second-order

accuracy is obtained.
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Figure 2.5: Communication of two blocks having different resolutions.

2.4 Boundary conditions

In practice a simulation is performed on a bounded flow domain. Therefore,

additional source terms arise at the boundaries of the computational domain when

a convolution filter applied explicitly. In the conventional mathematic framework

of LES the filtered Eqs. 2.3 become

∂u

∂t
+∇ · (uu) +

1

ρ
∇p− ν∇2u =

−

∫∫

∂Ω

G(x− ξ) [u(ξ)u(ξ) + p(ξ)− ν∇u(ξ)] · n(ξ)dS, (2.47a)

∇ · u = −

∫∫

∂Ω

G(x− ξ)u(ξ) · n(ξ)dS, (2.47b)

where n is the outward unit normal vector along the boundary ∂Ω of the compu-

tational domain Ω. In the additional boundary terms the filtered flow variables

can not be obtained, but have to be modeled, because they involve the non-filtered

flow variables. Therefore, it is difficult to construct a suitable boundary condition

for a well-posed problem. There are two possibilities to avoid this requirement.

The first one is considering that the filter width decreases as approaching the

boundaries such that the interaction term cancels out. As a consequence the

source term can be neglected and the basic filtered equations are the same as

Eqs. 2.3. The remaining problem is to define classical boundary conditions for

the filtered flow variables. The second possibility is filtering through the bound-
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Figure 2.6: Well-defined filtering and the approximate deconvolution at the
boundary.

ary. As a consequence, a layer exists along the boundary whose width is of the

order of the filter cutoff lengthscale, where the source term cannot be neglected.

This source term must then be explicitly computed, i.e. modeled.

In the framework of ALDM the top-hat finite-volume filter can be well-defined

locally when the buffer cells along the boundary are used, as sketched in the

Fig. 2.6. This results in the well-posed Eq. 2.17 on the boundary with well-

defined filtered and approximately deconvolved flow variables. Thus, the classical

boundary conditions for the filtered field can be used without modeling [47].

When the flow is simulated in a bounded computational domain the influence

of the exterior flow is accounted for by the boundary conditions. In the frame-

work of LES the subgrid scales are filtered out by the filtering operation and

the resolved motion are described by the resolved flow variables. Therefore, the

required information on the boundary is the resolved velocity and the influence

of the subgrid scales, i.e. the subgrid stress or the divergence of the subgrid

stress. The characteristics of the boundary conditions depend on the position

of the boundary and the flow state. When the boundary is in the laminar-flow

region the situation is simple and the mean velocity with the incoming turbu-

lent intensity is enough. If the boundary is in the transition region, besides the
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mean quantities and turbulent intensity, additional perturbations should be pro-

vided also. If the boundary is in the fully developed turbulent region, a turbulent

fluctuation field has to be provided.

When the boundary is in the turbulent region the resolved velocity is time-

dependent and exhibits multiple scales in space and time. Therefore, a consistent

velocity boundary condition is a function of space and time. This data should

provide correct first and second moments, a spectrum, and the phase information

between individual modes. In principle, matching the moments and the spec-

tra using stochastic methods is possible, whereas the specification of the phase

information is much more difficult [98]. The phase information relates to the

structure and shape of the resolved large scales, which strongly depends on the

type of the flow. On the other hand, the influence of the subgrid scales is also

difficult to be obtained or modeled, and it is usually neglected in practice. The

inflow boundary is crucial for the downstream flow evolution. Without phase

information inflow conditions cannot be expected to be accurate, and the flow

has to undergo an adjustment, during which turbulent eddies evolve, until cor-

rect turbulence structures are established. An intuitive solution is to place the

boundary into the laminar region, which means that a sufficiently large domain

is needed, and that the inflow has to be located far from the region of interest.

Turbulence arise naturally due to laminar-turbulent transition. This procedure

makes the computation very expensive due to the extremely long computational

domain, and in some situations, this procedure is not even an option, such as for

the flow in a short diffuser. The main effort of the inflow generation is to shorten

the developing/adjusting distance from the inlet to a streamwise station where

the fully developed turbulence with correct structures are well established. An-

other challenge is the wall boundary condition as highlighted in the last Chapter.

In the following sections, the inflow, outflow and wall boundary conditions will

be introduced and their implementations in the framework of ALDM and CIIM

are specified in detail.
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2.4.1 Inflow boundary conditions

Temporally developing flows, such as homogeneous isotropic decay, shear layers,

mixing layers and plane channels, employ periodic boundary conditions. When

spatially developing flows are considered, the specification of instantaneous tur-

bulent inlet boundary conditions is required. According to Keating et al. [98]

inflow generation methods can be classified into three groups: precursor simula-

tion, recycling/rescaling methods and synthetic turbulence.

The precursor simulation is carried out on an equilibrium flow. The required

inflow data for an LES are extracted from this precursor simulation. This method

has been successfully implemented in several LES [110, 140]. It has the advantage

that the extracted data represents exactly the large scales of the flow, thus there

is no or very short adjustment distance. It is easy to control boundary-layer

parameters such as friction coefficient, momentum thickness etc. However, it

has some obvious disadvantages. First, it requires much more computational

effort and large storage space. Second, it is restricted to some simple flows under

equilibrium [93, 113] and therefore lacks generality.

The recycling/rescaling method is a more robust technique as an extension

of the Spalart modification of periodic conditions [162, 164]. This method has

first been proposed by Lund et al. [113] for an auxiliary simulation of a spatially

developing boundary layer. The auxiliary simulation of a zero pressure gradient

boundary layer generates its own inflow conditions through a sequence of opera-

tions, where the instantaneous velocity field at a downstream station is rescaled

in the inner and outer regions separately according to different scaling laws. The

rescaled velocity profiles are reintroduced at the inlet. The recyling/rescaling

methods based on the formulations of Lund et al. [113] are probably the most ef-

fective and the less expensive ones to generate the inflow conditions for spatially

developing wall-bounded flows. However, this kind of methods still has some

drawbacks: an equilibrium state is required for application of scaling laws at the

inlet, the memory of the streamwise-periodic origin of the inflow may introduce a

spurious periodicity into flow direction [130], and there may be a strong influence

of the flow initialization [50].

Synthetic-turbulence methods generate a series of fluctuations with assigned
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moments and spectra from random sequences. The simplest procedure is to take a

mean velocity profile with superimposed random fluctuations. Due to the lack of

phase information the levels of this synthetic turbulence decay rapidly [101, 108].

An improved method using an inverse Fourier transform of a prescribed energy

spectrum is proposed by Lee et al. [109]. This method is limited to generate

periodic signals on an uniform mesh. An alternative for arbitrary inlet meshes is

accomplished by Klein et al. [101] and is particularly suitable for inhomogeneous

turbulence. Keating et al. [98] point out that even complex synthesization proce-

dures can lead to adjustment distances of order 20 times the turbulent boundary

layer thickness. To incorporate some information of turbulence structures, a syn-

thetic eddy method is proposed by Jarrin et al. [84] using analytical eddy struc-

tures having Gaussian shape function. A short adjustment distance is obtained

in the simulation of turbulent plane channel flow. Recently, an extension of the

original synthetic eddy method is proposed to account for the inhomogeneity of

the scales in the direction normal to the wall using elongated streamwise vortices

in the near-wall region and hairpinlike vortices in the logarithmic layer and wake

region [133]. It has been tested on an LES of a spatially developing turbulent

boundary layer, which shows that it is better than the original synthetic eddy

method of Jarrin et al. [84], and is comparable to the recycling/rescaling method.

The inflow boundary condition adopted here belongs to the recycling/rescaling

approach, but has some differences. First, target mean velocity and its fluctua-

tions are prescribed or scaled from the turbulence database or other computations

of the same type, assuming they obey the same scaling laws. The velocity and

its fluctuations are extracted from a plane downstream. Then the velocity fluc-

tuations are rescaled and reintroduced at the inlet. At last, mass conservation is

ensured. This procedure is described in the following in detail.

In implicit LES using ALDM, the resolved flow variables are well defined on

the boundary, therefore they can be applied as boundary conditions. The resolved

velocity can be decomposed into a mean part and a fluctuation part at the inlet

as

uN = 〈uN〉+ u
′

N
, (2.48)

which means that the required velocity can be obtained using its mean value and
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fluctuations. Even though the scaling laws are not expressed explicitly, the target

mean velocity and its fluctuation can be prescribed as

〈u〉t(yt/δt)

〈u〉δt
=

〈u〉d(yd/δd)

〈u〉δd
= fu

(y
δ

)
, (2.49)

〈u
′

〉t(yt/δt)

〈u〉δt
=

〈u
′

〉d(yd/δd)

〈u〉δd
= fu′

(y
δ

)
, (2.50)

where index t and d denote ‘target’ and ‘database’, respectively. δ denotes the

boundary layer thickness. fu and fu′ are the scaling laws for mean velocity and

fluctuations respectively. When the target boundary layer thickness and mean

velocities at the edge of the boundary layer are specified, the target mean velocity

and its fluctuation can be obtained accordingly.

At a plane P downstream, the instantaneous velocity up, mean velocity 〈u〉p

and mean second moments 〈uu〉p are extracted. Then the scaled velocity us is

computed using

us = 〈u〉t +

√
〈u′u′〉t
〈u′u′〉p

(up − 〈u〉p), (2.51)

where 〈u
′

u
′

〉p = 〈uu〉p − 〈u〉2p. Using this scaling, the structures of fluctuation at

the downstream plane P are introduced, defining the phase information. At last,

mass conservation is ensured using

uN = us − ubs + ubt, (2.52)

where b denotes the bulk velocity. It is defined as

ub =
1

Sinlet

∫∫

Sinlet

u · ndS, (2.53)

in which Sinlet is the area of the inlet plane, and n is the normal direction of this

plane. Three velocity components can be computed using the above procedure.

For pressure, the Neumann boundary condition is applied there.
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2.4.2 Outflow boundary conditions

The outflow boundary of the computational domain should be placed far enough

from the region of interest to eliminate contaminations. The convective condition

proposed by Orlanski for the problems governed by hyperbolic system of equations

[132] is widely used due to its good characteristics. It had been shown by Pauley

et al. [135] that for unsteady flows the convective condition at outlet is suitable

for moving structures out of the computational domain without severe effects

in the computational domain. The resolved velocity component u at outlet is

updated using
∂u

∂t
+ Uc

∂u

∂x
= 0, (2.54)

where the convection velocity Uc is loosely defined by different authors. It can be

either the maximum streamwise velocity, the mean streamwise velocity [108, 127]

at outlet or a local velocity [113].

Another option is to apply Neumann boundary conditions for velocity at outlet

using buffer cells. This method is often as good as convective condition. The

Dirichlet or Neumann boundary condition for pressure can be used at outlet.

2.4.3 Wall boundary conditions

In the simulation without wall model, a no-slip boundary condition is used. The

Neumann boundary condition for pressure ∂p/∂n is applied at the wall. Wall

modeling to approximate the wall boundary condition for coarse meshes and

turbulent flow is the subject of the next chapter.
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Chapter 3

Wall Modeling

3.1 Wall modeling overview

The main purpose of wall modeling is to approximate the wall layer (viscous sub-

layer and buffer layer) with a proper model to avoid the prohibitive resolution

requirements of wall-resolved LES. These models have to provide information

to the exterior LES, resulting in well established exterior turbulence dynamics.

However, near-wall turbulence details are not recovered by the wall-layer approx-

imation, such as laminar-turbulent transition.

Despite the fact that ALDM gives improved predictions of turbulence anisotropy

compared with common explicit SGS models [69], the fundamental problem of

having to resolve the near-wall region in turbulent flows is shared with all other

implicit or explicit LES approaches. This results in the high computational cost

to simulate wall-bounded flows at high Reynolds numbers. When the CIIM is

used with ALDM, on one hand, the position of the interpolation point is re-

quired to lie within the viscous sublayer, on the other hand, it is hard to use

an anisotropic mesh refinement method to get the required resolution near the

immersed interface on the Cartesian grids. Therefore, wall models are applied to

implicit LES using ALDM to reach high Reynolds numbers.

Wall models should use some information from exterior LES and feed back

some information to the exterior flow simulation, as sketched in Fig. 3.1. Follow-

ing the analysis in Chapter 1, a feasible way is to use wall-stress models to supply
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Figure 3.1: Sketch of wall modeling.

the wall-shear stress as an approximate wall boundary condition to the exterior

LES. A slip-wall boundary condition derived from the wall-shear stress can also

be enforced at the wall. Other concerns are the accuracy and computational cost

of a wall model. As the formulation of wall boundary conditions differs between

using body-conforming mesh and CIIM, respective wall-modeling frameworks are

introduced separately in the following.

3.2 Wall modeling on body-conforming grids

On body-conforming grids, it is straightforward to exploit the information from

the exterior LES. The information from wall models can be fed back in a natural

way. Since the wall conforms with the mesh velocity and pressure gradient at a

certain position xo of the LES can be obtained directly by one-dimensional in-

terpolation method. In a simulation with an unresolved wall-layer, the diffusive

flux at the wall cannot be accurately calculated by applying the usual no-slip

condition. Consequently, a wall stress model needs to provide a more physi-

cal wall-shear stress τwi, (i = 1, 3) in the two wall-tangential directions. These

stresses can be used directly to specify the wall diffusive flux without coordinate
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transformation, and the wall-normal velocity uw2 is set to zero,

µ
∂ui

∂x2

∣∣∣
x2=0

= τwi, (3.1)

uw2 = 0.

Another option is to apply a slip-wall boundary condition in wall-tangential

directions. The slip velocity can be derived from the wall-shear stress by a linear

friction approximation, while the wall-normal velocity is set to zero. Hence, in

this case the velocity boundary condition at the wall can be written as

uwi = u1i −∆x2τwi/µ, (i = 1, 3), (3.2)

uw2 = 0,

where uwi is the slip-velocity component at the wall, u1i is the wall-tangential

velocity component at the first off-wall point, and the ∆x2 is the wall distance of

the first off-wall point. The slip-wall approximation often tends to convergence

problems with the iterative pressure Poisson solver and is not as robust as wall-

shear stress boundary. Therefore, it is left out of further consideration. Three

different types of wall-stress model are further investigated. They are based on a

generalized wall function, a two-layer power law, and a simplified TBLE.

3.2.1 Generalized wall function

The basic idea of the generalized wall function [156] is to use a hybrid velocity

scale to formulate the scaling laws, which can take the effect of a pressure gradient

into account. The hybrid velocity scale uc is defined as

uc = uτ + up, (3.3)

where uτ and up are velocity scales defined by the wall-shear stress and the wall-

tangential pressure gradient, respectively,

uτ =

(
|τwi|

ρ

)1/2

, up =

(
ν

ρ

∣∣∣∣
dpw
dxi

∣∣∣∣
)1/3

. (3.4)
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In the inertial layer, the hybrid velocity scale is used to blend the standard

wall function
uoi

uτ
=

1

κ
ln
(uτy

ν

)
+ C, (3.5)

and the asymptotic solution of Tennekes and Lumley [174]

uoi

up
= α ln

(upy

ν

)
+ β. (3.6)

uoi is the wall-tangential velocity from the exterior LES, as sketched in Fig. 3.1.

The former is only valid for a zero-pressure-gradient boundary layer, and the

latter is derived under a large adverse pressure gradient and zero wall stress. The

resulting blended function based on the hybrid scaling velocity uc is

uoi

uc

=
τwi

ρu2
τ

[
1

κ

uτ

uc

ln
(
y+c
)
+ C1

]
+

ν

ρ

∂pw/∂xi

u3
c

[
α ln

(
y+c
)
+ β

]
, (3.7)

and the coefficient C1 is

C1 =
uτ

uc

[
1

κ
ln

(
uτ

uc

)
+ C

]
. (3.8)

where the constant coefficients κ, C, and α, β are listed in Tab. 3.1 and Tab.

3.2, respectively, and y+c = yuc/ν.

In the viscous sublayer, the wall function is scaled using uc as

uoi

uc

=
τwi

ρu2
c

y+c +
1

2

ν

ρ

∂pw/∂xi

u3
c

(y+c )
2, (3.9)

which also takes the effect of pressure gradient into account.

The scaling laws in the inertial layer Eq. 3.7, and in the viscous sublayer Eq.

3.9, are unified by introducing a turbulent stress model in the buffer layer similarly

as done by Spalding [165]. Therefore, the resulting generalized wall function

covers the viscous sublayer, buffer layer and inertial layer. But the analytic

formula is not very convenient for application, hence a curve-fitting version is
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used, which is written as

uoi

uc

=
τwi

ρu2
τ

uτ

uc

f1(y
+
τ ) +

ν

ρ

∂pw/∂xi

u3
c

f2(y
+
c ), (3.10)

where y+τ = yuτ/ν, f1 and f2 are the piecewise fitting functions. They are defined

as

f1(y
+
τ ) =





a1y
+
τ + a2(y

+
τ )

2 + a3(y
+
τ )

3 if y+τ ≤ 5;

b0 + b1y
+
τ + b2(y

+
τ )

2 + b3(y
+
τ )

3 + b4(y
+
τ )

4 if 5 < y+τ ≤ 30;

c0 + c1y
+
τ + c2(y

+
τ )

2 + c3(y
+
τ )

3 + c4(y
+
τ )

4 if 30 < y+τ ≤ 140;
1

κ
ln(y+τ ) + C if y+τ ≥ 140.

(3.11)

f2(y
+
c ) =





a2(y
+
c )

2 + a3(y
+
c )

3 if y+c ≤ 4;

b0 + b1y
+
c + b2(y

+
c )

2 + b3(y
+
c )

3 + b4(y
+
c )

4 if 4 < y+c ≤ 15;

c0 + c1y
+
c + c2(y

+
c )

2 + c3(y
+
c )

3 + c4(y
+
c )

4 if 15 < y+c ≤ 30;

α ln(y+c ) + β if y+c ≥ 30.

(3.12)

The coefficients of f1 and f2 are also listed in Tab. 3.1 and Tab. 3.2 respectively.

First, the velocity uoi and the wall-tangential pressure gradient are interpo-

lated from exterior LES at a certain wall distance y. Then the generalized wall

function is solved by a Newton-iteration method to obtain uτ , and the wall-shear

stress can be computed as

τwi =

{
uoi

uc

−
ν

ρ

∂pw/∂xi

u3
c

f2

}
ρu2

τ
uτ

uc
f1
. (3.13)

This model is denoted as GWFP hereafter.

3.2.2 Wener-Wengle function

A simple two-layer approximation, proposed by Werner and Wengle [182], is based

on an assumption of a power-law outside the viscous sublayer, interfaced with the

linear profile in the viscous sublayer. This model is chosen according to its good

performance in Ref. [171] and its simplicity without need for an iterative solver,
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Table 3.1: Coefficients of f1
κ C

0.41 5.0
a1 a2 a3
1.0 1.0E-02 -2.9E-03
b0 b1 b2 b3 b4

-0.872 1.465 -7.02E-02 1.66E-03 -1.495E-05
c0 c1 c2 c3 c4
8.6 0.1864 -2.006E-03 1.144E-05 -2.551E-08

Table 3.2: Coefficients of f2
α β
5.0 8.0
a2 a3
0.5 -7.31E-03
b0 b1 b2 b3 b4

-15.138 8.4688 -0.81976 3.7292E-02 -6.3866E-04
c0 c1 c2 c3 c4

11.925 0.93400 -2.7805E-02 4.6262E-04 -3.1442E-06

and reads as

u+ =

{
x+
2 , x+

2 ≤ 11.81,

A(x+
2 )

B, x+
2 > 11.81,

(3.14)

where A = 8.3 and B = 1/7. Werner and Wengle [182] proposed the use of spatial

average of the velocity distribution profile from the wall to the interpolation point

to obtain a mean velocity. This mean velocity |uoi| is used to calculate the wall-

shear stress written as

|τwi| =





2µ|uoi|
∆x2

, |uoi| ≤
µ

2ρ∆x2
A

2

1−B ,

ρ[1−B
2

A
1+B
1−B ( µ

ρ∆x2
)1+B

+1+B
A

( µ
ρ∆x2

)B|uoi|], |uoi| >
µ

2ρ∆x2
A

2

1−B ,

(3.15)

and the sign of the wall-shear stress is the same as for the interpolated velocity

uoi at point ‘o’. ∆x2 is the wall distance from the interpolation point ‘o’ to the

wall. This model is denoted as WW hereafter.
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3.2.3 Wall modeling based on simplified TBLE

In order to include more details of the near-wall flow dynamics and still to main-

tain high computational efficiency, the unsteady boundary layer equations

∂ui

∂xi
= 0, (i = 1, 2, 3) (3.16a)

ν
∂2ui

∂x2
2

=
∂ui

∂t
+

1

ρ

∂p

∂xi
+

∂uiuj

∂xj
, (i = 1, 3; j = i, 2), (3.16b)

are chosen as basis of wall-modeling equations, where x2 is the wall-normal direc-

tion, and xi(i = 1, 3) are wall-tangential. The momentum equations Eq. 3.16b

are integrated from the wall to the interpolation point x2o = δ in the wall-normal

direction, incorporating the Reynolds decomposition. The wall-shear stress can

be obtained from

τwi

ρ
= ν

∂ui

∂x2

∣∣∣
δ
− (uiu2 + u

′

iu
′

2)
∣∣∣
δ
−

∫ δ

0

(
∂uiui

∂xi

+
∂u

′

iu
′

i

∂xi

)dx2

−
∂

∂t

∫ δ

0

uidx2 −
∂p

∂xi
δ.

(3.17)

Hoffman and Benocci [75] pointed out that the sum of the two mean-convective

terms can be neglected, but it is not legitimate to neglect just one of them. Fur-

ther more, Wang and Moin [181] showed that the nonlinear terms are responsible

for an overprediction of the wall-shear stress on the flat section of an airfoil.

As they are not very significant in the near-wall layer, the nonlinear convective

terms are neglected to avoid the need for using an expensive iterative solver. The

Reynolds normal stresses are assumed be small, and a turbulent eddy viscosity

is used to relate the Reynolds shear stress to the mean-velocity gradient in the

wall-normal direction. The pressure is constant using zero wall-normal pressure

gradient under the boundary layer assumption in the wall-normal direction. The

wall-parallel pressure gradient is kept to account for its contribution to the near-

wall momentum balance. The time derivative is kept to account for the effect of

flow unsteadiness on the wall-shear stress. At last, based on the work of Refs.
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[34, 35, 36], the following simplified TBLE are returned

∂

∂x2

(ν + νt)
∂ui

∂x2

=
∂ui

∂t
+

1

ρ

∂p

∂xi

, (i = 1, 3). (3.18)

A mixing-length eddy-viscosity model with a damping function is adopted to

account for near-wall turbulence

νt = κx2uτ (1− e−x+

2
/A)2, (3.19)

where κ = 0.4, A = 19.0 and x+
2 = x2uτ/ν. The simplified TBLE, Eqs. 3.18 are

ordinary differential equations. Therefore they can be integrated as in Eq. 3.17

from x2o = δ down to the wall to give a closed-form expression of the wall-shear

stress components

τwi = µ
∂ui

∂x2

∣∣∣
x2=0

=
ρ

∫ δ

0

dx2

ν+νt

{
uoi −

1

ρ

∂p

∂xi

∫ δ

0

x2dx2

ν + νt
−

∫ δ

0

∫ x2

0

∂ui

∂t
dx

′

2

ν + νt
dx2

}
.

(3.20)

If the time derivative is eliminated, and as the turbulent viscosity νt only depends

on the friction velocity and the wall distance, the above equation can be inte-

grated numerically to obtain the final wall-shear stress. Otherwise, the velocity

distribution in the wall layer has to be constructed. Eq. 3.18 is discretized using

a second-order central scheme on an embedded stretched grids between the wall

and the interpolation point in the wall-normal direction. The no-slip boundary

condition is imposed at the wall. The upper boundary conditions for velocity and

pressure gradients are interpolated from the exterior LES. The resulting three-

diagonal linear equation systems are solved by a tridiagonal matrix solver. Note

that TBLE are solved at every Runge-Kutta substep, the velocities on the embed-

ded grids are updated by the Runge-Kutta method of the time-derivative term.

This model is denoted as TBLE hereafter.
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3.3 Wall modeling with CIIM

In the framework of CIIM, the boundary in general does not conform to the

background Cartesian mesh, and the wall stress cannot be used as wall flux

directly without tensor transformation. Sondak and Pletcher [161] introduced

a procedure to perform a transformation of the stresses from the generalized

coordinate system ξ to the Cartesian coordinate system x. The adopted standard

tensor transformation is written as

ταβ =
∂ξα
∂xi

∂ξβ
∂xj

τij , (3.21)

where α and β represent the components of the geodesic coordinate, and i and

j are the components of the Cartesian coordinate. In three dimensions, a 6 × 6

coordinate-transformation matrix needs to be inverted to obtain the stresses τij

in Cartesian coordinates. This approach is rather expensive and can introduce

significant numerical errors when performing the coordinate transform.

In very few sources, several ways are proposed to implement wall models using

immersed boundary methods. In a preliminary investigation on the hydrofoil at

high Reynolds number [175], the filtered Navier-Stokes equations are solved down

to the second off-wall grid points near the IB, and the velocities at the first off-wall

grid points are reconstructed by solving the thin boundary layer equations only

keeping the diffusion term, called equilibrium-stress-balance model, in the wall-

normal direction. Only the improved mean velocities are presented in comparison

with those of coarse LES using the IB method. In an application to the same

hydrofoil by Cristallo and Verziccoin [40], the same simplified thin boundary layer

equations are solved to provide the LES with a wall-shear stress as an approximate

boundary condition, and the filtered Navier-Stokes equations are solved down to

the first off-wall grid points. There is no detail given on how the wall-shear

stress is implemented. It is stated that this particular implementation is better

than that of Ref. [175], without further validation. Choi et al. [37] have used

a power law function to interpolate the velocities in the wall-normal direction,

which is claimed to be suitable for flow simulations at high Reynolds numbers.

Recently, a detailed investigation has been carried out for the simulation of plane
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turbulent channel flow using IB method on both Cartesian and curvilinear grids

by Roman et al [149]. A linear interpolation method and the logarithmic law

are chosen to reconstruct the local wall-normal and wall-tangential velocities at

the first off-wall grid points, according to different nondimensional wall distance.

A RANS-like eddy viscosity is constructed at the cell faces between the first off-

wall cell and its next neighbors to apply the wall-shear stress through a turbulent

diffusive flux. The results show that to use only a velocity-reconstruction near the

IB is insufficient and leads to a wrong mean-velocity profile. A RANS-like eddy

viscosity is necessary and crucial for a proper mean velocity prediction. The mean

velocity and RMS velocities are reproduced well through a proper parametrization

of the viscous flux. However, this method is not suitable for general flows because

of the underlying logarithmic law assumption and difficulties in associated with

the dependence of viscous flux reconstruction on the wall distance. Almost all

these methods use wall models to reconstruct the velocity near the IB, which is

consistent with the discrete-forcing IB method in the finite-difference framework.

However, this leads to violation of the divergence-free constrain of the velocity

field, and the satisfaction of the wall boundary condition is not straightforward.

Rather than applying the wall-shear stress directly, the wall-shear force as Eq.

2.39 is computed from the wall-shear stress τw provided by a wall model. This

force is added to momentum equations to include the effect of the wall layer on

the exterior LES. It also provides the diffusive flux at the immersed interface for

the CIIM. This method is consistent with the underlying finite volume method

and can be easily and accurately implemented.

To calculate the wall-shear stress, the local wall-normal vector n and wall-

tangential directions ti(i = 1, 3) should be defined. The wall-normal vector is

obtained by the normalized gradient of the level-set function. Since the wall-

shear stress is not known, the wall-tangential directions can not be defined by

the directions of the main axes of the wall-shear stress. But one wall-tangential

direction t1 is defined by projection of one axis of the Cartesian coordinate along

the wall-normal direction onto the local wall-tangential plane. The other t3 is

obtained by the cross product of the wall-normal and the first wall-tangential

vectors. The interpolation point ‘o’ having a certain wall distance d is defined

along the wall-normal direction in the fluid. Its coordinate xo can be expressed

57



3.3 Wall modeling with CIIM
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Figure 3.2: Interpolation for wall modeling with CIIM.

as

xo = xw + nd, (3.22)

where xw is the coordinate of the projection of the cut cell center on the wall, as

shown in Fig. 3.2. Grid points around the interpolation point are identified for

interpolation. It has to be noted that the velocity components and pressure gradi-

ents should be interpolated separately due to the background staggered Cartesian

grids, which increases the interpolation effort. A linear least square interpolation

method, a trilinear interpolation method and a pseudo-Laplacian weighted aver-

aging method, are used to perform the interpolation, which are given in the App.

A. After the required velocity and pressure gradient are interpolated from the

exterior LES, either one of the wall models described in the last section 3.2 can

be used to obtain the wall-shear stresses τwi in the wall-tangential direction ti

accordingly. The wall-shear force Fw can be computed from

Fw = (Fwx, Fwy, Fwz) = V −1

i,j,k (t1τw1 + t3τw3)Γi,j,k, (3.23)

where Fwx, Fwy and Fwz are the three components of wall-shear force in the

Cartesian coordinate system. They can be added to the momentum equations as

source terms directly.
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Chapter 4

Analysis and Validation

The canonical plane Turbulent Channel Flow (TCF) and the flow through a

backward-facing step according to the experiment of Jovic and Driver [91] are

chosen to investigate the wall models. TCF is the most basic wall-bounded flow

of practical relevance in the historical study of the turbulence. Many experi-

ments have been performed to validate scaling laws of turbulent flows, and many

turbulence modeling methods have been tested for this canonical flow. For the

backward-facing step the flow is comparably complex including turbulent sepa-

ration, recirculation bubble, reattachment and flow recovery. It is a suitable case

for validating the capability of a wall model to account for flow separation, and

it has been extensively considered in the development of wall modeling. In the

following sections, first, wall models are investigated on body-conforming meshes.

Subsequently they are studied in conjunction with CIIM to validate the findings

with respect to the body-conforming-mesh results and to extend the framework

of wall modeling to deal with complex geometries.

4.1 Wall modeling for canonical flows on body-

fitted meshes

In this section, the characteristics of coarse LES without wall modeling are in-

vestigated, then the wall models are applied at the wall under original ALDM

formulation which employs a van Driest damping function to one of the model
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parameters, Eq. 2.31, denoted as VD. In conjunction with wall models this near-

wall treatment is found to be unsuitable and a modified formulation based on

coherent structures is developed for wall modeling at high Reynolds numbers.

The influence of coupling position between TBLE and exterior LES is studied.

The parameters of TBLE and the grid resolution of exterior LES are also investi-

gated. At last the wall models are investigated on the backward-facing step using

multi-block body-fitted structured meshes to check their ability to reproduce the

complex separated flow.

4.1.1 Investigations on TCF

The computational domain is 2πH × 2H × πH in streamwise, wall-normal and

spanwise directions, respectively, where H is the half channel height. The flow

is driven by a constant streamwise pressure gradient to sustain constant mass

flux. Periodic boundary conditions are applied in the streamwise and spanwise

directions. A no-slip boundary condition is used at the wall when the wall models

are not adopted. Otherwise, the wall-shear stress obtained from the wall model

is imposed at the wall as diffusive flux when computing the cell flux balance. The

time step is dynamically adapted to satisfy a Courant-Friedrichs-Lewy (CFL)

condition with CFL = 1.0 for all cases. The pressure Poisson equation is solved at

every Runge-Kutta substep. Fast Fourier transform is employed in the spanwise

and streamwise directions, and a direct tridiagonal matrix inversion is used in

the wall-normal direction. The simplified version of ALDM is adopted due to its

improved computational efficiency [68].

4.1.1.1 Coarse LES without wall modeling

Simulations are performed at Reτ = 395 on several coarse meshes. The grids are

equally distributed in the streamwise and spanwise directions. In the wall-normal

direction, the grid points are equally distributed or stretched by a hyperbolic

tangent function

yj = −
H

tanh(CG)
tanh

(
CG − 2CG

j

Ny

)
, (4.1)
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Table 4.1: Cases of coarse LES without wall modeling
case Nx ×Ny ×Nz CG y+1 −dP/dxH 〈τw1〉 −〈τ sgs12 〉|0
LES CR1 16× 16× 16 HOMO 24.7 8.488e-3 1.221e-3 7.267e-3
LES CR2 16× 16× 16 1.5 8.8 3.606e-3 2.085e-3 1.521e-3
LES CR3 32× 32× 32 HOMO 12.3 6.339e-3 2.057e-3 4.282e-3
LES CR4 32× 32× 32 1.5 4.0 3.336e-3 2.976e-3 0.360e-3
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Figure 4.1: Comparisons of mean flow variables scaled by bulk velocity for coarse
LES and DNS [126] at Reτ = 395.

where CG is the stretching factor. All the cases are detailed in Tab. 4.1, where

Nx×Ny×Nz is the resolution in the streamwise, wall-normal and spanwise direc-

tions respectively, and HOMO means equidistant mesh in wall-normal direction.

On coarse meshes, since the wall-shear stresses are heavily under predicted, mean

velocity and Reynolds stresses are nondimensionalized using the bulk velocity.

The results are shown in Fig. 4.1 and are compared with those of DNS [126]. In

cases LES CR2 and LES CR4 with wall-normal grids stretched near the wall,

the flows are much better predicted than in the cases LES CR1 and LES CR3

having the same resolution. The behavior of the mean velocity is similar, with

underpredicted near-wall values, but overpredicted values near the channel cen-

ter, see Fig. 4.1(a), due to the constraint of constant mass flux. Therefore, the

mean velocity gradient of the exterior LES is larger than that of DNS, which can
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Figure 4.2: Comparisons of mean velocity and κ for coarse LES and DNS at
Reτ = 395. Lines labeled as in Fig. 4.1(a).

be observed in Fig. 4.2, where the local von Kármán constant is defined as

κ =
1

y+du+/dy+
. (4.2)

In this equation “ + ” means that the mean velocity is scaled by friction velocity

uτ , or the wall distance is scaled by wall units ν/uτ . It can be seen from the

result of DNS that there is no pronounced logarithmic region with constant κ at

this relatively low Reynolds number. However, in the coarse LES, the profiles

of κ are much more flat and exhibit an equivalent logarithmic region. All κ are

underpredicted except for LES CR4, as shown in Fig. 4.2(b).

The behavior of the Reynolds stresses is much different. In cases with stretched

wall-normal grids, the Reynolds stresses are underpredicted, except for the stream-

wise normal stress. In cases with wall-normal homogeneous grids, Reynolds

stresses are all heavily overpredicted, as shown in Fig. 4.1(b). This means that

the resolved turbulence production on coarse meshes is overpredicted, as shown in

Fig. 4.3(a), which is consistent with their overpredicted shear stress and velocity

gradient of exterior LES. The nondimensional resolved production is defined as

P+ = −〈u v〉+
du+

dy+
. (4.3)

In case LES CR2, the resolution is globally coarser than in case LES CR3,
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different cases as in Fig. 4.1(a).

Figure 4.3: Comparisons of turbulence production and streamwise shear stress
balance for coarse LES.

however, the former has better predicted mean velocity and Reynolds stresses,

since its wall distance of first off-wall grid point is smaller as presented in Tab.

4.1. Hence, it can be deduced that the position of the first off-wall grid point is

very important for mean-flow variable prediction.

In order to analyze the streamwise momentum balance the following mean-

streamwise momentum equation of TCF is used:

∂

∂y

〈
−u v + ν

∂u

∂y
− τ sgs12

〉
−

dP

dx
= 0. (4.4)

If the above equation is integrated from the wall to a certain wall-normal position

y, the following equation can be obtained:

〈
−u v|y + u v|0 + ν

∂u

∂y

∣∣∣
y
− τw1 − τ sgs12 |y + τ sgs12 |0

〉
=

dP

dx
y. (4.5)

At the wall, under no-slip boundary condition, 〈u v〉|0 = 0. At the channel center

y = H , under the symmetry constriction, −〈u v〉|H = 0, 〈ν∂u/∂y〉 |H = 0 and
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−〈τ sgs12 〉|H = 0, then Eq. 4.5 becomes

〈τ sgs12 〉|0 − 〈τw1〉 =
dP

dx
H, (4.6)

which means the pressure gradient is balanced not only by the wall shear stress,

but also by the residual subgrid-shear stress on the wall τ sgs12 |0. This residual

subgrid stress denotes the modeling errors of subgrid-stress model on the wall.

When the flow is highly resolved or the wall model is used, the normal relationship

between the wall-shear stress and the pressure gradient, −〈τw1〉 = dP/dxH , can

be obtained. In coarse cases LES CR1 and LES CR3 having very large near wall

grid cells, the wall-shear stress is heavily underpredicted. However, the residual

subgrid-shear stress is so large that in order to maintain the constant mass flux, a

large favorable pressure gradient is required, as shown in Tab. 4.1. The smaller is

the wall-shear stress, the larger is the SGS-modeling error. Although the pressure

gradient is large, it can be observed that in cases LES CR1 and LES CR3 the

flows resemble those at lower Reynolds numbers, because the wall-normal position

of maximum Reynolds normal stresses is shifted further away from the wall than

those of DNS, as shown in Fig. 4.1(b). This means that some large artificial flow

structures are created near the wall and drain much energy from the mean flow.

The balance of the streamwise stresses is shown in Fig. 4.3(b), which indicates

that for different cases the balance of modeled- and resolved-shear stress is crucial

and the wall-shear stress is very important for streamwise momentum balance.

Therefore, it can be concluded that the correct wall-shear stress is crucial to

drive the required flow and that a well-modeled near-wall subgrid stress is also

very important for the flow near-wall streamwise momentum balance. When the

wall-layer flow dynamics are not resolved well large SGS-modeling error will be

observed, which drive the flow into a unphysical state resembling a physical flow

at much lower Reynolds number.

4.1.1.2 Coarse LES with wall models using van Driest damping

The results of coarse LES in the last subsection show that a wall model is required

to account for the near-wall region and to provide a correct wall-shear stress in the

momentum balance. In this section, wall models are used to supply the crucial
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Table 4.2: Cases of coarse LES using wall modeling
case Reτ Nx ×Ny ×Nz CG NTBLE y+c1
wm1 395 16× 16× 16 HOMO 20 24.7
wm2 590 16× 16× 16 HOMO 20 36.9
wm3 950 16× 16× 16 HOMO 20 59.4
wm4 2, 000 16× 16× 16 HOMO 20 125.0
wm5 25, 000 32× 32× 32 HOMO 30 1,562.5
wm6 100, 000 32× 32× 32 1.5 30 1,019.3

wall-shear stress, and the van Driest damping Eq. 2.31 is used near the wall in

the SGS model. This damping function also influences the near-wall momentum

balance through the implicitly modeled subgrid stress.

All three wall models are used to supply the wall-shear stress as an approx-

imate boundary condition to exterior coarse LES at friction Reynolds numbers

from Reτ = 395 up to 1.0 × 105. The boundary conditions are the same as for

coarse LES without wall modeling in the streamwise and spanwise directions. The

resolutions of all the cases are detailed in Tab. 4.2. In cases wmi(i = 1 ∼ 5), the

grids are equally distributed in three directions. In case wm6, the Reynolds num-

ber is so high that the wall-normal grids are stretched near the wall using Eq. 4.1,

and the grids in the other directions are equally distributed. The mean-velocity

profiles of GWFP, WW and TBLE are shown in Fig. 4.4, 4.5, and 4.6, respec-

tively. It can be seen that GWFP overpredicts wall-shear stress in cases wm1∼2 at

relatively low Reynolds numbers, although this generalized wall function can take

the viscous sublayer and buffer layer into account. In cases wm3∼5, it behaves

better as expected, since the coupling points lie in the logarithmic region. Till

Reτ = 2000, the mean-velocity profiles exhibit a long logarithmic region from first

off-wall points. However, at higher Reynolds numbers, the mean-velocity profiles

have mismatched logarithmic region and exhibit a near-wall artificial layer, espe-

cially for case wm6, when the grids are stretched in the wall-normal direction. For

the WW model, the mean velocity profiles in Fig. 4.5 are all underpredicted due

to the overpredicted wall-shear stress. However, they also exhibit well-established

logarithmic region at relatively low Reynolds numbers and curved mean-velocity

profiles at higher Reynolds numbers as GWFP. The results of TBLE also have

the same tendency of mean velocity profiles, while the difference is that TBLE
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Figure 4.4: Mean velocity comparisons of cases wmi(i = 1 ∼ 6) using GWFP
from bottom to top, the velocity profiles are shifted upward by (i−1)5 for clarity.
The solid lines: from bottom to top DNS at Reτ = 395 [126], Reτ = 590 [126],
Reτ = 950 [42], Reτ = 2, 000 [77] and the last two 1

0.41
ln(y+) + 5.2; solid lines

with symbols: VD; dashed lines with symbols: CS.

can supply well-predicted wall-shear stress in the range of all Reynolds numbers.

This means that TBLE can model different flow regions better than the other

two models. In case wm1, since the coupling point is in the buffer region and

the logarithmic mean velocity starts from that point (this will be verified in the

following subsection 4.1.1.4), the outer part of the mean velocity is somewhat

underpredicted.

The local κ of cases wm4∼6 are shown in Fig. 4.7, since the mean-velocity

profiles of these models behave similarly, only the results of TBLE are shown. It

is obvious that, at several near-wall grid points, κ is heavily underpredicted, that

is the gradient of mean velocity is too large. In the outer part, κ is overpredicted.

From the underpredicted values to overpredicted ones, κ increases gradually away

from the wall without obvious logarithmic region even in case wm6 at very high

Reynolds number.

Since tendency of κ is similar using three wall models which feed back dif-

ferent wall-shear stresses, it can be deduced that this phenomenon is caused by

SGS-modeling error, especially at high Reynolds numbers. In order to assess
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Figure 4.5: Mean velocity comparisons of cases wmi(i = 1 ∼ 6) using WW from
bottom to top, lines labeled as in Fig. 4.4.
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Figure 4.6: Mean velocity comparisons of cases wmi(i = 1 ∼ 6) using TBLE
from bottom to top, lines labeled as in Fig. 4.4.
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Figure 4.7: Local κ of cases wmi(i = 4 ∼ 6) using TBLE, symbols denote
different cases as in Fig. 4.4. Solid line: DNS at Reτ = 2, 000 [77]; solid lines
with symbols: VD; dashed lines with symbols: CS.

the different behavior at low and high Reynolds numbers and the difference be-

tween the homogenous and stretched grids, the balance of viscous, resolved and

subgrid stresses is analyzed, as shown in Fig. 4.8, using TBLE wall model. At

relatively low Reynolds numbers upto Reτ = 2000 in Fig. 4.8(a), the viscous

stress is large at the first off-wall grid points, and decreases when the Reynolds

number increases. Meanwhile, as the nondimensional wall distance y+c1 of the

coupling position increases, the effect of damping function diminishes according

to Eq. 2.31, hence, the subgrid stress increases (the implicit subgrid dissipation is

approximately proportional to σi,j,k for homogeneous isotropic turbulence [69]).

The resolved stress does not change much if the grid resolution is the same. This

means that the subgrid stress becomes important in the near-wall momentum

balance as the Reynolds number increases. At higher Reynolds numbers, the

effect of viscous stress becomes trivial in the momentum balance, while the effect

of modeled subgrid stress becomes large, especially at several near-wall cells, as

shown in Fig. 4.8(b). As the large energy-containing structures depend weakly

on Reynolds number outside of the wall layer, the resolved stresses increase as the

grid resolution increases, comparing case wm4 with cases wm5∼6 in Fig. 4.8(b).

In case wm6, although the wall-normal grid is stretched near the wall, the y+c1 is
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Figure 4.8: Streamwise shear stress balance of case wmi(i = 1 ∼ 6) for TBLE,
symbols denote different cases as in Fig. 4.4. Solid line: total shear stress;
solid line with symbols: viscous stress; dashed line with symbols: subgrid stress;
dashdotted line with symbols: resolved shear stress.

still so large that the damping function cannot take the effect of the existence of

the wall layer into account. On the other hand, the smaller grid size near the wall

leads to an increase of the modeled implicit subgrid stress according to Eq. 2.30.

The subgrid stress exhibits large values in several near-wall cells, which extracts

energy from the mean flow and causes artifacts of the mean velocity profile in

this region. From this analysis, one can concluded that an optimal method to

alleviate the excessive subgrid dissipation near the wall is to use a physics based

model for obtaining subgrid dissipation through a compensation of the implicit

modeling parameter σ.

Although the prediction of the mean velocity has some deficiency at high

Reynolds numbers, the Reynolds stresses are predicted reasonably well using the

TBLE model at low and high Reynolds numbers, as shown in Fig. 4.9. The results

of GWFP are almost the same as those of TBLE, except in the case wm1, due to

its overpredicted wall-shear stress. Since wall-shear stresses are overpredicted in

all cases of WW, a large discrepancy of the resolved Reynolds stresses is observed.

Therefore, the results of these two models are not shown.

69

Chapter3/Chapter3Figs/EPS/TCF/VDvsCS/TBLE/tau12lowReVDTBLE.eps
Chapter3/Chapter3Figs/EPS/TCF/VDvsCS/TBLE/tau12highReVDTBLE.eps


4.1 Wall modeling for canonical flows on body-fitted meshes

0 100 200 300 400

0

2

4

6

8

 

 

<u
>+

y+

(a) Resolved Reynolds stresses comparison of
case wm1

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

<u
iu

j>
+

y/H

(b) Resolved Reynolds stresses comparison of
cases wmi(i = 4 ∼ 6)

Figure 4.9: Resolved Reynolds stresses comparisons of case wmi(i = 1, 4 ∼ 6)
for TBLE with those of DNS at Reτ = 395 [126] in Fig. 4.9(a) and DNS at
Reτ = 2000 [77] in Fig. 4.9(b). Symbols denote different cases as in Fig. 4.4.
Solid line: DNS; solid line with symbols: VD.

4.1.1.3 Coherent-structures based formulation

Motivated by the above analysis of the shear stress balance in the last subsection,

an adaptive coefficient formulation of σi,j,k based on coherent structures [102, 103]

is used to compensate the modeled subgrid stress without using a wall-damping

function. Although the wall layer is not resolved and the detail of coherent

structures is unavailable, it is the hope that large structures in the outer layer,

such as the logarithmic layer, can be captured on a relatively coarse mesh, and

that physically driven subgrid dissipation can be obtained. The detail of the

formulation is presented in App. B. It is validated for TCF at Reτ = 395 and

Reτ = 590 on a relatively coarse mesh with y+1 around 1. The mean velocity and

resolved Reynolds stresses are predicted well, see APP. B.

This formulation of σi,j,k is adapted for wall-modeling LES. The results of

cases wm1 and wm4 are shown in Fig. 4.10. It can be seen in Fig. 4.10(a) that

the mean velocities no longer exhibit an artificial logarithmic region from the

first off-wall grid point, their slopes are lower than those of DNS, and the wall-

shear stresses are overpredicted using TBLE. The reason causing these results

can be observed in Fig. 4.10(b) clearly. The coherent-structures based model
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and wm4 with DNS at Reτ = 395 [126] and
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(b) Streamwise shear stress balance of cases
wm1 and wm4. Line styles denote different
stresses as in Fig. 4.8. Symbols denote differ-
ent cases: square: wm1; circle: wm4.

Figure 4.10: Mean velocity and streamwise shear stress balance of cases wm1

and wm4 for CS without modification using TBLE.

returns smaller modeled subgrid stresses at the first off-wall grid point due to

unphysical coherent structures there. For the balance of the streamwise shear

stress, the wall-shear stress from the wall model is overpredicted according to

Eq. 4.6. Therefore, an alternative to compensate this near-wall problem is using

σi,j,k values at the second off-wall points to avoid the unphysical structures at

the first off-wall grid points. This is based on the physical consideration that the

resolved structures in logarithmic layer extend directly towards the wall without

being altered by details of the wall layer. This coherent-structures based model

is denoted as CS hereafter.

The mean-velocity profiles of cases wmi(i = 1 ∼ 6) using CS combined with

three wall models are also shown in Fig. 4.4, 4.5 and 4.6, respectively. All these

results show that the mean velocities are predicted just as well as using VD

at relatively low Reynolds numbers because of the domination of viscous stress,

whereas they are much improved at higher Reynolds numbers, expecially for the

case wm6, with stretched wall-normal grids, since the effect of modeled subgrid

stress becomes large in the near-wall momentum balance. Another observation is

that the effect of wall models cannot be improved by the improved subgrid mod-

eling, i.e. GWFP overpredicts wall shear stress at low Reynolds numbers and
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case wm4 using VD and CS with those of
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(b) Resolved Reynolds stresses comparison of
cases wmi(i = 4 ∼ 6) using CS with those of
DNS[77].

Figure 4.11: Resolved Reynolds stresses comparisons of case wmi(i = 4 ∼ 6)
using TBLE. Symbols denote different cases as in Fig. 4.4. Solid lines: DNS;
solid lines with symbols: VD; dashed lines: CS.

WW overpredicts wall shear stress at all Reynolds numbers. On the other hand,

it also confirms that even for advanced wall models satisfactory results cannot be

obtained if the subgrid model is insufficiently accurate, especially near the wall.

The subgrid modeling error should be taken into consideration when construct-

ing a wall model for coarse LES. An improved wall model cannot eliminate the

descrepancy caused by the SGS-modeling error.

The local κ of cases wmi(i = 4 ∼ 6) using TBLE are compared with that

of DNS at Reτ = 2000 and results of VD in Fig. 4.7. The values of κ at the

first off-wall points are almost the same, while they extend more quickly to high

values away from the wall using CS than using VD, and exhibit longer logarithmic

region. In the outer layer the κ become smaller using CS and approach that of

DNS.

Reynolds stresses of case wm4 using CS and VD are compared with that of

DNS in Fig. 4.11(a) using inner scaling for clarity. It can be observed that

the Reynolds normal stresses are larger near the wall and smaller around channel

center than those of VD. The Reynolds shear stress is almost the same. Therefore,

the Reynolds stresses of CS is somewhat better than those of VD. For cases

wmi(i = 4 ∼ 6) using CS, the Reynolds stresses are compared with those of DNS

72

Chapter3/Chapter3Figs/EPS/TCF/VDvsCS/TBLE/RS2kvsTBLE.eps
Chapter3/Chapter3Figs/EPS/TCF/VDvsCS/TBLE/RS3CSTBLE.eps


4.1 Wall modeling for canonical flows on body-fitted meshes

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

 <
12

>/
u

y/H

(a) Streamwise shear stress balance of case
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Figure 4.12: Streamwise shear stress balance comparisons of cases wmi(i = 5, 6)
using VD and CS with TBLE. Line styles denote different stresses as in Fig. 4.8.
Symbols denote different cases: circle : VD; uptriangle: CS.
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Figure 4.13: Local turbulence production of cases wmi(i = 4 ∼ 6) using TBLE,
symbols denote different cases as in Fig. 4.4. Solid line: DNS at Reτ = 2, 000
[77]; solid lines with symbols: VD; dashed lines with symbols: CS.
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Figure 4.14: Three different coupling positions.

Table 4.3: Cases with different coupling positions
case Nx ×Ny ×Nz y+ci −dP/dxH 〈τw1〉 −dP/dxH − 〈τw1〉
R1C1 16× 16× 16 24.7 3.219e-3 3.228e-3 -0.009e-3
R1C2 16× 16× 16 49.4 3.089e-3 3.123e-3 -0.034e-3
R1C3 16× 16× 16 98.8 3.360e-3 3.426e-3 -0.066e-3
R2C1 32× 32× 32 12.3 3.620e-3 3.629e-3 -0.009e-3

at Reτ = 2000 in outer scaling. At y/H > 0.3, the stresses scale well with the

friction velocity. With increasing Reynolds number, the magnitude of Reynolds

normal stresses at the first off-wall points increases, and is much larger than those

of VD, as shown in Fig. 4.9(b). This can be attributed to the larger resolved

shear stress using CS than using VD near the wall, as shown in Fig. 4.12 for cases

wmi(i = 5 ∼ 6), and is confirmed by the nondimensional turbulence production

shown in Fig. 4.13.

From the comparison of the streamwise shear-stress balance in Fig. 4.12, one

can see that the resolved shear stress is larger near the wall and that the modeled

subgrid stress becomes smaller, while the viscous stress remains almost the same

when CS is used. This trend confirms the fact that mean-velocity artifacts are

caused by the overpredicted subgrid stress at several near-wall grid points.
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(b) Streamwise shear stress balance. Line
styles denote different stresses as in Fig. 4.8.
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Figure 4.15: Influence of coupling position on mean velocity and streamwise shear
stress balance.

4.1.1.4 Coupling position and parameters of the TBLE model

The effect of coupling position and modeling parameters of TBLE are investigated

in detail in this subsection. Four cases using three coupling positions, as sketched

in Fig. 4.14, are simulated on two grids with different resolutions at Reτ = 395,

which are detailed in Tab. 4.3. ‘R’ refers to resolution, and ‘C’ to coupling

position. The coupling positions reach from the buffer layer to the outer layer,

according to the nondimensional wall distance. The results of the driving-pressure

force, wall-shear stress and residual subgrid stress defined in Eq. 4.6 are also given

in Tab. 4.3. When the TBLE model is used the residual subgrid stress in all cases

are small and do not exceed 2% of the total driving-pressure force, which indicates

that the effect of wall modeling compensates the SGS-modeling error, especially

near the wall, through the momentum balance. A negative residual subgrid stress

indicates turbulence production.

The results of mean-velocity profiles and streamwise shear-stress balance are

shown in Fig. 4.15. It can be observed that the mean velocity exhibits a loga-

rithmic region and starts from the first off-wall point, even when the coupling is

far from the wall as in case R1C3 or is near the wall in the buffer region as in

case R2C1. The mean velocity of exterior LES is constrained by the velocity of

the inner TBLE at the coupling position. In case R1C3 the coupling position is
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Figure 4.16: Effect of eddy-viscosity model on mean velocity and κ of coarse LES
with TBLE model at Reτ = 2000. Solid lines: DNS; Solid lines with symbols:
exterior LES; Dashed lines with symbols: inner TBLE. Circle: eddy1; uptriangle:
eddy2; downtriangle: eddy3.

so far from the wall that the TBLE without convective terms cannot predict the

outer part of the TBLE-region well. However, when the coupling position is too

near the wall the wall-shear stress is overpredicted, as in R2C1, which leads to

an underprediction of the mean velocity in wall units. From the comparison of

the streamwise shear stress balance it can be observed that when the coupling

position coincides with the first off-wall point the resolved shear stresses exhibit

the same tendency as approaching the wall, compare R1C1 and R2C1. When

the coupling point does not lie within the cell where the wall-shear stress is fed

back the subgrid stress becomes small in the wall-adjacent cell, even though the

viscous stresses are almost the same in these cases, compare R1C1, R1C2 and

R1C3.

Therefore, it can be concluded that the coupling position should lie at the

bottom of the logarithmic layer, neither far into the logarithmic layer, nor near

in the buffer or viscous sublayer. It is better to locate the coupling point within

the first off-wall cell, where the wall-shear stress is fed back to the exterior LES

by a wall model.

To assess the effect of modeled dynamics of the wall layer better three different

eddy-viscosity models for TBLE are investigated, using the same computational
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Figure 4.17: Effect of eddy-viscosity model on Reynolds shear stress and turbu-
lence production for coarse LES with TBLE model at Reτ = 2000. Lines labeled
as in Fig. 4.16.

condition as for case wm4 in Tab. 4.2. The first eddy viscosity model is Eq. 3.19,

denoted as eddy1. The second one is the Baldwin-Lomax model [11] which uses a

two-layer formulation. The inner layer is based on the friction velocity scale, the

outer layer is based on the velocity scale deduced from the vorticity. This model

is denoted as eddy2. The last one is the formulation of E. Balaras et al. in Ref.

[10] denoted as eddy3

νt = (κy)2|S|D, D = [1− exp(−(y+/A)3)], (4.7)

where |S| is the magnitude of the resolved strain at the coupling position, pro-

viding the velocity scale, and A = 25.

The comparisons of the mean-velocity profiles of inner TBLE and exterior

LES are shown in Fig. 4.16(a). It can be observed that mean velocity of the

inner TBLE using eddy1 is best. Eddy3 produces a too small wall-shear stress

and fails to model the inner TBLE well. Eddy2 produces almost the same wall-

shear stress as eddy1, although the outer part of TBLE is not predicted well. The

exterior mean velocity exhibits a well-reproduced logarithmic region. From the

comparison of local κ in Fig. 4.16(b), it can be seen that the exterior LES have

almost uniform behavior. This is confirmed in Fig. 4.17 by the resolved shear

stress and nondimensionalized turbulence production. It also can be observed in
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Figure 4.18: Effect of von Kármán constant κ in TBLE on mean velocity and
local κ for coarse LES with TBLE model at Reτ = 2000. Solid lines: DNS;
Solid lines with symbols: exterior LES; Dashed lines with symbols: inner TBLE.
Circle: K01; uptriangle: K04; downtriangle: K08.

Fig. 4.17(a) that eddy-viscosity models eddy2 and eddy3 produce shear stress

that approaches the resolved one at the coupling positions due to the different

velocity scales based on the exterior LES in eddy-viscosity formulation.

The above analysis indicates that a key issue for a wall model is to provide

the correct wall-shear stress, and that the exterior LES is not very sensitive to

the details of near-wall turbulence modeling.

The effect of von Kármán constant is investigated for the eddy-viscosity model

eddy1. Simulations are carried out as for the case wm4 in Tab. 4.2. Three

values κ = 0.1, 0.4, and 0.8 are used, which are denoted as K01, K04 and K08,

respectively. From a comparison of mean-velocity profiles of inner TBLE and

exterior LES in Fig. 4.18(a) it can be seen that a larger κ corresponds to a larger

wall-shear stress, while the exterior LES also exhibits well-predicted logarithmic

region for different eddy-viscosity models, indicted by local κ in Fig. 4.18(b). In

case K01 the local κ is smaller than for the other two cases using a larger von

Kármán constant. The difference of the wall shear stress is large, which causes

the flow dynamics at the first off-wall points of exterior LES to be much different.

It also results in a large turbulence production and a viscous shear stress as shown

in Fig. 4.19 at first off-wall point. Through the balance of the streamwise shear
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(a) Turbulence production. Solid lines: DNS;
Solid lines with symbols: exterior LES.

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

 <
12

>/
u

y/H

(b) Streamwise shear stress balance. Line
styles denote different stresses as in Fig. 4.8.

Figure 4.19: Effect of von Kármán constant κ in TBLE on turbulence production
and streamwise shear stress balance for coarse LES with TBLE model at Reτ =
2000. Circle: K01; uptriangle: K04; downtriangle: K08.

stress the subgrid stress is also different.

Therefore, it can be concluded that κ in TBLE mainly affects the wall-shear

stress. Through the much different wall-shear stresses the flow dynamics of the

exterior LES is also affected, mainly at the first-off wall point.

4.1.1.5 Effect of grid resolution

The grid resolution of the exterior LES is investigated in this subsection. Al-

though a grid convergence study can not be carried out as with traditional RANS,

we need to check whether the resolved part of the flow is improved when the res-

olution increases in the context of wall modeling. Three cases with different

resolutions are considered at Reτ = 2000 using TBLE, as shown in Tab. 4.4. The

results of driving pressure force, wall shear stress and residual subgrid stress are

also shown in the table. For all these three cases, the residual subgrid stress is

very small, which indicates that the flows are well established with different grid

resolutions.

The results of mean velocity and local κ are compared in Fig. 4.20. As

the resolution increases, the first off-wall point approaches the wall, but it is

still outside of the buffer layer. The well established logarithmic regions extend
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Table 4.4: Cases with different resolutions at Reτ = 2000
case Nx ×Ny ×Nz y+c1 −dP/dxH 〈τw1〉 −dP/dxH − 〈τw1〉
R1 16× 16× 16 125 2.061e-3 2.055e-3 0.006e-3
R2 32× 32× 32 62.5 2.039e-3 2.033e-3 0.006e-3
R3 48× 48× 48 41.7 2.043e-3 2.044e-3 -0.001e-3
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Figure 4.20: Effect of resolution of exterior LES on mean velocity and local κ
with TBLE model at Reτ = 2000. Solid lines: DNS; Solid lines with symbols:
exterior LES; Circle: R1; uptriangle: R2; downtriangle: R3.
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(a) Turbulence production. Solid lines: DNS;
Solid lines with symbols: exterior LES.
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(b) Streamwise shear stress balance. Line
styles denote different stresses as in Fig. 4.8.

Figure 4.21: Effect of resolution of exterior LES on turbulence production and
shear stress balance for coarse LES with TBLE model at Reτ = 2000. Circle:
R1; uptriangle: R2; downtriangle: R3. Arrows point to the direction increasing
resolution.
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towards the wall and leave the outer part unchanged, which is indicated clearly

by the local κ in Fig. 4.20(b). It can also be observed that κ is not exactly

constant with increasing resolution, but approaches the DNS.

The resolved-turbulence production also approaches that of DNS near the wall

when the resolution is increased. The outer part is improved a little although it

is still underpredicted, as shown in Fig. 4.21(a). This can be attributed to the

increased resolved shear stress, as shown in Fig. 4.21(b). By the streamwise

shear-stress balance the modeled subgrid stress decreases, when the resolution

increases. And the viscous stress becomes large when the first off-wall point

approaches the wall.

From the above results we can see that the resolved part of the turbulence

increases as the resolution increases in the context of wall modeling. As long as

the requirement of wall modeling is satisfied consistent results can be obtained.

4.1.2 Investigation of backward-facing step flow

The considered computational domain extends in streamwise direction to 40H ,

where H is the step height, including a section of 10H upstream of the step. The

height is 6H at the outlet, the spanwise width is 3H , and an expansion ratio

is 1.2, as shown in Fig. 4.22. The computational domain is divided into three

blocks at the step, which are discretized by 192 × 32 × 24 cells, with 48 cells

upstream of the step and 8 cells in the step. In the streamwise direction the

grids are refined near the location of the step. The recycling inflow technique and

the outflow boundary condition as described in section 2.4.1 are applied in the

streamwise direction. The recycling length is more than 5 times of the boundary

layer thickness at the inlet. A symmetry boundary condition is used at the upper

boundary. A periodic condition is used in the spanwise direction. At the wall,

alternatively a no-slip condition (LES resolution not resolving the near-wall flow)

and three different wall models are used. The resolution of the locally embedded

TBLE is 20 for all cases, and the grids are stretched near the wall. The coupling

position at first off-wall point is about y+c1 = 50, based on the local friction velocity

at inlet. These cases are denoted as LES CS, WM GWFP , WM WW and

WM TBLE, respectively. In all cases, the pressure Poisson equation is solved
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Figure 4.22: Sketch of the backward-facing step.

Table 4.5: Reattachment position and the size of secondary separation bubble
case xr/H (Cf = 0) xr/H (χ = 0.5) xs2/H × ys2/H
LES CS 5.40 5.40 0.75× 0.70
WM GWFP 5.65 5.65 0.30× 0.35
WM WW 5.81 5.81 0.60× 0.50
WM TBLE 7.40 5.80 N/A

using a fast Fourier transform in the spanwise direction, and a two-dimensional

BiCGStab iterative solver for the other directions. The simulation is carried out

for 10 flow-through times until the statistical steady state is reached. Statistics

are collected during the last 6 flow-through times.

4.1.2.1 Global flow quantities

As the Reynolds number ReH = 5100 based on the step height is relatively low,

the results of the original VD and of CS are indistinguishable. Therefore, only

the results obtained using CS are presented. The reattachment length xr/h of

these four cases indicated by the location of zero mean friction coefficient and

the backward-flow-time ratio χ = 50% at the first off-wall points are shown in

Tab. 4.5. In the cases LES CS, WM GWFP and WM WW both criteria are

equivalent because the mean-wall stress is calculated directly from the velocity

at the first off-wall point. In case WM TBLE, the wall-shear stress is calcu-

lated from the velocity at the first off-wall point of the embedded TBLE, and the

back-flow-time ratio is calculated from the velocity at the first off-wall point of

the exterior LES. This difference is partially responsible for the rather large dis-

crepancy. These reattachment lengths are all quite different from the experiment

xr/h = 6.0 ± 0.15 [91]. The predicted reattachment length strongly depends on
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Figure 4.23: Global flow fields comparison of coarse LES and wall models down-
stream of the step. From bottom to top: WM LES, WM GWFP , WM WW
and WM TBLE.

the boundary layer upstream of the step and on the effective dissipation in the re-

circulation region. In the case LES CS the boundary layer upstream of the step

is not predicted correctly due to the coarse resolution. In wall-modeling cases,

although the outer part of incoming boundary layer is more accurate (see below),

the wall model is still insufficient for an accurate prediction of the recirculation

region.

The DNS of Le et al. [108] shows that a second recirculation occurs at the

lower corner of the step and its size is 1.76H × 0.8H in streamwise and ver-

tical directions. For coarse LES without wall modeling and for wall-modeling

cases the sizes of the secondary-separation bubble xs2/H × ys2/H are also shown

in Tab. 4.5. The largest one is observed in case LES CS, while in the wall-

modeling cases it becomes smaller, and there is no secondary-separation bubble

in case WM TBLE, as compared in Fig. 4.23. Its size is much different in

cases WM GWFP and WM WW . In WM TBLE the main recirculation is

strong and extends all the way to the step, a similar behavior has been reported

in Ref. [25] for all kinds of wall models used there and for coarse LES without

wall model. These observations support the conclusions that the occurrence of

the secondary-recirculation bubble rather depends on the SGS-modeling quality

than on the grid resolution and is very sensitive to the wall model. It also shows

that the wall models are unable to correctly recover such effects.

83

Chapter3/Chapter3Figs/EPS/BSTEP/body_fitted/separation.eps


4.1 Wall modeling for canonical flows on body-fitted meshes

-5 0 5 10 15 20
-4

-2

0

2

4

6

8

 

x/h

C
f 

10
3

(a) Friction-coefficient comparison

0 5 10 15 20 25 30

-0.05

0.00

0.05

0.10

0.15

0.20

 

 

C
p

x/h

(b) Pressure-coefficient comparison

Figure 4.24: Friction- and pressure-coefficient comparisons of experiment,
coarse LES and wall models. Square symbol: EXP [91]; Solid line: LES CS;
dashed line: WM GWFP ; dashdotted line: WM WW ; dashdotdotted line:
WM TBLE.

The friction- and pressure-coefficient distributions

Cf =
τw

1

2
ρU2

0

, Cp =
p− p0
1

2
ρU2

0

, (4.8)

are compared in Fig. 4.24(a) and Fig. 4.24(b), respectively, where p0 is the ref-

erence pressure taken at x/H = −5.1 upstream of the step. U0 is the upstream

reference velocity at x/H = −3.05, defined following the experiment [91], which

is also used to scale the mean velocity and Reynolds stresses. From the Cf dis-

tribution, it can be seen that Cf is strongly underpredicted in the case LES CS,

as expected. At x/H = −3.05 upstream of the step the boundary layer develops

under the influence of a weak favorable pressure gradient. The Cf upstream of

the step is predicted well by the TBLE model, while GWFP and WW overpredict

the wall-shear stress as for the simulations of TCF. In the recirculation region all

wall models fail to recover the correct Cf . In cases WM GWFP and WM WW ,

the wall shear stress is underpredicted and has positive values near the step,

which is consistent with the observed small secondary-separation bubble. In case

WM TBLE in the front part of the recirculation a weak favorable pressure gra-

dient causes the wall friction become positive. In the rear part, the overpredicted

adverse pressure gradient results in a negative Cf farther downstream than in the
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experiment. Therefore, it can be deduced that in the embedded TBLE there is a

secondary-separation bubble, however, the positive wall-shear stress can not drive

the mean flow in the exterior LES to reproduce a secondary-separation bubble.

It can be concluded that the wall friction is dominated by the pressure gradient

when using the simplified TBLE, and that the prediction deficiency may be re-

lated to the neglected convection terms. In the recovery region Cf is predicted

well by TBLE, and is slightly overpredicted by GWFP, but is heavily overpre-

dicted by WW, which is also similar to the results of the TCF computations at

low Reynolds numbers.

As shown in the Cp distribution, the pressure recovers more quickly in the wall-

modeling cases than in LES CS. The pressure of the rear part of the recirculation

is lower in the wall-modeling cases than in LES CS, which indicates stronger

recirculations in the former cases. However, downstream of the position x/h = 14

the pressure coefficients are almost the same for all cases, except for WM WW .

Although the wall-shear stress is heavily overpredicted in this case, the recovery

of the pressure is reasonably accurate compared with the experiment.

It can be learned from the comparison of the global flow quantities that the

secondary flow is much more sensitive to a wall model than the main flow features,

and different wall models result in much different wall-shear stress due to different

modeled near-wall flow dynamics.

4.1.2.2 Mean-velocity profile and Reynolds stresses

The mean velocities and Reynolds stresses are compared in Fig. 4.25 and 4.26

at six streamwise stations. At station x/H = −3.1 upstream of the step the flow

resembles a developed turbulent boundary layer under a weak favorable pressure

gradient. In the wall-modeling cases the mean streamwise velocities and Reynolds

stresses are well predicted outside of the wall layer at this station. The mean

vertical velocity is not well predicted in all cases at all positions. In LES CS the

mean steamwise velocity is underpredicted near the wall but overpredicted away

from the wall. The position of the maximum streamwise Reynolds normal stress

is shifted farther away from the wall, which resembles flow at lower Reynolds

number such as the results for coarse LES of TCF without wall modeling. The
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Figure 4.25: Mean velocity comparisons of experiment, coarse LES and wall
models. Lines labeled as in Fig. 4.24.

other two Reynolds stresses are predicted well.

At the location x1/h = 4.0, in the recirculation bubble the maximum mean

backflow velocity is underpredicted in LES CS, which is consistent with its too

short reattachment length and slow pressure recovery. For the wall-modeling

cases the coupling positions are approximately at the locations of the maximum

backflow velocity. Beneath those locations the turbulence production in the real

flow is very small [2]. The mixing-length eddy-viscosity model using Eq. 3.19,

however, introduces a rather strong turbulence production in the TBLE and fails

to represent this kind of flow. The other two wall models provide too small wall-

shear stress as shown in Fig. 4.24(a). Although the three wall models behave

much differently the differences of the mean velocity profile and Reynolds stresses

are small.
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At reattachment and further downstream the prediction of mean streamwise

velocities and Reynolds stresses is generally improved by wall models, except at

the far-downstream stations. It can be seen that in the wall-modeling cases the

flow recovers too quickly after the reattachment, as shown in Fig. 4.25(a) and

4.26(a). In the rear part of the recovery region, although the pressure gradient

is almost zero, the boundary layer is far from well-developed [91, 108]. An inner

boundary layer develops near the wall, and the outer flow is still affected by the

evolution of the free shear layer that has experienced a strong adverse pressure

gradient. The mixing length and eddy viscosity are much larger than the one

obtained using Eq. 3.19 with κ = 0.4 [90]. This fact results in an underprediction

of the wall-shear stress using TBLE, as in Fig. 4.24(a). Thus, the flow recovers

too fast with an overpredicted mean velocity. And this can also explain that the

overpredicted wall-shear stress in case WM WW results in an improved pressure

and mean-streamwise-velocity predictions in the recovery region.

Even the very simple WW model can improve the prediction of the mean

flow quantities. The mean velocity and Reynolds stresses are not very sensitive

to the wall-shear stress provided by different wall models. The secondary flow

features are much more sensitive to near-wall modeling. Compared with GWFP

and WW TBLE can reproduce more flow dynamics, including the effects of pres-

sure gradient on the near-wall momentum balance and the near-wall turbulence,

however, it prevents the development of the secondary-separation bubble. In dif-

ferent flow regions, the requirement of the wall modeling is different, and all three

wall models fail to reproduce the separation process accurately.

4.1.3 Conclusions regarding wall modeling on body-fitted

meshes

From the above investigation of the canonical TCF and flow along the backward-

facing step the following can be learned for coarse-mesh LES and wall modeling.

For coarse LES without wall modeling large residual subgrid modeling errors re-

sult in the near-wall relatively large cells since the dynamics of the wall layer

cannot be resolved. The wall-shear stress is under predicted in both types of

flows, as expected. When wall models are applied the flows are much improved
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Figure 4.26: Reynolds stress comparisons of experiment, coarse LES and wall
models. Lines labeled as in Fig. 4.24
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4.2 Wall modeling for canonical flows with CIIM

concerning the mean flow features and near-wall momentum balance up to mod-

erately large Reynolds numbers. As the Reynolds number increases the modeled

subgrid stress becomes much more important. The near-wall subgrid modeling

error leads to a large discrepancy of the mean flow quantities near the wall. This

modeling error is almost independent of wall models and cannot be improved by

them. Even for improved subgrid modeling the characteristics of wall models are

not effected. Therefore, the near-wall modeling errors of subgrid modeling and

wall modeling should be distinguished and diminished separately. As feedback of

a wall model the wall-shear stress is much more crucial for obtaining reasonable

physical flows. However, modeling parameters in wall models have less effect on

the exterior LES, except at the first off-wall grid points. In TCF, the TBLE

performs best within the Reynolds-number range, and GWFP behaves well at

large Reynolds numbers, while WW always overpredicts the wall-shear stress.

In the much more complex backward-facing step case, three wall models act

in the attached-flow region as in TCF, while significant differences are observed

in the recirculation region. Although WW overpredicts wall friction before the

step and after the reattachment, it results in a better secondary-flow features and

mean-velocity profiles in the recovery region compared with GWFP and TBLE.

Therefore, it is not obvious which wall model is superior to the others. All three

wall models do not lead to satisfactory results for the massive separation.

4.2 Wall modeling for canonical flows with CIIM

As the main intention is to use wall models in conjunction with implicit LES

and the conservative immersed interface method for complex geometries, it is

sensible to test this combination first on these two simple configurations, TCF

and backward-facing step.

4.2.1 Turbulent channel flow using CIIM

First, a channel flow at Reτ = 395 using TBLE is considered. The physical

domain is 2πH × 2H × πH and is immersed in a computational domina of size

2πH × 2.375H × πH , with the near-wall cells cut, as sketched in Fig. 4.27.
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Figure 4.27: Computational domain and immersed interfaces of TCF. Thick
solid lines: immersed interfaces.
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Figure 4.28: Comparisons of mean velocity and Reynolds stresses of coarse LES
using TBLE with CIIM at Reτ = 395. Solid lines: DNS; solid lines with symbols:
exterior LES.

The resolution is 32× 40× 32 in three directions respectively. Periodic boundary

conditions are applied in the streamwise and the spanwise directions, and the wall

model is used at both immersed interfaces. The nondimensional wall distance of

the coupling position is y+c = 47. And the CS formulation is used.

The mean velocity compared with that of DNS [126] is shown in Fig. 4.28(a).

Since the wall-shear stress is underpredicted the scaled mean velocity is over-

predicted. Besides, it can be observed that the mean velocity at the cut cell

is large than the expected logarithmic values as in body-fitted case. From the

Reynolds stress comparison in Fig. 4.28(b), the Reynolds stress components are
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Figure 4.29: Turbulence production and streamwise shear stress balance of
coarse LES using TBLE with CIIM at Reτ = 395.

all overpredicted in the cut cell. This is confirmed by the turbulence production,

as shown in Fig. 4.29(a). By analysis of streamwise shear-stress balance in Fig.

4.29(b), it is evident that the mean resolved-shear stress is abnormal in the cut

cell, and the modeled subgrid stress becomes positive there. This means that

the modeled shear stress does not extract energy from the mean flow, but injects

energy into the mean flow. The reason is the artificial momentum mixing at the

wall that is employed to small cut cells. This phenomenon occurs at all relatively

low Reynolds numbers upto Reτ = 950. At higher Reynolds numbers the wall

stress and mean flow quantities are predicted better as will be presented in the

following.

To limit the contamination of the momentum mixing near the cut cells a finer

grid resolution 48 × 48 × 48 in three directions is used for three high Reynolds

numbers, Reτ = 2000, 25000 and 100000. The grids are equally distributed.

The boundary conditions are the same as the case at Reτ = 395. The coupling

position is a vertical-cell size away from the wall.

Three wall models are all evaluated. The mean velocity profiles and Reynolds

stresses are compared in Fig. 4.30. The GWFP performs as well as on a body-

fitted mesh at these large Reynolds numbers, as shown in Fig. 4.30(a) and Fig.

4.30(b). At Reτ = 25000 and 100000 the wall-shear stresses are slightly underpre-
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Figure 4.30: Comparisons of mean velocity and Reynolds stresses of coarse
LES using wall models with CIIM. Solid lines: DNS at Reτ = 2000; solid lines
with symbols: exterior LES; circle: Reτ = 2000; uptriangle: Reτ = 25000;
downtriangle: Reτ = 100000.
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Figure 4.31: Comparisons of Reynolds stress and streamwise shear stress balance
of coarse LES using TBLE with CIIM. Symbols denote different cases as in Fig.
4.30.

dicted, which results in overprediction of mean velocities in wall units. Reynolds

stresses are predicted well, but do not show Reynolds dependence near the wall

as in Fig. 4.11(b) using body-fitted grids. The WW still overpredicts wall-shear

stress at all Reynolds numbers in Fig. 4.30(c) as body-fitted cases in Fig. 4.5.

However, the overprediction becomes smaller with inreasing Reynolds number.

This is similar to the behavior of GWFP in the framework of CIIM. Although

the scaled Reynolds stress is predicted well using the outer length scale, as shown

in Fig. 4.30(d), the flows exhibit a much larger friction Reynolds numbers due to

the overpredicted wall-shear stress.

The TBLE performs much better than GWFP and WW concerning the mean

velocity profiles, as shown in Fig. 4.30(e). It can be seen in Fig. 4.31(a) that

the local κ is overpredicted at first off-wall grid point, and that this tendency is

almost the same at these three high Reynolds numbers. This can be attributed

to the uniform artificial momentum mixing. The Reynolds-stress comparison in

Fig. 4.30(f) shows that the profiles at two higher Reynolds numbers are almost

the same, while the values at Reτ = 2000 is small. The streamwise shear-stress

balances in Fig. 4.31(b) show oscillations of the resolved shear stress and the

modeled subgrid stress. This can explain the Reynolds stress oscillation in several
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Figure 4.32: Partial computational domain of the backward-facing step using
CIIM. Thick lines: immersed interface.

near-wall cells.

From the above analysis, it can be found that the performance of GWFP and

WW depends on Reynolds number. Although TBLE performs much better, the

flow dynamics in several near-wall cells are also affected by the momentum-mixing

procedure, which causes a Reynolds stress oscillation in each case, independent

of the particular wall model.

4.2.2 Backward-facing step using CIIM

To test the full approach for a moderately complex geometry the backward-facing

step is considered. Compared to the turbulent channel flow additional compli-

cations are introduced with respect to wall-modeling formulation and flow dy-

namics. With respect to the former the wall-normal direction is not continuous

and changes abruptly in the corners, which poses a difficulty for the underlying

level-set representation of the wall and for defining unambiguous wall-tangential

directions. With respect to the latter the challenge lies in the problem of separa-

tion process.

In the computation using CIIM the computational domain size is 40h ×

6.5h × 3h in the streamwise, vertical and spanwise directions, respectively. The

step is immersed into the computational domain and does not collapse with

computational-grid lines, as partially sketched in Fig. 4.32. The resolution is

192 × 44 × 24 which is comparable with the boundary-conforming case using

the same grid refinement near the step. The same boundary conditions as in
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Table 4.6: Reattachment position and the size of the secondary-separation bubble
using CIIM.
case xr/H (cf = 0) xr/H (χ = 0.5) xs2/H × ys2/H
IB GWFP 5.03 5.80 N/A
IB WW 4.88 5.75 N/A
IB TBLE 7.0 5.55 N/A
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Figure 4.33: Friction- and pressure-coefficient comparisons of experiment and
wall models using body-fitted girds and CIIM. Square symbol: EXP [91]; solid
line: WM TBLE; dashed line: IB GWFP ; dashdotted line: IB WW ; dash-
dotdotted line: IB TBLE.

the boundary-conforming case are used, except at the wall, where the wall-shear

stresses from the wall-model are imposed by wall-shear force using CIIM. The cou-

pling position is a vertical-cell size away from the wall, corresponding to y+c = 37

based on the friction velocity at the inlet. The cases using GWFP, WW and

TBLE are denoted as IB GWFP , IB WW and IB TBLE, respectively.

The global flow features of the reattachment length and the secondary-separation

bubble of wall-modeling cases indicated by two different criteria are shown in Tab.

4.6. An obvious observation is that the two criteria are no longer equivalent in the

cases IB GWFP and IB WW unlike for the body-fitted cases. This is caused

by two facts. On the one hand, as the coupling position does no longer coincide

with the first off-wall grid point, the velocities used in the wall models are in-

terpolated using pseudo-Laplacian weighted interpolation method as detailed in

App. A. On the other hand, for the momentum-mixing procedure the criterion
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Figure 4.34: Mean velocity comparisons of experiment and wall models using
body-fitted girds and CIIM. Lines and symbols labeled as in Fig. 4.33.

based on the percentage of forward-flow time is no longer true at the first off-wall

grid points. All the separation lengths indicated by the zero wall friction become

smaller than in the body-fitted cases. Another obvious result is that there is no

secondary separation bubble for all three cases. It can deduced that the mo-

mentum mixing contaminates the near-wall flow dynamics at this relatively low

Reynolds number.

The friction and pressure coefficients are defined as in Eq. 4.8, and the same

reference values as in experiment are used. The results are compared in Fig.

4.33. Upstream of the step GWFP and WW overpredict the wall friction as in

body-fitted cases. And the TBLE also overpredicts the wall friction, unlike wall-

friction underprediction for TCF at relatively low Reynolds numbers. The wall

pressure is underpredicted at the upper corner of the step using CIIM, which

makes the favorable pressure gradient upstream of the step large. Therefore,

the TBLE returns the large wall-shear stress. In the separation region GWFP

and WW also underpredict the wall-shear stress, while the positive values in the

front of the separation is absent due to the CIIM formulation. The Cf of TBLE

using CIIM is compared with the result of body-fitted case in Fig. 4.33(a). The

former Cf is smaller than the latter in the separated and recovery regions due

to the lower adverse pressure gradient shown in Fig. 4.33(b). In the recovery

region, the overprediction of wall friction uisng WW and GWFP becomes smaller

compared with that in the body-fitted cases, as indicated in Fig. 4.24. This is

similar as TCF at low Reynolds numbers using CIIM and caused by the artificial

momentum mixing. The pressure-coefficient comparisons in Fig. 4.33(b) show

that all cases using CIIM have a better predicted pressure at recovery region than
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Figure 4.35: Reynolds stress comparison of experiment and wall models using
body-fitted girds and CIIM. Lines and symbols labeled as in Fig. 4.33.
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WM TBLE using body-fitted grids. This is attributed to the favorable effect

of artificial momentum mixing near the wall, which makes the near-wall velocity

larger, therefore resulting in smaller pressure.

From a comparison of the mean velocity in Fig. 4.34 it can be seen that wall

models in the framework of CIIM perform as well as using the body-conforming

formulation. The transverse Reynolds normal stress and Reynolds shear stress

are in better agreement with the experiment than those of WM TBLE, as shown

in Fig. 4.35. This can be attributed to the favorable effect of artificial momen-

tum mixing near the wall, which is consistent with the more accurately predicted

pressure coefficient. The chosen position of immersed interface leads to the sit-

uation that momentum mixing is applied all along the lower wall downstream

of the step. This artificial mixing is corresponding to high turbulence mixing,

which results in large turbulent length scale there. Therefore, the better results

are obtained.

4.2.3 Conclusions of wall models using CIIM

From the above investigation, it can be found that the momentum mixing pro-

cedure in CIIM has some disadvantages and advantages. In the TCF simulation,

it results in a Reynolds-number dependence of the model performance, except

for the TBLE model. The near-wall flow dynamics are contaminated that the

fluctuation of resolved Reynolds stress is detected in several near-wall cells for

TCF, and the secondary-separation bubble disappears in backward-facing step

case. This artificial mixing enhances the turbulence mixing in the recovery re-

gion, which exhibits its favorable effect on better predicted recovery pressure and

Reynolds stresses. Improved mean velocity and Reynolds stress are obtained

using wall models in the framework of CIIM.

The conclusions of wall modeling on body-fitted grids still apply, namely that

the TBLE is superior to GWFP and WW in TCF simulation. However, in the

more complex flow along backward-facing step, the three wall models show almost

the same results with respect to mean-flow quantities.
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Chapter 5

Applications

In this chapter, wall models are applied to three cases with separation from

smooth continuous surfaces at high Reynolds numbers, in order to obtain a more

profound understanding of the characteristics of the wall modeling.

The cases include flow over two different hills in channels, as shown in Fig.

5.1, both with separation from smooth surfaces. They serve to assess whether

the wall models for ILES in the framework of CIIM are able to predict such

kind of separation. These flows produce complex flow behavior associated with

acceleration, separation, reattachment and recovery, which are very difficult for

most of the statistical turbulence models to predict correctly, even with respect

to global flow features. These two cases have different boundary conditions and

much different pressure gradients on the hills. Therefore, the flows behave much

differently. The separation is very shallow in the bump case, whereas it is large in

the periodic hill case. The flow is quasi-steady in the former, but highly unsteady

in the latter. There is a long recovery region in the former, while there is only a

short recovery region in the latter.

The third case is the flow over a smooth circular cylinder at very high Reynolds

number ReD = 1.0 × 106, based on the diameter of the circular cylinder. The

AMR technique is used in combination with wall modeling. The aim is to show

the potential of wall modeling to treat complex flows, and show its potential as

practical method to treat complex geometries in practical engineering. In the

following sections, these cases are presented in detail.
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Figure 5.1: Configurations of bump and periodic hill. White line: immersed
interfaces.

5.1 Flow over a bump

5.1.1 Case description

This case originally has been designed to investigate the boundary layer under the

effect of a variable pressure gradient by an experiment, which mimics the adverse

pressure gradient on the suction side of an airfoil at the verge of separation

at very high Reynolds number [14, 167]. To investigate the flow structures in

much more detail DNS of this configuration has been carried out first at Reτ =

395 [117], and then at Reτ = 600 [107], where Reτ = uτh/ν is the friction

Reynolds number based on the friction velocity uτ at the inlet, half channel

height h, and the kinematic viscosity ν. A shallow separation region was observed

in both investigations. Reynolds stresses and flow structures were studied in

detail. Several SGS models were assessed on different resolutions in comparison

with DNS. The case at Reτ = 600 is chosen as a reference because of its higher

Reynolds number Reh = ubulkh/ν = 12, 600, where ubulk is the bulk velocity at

the inlet. At this Reynolds number, the flow exhibits a slight deceleration, strong
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Figure 5.2: Nondimensional wall distance of interpolation points on coarse reso-
lutions of bump on both walls. Solid line: lower wall; dashed line: upper wall.

acceleration, very shallow separation (no separation in the experiment at very

high Reynolds number), reattachment on the leeward side of the hill and a long

recovery region, due to the complex pressure gradient.

The computational domain is 4πh × 2.5h × πh in streamwise, vertical and

spanwise directions, with the bump symmetrically immersed, in the lateral direc-

tion. Two different grids are used to assess the issues of resolution. The coarse

one is 96× 48× 24, and the fine one is 192× 64× 48. The grids are equally dis-

tributed in all three directions. The recycling inflow technique and the outflow

boundary condition as described in section 2.4.1 are applied in the streamwise

direction. Periodic conditions are applied in the spanwise direction. Wall models

are adopted at the immersed interfaces. For the coarse resolution the cases using

GWFP, WW and TBLE are denoted as BGWFP C, BWW C and BTBLE C,

respectively. For the finer resolution, the last character C is replaced by F , which

means the fine resolution.

The CFL number is 0.5 for the coarse resolution and is halved on the fine one.

The statistics are accumulated for around 15 flow-through times on the coarse

resolution and for around 10 flow-through times on the fine one, because the flow

is quasi-steady. The nondimensional wall distance (based on the friction velocity

from DNS) of the coupling position of both immersed interfaces are shown in Fig.
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Figure 5.3: Friction-coefficient comparisons of three interpolation methods us-
ing TBLE and DNS [107]. Solid line: DNS; dashed line: linear least square;
dashdotted: trilinear; dashdotdotted line: pseudo-Laplacian weighted method.

5.2 for the coarse resolution. In most of the attached flow region, the interpolation

points are outside of the wall layer.

5.1.2 Results of bump case

In this section, first, three interpolation methods, as shown in App. A, are

compared for a complex geometry and variable pressure gradient. Subsequently

the results of coarse and fine resolutions are presented. Last, the wall-shear stress

of DNS are used to formulate the approximate boundary condition for exterior

LES and its results are compared with those of TBLE. The gross-flow parameters

are compared with those of DNS [107]. Mean velocities and Reynolds stresses are

also compared at several sections. For the sake of simplicity and brevity, only

the turbulent kinetic energy and Reynolds shear stress are shown and analyzed

in detail.

5.1.2.1 Comparison of interpolation methods

Since there is no exact instantaneous flow data, the interpolation methods are

compared indirectly using the mean-friction coefficient returned by a wall model.

The friction coefficient is nondimensionalized by the mean bulk velocity. The
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Figure 5.4: Friction-coefficient comparisons of three wall models using coarse res-
olution with DNS [107]. Solid line: DNS; dashed line: BGWFP C; dashdotted:
BWW C; dashdotdotted line: BTBLE C.

interpolated results of velocity are always smooth, and the effect of pressure

gradient is small in GWFP, while it is absent in WW. Therefore, the TBLE is

used on the fine grid resolution and its results are compared in Fig. 5.3.

The friction coefficients of the linear least square and the trilinear interpolation

methods are not smooth on the bump, as shown in Fig. 5.3(a). Whereas on the

straight part of the lower immersed interface, three interpolation methods perform

almost the same, and the results are smooth as on the upper immersed interface

in Fig. 5.3(b). This difference is caused by the pressure gradient interpolation

of three methods in the presence of the curved immersed interface. Globally, the

interpolation method based on the pseudo-Laplacian weight is superior to the

other two. Hence, it is used in the following.

5.1.2.2 Results for bump on coarse-resolution grid

The friction coefficients are compared in Fig. 5.4. Upstream of the bump GWFP

predicts wall-shear stress well while WW overpredicts the data as shown in Fig.

5.4(a), which resembles that in TCF cases and in the backward-facing step case.

TBLE produces underpredicted values due to the adverse pressure gradient shown

in Fig. 5.5(a). GWFP and WW heavily underpredict the wall friction on the

windward side and the rear part of the leeward side of the bump, but they over-
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Figure 5.5: Pressure-coefficient comparisons of three wall models using coarse
resolution with DNS [107]. Lines labeled as in Fig. 5.4.

predict data on the forward part of the leeward side. The position of maximum

wall friction is wrongly predicted by GWFP and WW. It is found on the top of

the bump, but not before the top as in DNS. The TBLE shows overpredicted

data under a strong favorable pressure gradient, and underpredicted data un-

der a strong adverse pressure gradient. However, it predicts the position of the

maximum wall-shear stress well. In the straight recovery region all models under-

predict the wall-shear stress. On the upper straight wall, the performance of the

three wall models are clearly shown in Fig. 5.4(b). Their characteristics resemble

those on the lower immersed interface.

Above results show that GWFP and WW mainly depend on the velocity

and miss the correct position of maximum wall-shear stress on both immersed

interfaces. The TBLE model can predict the global tendency of wall-shear stress

well, e.g. the position of maximum values. However, the simplified TBLE without

convective terms are strongly affected by the pressure-gradient term, which causes

the wall-shear stress to be underpredicted under an adverse pressure gradient,

but overpredicted under a favorable one, except in the far recovery region after

x1/h = 9.0, in agreement with the findings for the backward-facing step of the

last chapter.

Although the TBLE predicts negative wall-shear stress in the regions 2.02 ≤

x1/h ≤ 2.29 and 5.30 ≤ x1/h ≤ 8.44 on the lower wall, and 5.83 ≤ x1/h ≤ 8.84
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5.1 Flow over a bump

on the upper wall, which is 5.76 ≤ x1/h ≤ 6.60 on the lower wall in DNS, these

negative wall-shear stresses could not drive the flow back in the exterior LES for

the case BTBLE C on coarse resolution. That is because the resolution is so

coarse that the grid width is larger than the height of separation.

The pressure coefficients are compared in Fig. 5.5. Upstream of the top of the

bump all cases produce almost the same and well predicted pressure coefficients,

except near the top of the bump. The minimum of the pressure is not predicted

well by GWFP, while WW and TBLE behave well until the reattachment point

x1/h = 6.6 indicated by the results of DNS. On the leeward side GWFP over-

predicts the pressure. In the recovery region on the bump, GWFP and TBLE

can reproduce the correct tendency. However, WW cannot reflect the influence

of the concave region at the foot of the bump. In the straight recovery region

GWFP returns better pressure data, while it is lower in BWW C and is higher

in BTBLE C. On the upper immersed interface, the general behavior of wall

models resembles that on the lower bump.

The mean velocity and Reynolds stresses are interpolated from the Carte-

sian grids to the wall-normal direction by a second-order Lagrange interpolation

method. The mean velocity and Reynolds stress in the local coordinates are ob-

tained by vector projection and tensor transformation respectively, for comparison

with DNS results. The mean velocity profiles are compared in Fig. 5.6(a).

Before the reattachment point the three wall models behave almost the same,

and the mean-velocity profiles are predicted reasonably well compared with DNS,

before the top of the bump. On the leeward side of bump, neither wall model can

reproduce the mean-velocity profiles well. In the recovery region, the mean ve-

locities are well predicted by GWFP, which is consistent with its better recovery

pressure. While in BWW C using WW, the mean velocities are underpredicted

near the wall but are overpredicted near the channel center. They are under-

predicted in the upper part of the channel in BTBLE C, but are overpredicted

near the lower immersed interface. It has to be mentioned that the mean-velocity

profiles are not smooth in the lower part of the channel before the beginning of

the bump, which is caused by the too short distance from the inlet to the recy-

cling plane. The distance is not long enough for the flow to develop. The original

recycling plane does not totally decorrelate with the inlet plane, therefore, some
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Figure 5.6: Mean velocity, turbulent kinetic energy and Reynolds shear stress
comparisons of three wall models using coarse resolution with DNS of bump
at Reh = 12, 600. Solid line: DNS; dashed line: BGWFP C; dashdotted:
BWW C; dashdotdotted line: BTBLE C.
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5.1 Flow over a bump

artificial structures develop.

The turbulent kinetic energy and Reynolds shear stress are compared in Fig.

5.6(b) and Fig. 5.6(c), respectively. All the wall models give almost the same

overpredicted turbulent kinetic energy and Reynolds shear stress before the top

of the bump. On the leeward side of the bump, before x1/h = 8.0, the turbulent

kinetic energy and Reynolds shear stress is underpredicted near the lower wall,

especially in the separation region, whereas it is overpredicted away from the

lower wall. In the plane-channel recovery region, turbulent kinetic energy is

overpredicted on the upper wall for all cases, but is reasonable on the lower wall

for cases BGWFP C and BTBLE C. It is overpredicted across the channel in

BWW C. The behavior of the Reynolds shear stress is like that of the turbulent

kinetic energy, and is consistent with the mean-velocity profiles.

From the above analyses it can be concluded that the flows are more sensi-

tive to wall modeling in the recovery region than in the attached or separated

region. TBLE can produce better results than the WW concerning the gross-flow

parameters, mean velocity and Reynolds stresses. GWFP is better than TBLE

concerning the mean velocity profile, but it is worse than TBLE with respect

to the Reynolds stresses in the straight recovery region. The influence of the

recycling-inflow length needs further investigation. Since the turbulent kinetic

energy and Reynolds shear stress are much overpredicted, the resolution is not

high enough to represent the exterior flow using LES. In the next section the

results of a fine resolution is presented.

5.1.2.3 Results for bump on fine-resolution grid

The grid points are doubled in streamwise and spanwise directions. In vertical

direction, the number of grid point is increased to obtain a coupling position

x+
2 = 45 at the inlet, based on the friction velocity of DNS.

The friction coefficients are compared in Fig. 5.7. The tendency of wall

friction for each wall model is almost the same as using coarse resolution, while

the wall friction increases at both immersed interfaces. The pressure coefficients

are compared in Fig. 5.8. Before the top of the bump the pressure is predicted

well compared with that of DNS, and there is almost no change compared to that

107



5.1 Flow over a bump

0 2 4 6 8 10 12
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
f 

10
2

x1/h

(a) Friction coefficient on the bump

0 2 4 6 8 10 12

0.0

0.5

1.0

1.5

C
f 

10
2

x1/h

(b) Friction coefficient on the upper wall

Figure 5.7: Friction-coefficient comparisons of four wall models using fine reso-
lution with DNS [107]. Solid line: DNS; dashed line: BGWFP F ; dashdotted:
BWW F ; dashdotdotted line: BTBLE F ; shortdashdotted: BDNS F .

of using coarse resolution. The minimum pressure is improved using TBLE and

WW and is slightly overpredicted using TBLE. There is no improvement using

GWFP. A large difference is observed in the recovery region when using GWFP

and WW. GWFP tends to produce a separation, and WW produces a separation,

although the wall friction using both wall models are all positive. Therefore, the

pressure is underpredicted at the concave leeward side. The pressure on the upper

wall behaves like that on the lower wall.

The mean velocities, turbulent kinetic energy and Reynolds shear stress are

shown in the Fig. 5.9. The mean velocity before the top of the bump almost

does not change, and the artificial influence of the short recycling length cannot

be eliminated by fine resolution. On the leeward-side and the straight recovery

regions the results of TBLE are improved. However, the mean velocities of GWFP

and WW become worse compared to those for the coarse resolution, because

they cannot represent the influence of the concavity at the foot of leeward side.

Although there is a separation bubble using WW on the fine resolution, WW gives

a positive wall friction along the entire bump, as the coupling point is outside of

the backflow region.

The turbulent kinetic energy and Reynolds shear stress become smaller than

that of the coarse resolution, especially near the channel center. In the recovery
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Figure 5.8: Pressure-coefficient comparisons of four wall models using coarse
resolution with DNS [107]. Lines labeled as in Fig. 5.7.

region, the results of TBLE are improved, while even higher values are returned

by GWFP and WW, because they tend to produce a separation region at the

concavity of the foot of leeward side.

From above analysis it can be seen that if wall models cannot reflect the

wall curvature and the pressure gradient well, even when the grid resolution is

increased, the flow prediction cannot be improved. In this context, TBLE is

better than GWFP and WW concerning the global flow variables, mean velocity

and Reynolds stresses. This reflects the importance of the modeling of near-wall

flow dynamics.

5.1.2.4 Wall modeling using wall-shear stress from DNS

To gain understanding about the influence of modeled wall-shear stress, the mean

streamwise wall-tangential shear stress from DNS [107] is used to formulate a

wall model. In order to take the fluctuations of the wall stress into account, the

formulation of Schumann, e.g. Eqs. 1.5, is used as described in chapter 1. The

wall-tangential velocities ui(i = 1, 3) are interpolated from exterior LES at the

coupling positions. A time average is used to obtain the mean velocity at the

coupling positions. The grid resolution corresponds to the fine one, and other

computational conditions are the same as those for the fine resolution in the last
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Figure 5.9: Mean velocity, turbulent kinetic energy and Reynolds shear stress
comparisons of three wall model and DNS of bump at Reh = 12, 600. Solid line:
DNS; dashed line: BGWFP F ; dashdotted line: BWW F ; dashdotdotted line:
BTBLE F .
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5.1 Flow over a bump

subsection. This case is denoted as BDNS F .

The wall friction at both immersed interfaces is also shown in Fig. 5.7. Com-

pared with the results of DNS, the wall friction on the lower wall has smaller

values near and before the position of maximum wall friction, and it is slightly

underpredicted on the upper immersed interface. The pressure coefficient is also

compared with other results in Fig. 5.8. It can be seen that at concave region of

the windward side the pressure is not well recovered. Near the top of the bump,

it is underpredicted as GWFP using the same resolution. In the recovery region,

the benefit is obvious, the tendency resembles that of DNS, and is better than

the results of TBLE.

The mean velocity profiles, turbulent kinetic energy and Reynolds shear stress

are compared with those of case BTBLE F in Fig. 5.10. The mean velocity

profiles are as good as in case BTBLE F , except for the last four positions on

the upper immersed interface. The resolved turbulent kinetic energy is larger

than that in BTBLE F , especially in the recovery region, but the results are

better than that of BGWFP F and BWW F using the same resolution. The

Reynolds shear stresses are larger than that of TBLE in the straight recovery

region, which is consistent with its higher turbulent kinetic energy. These results

are not as good as expected using the better modeled wall-shear stress. Even the

results of TBLE is better than using the wall-shear stress directly from DNS.

What we learn from the above analysis is that the recovery pressure can be

reproduced better when a correct wall-shear stress is used. The mean velocity is

not very sensitive to the modeled wall-shear stress. Even though a much more

accurate wall shear-stress is provided as an approximate boundary condition for

the exterior LES, the results of Reynolds stresses are not better than that of

TBLE. Considering the difference between BTBLE F and BDNS F , the TBLE

can take the fluctuations of the velocity and the pressure into account, while the

formulation of Schumann [154] can only take the fluctuations of the velocity

into account. In this flow, the Reynolds shear stress in the streamwise wall-

tangential direction is responsible for most of the turbulence production. The

pressure fluctuation is very important for the turbulence redistribution from the

streamwise Reynolds normal stress to other two normal components. Therefore,

it can be suspected that the time fluctuation of the wall-shear stress introduced

111



5.1 Flow over a bump

2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

x 2 /
 h

2<u> + x
1
/h

(a) Mean velocity

0 2 4 6 8 10 12
0.0

0.5

1.0

1.5

2.0

x 2 /
 h

50k + x
1
/h

(b) Turbulent kinetic energy

0 2 4 6 8 10 12
0.0

0.5

1.0

1.5

2.0

x 2 /
 h

100<uv> + x
1
/h

(c) Reynolds shear stress

Figure 5.10: Mean velocity, turbulent kinetic energy and Reynolds shear stress
comparisons of BTBLE F , BDNS F and DNS of bump at Reh = 12, 600. Solid
line: DNS; dashed line: BTBLE F ; dashdotted line: BDNS F .
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by the pressure fluctuation is very important to the exterior LES.

5.1.3 Conclusions for the bump case

From the above investigations the following can be concluded. First, the flow

is much more sensitive to the wall modeling in the recovery region than in the

attached flow or separation regions, which differs from the results of the backward-

facing step having fixed separation introduced by the sharp corner of the wall at

relatively low Reynolds number, see section 4.2.2 of the last chapter. Second,

in order to obtain well resolved exterior LES, the resolution should be sufficient.

Third, if a wall model cannot model the near-wall flow dynamics well, the resolved

part of the flow will become even worse with increasing resolution. Fourth, not

only the correct values of wall-shear stress is important, but the fluctuation of the

modeled wall-shear stress is also very important, concerning its influence on the

resolved Reynolds stresses of the exterior LES, especially in the recovery region.

Finally, the influence of the recycling length needs further investigation.

5.2 Flow over a periodic hill

5.2.1 Case description and computational setup

In order to avoid the influence of the inflow/outflow boundary conditions as in

bump case, a flow over periodic hills is chosen as an application, which has peri-

odic boundary condition in the streamwise direction.

The flow over periodic hills in a channel as proposed by Mellen et al. for

numerical simulation [120] is modified from an experiment of Ahmeida et al.

[4], with doubled distance between two hills in the streamwise direction allow-

ing for natural reattachment, halved channel height to reduce the computational

effort, instead of sidewalls with periodicity in the spanwise direction and re-

duced Reynolds number based on the hill height. This well defined test case has

been used as a benchmark test in several workshops, e.g. the EROFTAC/IAHR

workshops on refined turbulence modeling [83, 115] and large eddy simulation of

complex flows focusing on the SGS-model developments and wall modeling. In
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this case, the turbulence evolution associated with separation from the smooth

curved surface, recirculation, reattachment on the flat plate, acceleration and wall

proximity on the windward of the hill. Most of the statistical turbulence models

fail to predict these flow features, or even gross flow features such as separation

length. A simulation with highly resolved LES on the hill side and wall modeling

on the straight side was carried out by Fröhlich et al. [52], investigating the phys-

ical issues comprehensively at ReH = 10, 595 based on the hill height H , bulk

velocity and kinematic viscosity. It is interesting that a phenomenon, associated

with the ‘splatting’ of large scale eddies originating from the shear layer and con-

vected downstream to the windward slope, explains why RANS simulations, even

when applying second-moment closures, cannot capture the flow field accurately.

The Reynolds-number effects on the flow features were investigated in detail by

experiments, DNS and highly resolved LES on both walls, in a wide range of

Reynolds numbers covering 100 ≤ ReH ≤ 10, 595 [21].

Wall modeling issues were extensively investigated combining different SGS

models with different wall models on coarse body-fitted grids [120, 170, 171],

which highlighted the importance of an adequate streamwise resolution of the

flow in the vicinity of the separation line. The near-wall treatment was found to

be more influential than the SGS modeling on the quality of the results obtained

on coarse grids. It has to be mentioned that a new wall modeling strategy for

separated flows has been developed using statistical evaluations of wall-resolved

LES data, which takes the effect of streamwise pressure gradient into account

[20].

Hybrid LES/RANS approaches, including detached-eddy simulation, were

evaluated for this test case [17, 18, 53, 178]. A massive deterioration of the

results was detected when the LES/RANS interface lies outside of the boundary

layer on the crest of the hill [178].

In the computation the simulation domain is 9.0H × 3.335H × 4.5H with the

configuration symmetrically immersed, in the lateral direction, as shown in Fig.

5.1(b). Periodic conditions are used in the streamwise and spanwise directions,

and the wall models are adopted on the immersed interfaces as in the bump case.

To assess the wall models a relatively coarse resolution is used at Reynolds number

ReH = 10, 595. Beside the coarse resolution a finer resolution is used at higher
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Table 5.1: Simulation parameters of the periodic hill
Case ReH Nx1

×Nx2
×Nx3

CFL Tavg xsep/H xreatt/H
HGWFP C 10,595 96× 64× 32 0.25 40 0.45 4.31
HWW C 10,595 96× 64× 32 0.25 40 0.38 4.44
HTBLE C 10,595 96× 64× 32 0.25 40 0.65 4.00
HHTBLE C 37,000 96× 64× 32 0.5 90 0.75 3.41
HHTBLE F 37,000 192× 72× 48 0.5 40 0.75 3.80

Reynolds numbers ReH = 37, 000 based on the experiences on the bump. All the

simulation cases are listed in the Tab. 5.1, which includes the grid resolution,

CFL number, and the flow-through times used to accumulate the statistics.

The separation and reattachment points indicated by the streamline normal

to the wall are also shown in Tab. 5.1. On the non-body-fitted coarse Cartesian

meshes, it is not reasonable to deduce the separation and reattachment positions.

The estimating given here are just for giving an overview and for completeness.

5.2.2 Results for the periodic hill at ReH = 10, 595

5.2.2.1 Mean flow quantities

First, three wall models are assessed on the coarse resolution at Reynolds number

ReH = 10, 595, which are denoted as HGWFP C, HWW C and HTBLE C,

respectively. The nondimensional wall distance (based on the friction velocity

from resolved LES of Fröhlich [52]) of the coupling position is about 30 on average,

with a maximum of 135.8 at x1/H = 8.66, as shown in Fig. 5.11.

The friction coefficient on the lower wall and pressure coefficient on both walls

are compared with those of Fröhlich [52] in Fig. 5.12. As in the bump case, the

TBLE produces a reasonable tendency of the friction coefficient, but predicts

lower values under an adverse pressure gradient, which is another indication for

the lack of convective effects in the simplified TBLE model. GWFP and WW

produce a wrong tendency and data, except for the short recovery region. It has

to be mentioned that the behavior of GWFP and WW are not as in the backward-

facing step and bump cases. GWFP predicts a higher wall friction than WW in

this case. This may be caused by the strong unsteady flow. However, neither of

them can reflect the effect of the pressure gradient.
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Figure 5.11: Nondimensional wall distances of interpolation points on coarse
resolution of the hill at ReH = 10, 595.

From the comparison of pressure coefficients in Fig. 5.12(b), the pressure is

underpredicted using GWFP andWW on both walls, while the result using TBLE

is globally better. On the lower wall, the pressure gradient indicates that the flow

recovers more quickly in the wall-modeling LES than in the resolved LES, and

the maximum pressure is slightly overpredicted using TBLE. Note that the low

pressure region on the top of the hill is accompanied by a short closed separation

region, which can be observed in imbedded TBLE, but cannot be observed in

the exterior LES due to the coarse grid resolution. This low pressure region on

the top of the hill does not appear in the cases HGWFP C and HWW C, for

GWFP and WW models cannot represent the influence of the pressure gradient.

The mean velocity, turbulent kinetic energy and Reynolds stresses are com-

pared with the results of highly resolved LES of Rapp [145] using LESOCC at ten

sections in Fig. 5.13. The mean velocities are overpredicted in the upper part of

the channel, while they are underpredicted near the lower wall inHGWFP C and

HWW C, which resembles that in bump case using WW model. In HTBLE C,

the mean velocities are predicted well, but are underpredicted after location

x1/H = 4.0 near the upper wall. GWFP predicts better results at these sec-

tions. The difference of vertical mean velocities is smaller than streamwise mean
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(a) Friction coefficient on the hill.
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Figure 5.12: Comparisons of friction and pressure coefficients for periodic hill
at ReH = 10, 595 on coarse resolution. Solid line: Fröhlich [52]; dashed line:
HGWFP C; dashdotted line: HWW C; dashdotdotted line: HTBLE C.
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Figure 5.13: Comparisons of mean velocities and Reynolds stresses for periodic
hill at ReH = 10, 595 on coarse resolution. Solid line: Rapp [145]; other lines
labeled as in Fig. 5.12.
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(a) Point E, in the center of recirculation re-
gion x1/H = 2.15, x2/H = 0.49.
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(b) Point D, in the center of free shear layer
x1/H = 2.23, x2/H = 1.13.

Figure 5.14: Power-spectrum density of three velocity component in HTBLE C
of two points at ReH = 10, 595. Solid line: Euu; dashdotted line: Evv; dashdot-
dotted line: Eww; dashed line: 0.0002f−5/3; vertical solid line: critical frequency
of second-order central scheme.

velocities, except at x1/H = 8.0. Although the pressure gradient is favorable and

the nondimensional wall distance of the LES/TBLE coupling point is 58.5 at that

location, large discrepancy from resolved LES can be observed. The reason for

this discrepancy is that the boundary layer at this position is strongly unsteady

and exhibits a ‘splatting’ phenomenon of large scale eddies [52].

The turbulent kinetic energy and Reynolds stresses are predicted reasonably

well and the discrepancies of them using different wall models are small, which

resembles in the backward-facing step having massive separation. The Reynolds

shear stress is overpredicted in the separated free-shear layer, as shown in Fig.

5.13(f), which is responsible for the overpredicted turbulent kinetic energy, and

is caused by the relatively coarse resolution.

5.2.2.2 Spectra of velocity

To assess the grid resolution the spectra of the time series of velocity are obtained

using windowed fast Fourier transform with a Hanning window. The velocity

signals are recorded for the case HTBLE C during the data accumulation at

several points on the center plane without spanwise averaging as shown in Fig.

5.1(b). Using Taylor’s hypothesis, the spectra in time can be related to the spectra
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(a) Point A, on the top of the hill x1/H = 0.0,
x2/H = 1.1.
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(b) Point G, in the accelerating region x1/H =
8.1, x2/H = 0.65.

Figure 5.15: Power-spectrum density of three velocity component in HTBLE C
of two near-wall points at ReH = 10, 595. Lines labled as in Fig. 5.14.

in space, which requires the average velocity to be substantially larger than the

fluctuations. In the center of the recirculation region, point E x1/H = 2.15,

x2/H = 0.49, this requirement cannot be satisfied, while it can be satisfied in the

center of the free shear layer, point D x1/H = 2.23, x2/H = 1.13 .

The power-spectrum densities of three velocity components at these two points

are shown in Fig. 5.14. It is obviously that each spectra has low-frequency

energy-containing range, middle regular-decay range and high-frequency fast-

decay range. However, there is no long regular-decay range having slope of −5/3

observed as in resolved LES of Fröhlich [52]. This means the inertial subrange is

not resolved with this coarse grid resolution, which is consistent with the analysis

of the Reynolds stresses. The smooth transition from the regular decay to fast

decay in the recirculation region and the abrupt change between these two regions

are observed on the coarse resolution as in the resolved LES [52]. Since it is very

difficult to determine the modified wavenumber of ALDM, the critical frequency

f = 〈u〉/(4∆x1) defined by the modified wavenumber of second-order central

scheme is given as a reference. The abrupt change takes place at a slightly larger

frequency than this reference, which indicates that effective resolution property

of ALDM is better than the classical LES with second-order central schemes.

The power-spectrum densities at two near-wall points A and G, x1/H = 0.0,

x2/H = 1.1 and x1/H = 8.1, x2/H = 0.65, are shown in Fig. 5.15. The
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5.2 Flow over a periodic hill

former is on the top of the hill, and the latter is in the accelerating flow region

before the hill. These spectra do not resemble those in the near-wall region,

compared with the results of resolved LES of Fröhlich [52], but resemble that

in the outer layer, which is consistent with the concept of wall modeling. At

the point A, the spectra exhibit a long inertial subrange with slope −5/3. As

the mean velocity is almost four times larger than the streamwise fluctuating

velocity, the requirement of Taylor’s hypothesis can be satisfied, therefore the

grid resolution there is sufficient. At point G it can be observed that the power-

spectra density of the spanwise velocity w is higher than that of u and v, which

corresponds to the ‘splatting’ phenomenon mentioned above.

5.2.2.3 Realizable states of the flow turbulence

Although the Reynolds stresses are predicted reasonably well using wall models,

it is necessary to check whether the predicted turbulence states satisfy the realiz-

ability constraints. A convenient way is to check the invariants of the anisotropy

tensor of the Reynolds stress. The anisotropy tensor bij is defined using the

Reynolds stress 〈uiuj〉 as

bij =
〈uiuj〉

〈ukuk〉
−

1

3
δij , (5.1)

where δij is the Kronecker delta. As the anisotropy tensor has zero trace it has

only two independent invariants II and III, calculated as

II = −
bijbji
2

, III =
bijbjkbki

3
. (5.2)

Conveniently one defines ξ and η from the invariants III and II as

ξ =

(
III

2

)1/3

, η =

(
−
II

3

)1/2

. (5.3)

In the (ξ, η)-diagram, the well-known Lumley triangle exhibits two straight sides

[143], and the departure from isotropy indicated by η becomes evident.

All physically realizable turbulence has to lie within the triangle, as shown in

Fig. 5.16, which is corresponds to the real eigenvalues of the anisotropy tensor.

The left side with η = −ξ is called axisymmetric contraction, where the anisotropy
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Figure 5.16: Invariant maps along vertical lines at four streamwise locations.

tensor only has one small eigenvalue, which means that one component of the

velocity fluctuations is smaller than the other two. The right side with η = ξ is

called axisymmetric expansion, where the anisotropy tensor only has one large

eigenvalue, which means that one fluctuating component dominates the other

two. The upper side with η = ( 1

27
+ 2ξ3)1/2 is called two-dimensinal turbulence,

where the sum of the two eigenvalues of anisotropy tensor is 1/3, which means

that the fluctuation has only two components. On the bottom, the point with

ξ = 0 and η = 0 is called the isotropic point, where all the eigenvalues are zero,

which is corresponding to the isotropic turbulence. At left upper corner point

ξ = −1

6
and η = 1

6
, the two eigenvalues equal to 1

6
, where the turbulence has

two equal components. At the right upper corner point ξ = η = 1

3
, one large

eigenvalue equals to 2

3
and the other two equal to −1

3
, the turbulence has only

one component.
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5.2 Flow over a periodic hill

The results of coarse LES using three wall models are shown in the Fig. 5.16

at four streamwise sections across the channel, where the arrows point from the

lower wall to the upper wall. It can be seen that all simulated turbulence states

lie within the triangle, which means the requirement of realizability constraints

is satisfied, although they are far from those of highly resolved LES of Breuer

et al. [21]. Another global observation is that all the states do not start from

the two-dimensional turbulence on the upper side of the triangle and do not end

there either, due to the unresolved near-wall region on the coarse grid resolution.

The results of WW are much different from that of GWFP and TBLE near the

upper wall.

At section x1/H = 0.5, the turbulence state of the point near the lower wall

resembles two-dimensional turbulence. At the lower part of the channel, the

states exhibit complex variations, and the results of three wall models are much

different. Near the upper wall, the states tend to axisymmetric contraction. At

x1/H = 2.0 and x1/H = 6.0, the turbulence states exhibit a clear free shear layer

region near the axisymmetric-expansion side. Therefore, the turbulence states

near two walls resemble the edge of the mixing layer with negative ξ at section

x1/H = 2.0 in both cases using GWFP and TBLE. The state of the first off-wall

point at x1/H = 8.0 shows that the turbulence has only one components, which

is consistent with the large spanwise fluctuation there.

5.2.3 Results for the periodic hill at ReH = 37, 000

To assess the resolution dependence of the wall-modeling LES on Reynolds num-

ber, two grid resolutions are used in the simulations at ReH = 37, 000. As the

streamwise mean velocity of the case using the TBLE model is better than those

of GWFP and WW at ReH = 10, 595, only TBLE is applied here. As there are

no results on friction and pressure coefficients of resolved LES, only the mean

velocities and Reynolds stresses are compared with that of resolved LES using

MGLET [145] at ten sections in Fig. 5.17.

The mean velocities are stronger overpredicted than that at ReH = 10, 595

on the coarse resolution, because of less resolved LES at this higher Reynolds

number. However, when the resolution increases, the streamwise mean velocities
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Figure 5.17: Comparisons of mean velocities and Reynolds stresses for periodic
hill at ReH = 37, 000, on two resolutions. Solid line: Rapp [145]; dashed line:
HHTBLE C; dashdotted line: HHTBLE F .

become worse at the stations in the separation region. Because a large and strong

recirculation is produced on the fine resolution, the mean streamwise velocities

near the lower wall are underpredicted. Therefore, they are overpredicted near

the upper wall under the constraint of constant mass flux, which leads to the

higher shear rate. After x1/H = 3.0, the mean velocities are improved near

both walls. The tendency of vertical mean velocity is worse than that on the

coarse resolution before the station x1/H = 6.0. The comparisons of turbulent

kinetic energy and Reynolds stresses show that higher turbulent kinetic energy is

reproduced due to the higher turbulence production on the fine resolution.

This investigation shows that even though the grid resolution is increased,

the flow quantities cannot be improved globally, but rather deteriorate at some

sections. This is mainly because that the wall model cannot approximate correctly

the flow dynamics in the recirculation region, even when the resolution of the

exterior LES increases.
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5.3 Application for the circular cylinder using AMR

5.2.4 Conclusions on the periodic-hill flow

Concerning the mean flow quantities, e.g. friction and pressure coefficients and

mean velocities, the TBLE model performs better than GWFP and WW. How-

ever, the discrepancies of Reynolds stresses are small, even though the modeled

wall friction has large difference. This resembles in the case of backward-facing

step having a massively separated flow region, but it is different for the bump

case having a very shallow separation. The velocity spectra at near-wall points

have no near-wall characteristics as in resolved LES, but resemble that of the

outer flow regions. Two kinds of transition of the energy decay can be recovered

as in the resolved LES. Based on the analysis of invariants of anisotropy ten-

sor, the predicted turbulence is physically realizable using the wall models and

coarse resolution. The indication of typical flow features, such as a free shear

layer, can be observed, although the detail of the invariant maps is far from that

of resolved LES. The TBLE model cannot improve the predicting results, when

the resolution increases. This failure resembles that of GWFP and WW on the

finer grid resolution in the bump case. Another shortcoming is that the predicted

wall-shear stress strongly depends on the pressure gradient, which confirms the

former finding.

5.3 Application for the circular cylinder using

AMR

In all the above applications, there is only one block used for the computational

domain with equally distributed grid resolution, and the Reynolds numbers are

just moderately high. In the present case, the Reynolds number ReD = 1.0× 106

based on the freestream velocity and the diameter of the circular cylinder is very

large. Therefore, the grid resolution near the immersed interface is required to be

fine enough to let the coupling position of the wall model and the exterior LES

be not far from the boundary of the wall layer. The AMR technique described in

section 2.3 is used to locally refine the grid near the immersed interface.

The computational domain is 40D×20D×πD in the streamwise, vertical and

spanwise directions, respectively. The upstream length is 10D from the inlet to
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Figure 5.18: Results of AMR and local flow fields.

the center of the cylinder. The refinement starts from one block with 24 grid cells

stretched in streamwise and vertical directions and 32 equally distributed grid

cells in the spanwise direction, and ends at 59 blocks with non-equally distributed

grid resolution and around 2.6 million cells, without the spanwise refinement, as

shown in Fig. 5.18.

A uniform inflow condition is used at the inlet, and the turbulence intensity

is set to zero. A second-order Neumann boundary condition is applied at the

outlet. Slip walls are used at the two boundaries in the vertical direction. Periodic

conditions are adopted in the spanwise direction. The communication of the flow

variables between two blocks is accomplished using the algorithm given in section

2.3. On the immersed interface the TBLE model is applied. In the framework

of wall modeling, an additional difficulty due to the multiple blocks is that the

coupling position and its interpolating points should lie in a local block where

the immersed interface presents. Otherwise, it needs to use a complicated and

expensive method to find these points in its neighbor blocks. Thanks to the buffer

region of each block, this difficulty can be avoided. Because of the complexity of

the boundary layer on the cylinder, it is difficult to take the laminar-turbulent

transition into account. No special treatment is used, but rather a fully turbulent

condition is employed. Although the grid resolution is refined near the interface,

the coupling position is still far from the edge of the wall layer, and the maximum

couping wall distance is x+
2 = 1607 in wall units based on the friction velocity

from TBLE model at the windward side θ = 57.7◦ and θ = 302.3◦.

The computation is carried out on 10 cores using MPI to communicate the
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Table 5.2: Mean flow variables of flow around a circular cylinder at ReD = 1×106

Case CD −Cp,base St Lr/D
TBLE LES 0.26 0.34 0.26 0.95
WM LES[30] 0.31 0.32 0.35 1.04
Exp.[157] 0.24 0.33 0.22 -
Exp.(Others [187]) 0.17-0.40 - 0.18-0.50 -

interface information. The CFL is 0.75 and the total simulation time is 2.5 flow-

through times. the statistics are accumulated during the last one flow-through

time.

The drag coefficient CD, base pressure coefficient Cp,base, Strouhal number St

and mean-recirculation length Lr/D are shown in Tab. 5.2 compared with the

results of wall-modeling LES of Catalano et al. [30] and the experiments. All

these flow variables are predicted reasonably well. The shape of the recirculation

is shown in Fig. 5.18(b). It is obvious that the height of the wake is smaller than

the diameter of the cylinder.

The friction coefficient returned from TBLE model and the pressure coeffi-

cient are compared with the experimental results in Fig. 5.19. The wall friction

is overpredicted under the favorable pressure gradient and underpredicted under

adverse pressure gradient as in the bump and periodic hill cases, while the dif-

ferent Reynolds numbers between wall-modeling LES and the experiment only

account for a small fraction of this discrepancy as analyzed by Catalano et al.

[30]. The separation angle is θs = 95.6◦ indicated by the zero friction coefficient,

but it is 150.8◦ deduced from the streamline perpendicular to the wall. This dis-

crepancy is caused by the defect of TBLE model and coarse resolution as analyzed

in periodic hill simulation.

In the front part of the cylinder, the pressure distribution is predicted rea-

sonably well, for the normalized pressure is nearly independent of the Reynolds

number there. However, it is under predicted in the region 70◦ < θ < 120◦, which

may be caused by the under predicted wall-shear stress as shown in Fig. 5.19(a).

This much lower wall friction cannot drive the flow back in the exterior LES, but

makes it much slower, therefore, the pressure is much higher. In the base region,

it is reasonable that the pressure lies between the experiments at higher and lower
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Figure 5.19: Friction- and pressure-coefficient distributions on the cylinder.

Reynolds numbers than in the wall-modeling LES. A kink around θ = 110◦ can

be found from the experimental results of Flachsbart at ReD = 6.7× 105. This is

the characteristic of the supercritical regime of flow over circular cylinder, where

the boundary layer separates laminarly, followed by a turbulent reattachment,

thus a separation bubble appears, and the transition happens on the top of the

recirculation bubble. This process is difficult to be reproduced numerically or

experimentally, because it is very sensitive to the disturbance, such as imposed

by the freestream turbulence level or surface roughness. The TBLE model can

not account for this flow dynamics either.

Due to the lack of the experimental data, the mean velocity and Reynolds

stresses of the wall-modeling LES are compared at four streamwise locations in

Fig. 5.20. The mean streamwise velocity profile exhibits ‘U’ shape at x1/D = 0.6,

and changes to ‘V’ shape at downstream locations, which is usually observed in

experiments and resolved LES at low Reynolds numbers. The mean vertical

velocity is larger before the cylinder than behind, and it exhibits a complex

shape in the recirculation region. At the location x1/D = −0.75, the Reynolds

normal stresses are very small, but non zero, and exhibit very complex shape (not

shown). They become large in the separated shear layer, which corresponds to the
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Figure 5.20: Comparisons of mean velocities and Reynolds stresses at four stream-
wise locations. Solid line:x1/D = −0.75; dashed line: x1/D = 0.6; dashdotted
line: x1/D = 1.0; dashdotdotted line: x1/D = 1.5.
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Figure 5.21: Invariant maps at station x1/D = 1.0 and power-spectrum density
of three velocity components at point x1/D = −0.4, x2/D = −0.5.

increased Reynolds shear stress. From the profiles of Reynolds normal stresses,

it can be observed that these profiles are asymmetric. This is caused by the

staggered-grid arrangement in the framework of CIIM, although the configuration

is symmetric.

To assess turbulence anisotropy, for clarity, only the upper half of the invariant

maps in the vertical direction at x1/D = 1.0 near the center of recirculation region

is shown in Fig. 5.21(a). The right triangle indicates the point on the edge of

the computational domain, where the the turbulence approaches one component.

The left triangle indicates the point on the horizontal center line, where the

turbulence has two large dominant components. In a global view, the turbulence

there resembles that of a free shear layer. However, it looks like that several

free shear layers are composed together, and each has its own edge reaching the

axisymmetric contraction side of the Lumley triangle.

The power-spectrum density of three velocity components at x1/D = −0.4,

x2/D = −0.5 is shown in Fig. 5.21(b). It is obvious that the spectrum has the

characteristics of fully developed turbulence, and exhibits a longer inertial range

having a slope of −5/3, even before the circular cylinder. And the Reynolds

stresses are very small. Another interesting observation is that a spectral peak of

three velocity components locates at f ≈ 0.26, which corresponds to the Strouhal
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number.

From the above investigation, it is evident that reasonable results are obtained

using wall-modeling LES in the framework of AMR, even on coarse resolution at

such high Reynolds number. It indicates that the wall modeling for implicit LES

combining CIIM and AMR is a potential framework to apply the LES in practical

engineering. It also shows the defect of TBLE based modeling.
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Chapter 6

Conclusions

To avoid the statistical model dependence of RANS and the high cost of DNS, LES

has been established as an alternative. However, in wall-bounded flows turbulent

flow structures are highly anisotropic in the thin wall layer. Therefore, the grid

resolution requirement approaches that of DNS, which makes the computational

cost so high that LES is hardly affordable at high Reynolds numbers. Wall models

have been developed to bypass the expensive wall layer for explicit LES using

body-fitted grids, and the SGS-modeling and wall-modeling errors are found to

play a crucial role.

A wall modeling method for implicit LES using ALDM has been constructed

and investigated in detail. First, the method has been developed for the body-

fitted mesh, which is realized using the wall-shear stress as approximate boundary

condition for exterior LES directly, where the effects of SGS-modeling error and

wall modeling error are distinguished, and are eliminated or alleviated separately.

To treat complex flows along complex geometries, the wall modeling method for

implicit LES is also constructed using CIIM in the framework of finite volume

methods, which is accomplished by using the wall-shear force as source terms in

the momentum equations. These source terms function as approximate boundary

condition for the exterior LES, meanwhile they provide the no-slip wall bound-

ary conditions for CIIM indirectly. Three kinds of wall-stress model based on a

generalized wall function with pressure correction, a two-layer power law, and a

simplified TBLE wall-layer modeling are investigated for the canonical TCF and

separated flow along a backward-facing step in detail. They are also applied to
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two different separated flows along two different hills at moderately high Reynolds

numbers. At last, the wall modeling with CIIM is extended to multi-block com-

putational domains using AMR, and a preliminary investigation is carried out on

a flow over a circular cylinder at very high Reynolds number.

Compared with coarse LES without wall modeling, the effect of wall models

is to reduce SGS-modeling error caused by the relatively large grid cells near the

wall, through the wall-tangential momentum balance. However, SGS-modeling

error, which is not caused by the coarse resolution but by the SGS model it-

self, such as the wall-asymptotic behavior at high Reynolds numbers, cannot be

reduced by wall modeling.

SGS-modeling error caused by wall damping results in a mean velocity mis-

match with the logarithmic law in the simulation of TCF at very high Reynolds

numbers. This mismatch cannot be improved by using more accurate wall mod-

els, but has to be solved using a physically motivated near-wall SGS modeling,

such as the one based on coherent structures adopted in the investigation. The

improvement is accomplished through the momentum balance in several near-wall

cells.

The wall-modeling error appearing as incorrect wall-shear stress provided to

the exterior LES mainly leads to a upward or downward shift of the scaled mean

velocity profile. When the wall-shear stress is underpredicted the scaled mean-

velocity profile moves upwards, and the resulting flow resembles that at lower

Reynolds numbers. Otherwise, the scaled mean velocity profile moves downwards,

and the resulting flow resembles that at higher Reynolds numbers. However, the

shape of the mean-velocity profiles has no large change according to different

wall-shear stress.

The effect of modeling parameters of simplified TBLE model is mainly con-

trolled by the resulting wall-shear stress supplied to the exterior LES. The flow

dynamics, i.e., the momentum balance, turbulent production are just affected in

the several near-wall cells of the exterior LES. It is also found that the coupling

position is a crucial wall-modeling parameter, because the logarithmic mean-

velocity profile starts from that position, and the exterior LES can only resolve

the large energy-carrying structures on the coarse resolution. Therefore, the ex-

pected coupling position lies at the beginning or bottom of the logarithmic layer.

132



If the coupling position is proper, and the wall model can account for the near-

wall flow dynamics well, the predicted results converge to that of resolved LES

or DNS, when the grid resolution increases.

In the investigation of the flow along the backward-facing step with massive

separation induced by an abrupt geometric change, it is found that the effect

of the wall-modeling error is trivial concerning the results of mean velocity and

Reynolds stresses. However, different effects of wall models are observed on the

secondary flow at the bottom corner of the step using body-fitted grids. Up-

stream of the separation, different wall models return much different wall-shear

stresses, while the mean velocity and Reynolds stresses are not sensitive to these

difference. When these wall models are realized in the framework of CIIM, the

difference on the secondary flow disappears, and no secondary-separation bubble

can be observed at all. This is because numerical errors, especially as numerical

dissipation, are introduced by the mixing procedure of CIIM, which conceals the

difference of the wall models. In the massive recirculation region, the exterior LES

is insensitive to the wall-modeling error, but it becomes sensitive in the recovery

region. The artificial mixing introduced by the mixing procedure of CIIM has a

favorable influence on the predicted results concerning the recovery pressure and

Reynolds stresses in the recovery region. The difference of wall models becomes

much smaller in the framework of CIIM than when using body-fitted mesh in this

massively separated flow.

The methods are applied to two separated flows along the two different hills

at moderately high Reynolds numbers. One is a quasi-steady flow along a shal-

low bump, which resembles the flow over the upper surface of an airfoil, using

inflow/outflow boundary conditions. Another is a highly unsteady flow over a

periodic hill having a massive separation. The results of wall-modeling LES com-

pare reasonably well with that of DNS and resolved LES, respectively. The results

also indicate that the exterior LES is sensitive to wall-modeling error in the bump

case concerning the predicted mean velocity and Reynolds stresses, especially in

the recovery region. The separation is so shallow that all wall models fail to

reproduce it on very coarse grids. We also find that the results can only be im-

proved using a proper wall model which can account for near-wall flow dynamics

well, when the resolution increases. Otherwise, they deteriorate. If the recycling
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length is not long enough using recycling/rescaling inflow boundary condition,

artificial flow structures are observed.

In the periodic hill case, the sensitivity of exterior LES to the wall modeling er-

ror becomes trivial concerning the results of mean velocity and Reynolds stresses.

When the grid resolution increases, globally improved results cannot be obtained

because of the defect of TBLE model in the massive recirculation region. But the

improved results are realized in the recovery and reacceleration regions, where

TBLE works reasonably well. Through the analysis of invariants of turbulence

anisotropy, all the turbulence states in wall-modeling LES are realizable using all

wall models. The local spectral analysis of three velocity components can be used

to evaluate the grid resolution a posteriori and to assess the turbulence states.

The wall modeling in the framework of ALDM and CIIM combing AMR is

applied to complex flow along a circular cylinder at very high Reynolds number.

The global flow quantities are predicted reasonably well, which shows that this

wall modeling methodology has the potential to be a practical simulation tool in

engineering.

Among the investigated wall models, the best one is the TBLE model, which

can account for much more near-wall flow dynamics. It can return correct wall-

shear stress at all Reynolds numbers in the simulations of TCF, and produces

better results in the simulations of separated flows, concerning wall friction, mean

velocity and Reynolds stresses. However, it also exhibits strong dependence on

the pressure gradient term in simplified TBLE, where the nonlinear convective

terms are omitted. It cannot account for the flow dynamics in the recirculation

and recovery regions well, which is beyond the validity of the thin boundary

layer assumption. The second one is the generalized wall function with pressure

correction. It can return correct wall-shear stress at high Reynolds numbers in

TCF cases, and predicts better results than Werner and Wengle two-layer power

law based formulation. The integral formulation of Werner andWengle law always

overpredicts the wall-shear stress in the attached flow regions. However, it can

reproduce the secondary separation bubble better than the other two models

in the backward-facing step case using body-fitted grids. Therefore, these wall

models also exhibit flow-case dependence.

It can be concluded that a proper wall model can improve the prediction
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of coarse LES with proper SGS modeling. However, it also confirms the prior

finding using explicit SGS models on body-conforming grids that only using the

wall-shear stress as an approximate boundary condition is not enough in wall-

modeling LES, but some information of the turbulence structures are required,

such as the instantaneous wall-shear stress fluctuation introduced by the pressure

gradients in the flow over the bump having very complex pressure gradient. In

order to improve the wall modeling of LES, further research on the near-wall SGS

modeling and the wall-layer coherent structures modeling are required.
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Appendix A

Interpolation Methods

Three interpolation methods are adopted to obtain the flow variables for wall

models from the exterior LES. In the following, these methods are described in

detail.

A.1 Linear least square interpolation

This interpolation method uses more than three interpolation points to inter-

polate a flow variable at the coupling points between the wall models and the

exterior LES. It is expected that this method is better than the linear inter-

polation in three dimensions, as it solves an overdetermined linear equation set

according to the minimum energy principle. The formulation of this method is

given in the following.

Using N points to interpolate a flow variable φ at point xp = (xp, yp, zp). The

overdetermined system of linear equations can be expressed as :

A∇φ = ∆φ, (A.1)
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A.1 Linear least square interpolation

where

A =




∆x1 ∆y1 ∆z1
...

...
...

∆xN ∆yN ∆zN


 , ∇φ =



∇xφ

∇yφ

∇zφ


 , ∆φ =



∆φ

∆φ

∆φ


 . (A.2)

The least-squares method is used to obtain the pseudo inverse of matrix A, then

the gradient of φ can be expressed as

∇φ = A−1∆φ, (A.3)

and the pseudo inverse metrix A−1 is

A−1 = (ATA)−1AT . (A.4)

The components of the gradient of φ can be expressed explicitly as

∇xφ =
1

C

N∑

n=1

[(c2 + c3)(xn − x0)− c4(yn − y0)− c5(zn − z0)] (φn − φ0)

∇yφ =
1

C

N∑

n=1

[−c4(xn − x0) + (c1 + c3)(yn − y0)− c6(zn − z0)] (φn − φ0)

∇zφ =
1

C

N∑

n=1

[−c5(xn − x0)− c6(yn − y0) + (c1 + c2)(zn − z0)] (φn − φ0)

C = c1c2 + c1c3 + c2c3 − c24 − c25 − c26,

(A.5)

where the subscript “0” denote the base point of interpolation. This point could

be one of the N interpolation points or other point surrounded by these N points.

The closest point ofN = 8 points surrounding xp is used here. And the coefficients

ci(i = 1 ∼ 6) only depend on the coordinates of the interpolation and base points.
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A.2 Trilinear interpolation

They are defined as

c1 =

N∑

n=1

(xn − x0)
2,

c2 =
N∑

n=1

(yn − y0)
2,

c3 =
N∑

n=1

(zn − z0)
2,

c4 =

N∑

n=1

(xn − x0)(yn − y0),

c5 =
N∑

n=1

(xn − x0)(zn − z0),

c6 =

N∑

n=1

(yn − y0)(zn − z0).

(A.6)

At last using the gradient of φ at the base point, the interpolated value of φp can

be computed as

φp = φ0 + (xp − x0)∇xφ+ (yp − y0)∇yφ+ (zp − z0)∇zφ. (A.7)

A.2 Trilinear interpolation

For the backgroud Cartesian mesh, trilinear interpolation in a box provides a

convenient method to obtain the value φp at a interpolation point xp = (xp, yp, zp).

This is accomplished as following. Denote flow variables at eight grid nodes

φl,m,n(l = 0 ∼ 1, m = 0 ∼ 1, n = 0 ∼ 1). These grids form a regular Cartesian

cell as shown in Fig. A.1. Scale this cell to a cubic and define interpolation

coefficient α, β and γ as

α =
xp − xi

xi+1 − xi
, β =

yp − yj
yj+1 − yi

, γ =
zp − zk
zk+1 − zk

. (A.8)
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A.3 Pseudo-Laplacian weighted method
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Figure A.1: Sketch of trilinear interpolation.

Then the interpolated value φp can be obtained using

φp = φ0,0,0(1− α)(1− β)(1− γ) + φ1,0,0α(1− β)(1− γ)

+ φ0,1,0(1− α)β(1− γ) + φ0,0,1(1− α)(1− β)γ

+ φ1,0,1α(1− β)γ + φ0,1,1(1− α)βγ

+ φ1,1,0αβ(1− γ) + φ1,1,1αβγ

(A.9)

A.3 Pseudo-Laplacian weighted method

The flow variable φp at a interpolation point can be obtained by a weighted

average of the values φn(n = 1 ∼ N) of its N surrounding points as

φp =

(
N∑

n=1

wnφn

)
/

N∑

n=1

wn, (A.10)

where wn is the weight of its each surrounding point xn. In the inverse-distance

weighted method proposed by Franke [51], the weight is defined based on the

139

Appendix1/Appendix1Figs/EPS/trilinear.eps


A.3 Pseudo-Laplacian weighted method

distance rn from the interpolation point xp to each of its surrounding point xn as

wn =

(
R− rn
Rrn

)ρ

, (A.11)

where R is the maximum of rn and a weighting power ρ = 2 is always used. This

formulation can preserve local maxima and produce smooth interpolation, while

its accuracy is well known to be less than second-order. For a pseudo-Laplacian

weighted interpolation method, proposed by Holmes and Connell [76], one can

get a fully second-order accurate method for two dimensional triangular cells.

This method has been extended to three dimensional in Ref. [45] and the weights

are constructed to satisfy the Laplacians,

L(xp) =

N∑

n=1

wn(xn − xp) = 0,

L(yp) =

N∑

n=1

wn(yn − yp) = 0,

L(zp) =
N∑

n=1

wn(zn − zp) = 0,

(A.12)

This is a desirable property since the Laplacian of a linear function is exactly

zero. And the weights are determined using

wn = 1 +∆wn, C =

N∑

n=1

(∆wi)
2, (A.13)

where C is the cost function. It is minimized by solving an optimization problem

subject to the constrains of Eq. A.12. This optimization problem is solved by

the method of Lagrange multipliers, and the ∆wn is given by

∆wn = λx(xn − xp) + λy(yn − yp) + λz(zn − zp). (A.14)
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A.3 Pseudo-Laplacian weighted method

The solution to the constrained optimization problem yields the Lagrange multi-

pliers in the following as

λx =
[
−Rx(IxxIzz − I2yz) +Ry(IxyIzz − IxzIyz)−Rz(IxyIyz − IyyIxz)

]
/D,

λy =
[
Rx(IxyIzz − IxzIyz)−Ry(IxxIzz − I2xz) +Rz(IxxIyz − IxyIxz)

]
/D,

λz =
[
−Rx(IxyIyz − IyyIxz) + Ry(IxxIyz − IxyIxz)− Rz(IxxIyy − I2xy)

]
/D,

(A.15)

where

D = Ixx(IyyIzz − I2yz)− Ixy(IxyIzz − IxzIyz) + Ixz(IxyIyz − IyyIxz),

Rx =
N∑

n=1

(xn − xp), Ry =
N∑

n=1

(yn − yp), Rz =
N∑

n=1

(zn − zp),

Ixx =

N∑

n=1

(xn − xp)
2, Iyy =

N∑

n=1

(yn − yp)
2, Izz =

N∑

n=1

(zn − zp)
2,

Ixy =
N∑

n=1

(xn − xp)(yn − yp),

Ixz =

N∑

n=1

(xn − xp)(zn − zp),

Iyz =

N∑

n=1

(yn − yp)(zn − zp).

(A.16)

These weights are constructed entirly from geometric information of the interpo-

lation points, and can be computed once when initializing the simulation.
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Appendix B

Coherent Structures Based

Damping Model

B.1 Modeling formulation

An adaptive coefficient formulation based on coherent structures [102, 103] can

be constructed using

σi,j,k = σ|FCS|
3/2FΩI i,j,k, (B.1)

where I i,j,k is the units vector of Cartesian coordinates, and

FCS =
Q

E
, FΩ = 1− FCS,

Q =
1

2

(
W ijW ij − SijSij

)
,

E =
1

2

(
W ijW ij + SijSij

)
,

W ij =
1

2

(
∂uj

∂xi
−

∂ui

∂xj

)
, Sij =

1

2

(
∂uj

∂xi
+

∂ui

∂xj

)
,

(B.2)
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B.2 Preliminary validation on TCF

where Sij and W ij are the velocity-strain tensor and the vorticity tensor of the

resolved flow field, respectively. FCS is the coherent-structure function defined

as the second invariant normalized by the magnitude of the resolved velocity

gradient tensor E. For incompressible flow, the second invariant Q ∝ x2
2 and

E ∝ const, therefore, the 3/2 power of FCS scales the implicit SGS viscosity

proportionally to x3
2 near the wall.

B.2 Preliminary validation on TCF

In order to assess whether this model can obtain SGS dissipation, it is tested on

the TCF at Reτ = 395 with the resolution of 32 × 32 × 32, and at Reτ = 590

with the resolution of 48 × 48 × 48, without any wall model. The wall-normal

grid is stretched by the hyperbolic tangent function Eq. 4.1 with CG = 2.5 for

these two cases to increase resolution in the vicinity of the walls. In these coarse

simulations, the scaled wall distance of first grid point x+
2 is approximately 1.0.

The wall layer cannot be well resolved. Periodic boundary conditions are applied

in the streamwise and spanwise directions. At the wall, the no-slip condition

is employed. The pressure Poisson solver uses a fast Fourier transform in the

periodic directions, and direct tridiagonal matrix inversion in the wall-normal

direction.

The mean velocity and Reynolds stresses profiles are compared with the results

of DNS at the same friction Reynolds numbers accordingly, in Fig. B.1. It can

be seen that the mean velocities and Reynolds stresses are predicted very well,

and they exhibit good wall-asymptotic behavior, which indicates that this model

can be used in the wall-modeling implicit LES.
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B.2 Preliminary validation on TCF
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(b) Reynolds stresses Reτ = 395.
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(c) Mean velocity Reτ = 590.
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(d) Reynolds stresses Reτ = 590.

Figure B.1: Comparisons of mean velocity and Reynolds stresses of TCF at
Reτ = 395 and 590. The solid line: DNS [126]; dashed line with square: LES
with CS model.
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[65] G. Grötzbach. Direct numerical and large eddy simulation of turbulent

channel flows. Encyclopedia of Fluid Mechanics. West Orange NJ, 1987.

13

[66] M. Hahn and D. Drikakis. Implicit Large-Eddy Simulation of Swept-

Wing Flow Using High-Resolution Methods. AIAA J., 47:618–630, 2009.

21

[67] F. Hamba. Log-layer mismatch and commutation error in hybrid

RANS/LES simulation of channel flow. Int. J. Heat and Fluid Flow, 30:20–

31, 2009. 15

[68] S. Hickel and N. A. Adams. Efficient implementation of nonlinear

deconvolution methods for implicit Large-Eddy Simulation. In High Per-

formance Computing in Science and Engineering, pages 293–306. Springer,

Berlin, 2007. 29, 60

151



REFERENCES

[69] S. Hickel and N. A. Adams. On implicit subgrid-scale modeling in

wall-bounded flows. Phys. Fluids, 19[105106], 2007. 28, 29, 48, 68

[70] S. Hickel and N. A. Adams. Implicit LES applied to zero-pressure-

gradient and adverse-pressure-gradient boundary-layer turbulence. Int. J.

Heat and Fluid Flow, 29[3]:626–639, 2008. 29

[71] S. Hickel, N. A. Adams, and J. A. Domaradzki. An adaptive local

deconvolution method for implicit LES. J. Comput. Phys., 213:413–436,

2006. 21, 27, 29

[72] S. Hickel, N. A. Adams, and N. N. Mansour. Implicit subgrid-scale

modeling for large-eddy simulation of passive-scalar mixing. Phys. Fluids,

19[095102], 2007. 29

[73] S. Hickel, T. Kempe, and N. A. Adams. Implicit large-eddy simula-

tion applied to turbulent channel flow with periodic constrictions. Theor.

Comput. Fluid Dyn., 22:227–242, 2008. 29

[74] S. Hickel, D. V. Terzi, and J. Fröhlich. An adaptive local decon-
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[120] C. P. Mellen, J. Fröhlich, and W. Rodi. Large-eddy simulation

of the flow over periodic hills. In M. Deville and R. Owens, editors,

Proceedings of 16th IMACS world congress, Lausanne, Switzerland, 2000.

113, 114

[121] M. Meyer, A. Devesa, S. Hickel, X. Y. Hu, and N. A. Adams.

A Conservative Immersed Interface Method for Large-Eddy Simulation of

Incompressible Flows. J. Comput. Phys., 229:6300–6317, 2010. 16, 31, 32,

34, 38, 40

[122] M. Meyer, S. Hickel, and N. A. Adams. Assessment of Implicit

Large-Eddy Simulation with a Conservative Immersed Interface Method

for Turbulent Cylinder flow. Int. J. Heat and Fluid Flow, 10[3]:368–377,

2010. 38, 40

[123] R. Mittal and G. Iaccarino. Immersed boundary methods. Annu.

Rev. Fluid Mech., 37:239–261, 2005. 16, 30

[124] B. Mohammadi and G. Puigt. Wall functions in computational fluid

mechanics. Comput. Fluids, 35:1108–1115, 2006. 9

[125] J. Mohd-Yusof. Combined immersed-boundary/B-spline methods for

simulations of flow in complex geometries. CTR Annu. Res. Briefs, pages

317–327, 1997. 16, 31

[126] R. D. Moser, J. Kim, and N. N. Mansour. Direct numerical simula-

tion of turbulent channel flow up to Reτ=590. Phys. Fluids, 11[4]:943–945,

1999. ix, x, xv, 61, 63, 66, 70, 71, 90, 144

[127] Y. Na and P. Moin. Direct numerical simulation of a separated turbulent

boundary layer. J. Fluid Mech., 374:379–405, 1998. 47

157



REFERENCES

[128] F. Nicoud, J. S. Baggett, P. Moin, and W. Cabot. Large eddy

simulation wall-modeling based on suboptimal control theory and linear

stochastic estimation. Phys. Fluids, 13[10]:2968–2984, 2001. 11, 12, 14

[129] F. Nicoud, G. Winckelmans, D. Carati, J. Baggett, and

W. Cabot. Boundary conditions for LES away from the wall. CTR,

ARTICLE of the Summer Program, pages 413–422, 1998. 11

[130] N. Nikitin. Spatial periodicity of spatially evolving turbulent flow caused

by inflow boundary condition. Phys. Fluids, 19[091703], 2007. 44

[131] N. V. Nikitin, F. Nicoud, B. Wasistho, K. D. Squires, and P. R.

Spalart. An approach to wall modeling in large-eddy simulations. Phys.

Fluids, 12[9]:1629–1632, 2000. 14, 15

[132] I. Orlansi. A simple boundary condition for unbounded hyperbolic flows.

J. Comput. Phys., 21:251–269, 1976. 47
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