
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Netzarchitekturen und Netzdienste

Providing Efficient Key Based Routing for
Multiple Applications

Pengfei Di

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Uwe Baumgarten
Prüfer der Dissertation:

1. Univ.-Prof. Dr. Georg Carle
2. Univ.-Prof. Dr. Hans Michael Gerndt
3. TUM Junior Fellow Dr. Thomas Fuhrmann

Die Dissertation wurde am 30.12.2010 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 12.03.2014 angenommen.

Abstract

In this dissertation, I present an overlay network protocol, Lite-Ring,
which aims at providing efficient Key Based Routing (KBR) services
to multiple applications, both in the Internet and in wireless ad-hoc
networks. The key idea behind Lite-Ring is its predicable address
assignment scheme. With this address scheme, a Lite-Ring node
can almost exactly locally calculate the ID of the node that is re-
sponsible for a given key. By leveraging a public Distributed Hash
Table (DHT) service, a Lite-Ring node needs only to maintain O(1)
state. Hence, Lite-Ring is more efficient than conventional struc-
tured overlay protocols, which have to iteratively route the message
to the destination node hop by hop.

For the application of Lite-Ring in wireless ad-hoc networks, I
also present a novel system architecture as well as some optimiza-
tions with cross-layer designs such as Proximity Neighbor Selection
(PNS), DHT caching, and link-layer broadcast. Simulations demon-
strate the outstanding performance of these optimizations.

I

II

Zusammenfassung

In dieser Dissertation wird das Overlay-Netzwerk-Protokoll “Lite-
Ring” vorgestellt, das sowohl im Internet als auch in Ad-hoc-Netzen
einsetzbar ist. Aufgrund seiner speziellen Adressvergaberegeln er-
laubt es den teilnehmenden Knoten, den Zielknoten einer Nachricht
(mit einem beliebigen Schlüssel) lokal zu berechnen. Durch die
Nutzung eines öffentlichen Distributed Hash Table (DHT) Dien-
stes, braucht ein Lite-Ring-Knoten nur O(1) Zustände zu speich-
ern. Das macht Lite-Ring effizienter als herkömmliche strukturi-
erte Overlay-Protokolle, die die Nachricht iterativ an den Zielknoten
routen müssen.

Für die Anwendung des Lite-Ring-Protokolls in drahtlosen
Ad-hoc-Netzen, wird eine neuartige Systemarchitektur vorgestellt.
Weiterhin werden einige Optimierungen mit Cross-Layer-Designs
präsentiert, die sich mit Proximity Neighbor Selection (PNS), DHT
Caching und Link-Layer Broadcast befassen. Simulationen zeigen
die herausragende Leistungsfähigkeit des Protokolls in Verbindung
mit den Optimierungen.

III

IV

Contents

1 Introduction 1

1.1 Background . 1

1.2 Preliminary . 1

1.3 Structure of this Work . 2

I Foundations 5

2 Peer-to-Peer Networks 7

2.1 Unstructured Overlay Networks 7

2.1.1 BitTorrent . 7

2.1.2 Gnutella . 8

2.2 Structured Overlay Networks and Key Based Routing 9

2.2.1 Chord . 10

2.2.2 Content Addressable Network 11

2.2.3 Overlays with de Bruijn Graph 11

2.2.4 Kademlia . 11

2.3 Distributed Hash Tables (DHTs) 12

2.3.1 OpenDHT . 13

2.3.2 KAD DHT . 13

2.4 KBR Applications other than DHT 14

2.5 Optimizations in Overlay Networks 14

2.5.1 PRS, PNS and PIS . 15

2.5.2 Internet Distance Prediction 16

Landmark-based Delay Prediction 16

Vivaldi - Infrastructure-less Prediction 16

Meridian - Coordinate-less Prediction 17

Triangle Inequality Violation 17

2.5.3 Internet Service Provider and P2P 17

2.6 KBR Service for Multiple Applications 18

2.6.1 ReDiR . 18

2.6.2 Diminished Chord . 20

2.7 Security Issues . 21

2.8 Summary . 22

V

VI CONTENTS

3 Routing and KBR in Wireless Ad-hoc Networks 23
3.1 Routing Protocols for Wireless Ad-hoc Networks 23

3.1.1 OLSR . 24
3.1.2 AODV and DSR . 24
3.1.3 Geographic Routing . 25
3.1.4 Opportunistic Routing . 25

3.2 KBR in Wireless Ad-hoc Networks 26
3.2.1 Cross-layer Solutions . 26

CrossROAD . 26
MADPastry . 27

3.2.2 Integrated Solutions . 27
Scalable Source Routing 27
Virtual Ring Routing . 28
Geographic Hash Tables 29

3.3 Summary . 29

II The Overlay Network Lite-Ring 31

4 Overview 33
4.1 Goal and Tasks . 33
4.2 A Naive Solution . 34
4.3 Design Insights . 35

5 Design 37
5.1 Address Assignment Scheme . 37
5.2 Overlay Structures . 39
5.3 Join Mechanisms and Address Allocation 39

5.3.1 Unique Allocator . 39
5.3.2 Multiple Allocators . 40
5.3.3 Address Picking and Probing 41
5.3.4 Centralized Assignment 41
5.3.5 Summary . 42

5.4 Routing in Lite-Ring . 42
5.4.1 Routing with Random Address Tree 45

5.5 Address Tree Maintenance . 46
5.5.1 Tree Balancing with Depth 46
5.5.2 Tree Balancing with Node Count 46
5.5.3 Joint Balancing Mechanism 47
5.5.4 Balancing Overhead . 48

5.6 Handling Node Churn . 48
5.7 Duplicate Address Detection . 49
5.8 Complexity Comparison . 49

6 Simulation and Test 51
6.1 The OMNeT++ simulator . 51
6.2 Simulations . 51

6.2.1 Sequential Joins . 52
6.2.2 Concurrent Joins . 52
6.2.3 Random Address Tree . 54

CONTENTS VII

6.2.4 Using an Unstable DHT 58

6.2.5 Node Churn . 58

6.3 Tests with OpenDHT . 59

7 Conclusions 61

7.1 Summary . 61

7.2 Practical Issues . 61

7.2.1 Impact of NAT . 61

7.2.2 Load Balancing . 62

7.2.3 Public DHT Service . 62

7.2.4 Security Aspects . 62

7.2.5 Address Swap . 62

III Lite-Ring in Wireless Ad-hoc Networks 65

8 Overview 67

8.1 Case Study - Object Tracking with DHT 67

8.1.1 Background . 67

8.1.2 Straightforward Solutions 68

8.1.3 Application of DHT . 68

8.1.4 Summary . 69

8.2 Characteristics of P2P and Wireless Ad-hoc Networks 69

8.3 KBR Solutions in Wireless Ad-hoc Networks 70

8.4 Goal and Challenges . 71

8.4.1 End-to-end Routing . 71

8.4.2 Reliable Delivery . 71

8.4.3 DHT Service . 71

8.4.4 Bootstrapping . 72

9 Design 73

9.1 The Lite-Ring System . 73

9.1.1 End-to-End Routing . 74

9.1.2 Light Weight DHT . 74

9.1.3 The Lite-Ring Module . 74

9.2 Implementation . 75

9.2.1 Network Topology . 75

9.2.2 Node Structure . 76

9.2.3 The DHT Module . 77

Messages . 77

Routine . 78

Parameters . 79

9.2.4 The SSR Module . 79

9.2.5 The Lite-Ring Module . 80

9.2.6 The Application Module 80

VIII CONTENTS

10 Simulation and Test 81
10.1 Simulation Setting . 81
10.2 Scenario with a Single Application 81
10.3 Scenario with Multiple Applications 84
10.4 Scenario with an Unstable DHT 84
10.5 Scenario with Increasing Load . 85

11 Conclusions 89
11.1 Summary . 89
11.2 Discussion . 89

11.2.1 Reliable Transmission . 89
11.2.2 Capacity of Wireless Ad-hoc Networks 90
11.2.3 Performance Comparison with ReDiR 90
11.2.4 Layered Solution vs. Cross-layer Solution 91

IV Cross-Layer Designs for KBR 93

12 Overview 95
12.1 Goal . 95

12.1.1 PNS in the Lite-Ring System 95
12.1.2 DHT Caching . 96
12.1.3 Link-layer Broadcast in SSR 96

12.2 Background . 97
12.2.1 Layered and Cross-layered Architectures 97
12.2.2 Topology Information in the Network Layer 97
12.2.3 Caching in DHT . 98
12.2.4 Broadcast in Routing Protocols 98

13 PNS and Caching in Lite-Ring System 99
13.1 PNS Design . 99
13.2 DHT Caching Design . 100
13.3 Performance Evaluation . 101

13.3.1 Simulation with PNS . 101
13.3.2 Simulation with DHT Caching 103
13.3.3 Simulation with Combined Extensions 105

14 Optimizing SSR with Link-layer Broadcast 107
14.1 Broadcast in Routing Protocols 107
14.2 Enhancement of SSR . 108

14.2.1 Sending DATA . 108
14.2.2 Receiving ACK . 109
14.2.3 Route Optimization . 110
14.2.4 Ability Calculation . 110

14.3 Design Rationales . 112
14.3.1 Subsequent Route Optimization 112
14.3.2 Sender-based Forwarder Selection 112
14.3.3 DATA-first Order . 112
14.3.4 Hidden Terminal Problem 112

14.4 Performance Evaluation . 113

CONTENTS IX

14.4.1 Static Scenarios . 114
14.4.2 Scenario with Mobility . 115
14.4.3 Scenario with Churn . 116

15 Conclusions 119
15.1 Summary . 119
15.2 Discussion . 119

15.2.1 PNS in the Balancing Mechanism of Lite-Ring 120
15.2.2 Caching the Data from DHT Result Messages 120
15.2.3 Including MAC into Lite-Ring System 120
15.2.4 Asymmetric Links . 120
15.2.5 MAC Protocols . 121

V The End 123

16 Conclusions 125

17 Acknowledgments 129

A Balancing Cost with Node Count 131

B Curriculum Vitae 135

C List of Publications 137

List of Figures 139

List of Tables 143

Bibliography 147

X CONTENTS

Chapter 1

Introduction

1.1 Background

In the last decade, Peer-to-Peer (P2P) technologies have become overwhelmingly
popular and P2P applications have dominated the major part of the Internet
traffic [108]. Cisco has even forecast that P2P traffic will further increase by
23% every year in the next half decade [6]. The success of P2P applications can
be attributed to their resource sharing strategies among different peers, and
such resource sharing strategies are typically based on certain virtual overlays
that are built by the peers in a self-organizing manner.

Originally, P2P applications were merely developed for (multimedia) file-
sharing. In the meantime, they have been applied in wide areas, such as content
distribution, Internet telephony and video streaming. With the increment of
network connectivity, which happened not only for personal computers but also
for small equipments, such as cell phones and embedded devices, P2P concept
has also been applied in wireless ad-hoc networks.

Nowadays, various P2P applications could run on one host simultaneously.
It is common that a P2P application builds its own overlay independently, re-
gardless of the similar service that may be provided by other P2P applications.
In order to keep high performance, each P2P application has to store a sizable
state, which results in a considerable maintenance overhead.

1.2 Preliminary

According to the construction rules of the virtual overlays, P2P applications can
be categorized into structured and unstructured P2P application. However, due
to the benefits of the structured overlays, like consistent hashing [67] and efficient
lookup, quite a few unstructured P2P applications, such as BitTorrent [27] and
eMule [3], have also introduced structured overlay into their systems.

Despite the diversity of P2P applications, Dabek et al. [36] found that many
of these apparently different P2P applications, such as DHT, Application Layer
Multicast (ALM) and Decentralized Object Location and Routing (DOLR), can
be built upon a common Application Programming Interface (API): the Key
Based Routing (KBR) interface. The basic KBR API primitive is route(key,

value), where the application dependent key is consistently mapped to an

1

2 CHAPTER 1. INTRODUCTION

overlay instance. Depending on the application type, the received value is
operated accordingly by the overlay instance. These endpoint operations may
be more complex than just the storage and retrieval of the value, as a primitive
DHT does. For instance, a distributed database may evaluate a non-trivial
query, and an online game may perform a non-trivial update of its distributed
state.

Due to the increasing popularity of P2P applications and the costly main-
tenance overhead of the individual overlays, the conventional solution (one full-
fledged overlay per application) of providing KBR service is no more feasible.
Particularly, P2P applications have been also introduced into wireless ad-hoc
networks, where the network capacity is crucial to the maintenance overhead.
Hence, a challenging question arises: How can we efficiently provide generic
KBR service to a potentially large set of applications in the Internet as well as
in wireless ad-hoc networks?

In this dissertation, I introduce a novel solution: Lite-Ring1. With light-
weight overlays, Lite-Ring provides the same KBR services to multiple applica-
tions, as many conventional full-fledged structured overlays do, but in a much
more efficient manner.

1.3 Structure of this Work

This work is composed of four major parts. In the first part, some foundations
are outlined. They focus on P2P overlay networks in the Internet, routing
protocols in wireless ad-hoc networks and some resent efforts on KBR service
in the network layer.

In the second part, the Lite-Ring protocol is discussed in detail. Lite-Ring
provides the generic KBR service to multiple applications with light-weight over-
lays by leveraging a public DHT service. From the application view, Lite-Ring
is similar to many other structured overlay protocols. However, the difference
to them lies in two factors: 1) Lite-Ring uses a predictable address assignment
scheme. Hence it is able to estimate the destination nodes for arbitrary keys
by local calculation. 2) Lite-Ring shifts the complicated and costly optimiza-
tion jobs to the public DHT, such as the adaptation of the overlay towards the
underlying network. These features enable Lite-Ring to provide efficient KBR
services to a potentially large number of applications. Analysis and simulation
demonstrate its advantages in smaller local state and less maintenance overhead
comparing to the other approaches.

The third part is devoted to the construction of the Lite-Ring system, which
aims at providing KBR services in wireless ad-hoc networks. The Lite-Ring
system includes not only Lite-Ring modules that implement the Lite-Ring pro-
tocol, but also a DHT module and a Scalable Source Routing (SSR) module.
To my best knowledge, the Lite-Ring system is the first exploratory study on
providing KBR services for different applications in wireless ad-hoc networks.
Some initial simulations also confirm its applicability.

In the fourth part, several cross-layer optimizations for the Lite-Ring system
are proposed. These are Proximal Neighbor Selection (PNS) in the Lite-Ring
module, intermediate caching in the DHT module and link-layer broadcast in the

1Lite-Ring stands for a light-weight ring-like KBR overlay.

1.3. STRUCTURE OF THIS WORK 3

SSR module. The simulation results demonstrate the outstanding performance
of these optimizations.

4 CHAPTER 1. INTRODUCTION

Part I

Foundations

5

Chapter 2

Peer-to-Peer Networks

The term P2P means that the participants of the network have the similar roles
and interact with each other in an “ad-hoc” manner, in contrast to the tradi-
tional “client-server” manner. With such an “ad-hoc” principle, the participants
in a P2P network share their resource, which makes the network scalable. For
example, Skype reported that it had 15 millions concurrent users in 2008 [5].

Besides the scalability, decentralization is also an important aspect of P2P
applications. Decentralization makes a P2P network robust, i. e. the removal
of some nodes in a P2P network will not cause significant impact on the net-
work. For those fully decentralized P2P applications, there exists no central
component, thus no single point of failure.

Most P2P applications are deployed at the hosts in the Internet, and they
reside typically on top of the transport layer. There exists usually a virtual
overlay network inherently in the P2P application. The connections between
hosts in a P2P application are the overlay links. Depending on the rule of
the generation of the overlay links, the virtual overlays can be classified into
unstructured and structured overlays.

2.1 Unstructured Overlay Networks

In unstructured overlay networks the peers connect without special constrains on
the generation of the overlay links. This means that, in principle, any two peers
can create an overlay link between them. Based on whether using a central
component or not, unstructured overlay networks can be further subdivided
into hybrid decentralized system, e. g. BitTorrent [27], and purely decentralized
system, e. g. Gnutella [65].

The following sections describe two well-known unstructured overlay proto-
cols, which can be considered as the representatives of hybrid decentralized P2P
system and purely decentralized P2P system.

2.1.1 BitTorrent

BitTorrent [27] is one of the most popular P2P file-sharing applications, it was
released by Bram Cohen in 2001. Lately, its traffic has been estimated to occupy
approximately 27-55% of all Internet traffic [108].

7

8 CHAPTER 2. PEER-TO-PEER NETWORKS

A BitTorrent system consists of a tracker, an initial seeder, many seeders
and many downloaders. The peers which can provide the complete file are called
seeders; and the first seeder is the initial seeder. The downloaders are normal
users downloading the file. The tracker is a central server, which stores the
information of the current seeders and downloaders of the files.

To share a file, the initial seeder splits its file into some small blocks,
varying from 64KB to 4MB. Then it creates a meta-data file called torrent-
file, which comprises of the Universal Resource Locator (URL) of the tracker
and the checksum of each block, which is calculated with the Secure Hash
Algorithm (SHA) [84]. After registering itself to the tracker, the initial seeder
publishes its torrent-file, e. g. on some web page.

To download the file, the downloader usually gets the torrent file from the
web server. With the torrent file, the downloader asks the tracker for the list
of the seeders and other downloaders of this file. Now he can download differ-
ent blocks from different peers/downloaders and upload his finished blocks to
other downloaders. At the different downloading phases, various downloading
strategies, e. g. random-block-first and rarest-block-first, are applied.

Obviously, the tracker of the BitTorrent system is the central component.
Both the publisher and the downloaders need the tracker to exchange informa-
tion. If it fails or the connection to it fails, the whole BitTorrent system breaks
down. To prevent such single failure, DHT was adopted in the later versions of
BitTorrent clients, e. g. Azureus(Vuze) [4].

2.1.2 Gnutella

Gnutella [65] was a full decentralized file-sharing P2P application. Unlike Bit-
Torrent, Gnutella has no central component even in its earliest version.

In order to join the Gnutella network, the user must find an existing node in
this network, e. g. via web caches, Internet Relay Chat (IRC), etc. After attach-
ing to the network, the user exchanges different messages with his neighbors:

• Ping/Pong messages that are used to know other nodes and the informa-
tion of the files on these nodes.

• Query/Response messages that are used to search certain files in the net-
work.

• Get/Push messages that are used for the file transfer.

In the early versions of Gnutella (pre 0.4), pure flooding search was applied
and this search strategy made the Gnutella network unscalable. In the later
versions, a Time To Live (TTL) field was included in the Query messages.
Since version 0.6, Gnutella has introduced two different peer modes: leaf peer
and ultra peer. The leaf peers are connected with 3 ultra peers and perform
inquiry only via the ultra peers. The ultra peers have a high out-degree and are
responsible for routing the queries. With this two-tier structure, the efficiency
and scalability are improved significantly.

Gnutella is not only a favorite P2P application for Internet users, but also
a hot topic for academic researchers. Many suggestions have been proposed to
further improve the performance. For example, Lv et al. [81] suggested a ran-
dom walk for the query messages and a uniform random graph for the network

2.2. STRUCTURED OVERLAY NETWORKS AND KBR 9

topology; Cohen et al. [28] proposed an optimal replication scheme for the ran-
dom search, in which the number of the replications should be the square-root
of the query rate; Castro et al. [19] further suggested a structured overlay for
Gnutella to reduce the maintenance overhead.

2.2 Structured Overlay Networks and Key
Based Routing

In contrast to unstructured overlay networks, structured overlay networks have
special rules to generate the overlay links. The virtual structure in such a
network can be a ring, a torus or a more complicated graph.

Structured overlay networks have the following common properties:

• Each overlay node has a unique Identifier (ID), i. e. address, in the overlay
address space. The IDs of the nodes are generally assumed to be uniformly
distributed in the address space.

• Each point (also called key) in the address space is consistently mapped
to its “closest” overlay node according to a certain distance metric.

• Each node has a small amount of connections to other nodes following the
constructive rules of the virtual structure.

• Messages are delivered to a key instead of a node’s ID.

• Messages are routed towards the destination key by minimizing the dis-
tance to it.

• The corresponding node of a key, i. e. the closest node to the key, is guar-
anteed to be reached within a limited number of steps.

As just mentioned, the destination of a message in a structured overlay is
a certain key in the address space, hence the routing scheme in a structured
overlay network is called Key Based Routing (KBR), which is different to the
end-to-end routing scheme, where a node ID must be the destination.

Due to the enormous network size of overlay networks, the classic proactive
routing protocols are not feasible any more. For example, a link state routing
algorithm (e. g. Dijkstra algorithm [45]) and a distance vector routing algorithm
(e. g. Bellman-Ford algorithm [9]) need to know the global topology. For a large
overlay network with millions of nodes, the topology information which has to
be stored and be propagated would overload the network. Unlike the proactive
routing protocols, reactive routing protocols do not need to keep a large state
of the network topology, but they usually flood the whole network for route
discovery. Thus they are obviously unsuitable for a large network, too.

Instead of the conventional proactive or reactive routing protocols, struc-
tured overlay networks apply hybrid routing algorithms. Each overlay node
saves limited overlay topology information cooperatively. When the destina-
tion cannot be directly reached, the message is delivered via some other known
overlay node towards the destination. After several iterations, the message is
guaranteed to reach the correct destination node.

10 CHAPTER 2. PEER-TO-PEER NETWORKS

It is worth noting that the KBR feature of the structured overlays is the base
of many P2P applications in the Internet. In addition, KBR is also applied in
the network layer, as will be illustrated in Chapter 3.2. In the following sections,
some selected structured overlay network protocols will be described.

2.2.1 Chord

Chord [114] is one of the four earliest structured overlay protocols proposed in
2001, along with CAN [94], Tapestry [131] and Pastry [104].

Figure 2.1: Chord ring and its finger table (from [115], Figure 4a)

The address space of Chord is a circle of numbers from 0 to 2m − 1, where
m is the bit length of the node ID. The node IDs are unique, random and
uniformly distributed in the address space. Usually the IDs are generated with
the SHA-1 hash function [84]. The distance between two IDs is the modular
difference between them, i. e. d(a, b) = (b− a) mod 2m.

The overlay structure is a ring with some chords, that are named fingers
in [114] (see Figure 2.1.) To maintain the ring structure, each node keeps the
connections to two other nodes, whose IDs are the closest to its own ID in
the clockwise and counterclockwise directions respectively. They are called the
successor and predecessor of this node. Besides the connections to the successor
and predecessor, each node maintains at most log2N fingers, where N is the
number of the nodes in the network. The other end points of the fingers are
exponentially distant from the node.

When a node forwards a message towards its destination, i. e. a certain key in
the address space, it chooses the finger, whose endpoint ID is the closest to the
key. This is exemplarily shown in Figure 2.1: If node 8 want to send a message
to key 33, it will use the 4th finger in its finger table. Since the end-pointer of
this finger is the closest one to the target. As the distance to the key will be
approximately halved by each forwarding step, the whole routing process will
terminate after O(log2N) hops.

2.2. STRUCTUREDOVERLAYNETWORKS ANDKEY BASED ROUTING11

2.2.2 Content Addressable Network

The Content Addressable Network (CAN) uses a d-dimensional torus as its
virtual overlay structure. The node ID in CAN is a d-dimensional Cartesian
coordinate. The address space is so partitioned that each part of it is associated
to exactly one node in this part. To maintain the overlay structure, each node
has connections to its neighbors in the torus. The routing algorithm in CAN is
similar to that in the Greedy Perimeter Stateless Routing (GPSR) protocol [70],
i. e. greedily forwarding the message to the neighbor who is the closest one to
the destination coordinate.

When a new node joins the CAN network, it first generates a random d-
dimensional ID. Similar to Chord, it has to know one existing CAN node to
bootstrap, i. e. to send a join message to it. The bootstrapping node then
routes the join message to the destination node, who is the closest one to the
newcomer’s ID. Now the address space of the corresponding node is split, and
one part is associated to the newcomer.

When the CAN overlay has N nodes and uses a d-dimensional address space,
the complexity of the routing length is O(d ·N 1

d). The neighbor count of each
node is O(d). Obviously, if we set d equal to logN , the complexity of the routing
state and that of the routing length of CAN will be the same as those of Chord,
i. e. O(logN).

2.2.3 Overlays with de Bruijn Graph

Some structured overlay networks, such as Koorde [64] and Viceroy [82], use
de Bruijn graph [107] as the virtual structures. A de Bruijn graph consists of
mk nodes, where the node ID is composed of m symbols and the size of the
symbol set is k. Assume m = 3 and k = 2, the node IDs look like 101, 011, etc.
Each node in the de Bruijn graph has directed connections to its m neighbors,
whose IDs can be expressed by shifting all symbols in the node ID by one place
to the left and adding a new symbol x at the end, for x = 0, ..., k − 1. For
example, let m = 3 and k = 2 again, node 101 will have the neighbors of nodes
01x, i. e. node 010 and node 011.

The routing process in de Bruijn graph can be described as follows. Suppose
that the destination ID is d. Each node chooses the ID of the next hop in such
a way that it shifts left its own ID by 1 alphabet and fills the most right place
with one new alphabet of the destination ID. For example, the route from 101
to 001 will be: 101 → 010 → 100 → 001. Hence the routing complexity on
de Bruijn graph is O(m) and the complexity of the routing state is O(k). Since
k is usually very small, de Bruijn overlays are considered to have a constant node
degree of O(1) and a routing complexity of O(logN), where N is the number
of the overlay nodes.

2.2.4 Kademlia

Kademlia [83] is the most widely applied structured overlay protocol in many
well-know P2P applications, such as eMule/aMule [3, 2], BitTorrent [27] and
Azureus(Vuze) [4].

12 CHAPTER 2. PEER-TO-PEER NETWORKS

The node ID in Kademlia is a random 160-bit1 number. The Exclusive
OR (XOR) operation is used as distance metric, i. e. d(a, b) = a ⊕ b. The
routing table of a Kademlia node consists of 160 buckets. Each of them contains
up to k (such as 20) nodes, whose IDs have the same beginning i bits as the
ID of this node, for i ∈ (0, 159). Just for clarification, we assume a Kademlia
implementation with 4-bit node ID and let k = 2. Then node 0110 will have
four buckets, and they will be filled with nodes having IDs of 1xxx, 0xxx, 01xx
and 011x. Each bucket contains up to 2 nodes.

The lookup process of Kademlia is to recursively query α (such as 3) of the
k closest nodes to the destination key. In each recursion step, a Kademlia node
knows more nodes closer to the target. The lookup terminates, when no closer
node can be learned. The routing complexity of Kademlia is O(logN).

The XOR metric used in Kademlia has some useful properties:

• It is commutative, i. e. the distance from node A to node B is the same
as that from node B to node A. When node A receives a message from
node B, it adds node B into its routing table in the same bucket as node
B has done with node A.

• The routing table can be extended by using prefix instead of bit. If the
prefix has the length of b, the routing table size is then 160

b · 2
b−1 · k, and

the routing complexity is correspondingly reduced to O(log2b N).

2.3 Distributed Hash Tables (DHTs)

A DHT is an implementation of a hash table in a distributed system. It is
usually used for data storage and retrieval. Often a structured overlay that
supports Key Based Routing can often be found as the substrate behind DHT.
The data stored in a DHT is always associated with a certain key and the keys
are mapped to the nodes consistently.

The most important property of the DHT is its hash consistency [66, 67]. It
means that when nodes join or leave the system, the map between the keys and
nodes will be just slightly changed.

Usually, a DHT implementation has the following common messages:

• Put message is used to store data under a certain key in the distributed
system. The substrate, i. e. the structured overlay network, routes the
message to the destination node, which will store the key-data pair in its
cache for a certain time period.

• Get message is used to retrieve the data associated with the certain key

from the distributed system. The routing process is the same as that of
the Put message and the destination node will return the cached data to
the inquirer.

• Get-Reply message returns the data specified by the key in the Get mes-
sage. This message can be routed back to the inquirer via the structured
overlay network with the KBR scheme, e. g. for censorship-resistance rea-
sons, or it can also be directly sent back to the inquirer on the transport

1This length varies in different implementations, e. g. the KAD network uses 128-bit ad-
dresses.

2.3. Distributed Hash Tables (DHTs) 13

layer (via TCP/UDP) for performance reasons. In the latter case, the Get
message must contain the transport layer address of the inquirer.

These three messages correspond to the common DHT APIs: put(key, data)

and get(key). In a concrete DHT implementation, there could be some other
kinds of messages like Remove and Replace.

2.3.1 OpenDHT

OpenDHT [100] is an application based on the Bamboo DHT [99] on the Plan-
etLab testbed [90]. The Bamboo DHT applies the Pastry [104] algorithm and
has included some optimizations for node churn. OpenDHT extends the two
common DHT APIs mentioned above by introducing authentication. Table 2.1
shows the extended DHT APIs of OpenDHT.

Procedure Functionality
put(k,v,H(s), t) Write (k,v) for t;

(k,v) can be removed with secret s
get(k) Read all v stored under k
returns (v,H(s), t) Returned value(s) unauthenticated
remove(k,H(v), s, t) Remove (k,v) put with secret s;

if t>TTL remaining for put

put-immut(k,v, t) Write (k,v) for t; immutable (k = H(v))
get-immut(k) Read v stored under k
returns (v, t) Returned value immutable

put-auth(k,v,n, t,KP ,σ) Write (k,v), expires at t;
public key KP ; private key KS

can be removed using nonce n;
σ = H(k, v, n, t)KS

get-auth(k,H(KP)) Read v stored under (k,H(KP))
returns (v,n, t,σ) Returned value authenticated
remove-auth(k,H(v),n, t,KP ,σ) Remove (k,v) with nonce n;

parameters as for put-auth

Table 2.1: The put/get interfaces of OpenDHT (from [100], Table 1)

OpenDHT provides a public DHT service via Sun RPC (over TCP) [118]
as well as via XML RPC (over HTTP) [124]. The storage on OpenDHT has
the limitation of one kilobyte per data item. Each item can persist for maximal
one week if not refreshed. Since its publication in 2005, it has attracted a lot
of academic interests and quite a few applications have been built based on
OpenDHT so far. Unfortunately, due to the lack of maintenance, OpenDHT
was shut down by its author on July 1, 2009.

2.3.2 KAD DHT

KAD is another DHT implementation. It is based on the Kademlia [83] algo-
rithm and mainly used for file-sharing. Since the KAD network is supported by
eMule/aMule and MLDonkey clients, which have millions of concurrent users,
it is the most widely deployed DHT implementation nowadays.

14 CHAPTER 2. PEER-TO-PEER NETWORKS

Both the node ID and the key in the KAD network have 128 bits. There
are two types of keys: Source key and Keyword key. The Source key is the
identifier of a file, which is hashed from the file content; whereas the keyword
key is computed by the words of the file name. The Source key and the Keyword
key are published on their ten “closest” (in term of XOR distance) nodes every
5 and 24 hours, respectively [112].

Stutzbach et al. [116] gave out some detailed analysis of the lookup perfor-
mance of the KAD DHT. They pointed out that the expected hop count of
a KAD lookup is 1 + log2 n−7.73

6.98 . In a large network with 1 million nodes, the
expected hop count is merely 2.7. This efficient lookup is achieved by increasing
the routing table size, i. e. adding more buckets as well as adding more contacts
in the bucket.

2.4 KBR Applications other than DHT

Although many structured P2P overlay networks have been proposed for DHT
applications, there are quite a few non-DHT applications based on the KBR
feature of structured overlays. These applications aim at providing diverse and
more complicated services:

• Application Layer Multicast (ALM) applications, e. g. Scribe [22] and
Multicast-CAN [96], use structured overlays (Pastry [104] and CAN [94]
respectively) to realize scalable multicast in the application layer.

• Internet Indirection Infrastructure (i3) [113] lets the overlay nodes redirect
the Internet traffic to the end-host by decoupling the packet delivery from
the packet receipt. In i3, each packet has an identity and is delivered to a
certain overlay node, from which the receivers get the packet.

• Storage utility, such as PAST [46, 105], aims at large-scale and Internet-
based Decentralized Object Location and Routing (DOLR).

• The distributed video recorder [33] schedules the recording tasks to differ-
ent overlay nodes.

• Peer-to-Peer file systems, e. g. OceanStore [73], SiRiUS [62] and Ig-
orFS [75], store file (blocks) fully decentralized on the overlay nodes and
provide grained cryptographic Access Control List (ACL) support.

So, not only DHT applications but also many other applications exploit the
KBR characteristics of structured overlay and make the P2P application more
versatile.

2.5 Optimizations in Overlay Networks

Most of the overlay protocols build their virtual structures on top of the Internet
without considering it otherwise than as a black box, which provides connection
between two overlay nodes. Although the routing complexity of the overlay
protocols are claimed to be small, e. g. O(logN), Kutzner et al. [74] found that
the overlay links are so heterogeneous that the Round-Trip Times (RTTs) of the
overlay links in the Overnet network follows a power-law distribution over many

2.5. OPTIMIZATIONS IN OVERLAY NETWORKS 15

orders of magnitude. The mean value of the RTTs in their experiment was more
than 5 seconds. They concluded that the performance of a plain overlay network
before optimizing the overlay links could be very bad. Hence, it is necessary
to adjust the overlay structure in such a way that the small routing complexity
remains but the routing delay reduces.

2.5.1 PRS, PNS and PIS

Gummadi et al. [54] pointed out that the end-to-end latencies in structured over-
lay networks can be significantly reduced by applying some proximity methods,
i. e. Proximal Route Selection (PRS), Proximal Neighbor Selection (PNS) and
Proximal Identifier Selection (PIS). In the following context, proximal nodes
mean the nodes that can be reached with small cost, e. g. small RTT.

• PRS refers to a class of algorithms, where the routing process chooses the
most proximal neighbor in the direction towards the destination as the
next hop, instead of choosing the neighbor whose ID is the closest to the
destination key in the virtual structure. It is obvious that the proximity
method works only if there are more than one neighbors which lie in the
direction towards the destination key. For example, in early stages, Chord
can choose the most proximal finger in the direction instead of the one,
who is closest to the target, to route the message; while Kademlia can
query the most proximal α nodes from the k nodes in the bucket, that are
closest to the target.

• PNS implies that when the overlay nodes choose their virtual neighbors
to build the overlay, they prefer the proximal nodes. As the example
in Figure 2.1 shows, the routing table (i. e. finger table) of node N8 is
built strictly following the Chord protocol: The routing table contains the
nodes that have IDs directly following (x + 2i), where x is the node ID
and i = 1, 2, ..m. Under this strict condition, PNS is impossible, since
there is only one candidate for each routing table entry. However, if we
extend the Chord protocol by allowing the nodes, whose ID belongs to
(x + 2i, x + 2i+1), into the routing table, PNS can be put in execution.
According to this extension, the routing length of O(logN) remains.

• PIS: Ratnasamy et al. [95] suggested that the nodes can choose their over-
lay IDs according to their localities. In their proposal, there are some well
deployed landmarks. Each node gets a coordinate by measuring its dis-
tance to the landmarks and joins the Content Addressable Network (CAN)
overlay with the coordinate. According to the addressing scheme, the
proximal nodes have close overlay IDs, this reduces the maintenance over-
head and thus improves network performance. The drawback of PIS lies
in the potentially uneven ID distribution, which makes load balancing
hard [54].

Gummadi et al. further showed in their experiments that the performance
improvement by PNS is more significant than that by PRS. While PRS can be
implemented straightforwardly by comparing the distance to each candidate in
the routing table, it is difficult to implement PNS. We note that each overlay
node knows only a small number of other overlay nodes in its routing table.

16 CHAPTER 2. PEER-TO-PEER NETWORKS

However, the task of PNS is to get to know more proximal nodes via the known
nodes with small overhead. Several methods have been proposed to solve this
problem. We will discuss some of them in the following sections.

2.5.2 Internet Distance Prediction

As mentioned above, the overlay network performance can be significantly im-
proved by adding proximal nodes into the routing table. Obviously, it is costly
to probe all candidate nodes iteratively. Hence, Internet distance prediction
approaches have been proposed to predict the distance between two nodes in an
efficient way to alleviate PNS. Since in most of the works, the RTT is used to
define the distance between two nodes, we refer delay prediction to the distance
prediction in the following context.

Landmark-based Delay Prediction

Some systems, e. g. IDmaps [48], Global Network Positioning (GNP) [85] and
King [55], utilize landmarks to predict the host-to-host delay. In these systems,
some reliable hosts in the Internet are chosen as landmarks and the distance
between every two landmarks is measured. Based on the landmark-to-landmark
delay, the host-to-host delay can be estimated as follows:

• IDmaps [48] deploys some special hosts as landmarks (tracers in [48]), and
stores the delay matrix of the landmarks on several servers. The latency
of two hosts is estimated as the sum of the latencies of the hosts to their
closest landmarks plus the latency between the two landmarks.

• GNP [85] deploys some landmarks in the Internet and stores the distances
between every two landmarks in a latency matrix. Based on this matrix,
the landmarks are embedded into a geometric space, e. g. 3-dimensional
Euclidean space. A host can now download the coordinate set of the
landmarks, measure its distance to the landmarks and then calculate its
own coordinate. The latency between two hosts can be easily estimated
according to their coordinates.

• King [55] is similar to IDmaps, but uses DNS servers as landmarks and
approximates the latency between two hosts according to the latency be-
tween their nearby DNS servers. This approach saves the deployment
of the infrastructure of landmarks and has small estimation error. More
important, as it uses DNS server, this method scales well.

Vivaldi - Infrastructure-less Prediction

Landmark-based delay prediction could introduce large errors, since it approxi-
mates the host distance with the landmark distance. Moreover, it requires some
well deployed landmarks, which is infeasible for many P2P applications.

Vivaldi [34] is an infrastructure-less Internet distance prediction approach,
which assigns synthetic coordinates in an n dimensional Euclidean space to the
overlay nodes. As with GNP it estimates the distance between two overlay
nodes according to their coordinates. The fundamental idea of Vivaldi is to
minimize the whole system prediction error iteratively. At first, each node is

2.5. OPTIMIZATIONS IN OVERLAY NETWORKS 17

assigned with a random coordinate. During the operation, the node collects
the coordinates from its overlay neighbors as well as the distances (RTTs) to
them. It updates its coordinate regularly to reduce the system prediction error
according to

xi = xi + δ × (rtt− ‖ xi − xj ‖)× u(xi − xj)
where xi is the node’s own coordinate, xj is the coordinate of neighbor j, δ is a
constant of step size and u is the unit vector.

After some iterations, the coordinates of all nodes converge and the sum of
the prediction errors is minimized.

Meridian - Coordinate-less Prediction

The distance prediction based on virtual coordinates, such as Vivaldi, is of-
ten inaccurate, as it maps the high-dimensional Internet infrastructure into a
low-dimensional Euclidean space. Meridian [126] circumvents this problem by
eliminating virtual coordinates.

Meridian groups the known nodes into several concentric rings, whose di-
ameters increase exponentially. Each ring stores at most k nodes (k = 16 in
[126]). Each node periodically randomly selects a list of nodes, one node per
ring. After that, it sends a gossip message to the each node on the list. The
gossip message contains again some randomly chosen nodes, one from each ring.
Upon receiving such a message, the receiving node measures the distance to the
nodes in the gossip message, and puts them into its concentric rings.

After some iteration, the Meridian node would fill each concentric ring fully,
if there are enough nodes. In the innermost ring, the closest nodes are stored.
Meridian can also be considered as a kind of special loosen structured overlay
network, where overlay links are generated according to the physical distance,
i. e. the closer a node, the more probably a link to it. Meridian can not only
find the closest nodes but also cope with some special problems: e. g. closest
node (to some target) discovery, central leader election, etc.

Triangle Inequality Violation

Vivaldi and Meridian are two representative solutions of the Internet delay pre-
diction. Note that their efficiency and accuracy are based on the assumption of
triangle inequality for Internet delays, i. e. for node a, b and c:

d(a, b) + d(b, c) ≥ d(a, c)

However many studies [133, 130, 78] found that this assumption is not always
true. Wang et al. [123] demonstrated that the Triangle Inequality Violation
(TIV) of Internet delay has severe impact on the accuracy of theses predic-
tion methods. Since naively excluding the TIV links won’t help to improve the
performance of Vivaldi and Meridian, several optimizations were proposed to
mitigate the TIV problem, such as adding non-Euclidean adjustment to Eu-
clidean coordinate [78] and TIV alert mechanism [123].

2.5.3 Internet Service Provider and P2P

The overwhelming popularity of P2P application has also attracted much inter-
est of the Internet Service Providers (ISPs), since they not only have to route

18 CHAPTER 2. PEER-TO-PEER NETWORKS

the enormous P2P traffic, but also have to deal with the large cross-ISP cost.
Aggarwal et al. [7] suggested that ISPs can provide an “oracle” service to

its P2P users, so that the peers can choose “good” neighbors in the same or
proximal Autonomous System (AS), thus to reduce the cross-ISP traffic. Bindal
et al. [10] attempted to enable biased neighbor selection for BitTorrent. This
can be done either by importing Internet/AS topology maps to the BitTorrent
tracker and clients, or by using P2P traffic shaping devices to propagate the
information of the internal peers. Choffnes et al. [25] proposed an approach
to reduce the P2P cross-ISP traffic without cooperation from ISPs. In their
proposals, the peers utilize the Content Distribution Network (CDN) redirection
as the locality hints to choose overlay neighbors in the same AS.

2.6 KBR Service for Multiple Applications

As mentioned in Section 2.4, structured overlay networks can be used to build
versatile P2P applications. Although the purposes of some applications are very
similar, e. g. the Kademlia-based DHTs are used in both eMule and BitTorrent,
it is usual to build one structured overlay for each application. This is how-
ever a very inefficient solution due to expensive maintenance and bootstrapping
overhead of each application.

Nowadays, it is expected that a host will run multiple P2P applications
simultaneously. Since in current solutions the structured overlays are isolated
from each other, the maintenance overhead of the host would be enormous.
Consider the KAD DHT used by aMule, whose routing table size is [116]:

log2 n× 2b−1 × k

Let b = 4, k = 10 and n = 1M , then this results in a routing table with 1594
entries! (Note that this result is only an upper bound, since not all the buckets
are fully filled.)

Figure 2.2 is a snapshot of the routing table status of an aMule client for
the first 30 minutes. From this figure, we observe that the routing table size of
the KAD network of 1.6 million nodes is beyond 650. It is very costly to keep
such a large routing table up-to-date. Although a longer maintenance interval
can reduce the maintenance overhead, it will cause many stale routing entries,
which reduce the routing performance.

It is worth noting that some structured overlay networks apply proximity
methods to improve the network performance, e. g. using Vivaldi and Meridian.
This will further increase the local state and the maintenance overhead. (As
illustrated in [126], in a 2000 node Meridian system, the node has to maintain
state for hundreds of nodes.)

Based on these observations, several approaches were proposed with the aim
at how to provide KBR services for multiple applications in a more efficient way.
Depending on the authors, the group of application instances is referred to as
“namespace” [100], “subgroup” [68] or “cluster” [8].

2.6.1 ReDiR

Rhea et al. [100] proposed the Recursive Distributed Rendezvous scheme
(ReDiR), which uses OpenDHT to construct a per-namespace KBR system.

2.6. KBR SERVICE FOR MULTIPLE APPLICATIONS 19

Figure 2.2: Screenshot of aMule on 01.Jan.2010

ReDiR divides the application address space into partitions at different levels.
Each partition at level i covers the b sub-partitions at level i + 1, where b is
called branching factor which is often set to 2.

For the example shown in Figure 2.3, the address space is partitioned
into 4 levels, and level i contains 2i partitions. All these partitions at dif-
ferent levels uniformly divide the whole address space and all the parti-
tions are mapped to OpenDHT under the key that is hashed from the tuple
of ("application-name", level, position). For instance, the 4th parti-
tion at level 3 of application “i3” is mapped to OpenDHT under the key:
hash(‘‘i3’’,3,4).

When a new node joins the application KBR system, it begins its registration
at a certain initial level, say l. At first, it calculates which partition at level l
includes its ID. Then it registers itself under that partition. It registers itself
further to the partition at the coarser levels (go up) until it is not the extremal
node in that partition. It also registers itself to the partition at the finer levels
(go down) until it is the only node in that partition.

Consider the example in Figure 2.3 again, node B starts at level 2. It
will further register itself at level 1 because it is still the extremal node in the
partition at level 2. It doesn’t register at level 0, because it is not the extremal
node at level 1. Node B stops the registration at level 3, because it is the only
node in the partition at that level. Such registration process in OpenDHT will
be repeated regularly, and the lowest level at which the registration previously
completed will be used as the next initial level.

20 CHAPTER 2. PEER-TO-PEER NETWORKS

Level 0

Level 1

Level 2

Level 3

Level 4

Client ID

A D F

FCA

A

B

B

B

C

C

D

D

F

F

F

FDCBA

E

E

E

E

E

C

Figure 2.3: Example of a ReDiR tree with branching factor b=2.

When ReDiR routes a lookup message to a certain key k in a given names-
pace, it first computes which partition at level llookup includes the key k, and
gets a list of the registered nodes in this partition from OpenDHT. The sender
should either get the nodes list at the coarser level (go up) if there is no node
succeeds the key, or get the nodes list at the finer level (go down) if the key is
between the node IDs in the retrieved nodes list. If the key proceeds all the node
IDs in one partition or the partition contains only one node, the node whose ID
succeeds the key is the destination node.

The selection of llookup is an important factor of the lookup efficiency. A
precise estimation of the level of destination node can stop the lookup process
in 1∼2 steps. [100] suggested that the levels, at which the last 16 lookups com-
pleted, can be used as hints for the next lookup. The simulations in [100] showed
that the lookup overhead of ReDiR is approximately 1.3 DHT get operations.

The maintenance overhead of ReDiR is approximately 3 put messages and
4 get messages per maintenance interval. Suppose there are 2L ReDiR nodes,
where L is an arbitrary number less than the ID’s length. Suppose again the
IDs of the ReDiR nodes are strictly uniformly distributed, we can derive that
the partitions at the deepest levels (level L) contains one ReDiR node and all
the other partitions contain two ReDiR nodes (the two extremal nodes in each
partition). In total, there are 3×2L nodes registered on the partitions, i. e. each
ReDiR node registers itself 3 times on average. Note that before a node decides
whether to register itself or not, a get operation is needed to poll the destined
partition. Therefore, each ReDiR node performs 4 get operations on average,
because three of the get operations would have positive answers, that triger the
registrations; and one of the get operations would have a negative answer, that
terminates the registration process.

2.6.2 Diminished Chord

Karger et al. [68] proposed Diminished Chord for the formation of subgroups
in a Chord overlay. Each subgroup corresponds to a binary search tree that
is embedded in the Chord ring. Each tree is rooted at the hash value of the
subgroup name. When a node joins a certain subgroup, it registers itself to all its
ancestors in the binary tree. Every inner node stores only the smallest subgroup
member ID, which succeeds its ID. Each node can know its closest subgroup

2.7. SECURITY ISSUES 21

member by querying the ancestor nodes towards the root of the subgroup tree.
Usually a match can be found on some inner nodes before the root. Hence
the lookup complexity is O(logN), where N the whole network size (not the
subgroup size). Since the inquiry is upwards to the root, the subgroup member
can register itself only at the highest level in the binary tree, where the inner
node should store its information. This reduces the space usage from O(logN)
to O(1) per subgroup member, while the lookup delay increases slightly.

To route a message with a certain key within a subgroup, the message is first
routed to the successor of the key according to the regular Chord rule. After
that, the successor of the key finds the successor of the key within the subgroup
with aforementioned algorithm (i. e. traversing the binary search tree to find the
destination node). Both steps take O(logN) overlay hops.

Comparing to ReDiR, there are several drawbacks in Diminished Chord:

• Larger lookup delay. The first step of lookup is based on the regular KBR
in Chord, which needs O(logN) overlay hops. With proximity methods,
the real delay of the lookup can be significantly reduced [54]. The second
lookup step is the traversal of the binary tree. Since the tree structure
is fixed and it is difficult to apply proximity methods, this step causes a
large delay.

• Uneven node load. In the embedding algorithm, the inner tree node and
its right child are always mapped to the same overlay node [68]. This
means some overlay nodes have O(logN) more load than the other nodes
per subgroup.

• Dependency of Chord. This approach is only proposed for the Chord pro-
tocol. Additionally, it requires the Chord protocol to equip additional
pre-fingers. Otherwise, the lookup complexity will increase and the im-
plementation will be more complicated. Moreover, unlike ReDiR, the
subgroup member must join the prime Chord ring.

2.7 Security Issues

Since each peer has only to contain very limited knowledge of the whole system,
P2P networks achieve remarkable scalability. However, the limited view of the
whole system also makes P2P networks vulnerable to a few security threats,
e. g. Sybil attacks, Eclipse attacks and routing and storage attacks.

• Sybil attack means that a malicious node generates enormous amounts of
bogus nodes into the P2P network and tries to take control of the whole
system.

• Eclipse attack means that an attacker tries to isolate some honest nodes
by filling their routing tables with references to the malicious nodes.

• Routing and storage attack means that an attacker puts corrupted routing
information and data into the system.

For more details about the security issues in P2P networks, refer to [119], which
gives out a comprehensive survey of these security threats and the corresponding
solutions.

22 CHAPTER 2. PEER-TO-PEER NETWORKS

2.8 Summary

In this chapter, I have briefly presented peer-to-peer overlay networks. After a
short overview of several unstructured overlay networks, I have introduced some
popular structured overlay protocols, that offer Key Based Routing (KBR) as
their fundamental service. Based on KBR, there are various applications, includ-
ing the widely applied DHT. In addition, I have discussed some optimization
approaches that aim at improving the overlay performance by coupling the over-
lay topology to the underlying Internet infrastructure. After that I have also
illustrated some approaches that focus on providing the KBR service to multi-
ple applications efficiently and at the end some security issues of P2P overlay
networks have been briefly mentioned.

Chapter 3

Routing and KBR in
Wireless Ad-hoc Networks

Routing protocols have evolved all the time since the appearance of computer
networks. In the meantime, multiple taxonomies have been proposed for rout-
ing protocols. In the beginning, routing protocols were mostly designed for
infrastructure-based networks. The protocols were usually classified into in-
terior and exterior protocols according to the location where these protocols
are applied. For example, the Routing Information Protocol (RIP) and the
Open Shortest Path First (OSPF) are two famous interior routing protocols
used within a single Autonomous System (AS); while the Border Gateway
Protocol (BGP) is the most widely used exterior routing protocol among differ-
ent ASs in the Internet.

More recently, due to the wide deployment of wireless ad-hoc networks, new
routing protocols have been developed. Routing protocols can then be catego-
rized into infrastructure-based routing protocols and ad-hoc routing protocols.
As P2P applications become more and more popular, the routing concept is
further extended to the application layer. Thus, routing protocols can be fur-
ther divided into overlay routing protocols and network layer routing protocols.
Note that in overlay routing protocols, the destination of a message is a key
instead of a concrete node ID. Hence, these overlay routing protocols are called
Key Based Routing (KBR) protocols, while the network layer routing protocols
provide end-to-end routing.

While the KBR protocols are widely studied in the Internet, some researches
[129, 39, 50, 97, 47] showed that KBR can also be implemented in wireless ad-
hoc networks. In this chapter, I briefly overview several classic wireless ad-hoc
routing protocols and some resent works that aim at providing KBR services in
wireless ad-hoc networks.

3.1 Routing Protocols for Wireless Ad-hoc Net-
works

Due to their limited capacity and low link reliability, the classic infrastructure-
based routing protocols are not suitable in wireless ad-hoc networks. Big routing

23

24 CHAPTER 3. ROUTING AND KBR IN WIREL. AD-HOC NETW.

table size and large maintenance overhead would overload the wireless ad-hoc
network. Therefore, quite a few wireless ad-hoc routing protocols have been
proposed, which aim at small routing state and mild maintenance traffic. In
addition, some of these protocols, e. g. the Extremely Opportunistic Routing
(ExOR) protocol, utilize the special characteristics of the wireless medium to
improve the network performance.

3.1.1 OLSR

Optimized Link State Routing (OLSR) [26] is a proactive link state routing
protocol optimized for wireless ad-hoc networks. As a link state routing proto-
col, OLSR nodes use hello messages to discover their neighboring nodes. Each
node broadcasts Topology Control (TC) messages to disseminate its link state
to all the other nodes. With the thereby obtained global topology informa-
tion, each node can calculate the next hop to any destination with Dijkstra’s
algorithm [45].

The major optimization effort of OLSR lies in the use of Multipoint Relays
(MPRs) nodes to route the payload messages and broadcast the TC messages.
The MPR nodes are so selected that any 2-hop neighbors of a node can be
reached via an MPR node. MPR node selection is an NP problem [122]. A
simple but good heuristics solutions for this problem was proposed by Amir
Qayyum in [93]:

1. Among the neighbor nodes of node x, the one, which is not yet selected as
MPR node and has the highest node degree, is chosen as the MPR node.

2. The neighbors of the newly chosen MPR node are excluded from the 2-hop
neighbor-set of node x.

3. The first two steps will be repeated until the 2-hop neighbor-set of node
x is empty.

OLSR reduces the routing table size as well as the maintenance traffic sig-
nificantly, since only the MPR nodes are considered as the active nodes for both
routing and broadcasting, which avoids many duplications of the TC messages.
However, if the network size is very large, the TC messages, that flood the whole
network, can still overload the network.

3.1.2 AODV and DSR

Since proactive routing protocols generate too much topology maintenance traf-
fic, reactive (on-demand) routing protocols were introduced for wireless ad-hoc
networks. The Ad-hoc On-demand Distance Vector (AODV) [88] protocol and
the Dynamic Source Routing (DSR) [63] protocol are two often studied repre-
sentatives of this class.

Both AODV and DSR are stateless routing protocols, i. e. node state is gen-
erated only when there is a routing demand. Upon routing demand, the sender
floods the whole network to discover a path to the destination. In AODV, the
discovered routing information is stored along the path, i. e. each intermediate
node stores the next hop to the destination. In DSR, the discovered path is
stored at the sender in form of a source route and the intermediate nodes don’t
store the path information.

3.1. ROUTING PROTOCOLS FOR WIRELESS AD-HOC NETWORKS 25

In both protocols, a discovered path has to be refreshed after a certain time
interval. If the path breaks, DSR tries to salvage the route locally, while AODV
immediately initiates a new Route Request (RREQ) message to discover a new
route.

Reactive routing protocols have no regular topology maintenance overhead
and discover the path only on demand. Although the on-demand property lets
these routing protocols scale well in wireless ad-hoc networks under a small
traffic load, these protocols will generate enormous amounts of route discovery
messages, which will overload the network, when the application traffic load is
medium or large.

3.1.3 Geographic Routing

In some special wireless ad-hoc networks, the node’s geographic location in-
formation is available, e. g. via Global Positioning System (GPS) or some in-
door location system [86]. For these networks, geographic routing (also called
georouting) protocols are usually applied.

The georouting protocols greedily forward the packet to the neighbor who is
geographically closest to the destination. (The destination is usually given as a
2-dimensional coordinate.) Different strategies have been proposed to circum-
vent the local minimum problem, that occurs when greedy forwarding comes
into a dead end. E. g. the GPSR [70] protocol suggests the right hand rule: in
case that no neighbor is closer to the packet destination than itself, the node
chooses its first neighbor in the couterclockwise direction to route the packet
and excludes it from routing consideration when the packet turns back.

If the nodes move very quickly, the respective forwarder might not have the
accurate position information of its neighbors. Thus, it is beneficial to deter-
mine the next hop node on the fly. Implicit Geographic Forwarding (IGF) [13]
is a stateless geographic routing protocol. It modifies the 802.11 DCF MAC
protocol [59] such that the RTS/CTS handshaking frames contain the informa-
tion about the destination. The closer a node is to the destination, the earlier
it responds with a CTS frame. The sender sends then the DATA frame to the
node that first responds.

As stated above, the destination of a packet in georouting protocols is a cer-
tain node’s coordinate. To solve the coordinate of the destination node, various
location services have been proposed. [80, 58] are two grid-based distributed
location solutions that periodically update the node’s location information to
certain parts of the network. The Last Encounter Routing (LER) [53] protocol
even merges the explicit locating process into the routing process, in which each
LER node maintains the time and the location of the last encounter with every
other nodes in the network.

3.1.4 Opportunistic Routing

In error-prone wireless ad-hoc networks, the channel quality changes frequently
and the selected next hop might be temporarily unavailable. Thus it makes
sense to select the next hop from a set of possible forwarding candidates.

Biswas et al. [12] proposed the Extremely Opportunistic Routing (ExOR)
protocol. Here, the sender assembles its known neighbors into a candidate list.
The nodes in the list are prioritized according to the distance to the destination.

26 CHAPTER 3. ROUTING AND KBR IN WIREL. AD-HOC NETW.

The candidate with the highest priority broadcasts the packets in its buffer
first. After that, other candidates broadcast the not yet transmitted packets
sequentially according to their priorities. To avoid loops, packets are uniquely
identified and transmitted only upon their first arrival.

Chachulski et al. [23] proposed the MAC-independent Opportunistic Rout-
ing and Encoding (MORE) protocol. In MORE, the node randomly mixes
packets before broadcasting them. This ensures that routers hearing the same
transmission do not forward the same packet. Thus the packets received from
different nodes introduce less superfluous traffic as before. Their experimental
results demonstrated a significant performance gain.

Sanchez et al. [106] suggested a sender-based algorithm for the next hop
selection. The nodes that have received a data packet acknowledge their receipts
using a delay function according to their closeness to the destination. The sender
sends a selection packet on the first ACK, thereby suppressing data duplication.

3.2 KBR in Wireless Ad-hoc Networks

While more and more P2P applications have been successfully applied in the
Internet, applying P2P techniques in wireless ad-hoc networks has also attracted
many research interests. Some efforts tried to deploy structured overlay directly
on top of a conventional ad-hoc routing protocol; others used cross-layer or
integrated approaches for the overlay construction. Since the former solutions
have scalability problems due to the enormous overlay maintenance overhead in
the underlay [31, 18], only the latter approaches are discussed in the following
sections.

3.2.1 Cross-layer Solutions

Cross-layer solutions aim at the interaction between different layers, e. g. the
overlay protocols utilize some features of the routing protocols to improve the
performance.

CrossROAD

CrossROAD [39] is a cross-layer solution for a KBR system in wireless ad-hoc
networks. It builds the Pastry [104] overlay on top of OLSR [26]. In order to
reduce overlay maintenance overhead, a CrossROAD node lets the Link State
Update (LSU) packets of the routing protocol piggyback the information of its
overlay instance. The node, that receives an LSU packet, stores that information
in the routing table and shares the information to the overlay. Since these LSU
packets flood the whole network regularly, after a while each node will have a
complete global view of the overlay network.

The idea of CrossROAD is applicable to any Link State (LS) routing protocol
as well as to any overlay protocol. However, as stated in Section 3.1.1, proactive
routing protocols have a poor scalability in wireless ad-hoc networks due to their
maintenance cost. In wireless environments, links can break and nodes can go
down at any time. Moreover, overlay instances can join and leave spontaneously.
All that makes a consistent global overview of the network impossible.

3.2. KBR IN WIRELESS AD-HOC NETWORKS 27

MADPastry

MADPastry [129] is another cross-layer solution for structured overlays in wire-
less ad-hoc networks. It implements Pastry on top of AODV. MADPastry ap-
plies Random Landmarking [125] to group the proximal nodes into clusters with
the same prefixes in their overlay IDs.

When forwarding a Pastry message to a certain Pastry node, the interme-
diate node, which runs MADPastry, can intercept the Pastry message. If its
Pastry ID is closer to the destination key than the current destination ID, it
takes the message and routes it further. In the case that there is no AODV
route to the next hop of the Pastry routing, and if the forwarder is already in
the destination cluster, the message will be flooded inside the cluster; otherwise,
an original AODV route discovery procedure will be triggered.

MADPastry considers physical locality by assigning close Pastry IDs to prox-
imal nodes. This reduces the maintenance traffic of the Pastry overlay. However,
with this Proximal Identifier Selection (PIS), the distribution of the overlay IDs
could be uneven, which would make the load distribution skewed. Moreover,
the AODV based routing discovery procedure can generate enormous amounts
of RREQ messages in the network, which in turn hurts the network scalability.

3.2.2 Integrated Solutions

The integrated solutions aim at merging different layers into one single layer.
Hence, the maintenance overhead of multiple layers can be avoided.

Scalable Source Routing

Scalable Source Routing (SSR) [50] is a DHT-inspired routing protocol at the
network layer. It combines source routing with Chord-like routing [114]. All
nodes are assumed to have a unique and uniformly distributed address. Unlike
the proactive routing protocols, SSR nodes do not maintain route information
for all the destinations in the network. Unlike the reactive routing protocols,
SSR nodes maintain some state, thus they do not need to discover the route by
flooding. Therefore, SSR can be considered a hybrid routing protocol.

In SSR, a node only needs to maintain source routes to its physical neigh-
bors and to its predecessor/successor (i. e. virtual neighbors) in the address
space. Optionally, the node may also cache the source routes to the recently
contacted nodes. These optional routes are stored according to a Least Recently
Used (LRU) policy. Fuhrmann et al. [50] recommended a small routing cache
containing only 255 entries and demonstrated that this suffices even for very
large networks of 100 000 nodes.

The routing algorithm of SSR contains Chord’s routing rule as well as the
PRS principle. The selection of the next intermediate node from the local
routing cache obeys the following three rules:

1. The address of the next intermediate node must be closer to the destina-
tion address than the previous intermediate node.

2. The most proximal nodes satisfying the first rule are preferred.

3. The one, who satisfies the first two rules and whose address is the closest
to the destination address, is selected as the next intermediate node.

28 CHAPTER 3. ROUTING AND KBR IN WIREL. AD-HOC NETW.

Figure 3.1: Illustration of SSR’s routing process (from [51], Figure 1).

Note that the next intermediate node could be several hops away. That’s why
we use “the next intermediate node” instead of “the next hop” here.

Figure 3.1 illustrates the SSR routing with a simple example taken from [51].
In this example the routing caches of the nodes contain only the source routes
to the nodes’ physical and virtual neighbors. We assume that node 1 wants
to send a packet to node 42. Node 88 is first excluded for the routing process
(according to rule 1). The packet is forwarded to node 17 because that node is
the physically closest node to node 1 (according to rule 2). Node 17 is preferred
over node 13 since node 17 is virtually closer to node 42 than node 13 (according
to rule 3). For the same reasons, node 17 forwards the packet to node 32. Node
32 forwards the packet to its successor, i. e. node 39, which in turn forwards the
packet to its successor that coincides with the destination, i. e. node 42.

Since each SSR node maintains the source route to its successor, the routing
process is guaranteed to proceed (towards the destination) at each step. The
routing process will end at the destination node or the node, whose address is
the closest to the destination. That means SSR supports both the end-to-end
routing scheme and the Key Based Routing scheme.

It is worth noting that there are several SSR-related works: [76] and [29]
discuss the bootstrapping algorithms of SSR, [77] proposes a cryptographic cer-
tificate scheme for securing SSR and [11] extends SSR to utilize unidirectional
links.

Virtual Ring Routing

Virtual Ring Routing (VRR) [15] is another DHT-inspired network layer routing
protocol that supports KBR. Like SSR, each node in VRR has a random unique
ID. VRR forms a Chord-like virtual ring in the network by setting up paths
from the VRR node to its r virtual neighbors in the virtual ring (r is set to 4 in
[15]). Unlike SSR, the path information is distributed on the intermediate nodes
as AODV does: each node stores only the next hop to the destination node.
Suppose the network diameter is O(

√
N), each path to the virtual neighbor will

generate O(
√
N) state cross the network. Thus, the per-node state of VRR is

(r
√
N), where N is the node number in the network.

3.3. SUMMARY 29

When routing a packet to a certain destination, the sender and each in-
termediate node use the path, whose end-point address is the closest to the
destination, to forward the packet. In order to repair local link failure quickly,
VRR nodes store not only the next hop but also the next-next hop of each path.

Although the average routing state of VRR is O(
√
N), the distribution of

state per node in the network could be very uneven. Consider a network with
two parts, which are connected via a single node. Since half of the virtual
neighbors are probabilistically located in the other part of the network, the paths
to these virtual neighbors have to cross this single node and the state on this
node would be O(r ·N). This large state could cause problem in some wireless
ad-hoc networks with small capacity, e. g. in Wireless Sensor Networks (WSNs).

Geographic Hash Tables

Geographic Hash Tables (GHTs) [97] are designed as a Data-Centric Storage
(DCS) approach for sensor networks, where each node knows its geographic
coordinate. A GHT provides a similar service as a DHT does, i. e. put(key,
value) and get(key). In particular, when a node routes a put or a get message
to a certain key, it first maps the key into a 2-dimensional coordinate inside the
network area. After that it uses the GPSR [70] protocol to route the message
to the node, whose coordinate is the closest to the destination.

Different to SSR and VRR, GHT has two application obstacles: First, the
GHT node must know its geographic coordinate. Although this can be achieved
by deploying GPS on each node or by using some other localization method,
to do so is very costly and unrealistic in many ad-hoc networks. Second, the
mapping function in a GHT system must map the keys uniformly inside the
network area. This could be complicated, when the network area is not in
a regular form. Moreover, when the network area changes, e. g. by adding
more sensor nodes to expand the network area, the mapping function must be
updated. Hence some additional protocols have to be introduced to update the
mapping function.

3.3 Summary

In this chapter, I have given a rough overview of some classic end-to-end routing
protocols in wireless ad-hoc networks. After that, I have presented some recent
works that aim at providing a KBR service in wireless ad-hoc networks. Some
of them focus on an integrated solution by pushing the structured overlay down
into the network layer, e. g. SSR and VRR, others aim at the interaction between
overlay and underlay, e. g. CrossROAD and MADPastry. Since the integrated
solutions generate only small routing state and little maintenance overhead for
a single layer, they are used as an important component of the Lite-Ring system
that I will propose in the latter part of this thesis.

30 CHAPTER 3. ROUTING AND KBR IN WIREL. AD-HOC NETW.

Part II

The Overlay Network
Lite-Ring

31

Chapter 4

Overview

The Lite-Ring overlay protocol aims at providing an efficient Key Based Routing
(KBR) service for multiple applications. The name of “Lite-Ring” means light-
weight ring-like overlay. This part of my dissertation is based on my earlier
work: “Providing KBR Service for Multiple Applications”[44].

Similar to conventional structured P2P overlay networks in the Internet,
Lite-Ring runs on top of the transport layer (see Figure 4.1). Lite-Ring can also
be applied on top of the network layer in wireless ad-hoc networks. This will be
described in Part III of this dissertation.

Lite−Ring

Transport Protocol

Application

Network Protocol

Figure 4.1: Lite-Ring stack in the Internet

4.1 Goal and Tasks

As a structured overlay protocol, Lite-Ring offers the same KBR service as many
other conventional structured P2P protocols do, e. g. Chord and Pastry. Given
a message with a certain key as the destination, the Lite-Ring overlay will route
the message to the node whose ID is the closest to this key.

As stated in Chapter 2.3 and Chapter 2.4, many P2P applications can benefit
from a Key Based Routing (KBR) service. The de-facto standard solution
is to build a full-fledged overlay for each application independently. In case
that a large number of applications need the KBR service, this solution will
cause a lot of node state and maintenance overhead. One might think that
the O(logN) state and maintenance overhead caused by a structured overlay
typically are not very costly. However, as described in Chapter 2.6, the real
implementation of a full-fledged structured overlay can generate a much larger
state and overhead than the theoretical results indicate, e. g. the aMule client
can generate more than 650 entries in its routing table to maintain its DHT

33

34 CHAPTER 4. OVERVIEW

network (see Figure 2.2). Moreover, the bootstrapping process of the individual
overlay can introduce additional overhead, e. g. the node has to find an existing
overlay node for every P2P application that it runs.

Similar to the de-facto standard solution, Lite-Ring will also build an in-
dividual overlay for each application. However, by leveraging a public DHT
service, the Lite-Ring overlay provides the same KBR service as the full-fledged
overlay with very small node state and maintenance overhead. In addition, with
the help of the public DHT service, the bootstrapping problem is solved with no
extra cost. Based on these observations, Lite-Ring is able to efficiently provide
generic KBR services to a large set of applications.

4.2 A Naive Solution

Before we go further to the design insights of the Lite-Ring protocol, let’s ex-
amine one naive solution for the problem of providing KBR services to multiple
applications, i. e. to build a single shared structured overlay for all applications,
which is often suggested as an alternative to overcome the drawbacks of the
de-facto standard solution.

Although a single global overlay keeps both the node state and the mainte-
nance overhead to a limited size. This solution is impractical because the nodes
and the applications might be too heterogeneous to build one public overlay.
For example, a bandwidth restricted node, e. g. cell phone, would run a small
bandwidth KBR application, and not be willing to be bothered with high vol-
ume traffic, e. g. from file-sharing programs. Moreover, it is not unrealistic to
imagine that some applications don’t want their traffic to be seen by other for-
eign nodes for security reasons. Even worse, some unstable nodes of a single
application could degrade the performance of the whole overlay, that is however
undesirable.

Besides the problems mentioned above, this solution encounters other tech-
nical problems. For example, a node N with application Ai could join with the
concatenated ID (Ai : N), as illustrated in Figure 4.2. This means that the
different application instances populate different regions in the KBR address
space and this makes load balancing difficult.

Similarly, if a node N with application Ai joins the shared overlay with the
concatenated IDs (N : Ai), as illustrated in Figure 4.3, each node has to store

Instances of A1

Instances of A3 Instances of A2

Instances of A4

Figure 4.2: Overlay shared by different applications with the concatenated IDs
(Ai : N)

4.3. DESIGN INSIGHTS 35

1:A1

9:A1

6:A1

2:A2

3:A3

4:A2

7:A3
8:A2

5:A4
13:A1

Figure 4.3: Overlay shared by different applications with the concatenated IDs
(N : Ai)

and maintain additional state for each application that it does not run, so that
it can forward the message to the node that does run that application and whose
ID is the closest to the destination.

For the example shown in Figure 4.3, assume that the shared overlay uses a
Chord-like structure without additional state. According to the KBR semantic
in Chord, the message targeted to (6 : A2) will be routed to (6 : A1). But the
node with ID 6 doesn’t run the application A2, i. e. the delivery is wrong in the
application’s view. To solve this problem, node 6 has to store additional state
for other applications.

Based on the observations above, we conclude that the naive solution of a
shared overlay is not feasible to provide KBR services for multiple applications.

4.3 Design Insights

The design of Lite-Ring is based on two observations.

1. In a structured overlay such as Chord [114], each overlay node stores
O(logN) fingers, where N is the total number of nodes. Thus, there are
totally N ·O(logN) fingers stored in the entire system.

Assume that the overlay address space is I and the transport layer address
space is T . Each finger is a tuple that maps an overlay address Ix to a
transport endpoint Tx in the underlying network, e. g. an IP address and
a port number. With the help of these fingers, the structured overlay is a
distributed implementation of the mapping I → T .

In fact, this implementation is quite redundant: In an overlay with N
uniquely identified nodes there exist actually only N different fingers al-
together. This redundancy is costly, not only in terms of space but more
importantly in terms of maintenance overhead.

Although some overlays [82, 64] use de Bruijn(-like) graphs[107], which
have a constant node degree, practical considerations suggest to have
O(logN) fingers per node to improve the overlay stability [64].

2. Assume an idealized Chord ring with address space [0, 1[and assume fur-
ther that the nodes join sequentially at addresses 0, 1

2 , 1
4 , 3

4 , 1
8 , 3

8 , . . .
Then, the address space is always uniformly divided into 2n parts by the

36 CHAPTER 4. OVERVIEW

initial 2n nodes, for n = 0, 1, 2, 3... Given the own address and the prede-
cessor’s address, a node can (almost exactly) calculate the node (I1) that is
responsible for any given key Ik in the address space I. Here, “almost ex-
actly” means that with small probability, the calculation may erroneously
yield the responsible node’s direct virtual neighbor (I2). Summarizing
this insight we can say that if the nodes join the KBR overlay in such a
predictable pattern, we have a mapping Ik → I1,2, where either I1 or I2
is responsible for Ik. A public DHT service can then map I1,2 → T1,2. So
far, we get the mapping Ik → T1,2.

From these two observations we can construct efficient KBR overlays1 for
multiple applications. Assume the nodes of application A are assigned their
application specific addresses in the predictable pattern as described above.
Then we know that there is an application specific mapping (Ik, A)→ (I1,2, A)
where either I1 or I2 are responsible for Ik with respect to application A. The
public DHT service can then map (I1,2, A) → T1,2 and we get the application
specific mapping (Ik, A) → T1,2. Note that in this way there is no duplicated
finger any more, which highlights the efficiency of Lite-Ring.

1By KBR overlay we mean a structured overlay that supports a KBR service.

Chapter 5

Design

This chapter describes the design of the Lite-Ring protocol. It details the ad-
dress assignment scheme, the overlay structure, the join procedure, the routing
process and the maintenance work. At the end of the chapter, the complexity
of Lite-Ring will be compared with ReDiR [100] and Diminished Chord [68],
which also aim at the efficient KBR service for multiple applications.

5.1 Address Assignment Scheme

Lite-Ring is based on a virtual ring structure. Its address space is similar to that
of the Chord protocol [114], i. e. a circle of numbers from 0 to 2m−1, where m is
the bit length of the address. Unlike many other KBR overlays where node IDs1

are assigned randomly, Lite-Ring addresses are assigned sequentially according
to the following pattern:{

addr0 = 0
addri = 2m−k · (i− 2k + 1

2) for i ≥ 1
(5.1)

where i is the sequence number of the joining node, k = dlog2 ie denotes the
division depth of the address space.

In the example of Figure 5.1, the Lite-Ring address space can accommodate
up to 16 nodes (m = 4). As shown, 10 addresses have already been assigned
according to allocation sequence {0, 8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13,
15}. This is actually a pre-order walk through a binary tree (see Figure 5.2).

This addressing scheme distributes the application addresses uniformly in
the address space. If there are exactly 2k application instances, this distribution
is strictly uniform. The address pattern is also used by Karger et al. for load
balancing in [69], where only one of the logN random virtual servers is activated
to approach this ideal uniform address distribution.

Lemma 1 Suppose that there are N nodes in the application overlay ring and
their addresses are assigned according to the form given in Equation 5.1. Then
a node can calculate the addresses of at least N

2 other nodes in that overlay,
given its own address and the address of its predecessor.

1We use node ID and node address for the same meaning in this thesis.

37

38 CHAPTER 5. DESIGN

5

Last joined node

Address allocator

Next address to allocate

412

0

8

2

6

14

10

1

3

Figure 5.1: Application overlay ring with 10 application instances

Let’s illustrate the situation by an example, before giving the proof. In
Figure 5.1, an application overlay ring contains 10 nodes and has an address
space size of 4 bits. According to the join sequence, the node addresses are in
the order of {0, 8, 4, 12, 2, 6, 10, 14, 1, 3}. Node 8 knows its predecessor (node
6), so that it knows which addresses have already been assigned, i. e. {0, 8, 4,
12, 2, 6}. But it cannot tell if the addresses {10, 14, 1, 3, 5} have been assigned.
Nevertheless, all of these possible nodes are successors of the known existing
nodes.

Proof: Without loss of generality, assume N is an even number. Because
the address allocation scheme is a pre-order walk through a full binary tree, the
last allocated N

2 addresses are the leaf nodes, while the other N
2 addresses are

the inner nodes. These N
2 leaf nodes have at least the knowledge of all the inner

nodes.

Because of the ring structure, the last allocated N
2 addresses (leaf nodes)

are uniformly inserted into the previously allocated N
2 addresses (inner nodes).

Hence each inner node must know at least one leaf node, i. e. its predecessor,
from which it also knows of the existence of all the inner nodes.

So both the leaf nodes and the inner nodes have the knowledge of the exis-
tence of N

2 nodes of the network.

2

The assumption of sequential joins is difficult to realize in practice, but it
gives a good insight how we can exploit such an addressing scheme. In Chap-
ter 5.3, some improved address allocation schemes are introduced. They enable
concurrent joins and still preserve the described address prediction property.

k=4

k=2
k=1
k=0

k=3

0
8

12
10 146

4
2

31 5 7 9 11 13 15

Figure 5.2: Binary address tree structure

5.2. OVERLAY STRUCTURES 39

DHT 412

0

8

2

6

14

10

1

3

Figure 5.3: Star structure with a DHT as the central node

5.2 Overlay Structures

Lite-Ring comprises three virtual structures: a ring (cf. Figure 5.1), a binary
tree (cf. Figure 5.2), and a star (cf. Figure 5.3). Each node belongs to all the
three structures.

• The ring structure is the base of the consistent hashing property, i. e. the
uniform and consistent mapping from key to nodes. Moreover, it enables
the nodes also to roughly know the overlay size (cf. Lemma 1). In order to
maintain the ring structure, each node stores its successor and predecessor.

• The tree structure is used to distribute and aggregate information that
allows us to balance the address distribution. To maintain the tree struc-
ture, each node stores its two child nodes and its parent node.

• The star structure contains the connections of the nodes to the DHT,
which is used for the mapping between the overlay addresses and the
transport addresses, i. e. the mapping of (Ix, A)→ Tx. This star structure
also ensures the connectivity of the Lite-Ring overlay.

5.3 Join Mechanisms and Address Allocation

Lite-Ring’s key idea is a well-defined address assignment scheme. It allows the
nodes in the overlay to calculate locally, which node is responsible for a given
key. Depending on the different usage scenarios, we can choose from several
different join mechanisms, which are briefly discussed in the following.

5.3.1 Unique Allocator

If the nodes join the Lite-Ring overlay slowly enough, we can assume an almost
sequential order. In this case, we say that the node that has non-equal distances
to its successor and predecessor has the role of an address allocator. (As an
exception, node 0 becomes address allocator when the distances to its successor
and predecessor are equal.) After a node has joined the overlay, the address
allocator role moves to the joining node’s successor in the ring.

40 CHAPTER 5. DESIGN

In the example of Figure 5.1, node 3 has most recently joined the overlay.
Thus, its successor, node 4, becomes the address allocator. It will assign the
address 5 to the node that joins the overlay next.

When a node leaves the overlay, it may happen that for a short moment,
multiple address allocators co-exist. For example, when node 1 in Figure 5.1
leaves, both node 0 and node 4 assume the role of address allocators. Both
allocators will assign different addresses. After node 0 fills the address hole by
assigning the address 1 to a newly joining node, only node 4 remains as the
unique address allocator.

There are two ways for a joining node to find the address allocator:

1. The address allocator registers itself in the DHT with the key “APP-
ALLOCATOR”, and the newly joining node queries the DHT for the
transport address of the address allocator.

2. The joining nodes register themselves in the DHT under the key of “APP-
NEWNODE”, and the address allocator regularly polls the DHT.

Note that both keys are application-specific, i. e. each application overlay
registers either of the two keys in the DHT.

This method can assign the newly joining nodes with addresses that strictly
follow the form given in Equation 5.1. Unfortunately, these methods are only
practical, when the nodes join slowly, almost sequentially, and remain in the
overlay for some time. When many nodes join simultaneously or when the node
churn rate is high, this address allocation mechanism does not work: either the
DHT node responsible for the key “APP-ALLOCATOR” is overloaded with the
concurrent get(kAPP−ALLOCATOR) operations from the newly joining nodes;
or the DHT node responsible for the key “APP-NEWNODE” is overloaded with
the put(kAPP−NEWNODE , T) operations. Luckily, the strictly sequential ad-
dress assignment scheme (cf. Equation 5.1) is not necessary, as will be described
now.

5.3.2 Multiple Allocators

As stated in Lemma 1, the sequential address assignment allows the nodes to
calculate the correct overlay addresses of at least N/2 other nodes. A slight
deviation from the strictly sequential order does not render Lemma 1 invalid,
provided the address distance between neighboring nodes (in the ring) does not
differ by more than a factor of two. If the difference exceeds a factor of two,
the address tree will become imbalanced. As a result, some nodes erroneously
calculate a larger or smaller total number of nodes.

Consider, for example, again Figure 5.2. If a node at the lowest level of the
address tree, e. g. node 3, or a node whose successor is at the lowest level, e. g.
node 2, assigns an address to a joining node, the tree becomes imbalanced.

This imbalance will be analyzed in detail in Chapter 5.5. Moreover, as will
be shown there, it can be cured by a subsequent maintenance step. Hence, a
non-sequential address allocation sequence does not break our mechanism in
principle, so that any node can serve as address allocator and simply assign a
new node the address that lies half way between itself and its successor.

5.3. JOIN MECHANISMS AND ADDRESS ALLOCATION 41

The join procedure is thus reduced to finding an arbitrary node in the Lite-
Ring overlay and requesting an address from it. If the DHT supports aggre-
gation, both the address allocators and the joining nodes could register them-
selves in the DHT (see “unique allocator” method). But unlike that in the
non-aggregating DHT, the registrations do not propagate to the node responsi-
ble for the “APP-ALLOCATOR” or “APP-NEWNODE” key, if the DHT can
create a response locally. Moreover, if the DHT applies proximity route selec-
tion, the request traffic is likely to remain in the vicinity of the joining node
with respect to the underlying network topology.

If the DHT does not support aggregation, such a registration would cause
the same overload that we just wanted to avoid. Thus we need to find an address
allocator at random. An according method is introduced in the following.

5.3.3 Address Picking and Probing

One straightforward way to find an address allocator is that the joining nodes
draw a random address and poll the DHT for an address allocator (i. e. an
existing node) closest to this address.

k=3

0
8

12
10

4
2

5 7 9 11 13 15

k=0

k=2

k=4 31
6 14

New node

k=1

Figure 5.4: Join mechanism with address picking and probing

Figure 5.4 gives an illustrative example: A newly joining node randomly
picks an address, say 7. The node then queries the DHT for this address and its
potential predecessors at the different levels of the address tree, i. e. 7 (0111), 6
(0110), 4 (0100) and 0 (0000). Node 4 is the first existing node in that list. That
means, the DHT can provide a transport address for that node. The joining
node then contacts node 4 which assigns it the address 6.

If we applied this probing approach in strict order, it would have a worst case
time and message overhead of L, where L is the address length in bit. But since
the addresses of the potential predecessors of the random address are in a strict
sequential order, we can apply a binary search. Thus, we have a worst case time
and message overhead of logL only. For example, in an 128-bit address space a
joining node needs only maximal 7 DHT queries to find an address allocator.

5.3.4 Centralized Assignment

Before we move on and discuss Lite-Ring’s routing, I would like to mention yet
another address assignment method. It is based on the observation that many
P2P overlays use a centralized bootstrapping mechanism, e. g. a server with a
peer list. Assuming that we have such a server in place, it can directly assign the

42 CHAPTER 5. DESIGN

joining node’s address. However, to be able to properly assign the addresses, it
needs a (nearly) exact knowledge of all the peers for the respective application.
In a scenario where peers may leave the system ungracefully, such knowledge
cannot be easily maintained. Clearly, the central server could be a single point
of failure of the entire system. Hence, we do not consider this option further.

5.3.5 Summary

The different join mechanisms are briefly compared in table 5.1, where

• M is the number of DHT nodes.

• N is the node number of a Lite-Ring overlay.

The lookup complexity of the DHT is supposed to be logM , as in many con-
ventional DHTs, e. g. Chord and Pastry.

From the discussion above, the “multiple allocators” approach is considered
the best choice in an aggregating DHT. However, such aggregating service is
not popular in the common DHT implementations. Thus, since the “picking
and probing” approach supports concurrent joins, too, it was chosen as basis
for the Lite-Ring implementation.

Unlike the universal ring for bootstrapping proposed in [21], Lite-Ring re-
quires only a primitive DHT without any additional functionality such as mul-
ticast. More importantly, it is not necessary for the Lite-Ring instance to join
the DHT overlay.

Unique allocator Multiple allocators Picking and Probing

Join Overhead O(logM) up to O(logM) O(log logN · logM)

Load Ratio O(N) up to O(N
M

) O(1)

Remark
No support for

concurrent joins

Needs aggregation

in DHT
Preferred

Table 5.1: Comparison of different join mechanisms

5.4 Routing in Lite-Ring

If each application overlay contains exactly 2k nodes and if the address tree is
balanced, each node can perfectly calculate the responsible node address for any
key. In practice neither of these two idealistic assumptions holds.

The resulting problems can be demonstrated with the following examples:
Consider node 4 in Figure 5.2. Its predecessor in the ring (node 3) lies in level
k = 4. Based on its locally available information the node would thus naively
assume that the overlay contains 24 nodes. Similarly, node 12, which has its
predecessor (node 10) in level k = 3 assumes that there are 23 nodes. Altogether,
node 4 overestimates the node count whereas node 12 underestimates it.

Suppose first that both node 4 and node 12 want to send a message to a
key that is close to 7, say 6 2

3 . Node 4 erroneously assumes that node 7 exists
and shall thus handle the message. Accordingly, it inquires the DHT for the
transport address of node 7. Only after receiving a negative reply (or worse
after a timeout), node 4 learns that there is no node at position 7, and that

5.4. ROUTING IN LITE-RING 43

hence node 6 shall handle the message. In contrast to node 4, node 12 correctly
assumes that node 6 should handle that key in the first place.

Now suppose that both node 4 and node 12 want to send a message to a key
that is close to 3, say 3.1415. Now, node 4 correctly assumes the existence of
the responsible node 3, whereas node 12 erroneously sends the message to node
4. Node 4 must then forward the message to node 3.

From these examples we see that if a node overestimates the node count, it
might need one additional DHT query under some circumstances. Conversely,
if a node underestimates the node count, the message might need one additional
overlay hop.

Lemma 2 states this effect more precisely:

Lemma 2 Suppose there are N nodes in the application overlay. Suppose the
overlay is balanced and each node knows only its successor. When a node cal-
culates the node address that is responsible for a random key k (from a uniform
distribution), in up to 26% of the cases, the calculation is wrong because either
the node does not exist or it is not the correct one. On average 17% of the
calculations yield the wrong node.

Proof: Suppose a of the N nodes lie in the fully populated part of the tree,
and the other n nodes lie in the lowest level of the tree. We know there are at
most a positions in the deepest level of this binary tree, thus n ∈ [0, a] and there
are m = a − n vacant positions in the lowest level. 2n nodes have knowledge
about the lowest level, namely n nodes in this level and the other n nodes
that have their successors in the lowest level. These 2n nodes will overestimate
the overlay size. Thus they might erroneously send messages to the m vacant
positions in the lowest level of the tree. The other a + n − 2n = m nodes
underestimate the overlay size. Thus they incorrectly route the messages that
are destined to the n nodes in the lowest level.

Noting that the 2n + m is the whole node count and 2a describes all the
possible positions, the error probability is hence

P =
2n

2n+m
· m

2a
+

m

2n+m
· n

2a
=

3nm

(2n+m) · 2a

(using m = a− n and n = b · a where b ∈ [0, 1])

P =
3n(a− n)

(n+ a) · 2a
=

3b− 3b2

2 + 2b
∈ [0,

3

2
(3− 2

√
2)] ≈ [0, 0.26]

The resulting function is plotted in Figure 5.5.
The average probability of a wrong calculation is then:∫ 1

0

3b− 3b2

2 + 2b
db =

9

4
− 3 ln 2 ≈ 0.17 (5.2)

2

Lemma 2 describes a worst case assumption. In practice, the nodes might
have more knowledge about the population of the overlay. For example, nodes
could share their knowledge piggybacked with other protocol messages. The
additional benefit is however limited, as shown with the following lemma:

44 CHAPTER 5. DESIGN

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.2 0.4 0.6 0.8 1

E
rr

or
 p

ro
ba

bi
lit

y
(P

)

Node density in the lowest level (b)

P=(3b-3b*b)/(2+2b)

Figure 5.5: Probability of a wrong calculation with local knowledge

Lemma 3 Suppose there are N nodes in the application overlay. Suppose the
address tree is balanced and each node knows the precise node count. Then, up
to 25% of the destination calculations are wrong. On average, the calculation is
wrong in 12.5% of the cases.

Proof: Even though a node knows the exact number of nodes in the overlay, it
does not know the vacant positions in the lowest layer. It can thus either assume
that a given position is populated (potential overvaluation) or not (potential
undervaluation). Using the same parameters as above we find the following
error probabilities: When the node applies the undervaluation strategy, an error
occurs for the messages that are destined to the n nodes in the lowest level, i. e.
for n out of 2a possible destinations: Punder = n

2a = b
2 . With the overvaluation

strategy the error occurs for the m = a− n vacant positions in the lowest level,
i. e. Pover = m

2a = 1−b
2 .

Both cases are plotted in Figure 5.6. Obviously there is a threshold at
a population of 50% in the lowest level. If the number of nodes is beyond
that threshold, the overvaluation strategy is better, otherwise the node should
apply the undervaluation strategy. From the figure we see that the maximal
probability of a wrong calculation is 25%, and the average probability is 12.5%.

2

In practice the preferred strategy depends on the cost metrics. Still we can
apply the following rule of thumb: A DHT query has a complexity of O(logN)
hops in the DHT overlay. Typically, an additional DHT query will thus be
more expensive than one additional hop in the application overlay. Hence, in
that case, nodes should prefer the undervaluation strategy.

Alternatively, assuming that the application nodes are rather stable, each
node could register a synthetic node that occupies the position between itself
and its successor. (Here, a synthetic node is just an additional mapping in
the DHT.) In the example of Figure 5.7 the black nodes are the actual overlay

5.4. ROUTING IN LITE-RING 45

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

E
rr

or
 p

ro
ba

bi
lit

y
(P

)

Node density in the lowest level (b)

Undervalue
Overvalue

Figure 5.6: Probability of a wrong calculation with precise node count informa-
tion

0
8

12
10

4
2 146
31 119

k=1

k=3

k=0

k=2

k=4

Figure 5.7: Address tree with synthetic nodes

nodes, whereas the gray ones are the synthetic nodes. Now, the overvaluation
strategy does not lead to an error, and hence, there are no additional hops any
more. As a drawback, each node has to maintain two entries in the DHT. This
modification is thus only beneficial, if the saved forwarding hops had been more
expensive than the increased maintenance traffic. The decision thus depends on
the application traffic pattern and the observed amount of node churn.

5.4.1 Routing with Random Address Tree

Although a balanced address tree makes the routing success with 1 ∼ 2 steps, it
is worth noting that Lite-Ring works even without balancing the address tree. In
such cases, the address tree may be thought as a special random binary search
tree. Devroye [40] proved that the height and saturation level of a random
binary search tree with N nodes is bounded to O(logN). Hence, Lite-Ring
without balancing process would also have a maximal route stretch of O(logN)
and a very small average route stretch (cf. the simulations in Chapter 6.2.3).

46 CHAPTER 5. DESIGN

0
8

12
10

4
2

5 7 9 11 13 153
14

(1,1)

6
1

(3,2)
(2,2) (1,1)

(0,1)

k=1

k=3

k=0

k=2

k=4

Figure 5.8: Unbalanced tree defined by depth. (The numbers in brace are kmax

and kmin)

5.5 Address Tree Maintenance

Two processes drive a balanced tree into imbalance: Not all of the aforemen-
tioned join mechanisms maintain the balance. Moreover, leaving nodes can
cause an imbalance. In order to calculate which node is responsible for a given
key precisely, Lite-Ring needs to keep the address tree balanced.

5.5.1 Tree Balancing with Depth

Balanced can be defined as follows: Let kmax be the maximal depth of the
subtree rooted at node A. Let kmin be the minimal depth of a vacant position
in the subtree. We call a node A unbalanced if

kmax − kmin ≥ 1 (5.3)

According to this definition, node 8 is the only unbalanced node in Figure 5.8.
(Position 14 at k = 3 is vacant whereas position 1 at k = 4 is occupied.)

We thus require the nodes to run an additional balancing protocol: As part of
the regular maintenance routine, each node reports its kmax and kmin together
with the corresponding addresses to its parent node. Thus, unbalanced nodes
can be recommended an address swap that can drive the tree into balance again.
For example, node 8 in Figure 5.8 knows that node 1 can fill the vacant position
14 below node 12.

The advantage of this method is that the root of an unbalanced subtree
knows exactly which node causes the imbalance and where the vacant position
is. If there is only one unbalanced node, the tree can be balanced by one address
swap,

A node should recommend such a balancing operation only if its two children
are balanced. Thereby, the address swap occurs most deeply in the address tree
and this operation can be performed parallelly in the subtrees.

5.5.2 Tree Balancing with Node Count

When the depth is used to determine the imbalance, each node can only recom-
mend one address swap at once, because the information aggregated with this
mechanism hides multiple unbalanced nodes. Lite-Ring thus contains a second
mechanism that balances the tree. It is especially useful when a bunch of nodes
has joined or left. To this end, Lite-Ring uses the aggregated node count to
determine an imbalance.

5.5. ADDRESS TREE MAINTENANCE 47

0
8

12
10

4
2

7 9 11 13 15
14

(1,1)

(0,0)

(1,0)

6
1

(6,2)

53

(3,2)

(1,0)

k=1

k=3

k=0

k=2

k=4

Figure 5.9: Unbalanced tree defined by node count. (The numbers in brace are
Nl and Nr)

Let Nl be the number of nodes in the left subtree and Nr the number of
nodes in the right subtree of some node A. We call A also imbalanced if

|Nl −Nr| > 1 ∧ dlog2Nle 6= dlog2Nre (5.4)

Each node regularly reports Nl and Nr to its parent node. If a node detects
an imbalance according to this definition, it recommends that 1

2 |Nl − Nr| leaf
nodes leave the overpopulated subtree and join again in the address range of
the underpopulated subtree. For example, in Figure 5.9, node 8 recommends
that two nodes from its left subtree move to its right subtree.

The advantage of this method is that multiple nodes can be shifted at once.
The drawback is that the recommendation is more coarse-grained as with the
first mechanism. Thus, such a shift might cause another imbalance in the under-
populated subtree. If this happens, Lite-Ring has to perform a second balancing
operation.

Let’s illustrate this with another example. In Figure 5.9, node 8 asks two
leaf nodes from the left subtree to move to its right subtree, i. e. into the range
[9, 15]. The recommendation propagates from node 8 to the leaf nodes, say to
node 1 and node 5. Node 1 and 5 then choose a random address from the
interval [9, 15] and join the overlay as described in Chapter 5.3. Assume they
choose addresses 9 and 11. Then the tree is still unbalanced. Node 12 now
recommends one of these two nodes further to the range [13, 15], and the tree
is finally balanced.

The advantage of the balancing mechanism is to guarantee that within logN
steps the unbalanced tree will be balanced regardless how large Nr and Nl differ.

5.5.3 Joint Balancing Mechanism

Implementation-wise both described balancing mechanisms run jointly. The
aggregated position information is used to fill several vacuum positions with
overweight nodes, and at the same time the node count is used to shift an
appropriate amount of nodes from the overweight subtree to the other side. This
makes the tree achieve its balanced state more quickly and more efficiently.

For example, again in Figure 5.9, node 8 can specify that one of the over-
weight nodes, say node 1, swaps to position 14, and another one moves to the
range [9, 15]. Consequently, the tree is balanced in one operation.

48 CHAPTER 5. DESIGN

5.5.4 Balancing Overhead

Let us now briefly examine the cost of the first balancing mechanism: Assume
at first that the time interval between two successive joins is longer than the
time to resolve a potential imbalance. The probability that a joining node needs
to be swapped to a vacant position depends on the node density b ∈ [0, 1) in
the lowest level of the address tree. With probability b the new node happens
to join as a child of a leaf node in the lowest level. Only in such a case, the
tree becomes imbalanced. On average, this happens in 50% of the cases and
the balancing overhead is 1

2 shift operation per node. (Assume that the joining
node naively joins at a random position, rather than using a proper address
allocator.)

For the second balancing mechanism that uses the subtree size to shift some
of the leaf nodes, any node can reach a position that balances the tree after
at most log2N steps. A detailed analysis and simulation (cf. Appendix A
and Chapter 6.2.1) shows that the average shift effort is slightly less than one
operation.

The information about the current node count and tree depth is propagated
from the leaf nodes to the root of the address tree periodically. The higher a
node’s level, the later it receives the information. Hence, the frequency of the
imbalance check as well as the information propagation (i. e. regular subtree size
and/or depth report) should be proportional to the node’s depth.

Note that the assumption that the overlay has been balanced before a node
joins is not realistic, because that would require an instant imbalance detection
and correction. Nevertheless, Chapter 6.2.2 will show that even when many
nodes join simultaneously, the maintenance effort is small and comparable to
the results of the analysis in this section.

5.6 Handling Node Churn

When a node leaves the application overlay gracefully, it should remove its entry
from the DHT, and inform its parent and children (in the address tree) and its
neighbors (in the ring). If a node leaves ungracefully, the parent node, children
node or the neighbors will detect the resulting inconsistency, for example, as
part of the overlay maintenance protocol.

With respect to the tree structure, upon noticing that the parent node has
left, one of the potentially two child nodes immediately fills the vacant position.
If there is a choice between two children, it should prefer the older node. The
respective child calculates the required information such as the address of its
new parent node and its new child node. As a consequence of this mechanism,
the stable nodes tend to move up in the address tree (assuming a power law
distribution of node live times). This reduces the probability of churn for the
inner nodes of the tree.

Since unstable nodes in the lowest level of the tree do not trigger address
swaps or node shifts, the amount of balancing traffic reduces over time. (This
will be shown in Chapter 6.2.5).

With respect to the ring structure, the 2-hop virtual neighbors can be cached
to increase the ring consistency. Moreover, the overlay node can inquiry DHT
for the potential virtual neighbors in case of its 2-hop virtual neighbor also fails.

5.7. DUPLICATE ADDRESS DETECTION 49

5.7 Duplicate Address Detection

Temporary inconsistencies may lead to address collisions. For example, when
a node leaves ungracefully and its two children cannot find each other quickly
enough, they both might swap into the vacant position. In order to detect
such a duplicate address allocation, all nodes regularly inquire the DHT for
their own overlay address. If the DHT returns more than one result, one of
the affected nodes has to swap to another address. Again node stability can
be used as criterion to decide which node has to swap: The younger node, who
has a smaller (expected) remaining life-time, has to re-join the overlay at a new
address.

5.8 Complexity Comparison

In this section the complexity of Lite-Ring is compared to those of ReDiR [100],
Diminished Chord [68] and the de-facto approach of providing KBR service to
multiple applications (i. e. one Chord-like full-fledged overlay per application).
Let M be the overall number of nodes, M∗ be the number of nodes in DHT and
N the average number of instances per application.

Table 5.2 gives the complexity classes for the important overlay operations
and states. Their derivation can be found in [100] [68] and [114].

Note that by distinguishing M and M∗ we also incorporate the effect of
Proximal Neighbor Selection (PNS) and Proximal Route Selection (PRS) in
DHTs. Even though an operation in a DHT takes O(logM∗) overlay hops,
these hops have greatly differing actual cost and latency. As a result, the cost
of DHT operations scales sub-logarithmically in practice [54][98].

As shown in Table 5.2, Lite-Ring has several advantages. Most notably,
Lite-Ring requires only one lookup in the DHT to route a message to a given
application-and-key pair. The reason is the predictable overlay address assign-
ment which enables the local calculation of the responsible node’s overlay ad-
dress. And only one DHT lookup is needed to resolve its transport address.
Moreover, Lite-Ring can even achieve a very small join complexity as described
in Chapter 5.3.

ReDiR uses a level predictor to guess the proper partition where the re-
sponsible node may lies. If it fails or if the requested key happens to fall into
the subsequent partition, more lookups are required – in the worst case up to
O(logN) lookups. More worse, since ReDiR has no overlay structure and de-
pends strongly on the information it stored on the DHT. The address lookup
will fail if the related DHT operations malfunction, e. g. the capacity of some
DHT nodes is full.

ReDiR Chord DimChord Lite-Ring

App. Inst. Join O(logN ·logM∗) O(log2 N) O(logM) O(log logN ·logM∗)

State per App. Inst. O(1) O(logN) O(logM) O(1)

Load Ratio O(1) O(1) O(logM) O(1)

Routing (worst case) O(logN ·logM∗) O(logN) O(logM∗+logM) O(logM∗)

Table 5.2: Complexity comparison between Lite-Ring and other approaches

50 CHAPTER 5. DESIGN

Unlike ReDiR, Lite-Ring has a light-weight but complete ring structure,
therefore it can guarantee the consistency of message delivery even when some
DHT operations fail. This feature will be shown in Chapter 6.2.4 and Chap-
ter 6.3.

Chapter 6

Simulation and Test

In this chapter, I present some simulation results of the Lite-Ring overlay proto-
col with the OMNeT++ simulator [121]. Moreover, at the end of this chapter,
I also present the results of a real-world test using a Lite-Ring implementation
based on OpenDHT [100].

6.1 OMNeT++ Simulator

The OMNeT++ simulator [121] is an extensible, modular, component-based
C++ simulation library and framework. More importantly it is free for the aca-
demic use. There are quite a few groups in Germany, who have contributed so-
called frameworks that provide various protocol implementations. OMNeT++
features a simple, object oriented design, which leads to good scalability. There-
fore, OMNeT++ is particularly well suited for performance evaluations of large
networks.

In OMNeT++, the network packets are exchanged between “modules” and
the events occur inside “modules”. The events and the network packets are called
“messages”.Modules are further classified into simple modules and compound
module. A simple module is the basic construction block of OMNeT++ simu-
lations because it implements various computer components, such as a node’s
CPU, Ethernet stack, etc. A simple module has the following virtual functions:

• virtual void initialize(),

• virtual void handleMessage(cMessage *msg),

• virtual void finish().

A compound module in OMNeT++ is a group of simple modules. Moreover,
compound modules can group other compound modules at a higher level. A
network in OMNeT++ is a compound module at the highest level.

6.2 Simulations

The OMNeT++ simulator was used to simulate Lite-Ring and to evaluate its
performance. Each simulation ran 10∼30 times with different random seeds.

51

52 CHAPTER 6. SIMULATION AND TEST

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 10 100 1000

E
xp

ec
te

d
no

de
 s

hi
fts

Node

Theoretical
Simulated

Figure 6.1: Expected node shifts at the nth node for balancing the address tree
with node count.

6.2.1 Sequential Joins

In the first scenario, 1024 nodes join the application overlay sequentially. The
nodes start to join only after the overlay has become balanced.

Figure 6.1 shows the per node balancing effort when the nodes use the node
count to discover an imbalance. The balancing effort is the expected number of
address shifts that a joining node might perform when joining the application
overlay. As expected from the analysis in Chapter 5.5, the worst case occurs
when the binary tree is almost fully populated. The balancing effort in that
case is logarithmic to the network size. (The derivation of the theoretical result
can be found in Appendix A.)

Figure 6.2 shows the balancing effort as average over all nodes that have
already joined. We see that the average effort is limited by a threshold of one
additional operation. Again, the simulation result matches the expected small
cost of the balancing process.

Figure 6.3 and Figure 6.4 show the balancing effort with the depth criterion,
i. e. when the nodes can use precise information about the vacant positions in the
address tree. From Figure 6.3, we see that even the maximal expected number
of additional operations does not exceed one, whereas in Figure 6.4, the average
balancing effort is below 0.5 operation.

Due to the fact that at most one node needs to be replaced in this scenario,
the combined version with both depth and count performs identically to the
depth criterion.

6.2.2 Concurrent Joins

The sequential join process that is assumed so far is unrealistic. In practice,
nodes might join the overlay concurrently, maybe even in bursts. They will not
wait for the overlay to become balanced.

6.2. SIMULATIONS 53

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100 1000

A
ve

ra
ge

 n
od

e
sh

ift
s

Nodes

Theoretical
Simulated

Figure 6.2: Average number of the node shifts of the first n nodes for balancing
the address tree with node count.

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

E
xp

ec
te

d
no

de
 s

hi
fts

Nodes

Theoretical
Simulated

Figure 6.3: Expected node shifts at the nth node for balancing the address tree
with vacant position.

54 CHAPTER 6. SIMULATION AND TEST

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 10 100 1000

A
ve

ra
ge

 n
od

e
sh

ift
s

Nodes

Theoretical
Simulated

Figure 6.4: Average number of the node shifts of the first n nodes for balancing
the address tree with vacant position.

In order to simulate concurrent joins, we let 16-1024 nodes join the overlay
at a rate of one node per second and set the time interval of maintenance
operations as 5 seconds. Figure 6.5 and Figure 6.6 show a comparison of the
three balancing methods that we have presented in Chapter 5.5. Although
the combined balancing method has some overhead in terms of node shifts, it
balances the tree most quickly.

We can find out that the balancing effort per node remains below one oper-
ation (cf. Figure 6.5). This agrees with the analysis in Chapter 5.5.

Figure 6.7 depicts the distribution of the join attempts of 1024 nodes with
different join patterns. The node-count based balancing mechanism (cf. Chap-
ter 5.5) was applied. Surprisingly, the distributions are similar and the only
difference is that the distribution of the concurrent join scenario has a slightly
heavier tail. Based on this observation, we can conclude that the analysis based
on sequential join in Chapter 6.2.1 is also applicable to the scenario of concurrent
join in some degree.

6.2.3 Random Address Tree

As stated in Chapter 5.4, the routing overhead of Lite-Ring can be very small in
cases where the address tree is balanced. However, it is also interesting to know
the routing overhead in cases where the address tree is not balanced. For the
analysis in this section, the balancing procedure is switched off and no synthetic
node is used.

In Figure 6.8, 105 nodes join the Lite-Ring overlay sequentially. From the
figure, we can see that the maximal height (Hmax), the average node depth
(Have) and the saturated level (Hsat) of the address tree are logarithmic to the
node count.

Suppose that each node in the Lite-Ring overlay knows the node count, thus
knows the average depth (Have) of the address tree. When routing a message to

6.2. SIMULATIONS 55

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000

N
od

e
sh

ift
s

Nodes

Use vacant position
Use node count

Combined

Figure 6.5: Comparison of different balancing mechanisms (node shifts)

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000

T
im

e
(s

)

Nodes

Use vacant position
Use node count

Combined

Figure 6.6: Comparison of different balancing mechanisms (time)

56 CHAPTER 6. SIMULATION AND TEST

0

10

20

30

40

50

0 2 4 6 8 10 12

P
er

ce
nt

ag
e

of
 n

od
es

 (
%

)

Node shifts

Join simultaneously
Join sequentially

Figure 6.7: Distribution of the node shifts with 1024 nodes

0

5

10

15

20

1 10 100 1000 10000 100000

H
ei

gh
t

Nodes

Maximal height
Average depth

Saturation level

Figure 6.8: The maximal height, the average node depth and the saturated level
of the unbalanced address trees with up to 105 Lite-Ring overlay instances

6.2. SIMULATIONS 57

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 100 1000 10000 100000

R
ou

tin
g

ov
er

he
ad

Nodes

Estimation with local knowledge
Estimation with global node count

Figure 6.9: Routing overhead with random address tree (with different estima-
tion strategies)

a certain key, the node assumes a fully populated address tree of height Have,
then it polls the DHT for the transport address of the node responsible to the
key (see Chapter 5.4). As shown in Figure 6.8, when the Lite-Ring network
consists of 105 nodes, the routing overhead in worst case is Hmax −Have = 5.
(An overhead of one means either one additional DHT inquiry or one extra route
step within Lite-Ring.)

Without the global knowledge of the node count, the node can use the local
knowledge (i. e. the predecessor ID or the successor ID) to estimate the node
count (see Chapter 5.4). A simple estimation strategy used in this simulation
is:

H
′

ave = max(Hself , Hsuccessor)− 1

In the worst case that the destination node lies at the depth Hmax and both the
node’s own ID and its successor ID lie in the saturated region, the node gets
H

′

ave = Hsat and its routing overhead is then Hmax −Hsat = 7. (As shown in
Figure 6.8 with the network size of 105.)

Figure 6.9 depicts the average routing overhead of Lite-Ring using the afore-
mentioned two estimation strategies. The network size varies from 16 to 105.
The figure shows that the routing overhead with global node count knowledge
is below 0.7; whereas the overhead with local knowledge is about 1.0. That
means, Lite-Ring can work with unbalanced address tree with only small rout-
ing overhead,

In practice, a node might have more knowledge than knowing only its suc-
cessor. For example, nodes could learn the existence of other nodes by receiving
or routing payload messages. The more knowledge a node has, the more precise
it can estimate the overlay size and the smaller routing overhead it generates.
(Note that the reduction of the routing overhead is limited to 0.7.)

58 CHAPTER 6. SIMULATION AND TEST

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5

R
ou

te
 o

ve
rh

ea
d

Failure rate of DHT operations (%)

DHT operations (with synthetic nodes)
Hops (with synthetic nodes)

DHT operations(without synthetic nodes)
Hops (without synthetic nodes)

Figure 6.10: Routing overhead with an unstable DHT

6.2.4 Using an Unstable DHT

The Lite-Ring protocol depends on a public DHT service. Regardless of using a
third party service or integrating the DHT into Lite-Ring, such a service might
be unstable. It might considerably delay some messages, and operations might
fail sporadically.

In the following simulation, 800 nodes have joined a Lite-Ring overlay and
an unstable DHT service is used, in which up to 50% of the DHT operations fail.
The performance of the Lite-Ring overlay that uses synthetic nodes is compared
to the version that does not.

From Figure 6.10 we see that with an increasing failure rate, the number
of required DHT operations also increases. In the case where synthetic nodes
are used, that number is approximately 20% below the case without synthetic
addresses. This corresponds to the analysis result (cf. Equation 5.2). When the
failure rate increases, the number of forwarding hops also increases slightly.

It is worth pointing out that in this simulation all messages reach their
correct destinations. Thus, this simulation also demonstrates that Lite-Ring is
robust even in face of an unstable DHT.

6.2.5 Node Churn

Not only the DHT can be error-prone, but the overlay nodes themselves might
also operate irregularly. In the next simulation, 50% out of 64 overlay nodes die
ungracefully after an average of 2 minutes (from an exponential distribution).
When a node dies, another node joins so that the entire number of nodes remains
constant.

As stated in Chapter 5.6, the nodes have to update their address when their
parent node is gone. In such a case, the respective node moves up the address
tree. As a consequence, the stable nodes tend to move up and stay in the upper
levels of the address tree, whereas the unstable nodes remain at the lowest level

6.3. TESTS WITH OPENDHT 59

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1000 2000 3000 4000 5000 6000 7000 8000

A
dd

re
ss

 U
pd

at
es

time (s)

Lite-Ring

Figure 6.11: Cumulative address updates during node churn

where they joined the overlay.

From Figure 6.11, we see that the update frequency decreases over time,
because more and more stable nodes populate the upper levels of the address
tree. Churn at the lowest level – where the unstable nodes sit – does not trigger
address updates. From this simulation, we thus conclude that Lite-Ring is in
fact adaptive. It adjusts the node distribution in the overlay so that it achieves
a robust and stable performance.

It is notable that the length of the forwarding path is still approximately one
hop, because Lite-Ring does not use leaf nodes in the address tree as intermedi-
ate hops for routing. Hence their churn does not have an impact on the message
delivery among the stable nodes in the fully populated level of the address tree.

6.3 Tests with OpenDHT

In order to compare the performance between Lite-Ring and ReDiR, Lite-Ring
has been also implemented in a Linux environment and run with OpenDHT’s
XML-RPC interface [100]. The ReDiR performance measured is based on the
code provided by the OpenDHT web page [1].

In this experiment, 30 overlay instances connect to the 10 closest OpenDHT
nodes and the synthetic nodes are also used. Each instance sends 100 messages
to 10 randomly selected keys at a rate of one message per second. After the
experiment with Lite-Ring, ReDiR is run under the same conditions.

Fig 6.12 shows the message delays on a logarithmic scale. For more than
90% of the messages, Lite-Ring has a significantly smaller delay, because Lite-
Ring needs only one DHT get operation to correctly route any message. On
contrary, ReDiR needs 1.2 ∼ 1.3 DHT get operations on average [100].

Since the nodes in Lite-Ring maintain additional state about some other
nodes, e. g. in the ring and address tree, some messages can be delivered without
any DHT operation. That’s the reason why there are some messages having

60 CHAPTER 6. SIMULATION AND TEST

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

D
el

ay
 (

s)

Messages (%)

Lite-Ring
ReDiR

Figure 6.12: Comparison between Lite-Ring and ReDiR, both run with
OpenDHT

extremely low delay.
Most importantly, Lite-Ring achieves 100% correct message delivery,

whereas ReDiR achieved only 40%. The reason that Lite-Ring remains always
consistent, is Lite-Ring’s light-weight overlay structure. It enables the receiver
of a message to detect an inconsistency (cf. Chapter 5.4). It can then either
trigger further DHT operations that resolve the inconsistency, or it can route
the message directly within the application overlay. The increased effort causes
some packets (10%) to have larger delay than the maximal delay in ReDiR.

Finally, we note that OpenDHT was also a good example how Lite-Ring
copes with an unstable DHT. In this experiment, the connections to the
OpenDHT nodes had to be re-established 21 times during the 3 minutes mea-
surement. Moreover, about 17% DHT put operations failed due to insufficient
capacity on the OpenDHT nodes.

Chapter 7

Conclusions

7.1 Summary

In this part of the dissertation, I have presented Lite-Ring, a light-weight overlay
structure that efficiently creates and maintains key-based routing overlays for
multiple applications.

Lite-Ring requires only O(1) state per application instance. Similarly to
ReDiR, a previous proposal for such a scenario, Lite-Ring stores some of its
state in a DHT. But unlike ReDiR, it can route messages directly to their des-
tination after only one DHT lookup. This reduces the message delivery latency
significantly (as compared to ReDiR). Moreover, Lite-Ring detects inconsisten-
cies in the overlay structure so that it achieves 100% correct message delivery
(as compared to 40% with ReDiR) even in case of an unreliable DHT.

I have presented some mathematical analysis of Lite-Ring’s performance. I
have also confirmed the analysis with simulations and a measurement in Plan-
etLab. In addition, it has been demonstrated that Lite-Ring is stable in face of
node churn and an unreliable DHT.

7.2 Practical Issues

Before the end of this part of work, I would briefly discuss several important
issues that are related to the real world deployment of Lite-Ring.

7.2.1 Impact of NAT

As many other P2P protocols, Lite-Ring has to deal with the Network Address
Translation (NAT) [110] problem in the Internet. A straightforward solution is
to use Interactive Connectivity Establishment (ICE) [103] or Session Traversal
Utilities for NAT (STUN) [102] to obtain the public IP address and port number
that the NAT has allocated for the node.

Nevertheless, in some cases, a node cannot obtain its public transport ad-
dress. Even worse, it may erroneously use its private address to join the Lite-
Ring overlay. In such a case, the other nodes cannot deliver messages to that
node directly, but rather route them to the predecessor of that node. This would
result in a slightly unbalanced load in the overlay. Moreover, such nodes cannot

61

62 CHAPTER 7. CONCLUSIONS

properly serve as address allocators, so that the tree structure would become
imbalanced and the route stretch would increase.

To avoid these problems, Lite-Ring does not allow to register private ad-
dresses. Moreover, if e. g. a firewall blocks a public address for address alloca-
tion, Lite-Ring assumes that the respective node ungracefully failed and restarts
the bootstrapping process at other position. Hence, the described imbalance is
a transient problem, only.

7.2.2 Load Balancing

Karger et al. [69] pointed out that the load balancing depends on two factors:
address distribution and load distribution. In case of a uniformly distributed
load, the address distribution should be as uniform as possible. Accordingly,
Karger et al. suggested logN virtual servers to achieve a uniform address dis-
tribution.

Instead of introducing redundant virtual servers, Lite-Ring’s address assign-
ment scheme enforces a strictly uniform addresses distribution. Typically, the
size of the address intervals differs only by a factor of two at most, Hence, Lite-
Ring achieves predictable load balancing properties for uniformly distributed
load without additional overhead.

For a non-uniform load distribution, the address space has to be skewed
correspondingly. Instead of balancing the tree in terms of node depth or node
count, Lite-Ring can then use the node load to define the balanced state of
the tree. It is not difficult to imagine that the heavily loaded address space
contain more overlay nodes. (A detailed description and analysis of this feature
is beyond the scope of this thesis.)

7.2.3 Public DHT Service

When we began our work on Lite-Ring, OpenDHT was the most well-known and
stable DHT service. Meanwhile, it has been abandoned. As an alternative to
OpenDHT, Rhea suggested Amazon Dynamo [38], a commercial DHT storage
service. Another alternative would be to use some open DHT library, e. g.
Pastry [104] or Bamboo [99], to build a new public DHT service. However this
would require a lot of development and maintenance work.

7.2.4 Security Aspects

Lite-Ring has been designed as a generic structured peer-to-peer overlay system.
Such systems generally suffer from vulnerabilities, especially several different
types of denial-of-services attacks. Lite-Ring’s predictable address assignment
makes some of these attacks easy, while impeding others. Overall, Lite-Ring has
to be protected against malicious nodes, as it is the case with all P2P overlays
[20]. (A discussion of such security enhancements would apply to structured
P2P overlays in general. This is considered beyond the scope of this thesis.)

7.2.5 Address Swap

In case of node churn, Lite-Ring swaps node addresses. This causes an increased
traffic for applications that then have to exchange data among the respective

7.2. PRACTICAL ISSUES 63

peers. Luckily, this address swap is predictable: A child node always takes the
place of its parent node. Hence, a Lite-Ring based application could replicate its
data preferably to its child nodes in the address tree so that the churn-induced
address swap does not create additional traffic.

In case of a mere tree balancing operation, the address swap is not pre-
dictable. However, this balancing process happens only rarely. Moreover, as
mentioned in Section 5.4, Lite-Ring does not require the tree to be strictly bal-
anced. It is up to the specific application to choose the trade-off between data
exchange traffic and routing overhead.

64 CHAPTER 7. CONCLUSIONS

Part III

Lite-Ring in Wireless
Ad-hoc Networks

65

Chapter 8

Overview

Since their appearance in 2001, structured overlay networks in the Internet
have been a hot topic and been extensively studied. At the same time, routing
in large wireless ad-hoc networks, e. g. Mobile Ad-hoc Networks (MANETs),
Wireless Sensor Networks (WSNs) and Wireless Mesh Networks (WMNs), has
also attracted a large amount of attention.

Although these two research topics appear to be orthogonal, they have some
common properties, such as self-organization and decentralization. Since years,
there have been efforts trying to combine peer-to-peer and ad-hoc networks, i. e.
building structured overlays in wireless ad-hoc networks [50, 15, 129, 39, 47, 41].
However, all these approaches aim at one single KBR application. None of them
is able to offer an efficient KBR service to multiple applications simultaneously.

This chapter discusses the feasibility of using Lite-Ring to solve this problem,
i. e. to provide an efficient KBR service to multiple applications in a wireless ad-
hoc network. In the following, I first give a case study to illustrate an application
scenario of a structured overlay in a wireless ad-hoc network; after that the
common properties of P2P networks and wireless ad-hoc networks are stated.
Next, I present a snapshot of the current solutions and discuss their infeasibility
of providing an efficient KBR service for multiple applications. At last, the goal
and challenges of the current work are discussed.

8.1 Case Study - Object Tracking with DHT

Our case study in [43] uses object tracking in a WSN as an example to demon-
strate the feasibility as well as the performance improvement of applying P2P
techniques in a wireless ad-hoc network.

8.1.1 Background

With the technological improvements, large WSNs tends to be more and more
used in practice. Along object tracking is one of the major applications, other
applications can be remote monitoring, event detection, etc. In object tracking
systems, there is typically a central instance, which needs timely information
of, e. g. the location of one or more objects in the WSNs.

67

68 CHAPTER 8. OVERVIEW

For example, a researcher may want to track the wild deers that live in a large
national park. She might want to do so in real-time and she might also want to
locate any individual at any instant in time. But she will typically only request
the location of a few deers at a time. The deers might have preferred places and
typical times to move between these places. They might move individually or
in herds. Many other such applications are conceivable, including commercially
relevant applications such as asset tracking and applications to national security.

For the purpose of this case study, sensor nodes and tracked objects are
distinguished. The tracked objects are even more resource-limited than the
sensor nodes. One may consider the tracked objects as being tagged with Radio
Frequency Identification (RFID) tags or small Wireless Local Area Network
(WLAN) tags. The node that needs the information about the tracked object
is called the inquirer or sink, and the sensor node that contains the requested
(location) information about the tracked object is the source.

8.1.2 Straightforward Solutions

There are two straightforward solutions for object tracking: the “pull” approach
and the “push” approach. In the “pull” approach, the sink floods the network
with a request message whenever it needs the location data of a particular
object. A sensor node that receives such a request will answer with the location
data of the requested object. Obviously, such an approach does not scale to the
high frequency of the location requests in large networks.

The other straightforward approach is to push the location information to a
central location registry. The inquirer can then retrieve the data that it needs
directly from the registry without flooding the whole network. Note that the
push approach does not scale either. In particular, it is not suited for large
networks with many highly mobile objects: Because whenever an object moves
from the vicinity of one sensor node to that of another sensor node, both of these
nodes have to send an update to the central location registry. Most likely, many
of the updates will be overwritten in the registry without having been read by the
monitoring application. In our assumed scenario the publishing nodes cannot
know which data might be requested. So they have to publish permanently all
the data. However, increasing the update intervals of the sensor nodes does not
help, since this reduces the timeliness of the data that happens to be requested.

8.1.3 Application of DHT

To overcome the scalability problems of the aforementioned straightforward ap-
proaches, a DHT can be used to hold the (location) information about the
objects. Since Scalable Source Routing (SSR) is a DHT-inspired routing proto-
col, it supports native KBR semantic. Thus, it is feasible and easy to build the
DHT on top of SSR.

When detecting an event of an object, the sensor node hashes the object
ID to some key (inside the SSR address space) and lets SSR route the object
information to the sensor node, whose address is the closest to that key. Only
the respective node stores or updates the object information. When the sink
needs to get the information of that object, it also hashes the object ID to the
(same) key and lets SSR route the inquiry to that respective sensor node.

8.2. CHARACTERISTICS OF P2P AND WIREL. AD-HOC NETW. 69

The simulation results in [43] show the significant performance improvement
of the DHT approach to the two straightforward solutions for reasonably ex-
pected event and request rates.

8.1.4 Summary

From this case study, we can see that although P2P techniques originally became
popular in the Internet, these techniques are also applicable in wireless ad-hoc
networks.

8.2 Characteristics of P2P and Wireless Ad-hoc
Networks

Both kinds of the networks, i. e. Peer-to-Peer (P2P) networks and wireless ad-
hoc networks, are usually deployed in totally different areas: one as overlay in
the Internet and the other in standalone and often autonomous region. However,
they have some common characteristics [17].

• Node dynamicity: The nodes, i. e. the network participants, can join and
leave the network at any time. This leads to a frequently changing topol-
ogy.

• Self-organization: Both networks have to bootstrap on their own and they
have to adapt to the changing topology all the time.

• Decentralization: Neither of these two networks needs central nodes to
administrate the participants. The participants in the network have only
local knowledge, from that they need to derive their (sometimes very lim-
ited) global information.

• Multi-hop routing: Both networks require multi-hop communication. The
routing algorithm should be scalable to a potentially very large network
size.

Of course, there are also differences between these two networks:

• Infrastructure: P2P networks were originally designed as applications in
the Internet, hence they rely on the IP routing infrastructure; whereas
wireless ad-hoc networks have no underlying infrastructure and have to
solve the end-to-end routing problem.

• Bandwidth: P2P networks are supposed to have a sufficient bandwidth,
e. g. normal peers typically have the usual Digital Subscriber Line (DSL)
bandwidth and some super nodes may have Internet connection through
a campus network. In contrast, the bandwidth in wireless ad-hoc net-
work depends on the environment and the hardware, which could be
IEEE802.11 [59], Bluetooth [60], IEEE802.15.4 [61], etc. Accordingly, the
bandwidth varies from a few KBit/s to several MBit/s.

• Service: P2P networks are assumed to be able to make use of many diverse
services in the Internet, e. g. King [55] project utilizes the DNS servers

70 CHAPTER 8. OVERVIEW

as the landmarks to predict end-to-end delay, others [25] use Content
Distribution Network (CDN). On the contrary, the services in wireless
ad-hoc networks are usually quite limited and sometimes very costly, e. g.
location service through the accommodation of GPS receivers.

• Reliable Transmission: Since P2P networks use the pre-existing Inter-
net infrastructure, message transmission can be considered quite reliable
especially when the Transmission Control Protocol (TCP) is used. How-
ever, in wireless ad-hoc networks, the performance of the conventional
TCP protocols is not satisfactory, as TCP cannot distinguish the packet
loss from congestion and interference. Recently, many optimizations or
alternative methods have been proposed for TCP in wireless environ-
ments [49, 16, 127]. However, all of them lack wide validations and tests.

8.3 KBR Solutions in Wireless Ad-hoc Net-
works

Due to the aforementioned properties, the application of P2P overlays in wireless
ad-hoc networks is more complicated than that in the Internet. Nevertheless,
many efforts [50, 15, 129, 43] have been undertaken to integrate structured
overlays into wireless ad-hoc networks. Castro et al. [17] summarized these
efforts into three categories:

• Layered solutions deploy a structured overlay protocol directly on top of
a conventional ad-hoc routing protocol. These solutions do not introduce
any changes either in the overlay protocol or in the ad-hoc routing proto-
col. However, the overlay maintenance procedure generates a lot of traffic
in the network layer, which leads to a poor scalability [31, 18].

• Cross-layer solutions, e. g. CrossROAD [39] and MADPastry [129], modify
the ad-hoc routing protocol and integrate the overlay information into
the routing control messages. The advantage of these solutions is the
significant reduction of the overlay maintenance overhead in the network
layer.

• Integrated solutions, e. g. SSR [50], VRR [15] and DART [47], merge the
structured overlay into the network layer and achieve higher performance
by maintaining only one unified layer.

These solutions can provide a plain KBR service to a single application in
a wireless ad-hoc network. However, they will not work, at least not efficiently,
if multiple applications require the KBR service simultaneously. The layered
solution and the cross-layer solution build multiple independent overlays, which
generate an enormous maintenance overhead which could overload the network.
As for the integrated solutions, all the node are assumed to be homogeneous
and only one KBR application is supposed to be deployed on the node. Hence,
they can not be applied for multiple applications, either.

8.4. GOAL AND CHALLENGES 71

8.4 Goal and Challenges

To my best knowledge, there is no applicable solution of providing the KBR
service to multiple applications in wireless ad-hoc networks so far. This part of
the dissertation discusses the feasibility of using Lite-Ring to solve this problem.

From the view of the application, Lite-Ring will work transparently as a con-
ventional KBR routing protocol, i. e. route the key-data pair to the destination
node, which runs the same application and whose ID is the closest one to the
key.

Although there are some common properties of P2P networks and wireless
ad-hoc networks, the different characteristics between these two kinds of net-
works make the construction of the Lite-Ring overlay in wireless ad-hoc networks
more difficult than in the Internet. These challenges include end-to-end routing,
reliable delivery, a DHT service and bootstrapping.

8.4.1 End-to-end Routing

The existing Internet infrastructure enables end-to-end routing on the global
scope, In theory, any two nodes can establish a connection as long as they
know their mutual IP addresses. However, in wireless ad-hoc networks, due
to the resource restriction, e. g. memory and bandwidth limitation, end-to-end
routing is still an open topic. Since neither the proactive routing protocols nor
the reactive routing protocols work well in large wireless ad-hoc networks, a
scalable end-to-end routing solution has yet to be found before we can build the
Lite-Ring overlay networks.

8.4.2 Reliable Delivery

In wireless ad-hoc networks, packet loss can be caused by many reasons, such
as congestion or interference. Although quite a few reliable transport layer
protocols [49, 16, 127] have been proposed for wireless networks, none of them
is well standardized or widely applied. Therefore, the datagram mode is used
for message delivery in Lite-Ring. The task of reliable communication is thus
shift to the applications that use the Lite-Ring.

8.4.3 DHT Service

In the Internet, there are some public DHT services which can be utilized to
build the Lite-Ring networks. However, no such services is available in wireless
ad-hoc networks. As mentioned in Chapter 3.2.2, SSR offers the KBR semantic.
Therefore, it is feasible to build a primitive DHT service on top of SSR.

Obviously, Lite-Ring can benefit from a reliable DHT. However, it is not
trivial to implement a reliable DHT in an unstable environment [35, 101]. For-
tunately, as illustrated in Chapter 6.2.4, Lite-Ring can work well even with an
unreliable DHT. So, in stead of building a complicated and reliable DHT, a
simple and thus unreliable DHT suffices for the Lite-Ring network.

72 CHAPTER 8. OVERVIEW

8.4.4 Bootstrapping

As is well known, one of the principles of many P2P applications is that ev-
ery overlay node can serve as a bootstrapping node. Thus, the bootstrapping
problem is how to let the new coming nodes find one of the existing nodes.

A widely applied solution is to use a relatively reliable public resolver, e. g.
a web page, where some stable overlay nodes are published. These nodes are
usually very stable and online in most time. With the help of these nodes, the
new coming nodes can bootstrap properly.

In wireless ad-hoc networks, such a centralized bootstrapping method is not
feasible, since there is no reliable third party for such publications. In contrast to
the centralized method, the Lite-Ring protocol solves the bootstrapping problem
in a decentralized manner in that a random overlay node can be found by
leveraging the DHT (cf. Chapter 5.3).

Chapter 9

Design

This chapter briefly describes the design of a system, that can provide a KBR
service to multiple applications simultaneously in wireless ad-hoc networks. In
the following, this system will be called Lite-Ring system. This system includes
not only Lite-Ring modules, which implements the Lite-Ring protocol, but also
further two modules: a DHT module and an end-to-end routing module.

9.1 The Lite-Ring System

The Lite-Ring system provides the extended key based routing semantics to
various applications, i. e. route({key, app-id}, value). For each application
instance, there exists a corresponding Lite-Ring module. That means, multiple
Lite-Ring modules could exist in a Lite-Ring system.

As stated in Chapter 4.3, Lite-Ring requires a DHT service to build its
overlay. However, there is no public DHT service available in the wireless ad-
hoc networks. Hence, a DHT module has to be integrated into the Lite-Ring
system. Moreover, since there is no IP routing infrastructure in wireless ad-hoc
networks, an end-to-end routing module must also be comprised in the Lite-
Ring system. The resulting structure is illustrated in Figure 9.1. Concerning
the adaptivity of the Lite-Ring system to networks with different hardware
techniques, the MAC-layer module is currently excluded.

Link Layer

Physical Layer

DHT

SSR

Lite−Ring

Application

Lite−Ring
System

Figure 9.1: The Lite-Ring system

73

74 CHAPTER 9. DESIGN

9.1.1 End-to-End Routing

In order to ensure connectivity between any two nodes, the end-to-end routing
module has to be deployed on each node. As stated in Chapter 3.2.2, the
Scalable Source Routing (SSR) protocol is a DHT-inspired routing protocol in
the network layer. It achieves good performance with only a small routing
cache and little maintenance overhead. It is a scalable routing solution for
large wireless ad-hoc networks and requires neither flooding to determine a
forwarding path nor localization of the nodes on a 2-dimensional surface. More
importantly, it supports both the end-to-end routing semantic and the Key
Based Routing (KBR) semantic. Based on the observations above, SSR is chosen
to build the routing module. Thus, in the following context, the end-to-end
routing module is also called SSR module.

9.1.2 Light Weight DHT

A DHT module is required in the Lite-Ring system and it should support at
least three primitive storage services: put, get and remove. Although it would
have been favorable to include an efficient and reliable DHT module (eventually
with aggregation function) into the Lite-Ring system, the development cost
and the maintenance overhead would be enormous. Considering the fact that
the Lite-Ring can achieve good performance even with an unreliable DHT (rf.
Chapter 6.2.4), a light-weight primitive DHT module suffices for the Lite-Ring
system.

In this light-weight DHT, the key-data entries are stored as soft-state with-
out replication. The users of this DHT must refresh (and replicate for reliability)
their data regularly. Besides the Lite-Ring system, the applications may also
directly use the light-weight DHT, no matter if they use the Lite-Ring system
or not.

The DHT module is built on top of the SSR module and is implemented
on each node within the network. This construction is based on the following
consideration:

• As a network layer protocol, SSR runs on every node in the network. Its
key-based routing function can be used to build the DHT module.

• If only some nodes run the DHT, an extra metric is required to determine
whether a node should be deployed with the DHT module or not. That
would make the construction more complicated.

• It is even more challenging to let a node without DHT module find a node
with DHT module to perform DHT operations than to include a DHT
module on each node in the Lite-Ring system.

9.1.3 The Lite-Ring Module

The Lite-Ring module implements the Lite-Ring protocol and uses the SSR
module to establish its overlay links. To this end, the end-to-end routing mode
of SSR is used. Each Lite-Ring module is initialized by a certain application
instance on top of the Lite-Ring system, and provides the KBR service only to
that application.

9.2. IMPLEMENTATION 75

9.2 Implementation

In order to evaluate its feasibility in wireless ad-hoc networks, the Lite-Ring
system has been implemented in the OMNeT++ simulator [121]. This section
describes some details of the implementation.

9.2.1 Network Topology

Figure 9.2: Network topology with 100 nodes

Figure 9.2 shows a screen shot of the network topology of the Lite-Ring sys-
tem in OMNeT++. In this figure, there are one “channel control” module and
100 nodes (compound modules) positioned in a lattice structure. The “channel
control” module is taken from the INET framework [120] of OMNeT++. It
stores the global information of locations and movements of the nodes, and de-
termines the interference level and the connection probability of any two nodes.
More details about the “channel control” module can be found in [120].

In the scenario of Figure 9.2, the distance between neighbor nodes is config-
ured to 50 meter and the transmission range of each node is 55 meter. According

76 CHAPTER 9. DESIGN

to this settlement, except the nodes on the edges and at the corners, each node
has 4 neighbors.

9.2.2 Node Structure

Figure 9.3: Node structure in the Lite-Ring system

Figure 9.3 shows the node structure in the network. It consists of several
simple modules and one compound module.

The “notificationBoard”, “interfaceTable”, “mobility” and “wlan” are mod-
ules derived from the OMNeT++ INET framework. The “wlan” module is the
only compound module in this structure, see Figure 9.4.

• The “notificationBoard” module is used as a public blackboard for mod-
ules to share information with each other.

• The “interfaceTable” module is used to register every layer-2 modules,
e. g. wlan module, PPP module, loop-back interface, etc.

• The “mobility” module implements a variant of random direction mobility
models, proposed by Perkins and Wang [89].

The “DHT”, “SSR”, “Lite-Ring” and “Application” modules are the newly
implemented simple modules. In the node structure, there is only one SSR
module and one DHT module. The Lite-Ring and Application modules co-exist
on each node. The numbers of the Lite-Ring or Application modules on different
nodes may vary. In the example of Figure 9.3, there are two Lite-Ring modules
and two Application modules.

9.2. IMPLEMENTATION 77

Figure 9.4: Sub-modules inside the wlan module

• The DHT module provides a primitive DHT service with put, get and
remove operations. (See Chapter 9.2.3 for the details of the DHT module.)

• The SSR module provides two routing modes, i. e. the key based routing for
the DHT module and the end-to-end routing for the Lite-Ring module(s).
(For the detail of the SSR module we refer to Section 9.2.4.)

• Each Lite-Ring module is associated with an application and provides the
KBR service to that application.

• The Application module is used for statistic purposes. It regularly sends
a message to a randomly chosen destination. At the same time, it regis-
ters the received messages. At the end of the simulation, some statistics
concerning, e. g. the loss rate and delay, can be achieved, based on the
information collected by the Application module.

9.2.3 The DHT Module

The DHT module is built on top of the SSR module. It has a local cache, in
which the key-data pairs are stored. Note that a key can be associated to more
than one data entries.

Messages

There are six types of messages in the DHT module: cDhtPutMsg, cDhtGetMsg,
cDhtRmMsg, cDhtPutResultMsg, cDhtGetResultMsg and cDhtRmResultMsg.

78 CHAPTER 9. DESIGN

• cDhtPutMsg is used to publish data in the DHT.

It contains three mandatory fields, i. e. Key, Data and TTL, as well as an
optional field, Issuer, which specifies the sender of this message.

• cDhtGetMsg is used to inquire the data for certain key. It consists of three
fields: Key and Number of required results, as well as Inquirer, which is
the destination to which the result should be returned.

• cDhtRmMsg is used to remove a certain key-data pair. It has two mandatory
fields, i. e. Key and Data, and one optional field, Issuer. As there may
be multiple values associated with one key, it is necessary to specify the
Data or the hash of the Data in the cDhtRmMsg.

• cDhtPutResultMsg is generated when cDhtPutMsg contains the optional
Issuer field. It has three fields: Key, Issuer and Error. The Error field
is used to indicate if the put operation was successful or not. In case of
an unsuccessful operation, the error type is specified.

• cDhtGetResultMsg returns the data associated with a certain key. It has
four fields: Key, Inquirer, Number and Results. Number refers to the
number of results while Results are the results array.

• cDhtRmResultMsg specifies if the remove operation was successful. Anal-
ogously to cDhtPutResultMsg, it has also three fields: Key, Issuer and
Error with similar meanings.

The key space in the DHT module is the same as the address space in the
SSR module. In particular, the DHT module uses the SSR address as its own
address. In this implementation, it is a 4-byte (unsigned) random integer.

Routine

If a node needs to store data with a certain key, the DHT module generates a
cDhtPutMsg message and the SSR module routes this message to the destina-
tion node using the KBR mode. When the cDhtPutMsg message arrives at the
destination node, the DHT module on the destination node stores the key-data
pair in its local cache for TTL seconds as specified in the message.

If required, the DHT module sends a cDhtPutResultMsg message back to the
Issuer of the cDhtPutMsg message, using SSR’s end-to-end routing mode. If the
Issuer doesn’t receive a reply, the cDhtPutMsg message may be retransmitted
depending on the applications.

When a DHT module tries to get some data for a certain key, a cDhtGetMsg

message will be sent to the destination node with SSR’s KBR mode. At the
destination node, the DHT module looks up the key in its local cache and sends
a cDhtGetResultMsg message back to the inquirer using SSR’s end-to-end
routing mode.

In order to remove the data with certain key, the DHT module sends a
cDhtRmMsg message to the destination node using SSR’s KBR mode. Upon
receiving the message, the destination node checks its local cache and deletes
the matched data entry. Analogously, an optional cDhtPutResultMsg message
may be sent back to the Issuer.

9.2. IMPLEMENTATION 79

Parameters

The DHT module has the following major parameters:

• int capacity: The maximum number of key-data entries, which can be
stored in the DHT module.

• double dhtGetRetryTimes: The maximum times of the retransmission
of a cDhtGetMsg message.

• double dhtGetRetryInterval: The time interval between two retrans-
missions of a cDhtGetMsg message.

9.2.4 The SSR Module

The SSR module provides the following API for both end-to-end routing and
key-base routing:

SendPayload(cAddr Dest, int SizeByte, void* pBuf, bool UpCall,

int AppId, bool RouteMode);

• Dest is the destination of the message, which can be the SSR address of
a certain node or a key in the SSR address space.

• RouteMode specifies the routing semantic: true for end-to-end routing;
false for key based routing.

• pBuf and SizeByte specify the pointer and the length of the payload
message.

• AppId specifies the application type of the message. It is similar to the
port concept in the TCP/IP stack. If the destination node doesn’t run
the application as denoted in the AppId, this message will be dropped.

• UpCall indicates whether the modules on top of SSR at the intermediate
nodes can intercept the message or not.

The upcall concept is often used in the recursive overlay networks, in which
messages are forwarded through the network without route discovery process.
(In contrast to the recursive overlay network, the iterative overlay networks let
the sender discover a route to the destination before delivering messages.) Some
P2P applications, e. g. overlay multicast [22], require such an upcall feature.

The upcall concept is not only applied in overlay networks but also in some
other end-to-end network layer route protocols. For instance, the Resource
Reservation Protocol (RSVP)[14] has included the Router Alert Option [71] in
the IP header to let routers examine the contents of the IP packet more closely.
Some applications in wireless networks with cross-layer design [109, 111] benefit
from such intermediate interceptions as well.

The SSR module has the following major configuration parameters:

• int cacheSize: The size of the routing cache.

• double broadcastInterval: The time interval between two hello mes-
sages.

80 CHAPTER 9. DESIGN

• double neighborTimeoutInterval: The timeout period of a routing
cache entry.

• double notificationInterval: The time interval of the consistency
check of the virtual ring, i. e. when to notify the predecessor and successor.

• unsigned int addr: a unique and randomly assigned address.

9.2.5 The Lite-Ring Module

The Lite-Ring Module is implemented as specified in Chapter 5 and has the
following interfaces:

• Join(char* appName);

• Route(cKey key, int size, void* message, int AppId);

The Lite-Ring module uses the Join function to join the overlay of the
application “appName”. After doing this, it is able to send messages to any
key in the address space of the Lite-Ring module that is associated with the
application “appName”. The AppId is the hash of the application name.

The major configuration parameters of the Lite-Ring module are:

• int AppId: The ID of the application. It is hashed from the application
name.

• double notificationInterval: The time interval to maintain the over-
lay structures of Lite-Ring, i. e. the ring and the tree structure (rf. Chap-
ter 5.2).

• double dhtRefreshInterval: The time interval to refresh a data entry
in DHT (rf. Chapter 5.2).

• bool useSytheticAddr: A flag that specifies whether synthetic addresses
shall be used or not (rf. Chapter 5.4).

• char balanceMode: The balance mechanism that is to be applied (rf.
Chapter 5.5).

9.2.6 The Application Module

The application module on top of the Lite-Ring system carries out the statistic
works. It sends messages to random keys and records the delivery ratio and
packet delays. It has the following parameters:

• char* name: The name of the application.

• int payloadSize: The length of a payload message.

• double interval: The delivery time interval of payload messages.

• double initTime: The starting time of message delivery.

Chapter 10

Simulation and Test

This chapter describes the simulations and the evaluation of the performance
of the Lite-Ring system in a wireless ad-hoc network with the OMNeT++ sim-
ulator.

10.1 Simulation Setting

The simulation scenarios are based on a network with 100 nodes according to a
lattice topology (cf. Figure 9.2). The network topology and the node structure
are specified in Chapter 9.2.1 and Chapter 9.2.2. The MAC layer module is the
IEEE 802.11 module derived from the INET framework. The data rate of the
MAC module is configured to 11 Mbps and size of the application packet is set
to 200 bytes. In order to increase the reliability, retransmission option is used
for the DHT messages in the Lite-Ring system.

There are three phases in the simulation:

• SSR bootstrapping phase, i. e. the first 50 seconds of the simulation. Note
that, the SSR modules are initialized during the first 2 seconds. The
bootstrapping phase is set to 50 seconds in order to ensure that the overlay
structure of SSR converges before the second phase starts.

• Lite-Ring bootstrapping phase, i. e. the next 50 seconds (from 51st to 100th
seconds) of the simulation. The Lite-Ring modules are initialized at a
randomly chosen point in time within this period.

• Evaluation phase, which extends from the 101st second to the simulation
end. In this phase, the application module sends packets to random keys
(inside the Lite-Ring address space).

10.2 Scenario with a Single Application

The first scenario is a static one with only one application that is deployed on
every node in the network. Every 20 seconds, the application sends a message
to a randomly chosen destination.

81

82 CHAPTER 10. SIMULATION AND TEST

10

30

50

70

90

110

78.2

66.7

PDR(%)

26.8

80.1

Delay(ms)

SSR

Lite-Ring

Figure 10.1: Network performance with one application

Figure 10.1 depicts the Packet Delivery Ratio (PDR) and the median packet
delay of Lite-Ring and SSR. The PDR of SSR is 78.2%, while the PDR of Lite-
Ring is 66.7%. Since there is no packet retransmission mechanism in Lite-Ring,
the PDR of Lite-Ring has to be lower than that of SSR. Recall that the message
delivery procedure in Lite-Ring comprises two steps, address lookup and message
delivery. The address lookup can be done via b DHT get operations on average.
(Theoretically, if synthetic nodes are applied b = 1, otherwise b = 1.17. rf.
Chapter 5.4.) Given the PDR of SSR, the PDR of Lite-Ring message can be
estimated according to:

PDRLite−Ring = PDRSSR × PDHT
b (10.1)

where PDHT is the success ratio of a lookup operation in the DHT.
Since one get operation consists of two DHT messages, a cDhtGetMsg and a

cDhtGetResultMsg, we get PDHT = PDRSSR × PDRSSR if no retransmission
is applied to the DHT messages. Insert it into Function 10.1, we obtain

PDRLite−Ring = PDRSSR × (PDRSSR × PDRSSR)b = PDR2b+1
SSR (10.2)

In the current simulation, the PDRSSR is 78.2% and no synthetic node is
used. Thus according to Equation 10.2, the PDRLite−Ring is 0.7822×1.17+1 =
0.44. This PDR is for practical use too low. In order to raise the PDR of Lite-
Ring, the DHT module enables its retransmission option for get operations: If
there is no reply of a DHT get message within one second, the get message
will be retransmitted. The retransmission happens at most two times. With
the retransmission, the probability of a failed get operation is: 1 − PDR2

SSR.
The success ratio of the address lookup is

PDHT = 1− (1− PDR2
SSR)3

With PDRSSR equals 78.2%, we get

PDHT = 1− (1− 0.7822)3 = 0.941

Inserting the PDHT into Function 10.1, we have

PDRLite−Ring = 0.782 · 0.9411.17 = 72.8%

10.2. SCENARIO WITH A SINGLE APPLICATION 83

This result is close to the simulation result of 66.7% (see Figure 10.1).

The median packet delay of SSR is 26.8 ms, while the median packet delay
of Lite-Ring is 80.1 ms, which is approximately three times of the former. This
increased packet delay of Lite-Ring is caused by the address lookup procedure:
If there is no packet retransmission,

DelayLite−Ring = DelaySSR + b ·DelayDHT . (10.3)

Since the DHT get operation needs two messages, a cDhtGetMsg and a
cDhtGetResultMsg, we get

DelayLite−Ring = (2b+ 1) ·DelaySSR

With b = 1.17, we obtain DelayLite−Ring = 89.5. The result is also close to the
median packet delay in the simulation, which is 80.1 ms in Figure 10.1.

Note that instead of mean delay, median delay is used in the derivation in
order to reduce the impact of skewed delay distribution caused by the retrans-
missions, as shown in Figure 10.2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000 10000

P
er

ce
nt

ag
e

of
 p

ac
ke

ts

Packet delay (ms)

Lite-Ring Packet
SSR Packet

Figure 10.2: Cumulative distribution of packet delay with one application

Figure 10.2 depicts the delay distribution of the Lite-Ring packets and the
SSR packets. Here, we again see that the delay of the Lite-Ring packets is
larger than that of the SSR packets. Moreover, there are several “jumps” in the
Lite-Ring packet delay, e. g. between 250 millisecond and 1 second. These are
caused by the retransmission of the DHT get operations. (The retransmission
interval is set to one second.)

The simulation results of this scenario show that if there is a single KBR
application deployed on all the nodes in the network, the performance of Lite-
Ring is worse than that of SSR, especially in terms of packet delay. However, the
advantage of Lite-Ring is highlighted when there are multiple KBR applications
deployed on different nodes.

84 CHAPTER 10. SIMULATION AND TEST

10.3 Scenario with Multiple Applications
In this simulation, there are two applications deployed in the network. In par-
ticular, application A1 is deployed on 70% of the nodes and application A2 is
deployed on 20% of the nodes. For both applications, the nodes are chosen ran-
domly and independently. Each application instance sends packets to randomly
chosen destinations (within the same application). The packet delivery rate is
again one packet every 20 seconds.

10

30

50

70

90

110

130

83.5
73.3

80.5

PDR(%)

25.0

79.4

50.3

Delay(ms)

SSR

Lite-Ring(A1)

Lite-Ring(A2)

Figure 10.3: Network performance with two applications

In Figure 10.3, the PDR of application A2 is slightly greater than that of
application A1. This is due to the fact that there are fewer application instances
of A2, so that the chance that the packet destination lies in the local cache of
A2 is higher than that of A1.

As shown in Figure 10.3, the packet delay of application A1 is approximately
3 times as large as that of SSR, whereas the packet delay of application A2 is
about 2 times as large as that of SSR. Similarly, the smaller packet delay of
application A2 is due to its small overlay size.

Although under certain conditions, the performance of Lite-Ring is worse
than that of SSR, we note that the Lite-Ring system provides the KBR ser-
vice for multiple applications simultaneously. More importantly, the Lite-Ring
system doesn’t need to build full-fledged structured overlays in wireless ad-hoc
networks, which would lead to enormous overhead and have been demonstrated
as infeasible in [31, 18].

10.4 Scenario with an Unstable DHT
Since the DHT modules provide a public service, it might be abused by some
malicious or not well designed applications, e. g. limiting the keys just on small
address space. The simulation in this section checks the impact of an unstable
DHT on the Lite-Ring system.

In this simulation, 50 of the 100 nodes are deployed with a single KBR
application, i. e. 50 nodes have the Lite-Ring modules. 0∼40% of the 100 DHT

10.5. SCENARIO WITH INCREASING LOAD 85

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 0 5 10 15 20 25 30 35 40

P
ac

ke
t d

el
iv

er
y

ra
tio

(%
)

Percentage of overloaded DHT instances (%)

Lite-Ring

Figure 10.4: Packet delivery ratio in case of an overloaded DHT

modules are configured as overloaded, i. e. the overloaded DHT modules set
their capacity to 0 and ignore the received put messages. In order to exclude
the influence of the packet loss, a simplified mac module which connects the
neighborhood nodes with reliable links is used instead of the IEEE 802.11 mod-
ule.

As shown in Figure 10.4, the PDR decreases as the percentage of the over-
loaded DHT instances increases. Note that, the PDR remains over 90% even
when 40% of the DHT instances are overloaded. This confirms the conclusion
in Chapter 6.2.4, that Lite-Ring is robust and even works with a quite unstable
DHT.

Figure 10.5 depicts the packet delay, in the case of an unstable DHT service.
We observe that the delay increases when the percentage of the unstable DHT
instances increases. This can be explained by Figure 10.6. As more and more
DHT modules become overloaded, the routing overhead, i. e. the number of the
DHT operations needed by the lookup process and the number of Lite-Ring
overlay hops, increases.

10.5 Scenario with Increasing Load

In this scenario, 50 nodes are deployed with a single application and the applica-
tion packet rate increases from 1 packet per minute to 20 packets per minute. As
shown in Figure 10.7, the packet delivery ratio keeps above 80% when the appli-
cation packet rate is lower than 8 packets per minute (approx. 1 KB/second). It
drops fast when the message rate exceeds the threshold (8 packets per minute).

The low average node throughput (approx. 0.5 KB/second) is caused by the
limited capacity of the wireless ad-hoc networks [56, 79]. As was observed and
analyzed in [79], the random traffic pattern is responsible for the low network
capacity. This problem will be further discussed in the next chapter in some
detail.

86 CHAPTER 10. SIMULATION AND TEST

 300

 350

 400

 450

 500

 550

 600

 0 5 10 15 20 25 30 35 40

D
el

ay
(m

s)

Percentage of overloaded DHT instances (%)

Lite-Ring

Figure 10.5: Packet delay in case of an overloaded DHT

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 5 10 15 20 25 30 35 40

R
ou

tin
g

ov
er

he
ad

Percentage of overloaded DHT instances (%)

Overlay Hops in Lite-Ring
DHT Operations in Address Lookup

Figure 10.6: Routing overhead in case of an overloaded DHT

10.5. SCENARIO WITH INCREASING LOAD 87

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20

P
ac

ke
t d

el
iv

er
y

ra
tio

(%
)

Packets per minute

Lite-Ring

Figure 10.7: PDR with increasing payload

88 CHAPTER 10. SIMULATION AND TEST

Chapter 11

Conclusions

11.1 Summary

In this part of the dissertation, I first introduced a short case study to demon-
strate the applicability of a structured overlay in wireless ad-hoc networks. Then
I described the characteristics of P2P networks and wireless ad-hoc networks,
as well as the challenges of constructing a P2P overlay in a wireless ad-hoc
network.

The Lite-Ring system builds multiple KBR overlays for different applications
in wireless ad-hoc networks. Some initial simulations, performed in the OM-
NeT++ simulator, demonstrated the feasibility of the Lite-Ring system. To my
best knowledge, this is the first work aiming at building multiple KBR overlays
in wireless ad-hoc networks.

11.2 Discussion

There are a few open issues that need to be considered for the future develop-
ment of the Lite-Ring system in wireless ad-hoc networks.

11.2.1 Reliable Transmission

As mentioned in Chapter 8.4, reliable delivery is still an open issue of many
applications in wireless ad-hoc networks. One straightforward method is to add
TCP to the Lite-Ring system. However, as observed in many research works,
the original TCP protocol is inappropriate in a wireless environment. Since
TCP is unable to distinguish between packet loss caused by congestion and
non-congestion-related losses.

A few TCP variants were proposed to overcome the problem of TCP in wire-
less networks. Some of them, such as [87], try to detect non-congestion-related
packet loss with network support, others, such as [127, 16, 49], use end-to-end
approaches to accurately probe the available bandwidth. Sundaresan et al. [117]
pointed out that TCP and its minor modified versions are fundamentally not ap-
propriate for wireless ad-hoc networks. They proposed a new reliable transport
layer protocol, the Ad-hoc Transport Protocol (ATP), for wireless ad-hoc net-
works. However, none of these new transport layer protocols have been widely

89

90 CHAPTER 11. CONCLUSIONS

tested or implemented in the network simulators. Since it is very costly to im-
plement a new reliable transport layer protocols inside the Lite-Ring system,
the effort of doing this is beyond the scope of this thesis.

As a compromise, the current version of the Lite-Ring system includes some
reliability checks in the DHT module, e. g. they re-do the DHT operations in
case of timeout. This solution increases the packet delivery ratio, however it
causes larger packet delay and jitter.

11.2.2 Capacity of Wireless Ad-hoc Networks

As shown in Chapter 10.5, the capacity of wireless ad-hoc networks is much lower
as naively expected. For random traffic pattern, the end-to-end throughput that
is available to each node is only O(1√

N
) [56], where N is the total number of the

nodes in the wireless ad-hoc network. Li et al. [79] have found that the average
per-node throughput p in an ad-hoc network with 802.11 MAC agrees with the
asymptotic bound with a very small coefficient, i. e. p = 0.047 1√

N
.

Li et al. [79] also pointed out that the per-node capacity scales only when
the traffic pattern is exactly local. In the current design, each Lite-Ring module
has to maintain a constant number of overlay links. However, these links are
randomly scattered across the whole network, a fact that reduces the network
scalability.

One possible way to improve Lite-Ring’s scalability is to keep the main-
tenance traffic local. If a new coming node could find a proximal Lite-Ring
instance and join the network via that instance, the maintenance of ring struc-
ture, i. e. the periodical notification to the predecessor and successor, would
cause only local traffic. This is because that the proximal bootstrapping node
would be the predecessor of the new coming node (rf. Chapter 5.1). This
also implies that the proximal nodes would often have close addresses. Using
a proximal node to bootstrap also reduces the maintenance overhead of the
tree structure, because the addresses of the most parent nodes are close to the
addresses of their child nodes (rf. Figure 5.2).

11.2.3 Performance Comparison with ReDiR

ReDiR [100] is also an approach of providing KBR services to multiple applica-
tions. Chapter 6.3 and Chapter 5.8 showed that Lite-Ring outperforms ReDiR
with respect to route stretch and robustness under an unstable DHT service.

As analyzed in Chapter 2.6.1, a ReDiR node needs 4 get and 3 put opera-
tions per maintenance interval to refresh its entries in the DHT, while a Lite-
Ring node only needs 1 put operation to refresh its DHT entry and also needs
to maintain 6 overlay links for its ring and tree structures (rf. Chapter 5.2).

Using a conventional DHT, both the get and put operations generate ap-
proximately logN overhead in the underlay, where N represents the number
of DHT nodes and overhead means the cost of an end-to-end routing. Hence
the maintenance overhead of ReDiR in the underlay is 7 logN , whereas that of
Lite-Ring is only logN + 6.

According to the PRS/PNS optimization, the logN overhead factor can be
reduced to approximately 1.3 [54]. Event though, Lite-Ring still generates less
maintenance traffic than ReDiR does in the underlay.

11.2. DISCUSSION 91

11.2.4 Layered Solution vs. Cross-layer Solution

The Lite-Ring system contains several independent modules in different layers.
In such a layered architecture, the modules in the upper layers are not aware of
the underlay, which could limit the network performance occasionally.

Many cross-layer solutions have been proposed to improve the overall wireless
network performance by utilizing the underlay information. Such approaches
are applied in different layers for various purposes: Overlay protocols, such
as CrossROAD [39], utilize the maintenance messages of the network layer to
build their overlay structures; Routing protocols, like ExOR [12], explore the
medium properties to improve the packet delivery ratio. As the trade-off of
these cross-layer solutions, stack-wide layer inter-dependencies are introduced.

In the next part of this dissertation, I will introduce several cross-layer de-
signs for the Lite-Ring system, which will significantly improve Lite-Ring’s per-
formance in wireless ad-hoc networks.

92 CHAPTER 11. CONCLUSIONS

Part IV

Cross-Layer Designs for
KBR

93

Chapter 12

Overview

In the previous part of the dissertation, I have proposed the Lite-Ring system
which provides the KBR service to multiple applications in wireless ad-hoc net-
works. Some initial simulations also have demonstrated the feasibility of the
Lite-Ring system.

As shown in Figure 9.1, the Lite-Ring system consists of one or more Lite-
Ring modules, a DHT module and an SSR module. In the original design, these
modules are independent from each other and can be re-used by other modules
in the simulator. So far, the Lite-Ring system is constructed straightforwardly
according to a layered architecture. However, since each module is indepen-
dent from each other, it can not be benefited from the useful features of other
modules. Hence, the performance of the Lite-Ring system is suboptimal.

12.1 Goal

In this part of the dissertation, some cross-layer optimizations are applied to the
Lite-Ring system. In particular, these optimizations intend to improve the net-
work performance in three directions: reducing Lite-Ring’s maintenance over-
head, accelerating DHT’s lookup and optimizing SSR’s route.

12.1.1 PNS in the Lite-Ring System

In the original design of the Lite-Ring system, since the Lite-Ring module has
no knowledge of the underlay, its maintenance traffic is in a random pattern
in the network layer. One possible solution of reducing the maintenance traffic
is to apply Proximal Neighbor Selection (PNS), i. e. using proximal nodes to
build the overlay structures. In Chapter 2.5, some proximity methods related
to PNS are proposed. However, they are all designed for P2P applications in
the Internet, thus they can not directly be used in wireless ad-hoc networks,
either due to the lack of certain services, e. g. reliable landmarks, or due to the
extensive probing overhead.

Recall that in the Internet, the underlay topology information has been
already (partially) stored on the routers. However, in most cases the overlay
nodes are not the routers but the end-hosts. Hence, lots of efforts have been
paid to let the overlay nodes (end-hosts) estimate the topology and to adapt

95

96 CHAPTER 12. OVERVIEW

the overlay structure to the estimated underlay topology. (see Chapter 2.5 for
more details.)

In contrast to the Internet, a node in an ad-hoc network is both a router
and an end-host at the same time. Thus, an overlay nodes is able to get some
information about the network topology directly from the network layer routing
protocol. Based on this observation, in the Lite-Ring system, by scanning the
routing cache of the SSR module, the Lite-Ring module should be able to find
nearby overlay nodes and build proximity-aware overlays.

12.1.2 DHT Caching

Although the Lite-Ring system can run with a primitive DHT service, obviously
the performance of the Lite-Ring system can be further improved with a more
reliable and efficient DHT.

In most structured overlay protocols, there exists implicitly an aggregation
tree for each key. The tree root is the responsible node for the key. Messages
from two different nodes to the same key are often supposed to reach the same
node before reaching the tree root. Based on this property, DHT can improve
its lookup efficiency by caching the data on the intermediate nodes along the
path towards the tree root.

In the conventional structured overlays in the Internet, such as Chord, this
DHT caching approach generates O(logN) duplications for each data. In ad-
hoc networks1, since the distance between two nodes is usually O(

√
N) hops,

this caching approach could generate O(
√
N) duplications for every data.

Note that such caching is optional for the intermediate nodes, i. e. if nodes
run out of memory, the caching function on these nodes can be turned off.
More importantly, this caching approach doesn’t increase the network traffic.
Thus, by adding the intermediate caching approach to the DHT module, the
performance of the Lite-Ring system can be improved.

12.1.3 Link-layer Broadcast in SSR

Generally speaking, if there is only one KBR application on each node in a
wireless ad-hoc network, SSR is able to provide its KBR service very efficiently
(cf. Chapter 10). If there are one or more KBR applications deployed on a
part of the nodes in the wireless ad-hoc network, the Lite-Ring system is able to
provide the KBR service while SSR fails or at least inefficiently (cf. Chapter 4.2).

Note that in wireless ad-hoc networks, as the connections between nodes
are shared-medium, the packets that are delivered can be overheard by sender’s
neighbors. Moreover, since the SSR module lies on top of the link layer, the
SSR performance can be also improved by use of the broadcast nature of the
radio channel. Obviously, as SSR is a module of the Lite-Ring system, this may
also benefit the overall performance of the Lite-Ring system.

1Suppose that the ad-hoc network has a unit-disk graph.

12.2. BACKGROUND 97

12.2 Background

12.2.1 Layered and Cross-layered Architectures

According to the well-known Open Systems Interconnection (OSI) model, the
networking system can be divided into seven different and relatively independent
layers. Each layer communicates only with its adjacent layers. The upper layer
makes use of the services provided by its immediately underlying layer. Such a
layered architecture works well in wired networks, both in the Internet and in
an Intranet.

During the last decades, wireless networks have become more and more
popular. Wireless communication has actually become an important part of
the data networks. Many researchers found that the layered architecture is not
suitable for wireless networks. Various cross-layer designs have been proposed
to improve the wireless network performance. Some of them aim at solving the
problems in wireless networks, that cannot be fixed with the layered architec-
ture. Others focus on exploiting the new feature of the wireless medium, e. g.
opportunistic usage of the radio channel [12]. A survey of these proposals can
be found in [72]. According to [111], these proposals can be classified into four
groups,

• Creation of new interfaces

• Merging adjacent layers

• Design coupling without new interfaces

• Vertical calibration.

12.2.2 Topology Information in the Network Layer

Routing protocols in the network layer are in charge of the end-to-end routing
service. By exchanging its topology information with other routers, each router
gets the complete or partial network topology information. In a layered archi-
tecture, this information is restricted to the network layer and is invisible to
other layers. However, this information can be very useful to the higher layers,
e. g. to allow PNS in P2P applications.

Cramer et al. [30] demonstrated the performance improvement of P2P ap-
plications by using PNS in wireless ad-hoc networks. They also suggested some
locality-aware bootstrapping mechanisms [32]. However their approaches are
based on a layered architecture and assume that the P2P applications have no
access to the topology information stored in the network layer.

As stated in Chapter 3.2.2, in its routing cache, each SSR node stores the
source routes to three kinds of nodes: its physical neighbors, its virtual neighbors
in the ring structure and the recently contacted nodes. Since there must be
intermediate nodes on the source routes to the remote nodes, there is valuable
topology information of the proximal area in the routing cache. Therefore, the
P2P applications on top of SSR can easily apply PNS by finding proximal nodes
in SSR’s routing cache.

98 CHAPTER 12. OVERVIEW

12.2.3 Caching in DHT

There have been various caching techniques proposed to increased the fault-
tolerance of DHT [73, 105, 35, 112]. According to these approaches, the data
on a DHT node is duplicated to the successors of this node. This is done either
by replication [105, 112] or by erasure-coding [73, 35]. The trade-off between
these two techniques lies in the delay of the get operation and the duplication
overhead [35].

Although these caching approaches make DHTs more reliable, they result in
a large amount of packets required for the duplication. In wireless ad-hoc net-
works, the bandwidth resources are restricted, thus having lots of extra packets
for data duplication is undesirable. Instead of the successors of the key’s root,
the intermediate nodes between the data-originator and the key’s root can be
used to cache the data, as discussed in Chapter 12.1.2. This caching approach
generates several replicas on the intermediate nodes without any additional traf-
fic. Moreover, the get message can probably obtain the data before reaching
the key’s root.

12.2.4 Broadcast in Routing Protocols

Routing in wireless ad-hoc networks has been a challenging research topic for
more than a decade. Because these networks operate in a difficult environment.
Firstly, the quality of the radio channel is usually unstable. Secondly, nodes
move during operation (node mobility). At last, nodes may leave the network
ungracefully (node churn). All this results in an unstable and typically unpre-
dictable network topology.

Most ad-hoc routing protocols separate the calculation of the forwarding
path from the actual forwarding. Nodes build up and maintain some kind
of Forwarding Information Base (FIB). Based on this FIB, they forward a
packet to the neighbor whom they consider to be best suited to deliver the
packet to its destination. But due to the instability of wireless networks, the
information gathered in the FIB might already has become obsolete when it
is used for forwarding. Typically, the forwarder detects the resulting routing
failure immediately, e. g. by a missing acknowledgment. But recovery from that
failure is costly, especially in terms of delay. On the other hand, increasing
the amount of proactive checking for the presence of one’s neighbors is costly
in terms of bandwidth. Furthermore, even if the forwarding action has been
successful, the resulting paths may be sub-optimal.

So far, a few routing protocols have been proposed to explicitly exploit the
broadcast nature of radio links. For example, in opportunistic routing protocols,
an intermediate node and its neighbors jointly determine the next hop from a
set of several possible forwarding candidates (rf. Chapter 3.1.4). Thereby, the
routing performance can be significantly improved.

Chapter 13

PNS and Caching in
Lite-Ring System

In this chapter, I present two extensions in the Lite-Ring system: the Proximal
Neighbor Selection (PNS) in the Lite-Ring module and the intermediate caching
in the DHT module.

13.1 PNS Design

Gummadi et al. [54] have pointed out that applying PNS in structured over-
lays can improve the network performance significantly. Cramer et al. [30] have
demonstrated further that PNS plays also an important role for structured over-
lays in wireless ad-hoc networks. In the present work, instead of using compli-
cated proximity methods designed for P2P applications in the Internet, such as
Vivaldi [34] and Meridian [126], I propose a simple approach to realize PNS for
the Lite-Ring module.

The routing cache in SSR has a tree structure, whose root is the node’s own
address. In this tree structure, three kinds of source routes are stored: the routes
to the node’s physical neighbors, those to its virtual neighbors and those to the
nodes that have been recently communicated with. An SSR node regularly
sends hello messages to its physical neighbors. The hello message contains
the neighbor list of the sender. By comparing the own neighbor list with the
lists received from the neighbors, the SSR node can detect unidirectional links
and exclude these links from routing.

In this PNS extension, the hello message piggybacks the application IDs
that run on the node. The neighbor list also contains the application IDs of the
neighbors. Upon receiving the hello message, the application IDs of the sender
and those of the sender’s neighbors are stored in the routing cache. With this
approach, each node knows the distribution of the application instances in its
two-hop neighborhood. Moreover, the SSR node could piggyback its application
IDs to the by-passing messages (other than the hello messages). In particular,
the chance of doing this is inversely proportional to the distance between the
intermediate node and the destination node. This allows the SSR node to know
more information about the application deployment in its proximity.

99

100 CHAPTER 13. PNS AND CACHING IN LITE-RING SYSTEM

During initialization, the Lite-Ring module asks the SSR module for the list
of nodes that run the same application in its neighborhood as well as the distance
(in hops) to these nodes. If the list is nonempty, the Lite-Ring module sends a
bootstrapping message to one of these nodes. Otherwise, the Lite-Ring module
bootstraps regularly by querying the DHT, e. g. with the “address picking and
probing” method (cf. Chapter 5.3.3).

If more than one node run the same application in the neighborhood, the
physical distance could be used as one simple metric to select the bootstrapping
node. However, such a metric will generate an unbalanced address tree in the
Lite-Ring module. The balancing maneuver might then introduce undesirable
overlay links with long physical distance. Hence, besides the physical distances
of the bootstrapping nodes, it is also relevant to concern the balance state of
the address tree, which is an important factor of the Lite-Ring protocol (cf.
Chapter 5.5).

An alternative metric is thus to use the balance state of the address tree. In
particular, the SSR module stores not only the IDs of the application instances
in its neighborhood, but also the IDs of the Lite-Ring modules as well as the IDs
that the Lite-Ring modules will allocate. Upon initialization of the Lite-Ring
module, the SSR module returns not only the SSR address of the proximal nodes
and its distance to them, but also the Lite-Ring IDs of the proximal nodes and
the Lite-Ring IDs that will be allocated by them. Among these proximal nodes,
the node, who is not far away (< 3 hops) and will allocate the Lite-Ring ID at
the highest level of the address tree, is preferred as the bootstrapping node.

13.2 DHT Caching Design

Caching techniques have been widely applied in DHT applications in the Inter-
net to increase their reliability. As a conventional method, the DHT node stores
replica data on its successor nodes. Obviously, such method generates a large
amount of traffic. Considering the restricted bandwidth in wireless ad-hoc net-
works, it is not suitable for the DHT module in the Lite-Ring system to apply
this kind of replication.

As stated in Chapter 12.2.3, caching on the intermediate nodes is a specific
caching technique, that doesn’t generate extra traffic. Based on this observation,
this caching mechanism is built into the DHT modules of the Lite-Ring system.

In particular, when a DHT module sends a put message to a certain destina-
tion node, using the “upcall” feature of the SSR module, the DHT modules on
the intermediate nodes inspect this put message and cache the stored key-data

pair. When an intermediate node receives a get message with a certain key, it
can directly reply with the stored data, if there is a local entry that matches
the key.

Caching on intermediate nodes can introduce inconsistencies into the DHT.
For example, if there are two nodes that put different data under the same
key into the DHT, different key-data pairs will be stored on the intermediate
nodes that lie between the data originators and the root node of the key. Only
the key’s root is guaranteed to have the complete data set. Therefore, a new
DHT get interface has to be constructed in the DHT module for retrieving the
complete data set: get-from-root(key).

13.3. PERFORMANCE EVALUATION 101

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16 18 20

P
ac

ke
t d

el
iv

er
y

ra
tio

 (
%

)

Application packet rate (packet/minute)

Layered Design
Cross-layer Design with PNS

Figure 13.1: Packet delivery ratio of Lite-Ring with and w/o PNS

13.3 Performance Evaluation

In this section, some simulations are performed to demonstrate the benefits
of the two cross-layer optimizations in the Lite-Ring system. The simulation
settings can be found in Chapter 10.1.

13.3.1 Simulation with PNS

In the first simulation, PNS is enabled in the Lite-Ring system. There are 100
nodes in the network and 50 of them run one unique application.

Figure 13.1 depicts the PDR of the application packets, where we observe
that the PDR with PNS is approximately 5% larger than that without PNS until
the network becomes saturated1. Moreover, we can see that the throughput is
increased by 20% (from 10 packet/min to 12 packet/min). Figure 13.3 shows
that the application packet delay with PNS is slightly lower than that of the
original Lite-Ring system with a layered design.

Figure 13.2 shows the average physical hop count of the Lite-Ring overlay
links. After applying PNS, the physical lengths of the overlay links are almost
halved. Obviously, the Lite-Ring module with PNS generates less traffic in the
underlay, that further results in less interference, thus a higher PDR and a lower
packet delay.

As shown in Figure 13.1, when the traffic load exceeds the saturation thresh-
old, the network congests strongly and the PDR of both versions is reduced to
a very low level. This is because the application traffic occupies the most part
of the network traffic, so that the benefit gained by the reduced maintenance
traffic becomes negligible.

Note that even with PNS, the overlay link might also be established between
two remote nodes. One reason is that there might be no proximal node running
the same application at all. The other possible reason is that the balancing

1We define the PDR of 60% as the saturation threshold in this dissertation.

102 CHAPTER 13. PNS AND CACHING IN LITE-RING SYSTEM

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12 14 16 18 20

H
op

s

Application packet rate (packet/minute)

Layered Design
Cross-layer Design with PNS

Figure 13.2: Hop count of the overlay links of Lite-Ring with and w/o PNS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 6 8 10 12 14 16 18 20

D
el

ay
 (

m
s)

Application packet rate (packet/minute)

Layered Design
Cross-layer Design with PNS

Figure 13.3: Packet delay of Lite-Ring with and w/o PNS

13.3. PERFORMANCE EVALUATION 103

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16 18 20

P
ac

ke
t d

el
iv

er
y

ra
tio

 (
%

)

Application packet rate (packet/minute)

Layered Design
Lite-Ring with DHT Caching

Figure 13.4: Packet delivery ratio of Lite-Ring with and w/o DHT caching

mechanism can replace the proximal links with non-proximal links. Although
turning off the balancing mechanism could keep those proximal overlay links.
the lookup time would greatly increase, due to the imbalance of the address
tree. Thus, this alternative would not be considered further.

13.3.2 Simulation with DHT Caching

In this simulation, the DHT caching mechanism is turned on, i. e. , the DHT
modules cache the key-data pair of the by-passing put message. Again, there
are 100 nodes in the network and 50 of them run the same application.

As shown in Figure 13.4, the throughput of the Lite-Ring system with the
DHT caching mechanism has increased by 60% (from 10 packet/min to 16
packet/min). In Figure 13.5, the packet delay of the Lite-Ring system drops
dramatically when the intermediate caching is applied.

Owing to the intermediate caching, the inquirer may be able to get the data
even before the get message reaches the key’s root. This raises the efficiency of
the lookup process of Lite-Ring. The increase of the PDR and the drop of the
packet delay are results of two facts. On the one hand, the reduction of the hop
count of the get messages and the result messages, increases the success ratio
of a DHT lookup in an unreliable wireless environment. On the other hand, the
reduction of the hop count reduces the network traffic, which further reduces
the interference probability on the radio link.

Although no extra network traffic is introduced by the caching mechanism,
the amount of data entries stored on the nodes is increased. As illustrated in
Figure 13.6, the amount of data entries is increased more than 10 times. This
might be inappropriate to the node with very small memory, e. g. a sensor node.
However, This caching mechanism is an optional feature and each host can
switch it off according to its available capacity.

104 CHAPTER 13. PNS AND CACHING IN LITE-RING SYSTEM

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 6 8 10 12 14 16 18 20

D
el

ay
 (

m
s)

Application packet rate (packet/minute)

Layered Design
Lite-Ring with DHT Caching

Figure 13.5: Packet delay of Lite-Ring with and w/o DHT caching

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12 14 16 18 20

E
nt

rie
s

Application packet rate (packet/minute)

Layered Design
Lite-Ring with DHT Caching

Figure 13.6: Entries stored in the DHT modules with and w/o caching

13.3. PERFORMANCE EVALUATION 105

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16 18 20

P
ac

ke
t d

el
iv

er
y

ra
tio

 (
%

)

Application packet rate (packet/minute)

Layered Design
Lite-Ring with PNS and DHT Caching

Figure 13.7: Packet delivery ratio of Lite-Ring with and w/o both extensions
(PNS and DHT caching)

13.3.3 Simulation with Combined Extensions

In this simulation, we enable the both extensions in the Lite-Ring system. As
shown in Figure 13.7, the throughput of the extended Lite-Ring system is in-
creased by about 80% (from 10 packets per minute to 18 packet per minute),
whereas the packet delay of the extended version drops by even more than 50%,
assuming an intermediate application packet rate, e. g. 12 packets per minute
(see Figure 13.8).

In Figure 13.8, we observe that the packet delay of the original Lite-Ring
system decreases, when the network is saturated. This is caused by its low
packet delivery ratio (see Figure 13.7), and most successfully delivered packets
have a small hop count,

106 CHAPTER 13. PNS AND CACHING IN LITE-RING SYSTEM

0

50

100

150

200

250

300

350

400

2 4 6 8 10 12 14 16 18 20

D
el

ay
 (

m
s)

Application packet rate (packet/minute)

Layered Design
Lite-Ring with PNS and DHT Caching

Figure 13.8: Packet delay of Lite-Ring with and w/o both extensions (PNS and
DHT caching)

Chapter 14

Optimizing SSR with
Link-layer Broadcast

By embedding a structured overlay into the network layer, SSR achieves a good
route performance with only small routing state and little maintenance over-
head. Since SSR is a routing protocol that is independent of the underlying
network type, it can be applied in the networks with different link-layer proto-
cols.

In wireless ad-hoc networks, nodes are connected via a shared medium, which
means that packets are broadcast and can be overhead by the neighbors. As
it will be shown in this chapter, this characteristic of wireless links can be
utilized to improve the performance of routing protocols. In the following, I will
discuss an enhancement of SSR that uses the broadcast feature of wireless links.
This chapter is extended from an earlier work: “Using Link-Layer Broadcast to
Improve Scalable Source Routing”[42].

14.1 Broadcast in Routing Protocols

The enhancement of SSR by link-layer broadcast was inspired by geographic
routing and opportunistic routing.

Using link-layer broadcast to improve routing performance was originally
proposed in geographic routing. Beacon-Less Routing (BLR) [57] uses broad-
cast to select the next hop in a distributed manner: The node which is the
geographically closest to the destination acknowledges the packet first, and it
also keeps the other nodes from unnecessarily forwarding the packet by defining
a forwarding area, where every node can hear each other. Consequently, all
the nodes along the path jointly determine the forwarding path. Chawla et al.
[24] suggested an alternative delay function for BLR. Here, nodes closer to the
forwarding node reply earlier. As a result, more nodes are likely to hear the
first response, and the suppression of duplicate transmissions is more effective.
BOSS [106] is also a variant of BLR. It lets the sender select the next hop and
thus suppress the packet duplication entirely.

In opportunistic routing, e. g. ExOR [12], the sender assembles a prioritized
forwarding candidate list in the packet header before sending the data packet.
Receiving nodes can switch off their receivers when they are not in the candidate

107

108 CHAPTER 14. OPTIMIZING SSR WITH LINK-LAYER BROADCAST

list. Depending on the radio details, this potentially saves energy. The nodes in
the candidate list, that have successfully received the data packet, acknowledge
the receipt in the sequence according to their priority. The Acknowledgment
(ACK) of the node with higher priority suppresses the ACKs of the nodes with
lower priorities. The receiver, who did not receive an acknowledgment with a
higher priority, forwards the packet.

The idea behind the data-first scheme in ExOR is to avoid the retransmission
of the data packet on error-prone links. The more candidates hear the data
packet, the higher is the probability that at least one of them will receive the
packet correctly. Thus the loss probability is lower than that in the case of only
one pre-determined next hop.

14.2 Enhancement of SSR

In this section, we describe an enhancement of SSR, that combines the joint for-
warding decision of the aforementioned protocols to SSR. Similar to ExOR [12]
and BOSS [106], the sender adds a set of candidates to the data packet. Upon
receiving the data packet, the candidates will sequentially acknowledge the re-
ceipt of the packet and their routing ability of the packet. The sender usually
selects the one who first acknowledges to forward the packet. Thereby, it sup-
presses the acknowledgments from the other candidates. However, if one of the
overhearing nodes detects that the next hop was chosen sub-optimally, it will
notify the sender. It can then become the forwarder for that path in future.
This allows the protocol to optimize the source route iteratively.

14.2.1 Sending DATA

Before each DATA1 packet a candidate list is sent using a so-called CTS packet.
In fact, the CTS can be piggybacked on the DATA packet such that they share
one link-layer broadcast frame (cf. Figure 14.1). The node sequence in the
candidate list specifies the acknowledgment sequence of the candidates: When
the nth node from the candidate list wants to acknowledge, it will do so only
after the candidates 1 to n− 1 had their chance to do it.

Note that the original SSR proposal suggested a tree structure for the nodes’
routing cache [50]. This means that there is only one unique forwarding path
for each destination. In this enhancement, the respective next hop node is
inserted into the first slot of the candidate list, and this node is called default
candidate. Later SSR versions [51] equipped the routing cache with auxiliary
links. The respective nodes from these auxiliary links can also be inserted into
the remaining slots according to their routing ability of the packet. (For a
discussion of the ability calculation we refer to Chapter 14.2.4.)

After receiving the DATA packet, each of the candidates calculates its rout-
ing ability for this packet. In the best case, the default candidate acknowledges
the receipt of the DATA packet by immediately sending an ACK. The other
nodes in the candidates list will respond to the receipt of the DATA packet
after T = δt ∗ n, where n is the position of the node in the candidate list. Note

1Note that – unless stated otherwise – throughout this chapter, the terms DATA, ACK,
RTS and CTS are used to name the link-layer broadcast packets of the enhancement protocol.
(These terms are in analogy to the well-known IEEE 802.11 frames.)

14.2. ENHANCEMENT OF SSR 109

that applying a discrete delay for ACKs avoids packet collisions. The value of
δt depends on the respective values of the MAC protocol. (In this thesis, IEEE
802.11 MAC layer is used.)

14.2.2 Receiving ACK

Each ACK includes the candidate’s ID, the packet ID and the acknowledging
node’s routing ability for that packet. The nodes overhearing the ACKs can
determine how to deal with DATA packet depending on the ability value over-
heard: If the received value is larger than the local value, the cached DATA
packet will be dropped and the scheduled ACK will be canceled; otherwise, the
ACK will be sent as scheduled and the DATA packet will be further cached.

Upon receiving the ACK from the default candidate, the sender broadcasts
a RTS message. This RTS message includes the default candidate’s address and
its routing ability.

���
���
���

���
���
���

��
��
��

��
��
��

�
�
�
�
��
��
��
��

�
�
�
�

�
�
�

�
�
�

Candidate 2

Candidate 1

Candidate
Default

Sender

ACK

DIFS

RTS

ACK

DATACTS

RTS

ACK

2*DIFS+T(RTS)

CTS DATA RTS

Figure 14.1: Packet delivery sequence: The sender always waits for the first
ACK. If the default candidate responds, candidate 1 and 2 will cancel their
ACKs upon receiving the RTS; otherwise, candidate 1 and 2 will send their
ACKs in the predetermined sequence unless they receive an RTS.

���
���
���

���
���
���

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

Candidate 2

Candidate 1

Candidate
Default

Sender
RTS

ACK

DATA

DATACTS

ACK

DIFS

CTS

DIFS

ACK

RTS

Figure 14.2: Packet delivery sequence: If the default candidate responds, can-
didate 1 and 2 will cancel their ACKs upon receiving the RTS; otherwise the
sender waits for the ACKs of all candidates before it selects the forwarder.

If the first received ACK is not from the default candidate, the sender can
either immediately trigger the forwarding of the DATA packet by broadcasting
a respective RTS, or it can wait for further ACKs before deciding which node
shall forward the packet. In the first case, the pause between the ACKs must
be sufficiently large in order to wait for a potential RTS (cf. Figure 14.1). In
the second case, a smaller pause between the ACKs is allowed (cf. Figure 14.2).

110 CHAPTER 14. OPTIMIZING SSR WITH LINK-LAYER BROADCAST

���
���
���

���
���
���

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

Candidate 2

Candidate 1

Candidate
Default

Sender

DIFS

RTS

ACK DATACTS

DATACTS

DIFS

ACK

ACK

Tdelay

Figure 14.3: Packet delivery sequence: If the default candidate succeeds to
respond, other candidates may nevertheless acknowledge to improve future for-
warding actions.

Each candidate node caches the DATA packet until it receives the RTS
from the sender (or a timeout occurs in case the RTS was lost). The RTS
determines which candidate shall forward the DATA packet. In case that none
of the candidates sends an ACK, the sender has to retransmit the DATA packet.
Thus, the sender has to cache the DATA packet, too.

14.2.3 Route Optimization

Obviously, if the default candidate acknowledges the DATA packet, no further
selection for the next hop is necessary. (Remember that only the ACKs from
the non-default candidates will lead to an improvement of the forwarding path.)
However, if a candidate detects that it would have been better suited to forward
the packet than the default candidate, it will send an additional ACK after the
forwarder has sent the DATA packet (cf. Figure 14.3). This enables the sender
to optimize its candidate list for future DATA packets. The delay Tdelay of this
ACK must be waited so that this ACK does not collide with the ACKs and the
RTS of the next forwarding hop.

Nevertheless, if the default candidate is temporarily unavailable, other can-
didates can acknowledge the DATA packet according to the sequence specified in
the candidate list. Thus, in situations with unstable network conditions where
it is likely that the default candidate fails to acknowledge the DATA packet,
other candidates have their chance to quickly stand in for that packet.

14.2.4 Ability Calculation

The original SSR protocol chooses its next hop based on the virtual distance
(Dvir) and the physical distance (Dphy) from the nodes in local routing cache
to the destination (see Chapter 3.2.2). In this enhancement, the nodes in the
neighbors’ routing cache are also taken into account. Moreover, another pa-
rameter, the node’s liveliness, is proposed to extend the choice of forwarding
candidates. In detail, the routing ability Q of a candidate with respect to a
given destination is defined as follows:

Q =

Dphy + TnextHop

if the candidate can provide a complete path

Dphy + PENALTY +Dvir otherwise,

14.2. ENHANCEMENT OF SSR 111

where Dphy is the physical distance to the destination (or the next intermediate
node) measured in hops, Dvir is the virtual distance between the next inter-
mediate node and the final destination normalized to the unit interval [0, 1),
TnextHop is the liveliness of the next hop measured as the ratio of the time since
the respective node last sent a packet and the length of the SSR hello interval
(1 second in the implementation), and PENALTY is the penalty value for the
incomplete paths (PENALTY = 50 in the implementation).

Considering the effect of this formula, we see that a complete path is weighted
much more than the path to an intermediate. (Note that a smaller Q means
a better routing ability.) The liveliness TnextHop can exclude stale nodes from
routing packet and is only taken into consideration when choosing between
several complete paths of the same length. If none of the candidates can provide
a complete route to the destination, the shorter incomplete path towards the
destination will be preferred. To this end, the ability calculation reflects the
respective SSR requirements.

The following example illustrates the ability calculation and its effect: As-
sume node 1 wants to route a packet to node 20. Node 1 can produce the
source route 1-4-17 from its routing cache. Thus, node 4 becomes the default
candidate.

Node 1 also knows that it has two more physical neighbors besides node
4: node 2 and node 3. Both become further candidates in the candidate list.
Node 2 has the source route 2-6-9-20 in its cache. It has last heard of node
6 half a second ago. Thus Q2 = 3 + 0.5 = 3.5. Node 3 has the source route
3-8-19 in its cache. Assuming an address space 0 . . . 99 for this example, we get
Q3 = 2 + 50 + 0.1 = 52.1. Node 4 has the source route 4-18 in its cache. Thus
Q4 = 1 + 50 + 0.2 = 51.2.

As the default candidate, node 4 acknowledges the DATA packet, receives
the RTS and forwards the DATA packet. Node 3 cancels its ACK because
Q4 < Q3. At least Tdelay after node 4 has forwarded the DATA packet, node
2 sends its ACK to node 1 including the route 2-6-9-20. The reason is that
Q2 < Q4. Thus in future, node 1 will choose node 2 as default candidate.

Note that TnextHop is important in scenarios with mobility or churn. It
enables the nodes to quickly learn the nodes that can provide a path to the des-
tination. In the original SSR proposal, broken links were only detected after the
timeout of a regular hello message, which is 3 seconds in the implementation.
This is too long for networks with node churn or node mobility. Note that it
is possible to detect a broken link by the timeout of a link-layer unicast packet
from the 802.11 link-layer, but this would also cause large delay due to the ex-
ponential back-off of the retransmission. Moreover some MAC implementations
might not support such delivery feedback.

Unlike the original SSR proposal, in this proposal not only the sender and
the intermediate nodes determine the routing paths, but potentially all their
physical neighbors can contribute. As it will be shown in Chapter 14.4, this
allows efficient SSR operation with a significantly smaller routing cache.

112 CHAPTER 14. OPTIMIZING SSR WITH LINK-LAYER BROADCAST

14.3 Design Rationales

14.3.1 Subsequent Route Optimization

At first glance, this enhancement might seem to be sub-optimal: The respective
sender of a packet determines the sequence of the forwarding candidates. Unless
the default candidate fails to acknowledge the packet, there is no freedom left
to improve the path. However, as mentioned already, an unsuccessful candidate
may still send its ACK at some later time. This additional information improves
the path for future packets that are sent to the same destination.

14.3.2 Sender-based Forwarder Selection

In BLR [57], the acknowledgment sequence and the next hop are determined
by the candidates locally. This means the best candidate has to find some
non-trivial way to suppress the other candidates from forwarding. Moreover,
when the candidates have similar routing ability, the collision probability of
their acknowledgments will increase.

In ExOR [12], the sender determines the acknowledgment sequence, but the
forwarding decision is made in a distributed manner by the candidates. This
saves the RTS/CTS overhead, but it can result in DATA packet duplication.

In this extension of SSR, the next hop selection is applied in a centralized
manner, i. e. both the acknowledgment sequence and the actual forwarder are
determined by the sender. This centralized approach avoids the collision of the
acknowledgments as well as the potential duplication of the DATA packet. Fur-
thermore, it does not introduce significant additional packet delay as compared
to the standard RTS/CTS handshake in IEEE 802.11.

14.3.3 DATA-first Order

Using DATA-first order can increase the probability of collisions on the link-
layer, because a potential forwarder cannot inform the sender that it is busy
receiving another packet. However, if there are several potential forwarders
and the link is error-prone anyway, the effect of the additional packet errors
caused by collisions is negligible. Furthermore, as we have discussed above,
the proposed scheme withstands a temporarily unavailable default forwarder,
because this allows for more diversity in forwarding packets.

14.3.4 Hidden Terminal Problem

If packet errors were mostly caused by hidden terminals, this proposal could
easily be adapted to that situation, too. In that case, the DATA packet would
not be sent until the next hop forwarder has sent its CTS. This means, by
exchanging the RTS and CTS packets, which include the Network Allocation
Vector (NAV), the medium is allocated for the next DATA. In short, the deter-
mination of the forwarding path would happen one hop in advance.

It is worth noting that the NAV can only be included in the RTS and CTS
packets. The reason is that only after exchanging RTS and CTS packets, the
concrete DATA transmission time can be determined.

14.4. PERFORMANCE EVALUATION 113

14.4 Performance Evaluation

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 30 40 50 60 70 80 90 100

R
ou

te
 s

tr
et

ch

Route cache size

100 nodes

SSR
SSR+broadcast (1st ack)
SSR+broadcast (all ack)

Figure 14.4: Static scenarios (100 nodes)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 40 60 80 100 120 140 160 180 200 220

R
ou

te
 s

tr
et

ch

Route cache size

225 nodes

SSR
SSR+broadcast (1st ack)
SSR+broadcast (all ack)

Figure 14.5: Static scenarios (225 nodes)

In this section, the proposal is evaluated by simulations with three kinds of
scenarios: static scenarios, scenarios with node mobility and scenarios with node
churn. The three scenarios are evaluated with 100 nodes and/or 225 nodes. The
static nodes are arranged in a lattice structure with a distance of 50 meters in
between. The transmission range of the node is chosen such that each node has
eight neighbors, except for the nodes in the corner and on the margin, which
have three and five neighbors respectively.

Again, the OMNeT++ simulator [121] is used and the IEEE 802.11 MAC

114 CHAPTER 14. OPTIMIZING SSR WITH LINK-LAYER BROADCAST

module is derived from the INET framework. Moreover, except for the radio
range, which is set to 75 meters, default parameters of the MAC module are
used2. The application packet size is set to 120 bytes. Before the application
begins to send messages, the system is simulated for 3 minutes. During this time,
SSR bootstraps and fills up the nodes’ routing caches. After the initialization
period, the simulation runs for another 3 minutes.

In order to focus on the performance improvement of SSR when link-layer
broadcast is applied, the Lite-Ring module and the DHT module are excluded
from the Lite-Ring system. One same application module is directly deployed
on top of each SSR module.

14.4.1 Static Scenarios

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500 3000 3500 4000

D
el

ay
 (

m
s)

Packet

100 nodes (cache size: 50)

SSR+broadcast (all ack)
SSR+broadcast (1st ack)

SSR

Figure 14.6: Packet delay in static scenarios (sorted packet delay)

In this scenario, the enhanced SSR is compared with the original SSR pro-
tocol in two static scenarios with 100 and 225 nodes, respectively. Each node
generates 5 consecutive packets to one randomly chosen destination every 30
seconds. The simulation runs several times with a routing cache size ranging
from a minimal size of 30 (45) nodes to a maximal size of 100 (225) nodes.

In Figure 14.4, we can see that the enhanced SSR protocol achieves a shorter
path length than the original SSR protocol. The improvement is especially
significant for small routing cache sizes. Conversely, we find that with this
enhancement the routing cache can be reduced by about 30% and still achieve
the same route stretch as the original SSR protocol.

However, due to the extra handshaking overhead in the network layer, the
delay increased slightly despite of reduced path lengths (see Figure 14.6). Al-
though the handshaking packets are named as DATA/ACK/RTS/CTS packets,
in analogy to the respective link-layer frames, these packets are broadcast in
the IEEE 802.11 link-layer (with DATA frame). Thus these packets create
more overhead than the link-layer handshaking in the original SSR protocol.

2These parameters are derived from the ad-hoc example scenario of the INET framework.

14.4. PERFORMANCE EVALUATION 115

Delivered bits Original SSR SSR+Broadcast(1st ack) SSR+Broadcast(all ack)

Application layer 557760 (1.0) 579840 (1.0) 590400 (1.0)

Network layer 9942584 (17.8) 9179144 (15.83) 9593704 (16.25)

Physical layer 36880408 (66.1) 39526768 (68.1) 40544024 (68.6)

Table 14.1: Traffic in the network stack (static scenario with 100 nodes, routing
cache size 50, 1 minute)

Table 14.1 shows the entire traffic that is generated at the different layers.
Herein, we observe that the enhanced SSR generates less overhead in the network
layer than the original SSR protocol. This reduction is caused by the reduced
path length. However, due to the fact that broadcast packets are used for
the handshaking, the overhead in physical layer increases in the enhanced SSR
version. This is because that the DATA frame is the basic frame used for each
handshaking packets in the enhanced SSR. For example, a link-layer ACK frame
according to IEEE 802.11 consists of 14 bytes in the OMNeT++ simulator,
whereas, the minimum length of a DATA frame contains 34 bytes.

The increase of the packet delay and the traffic overhead at the physical
layer can be ascribed to using link-layer (IEEE 802.11) broadcasts to realize
handshaking. Apparently, if another MAC protocol is used or the handshaking
part of the enhanced SSR is moved onto the IEEE 802.11 MAC-layer, these
effects would vanish.

14.4.2 Scenario with Mobility

20

30

40

50

60

70

80

90

100

0 5 10 15 20

P
ac

ke
t d

el
iv

er
y

ra
tio

(%
)

Speed (m/s)

SSR
SSR+broadcast (1st ack)
SSR+broadcast (all ack)

Figure 14.7: Scenarios with mobility

In this scenario, one node moves randomly (according to the random way
point model) in the network. Some randomly selected static nodes send mes-
sages to this moving node. In order to eliminate the potential influence of
insufficient routing cache, the routing cache size is set large enough to store all

116 CHAPTER 14. OPTIMIZING SSR WITH LINK-LAYER BROADCAST

 20

 30

 40

 50

 60

 70

 80

 90

 100

 260 280 300 320 340 360

P
ac

ke
t d

el
iv

er
y

ra
tio

(%
)

time(s)

Scenario with Churn (10%)

SSR(10%)
SSR+broadcast (all ack)

SSR+broadcast (1st ack)

Figure 14.8: Packet delivery ratio in churn scenarios (churn rate 10%)

the nodes in the network.
In Figure 14.7, we observe that the packet delivery ratio of the original SSR

decreases rapidly with the increase of node speed. This is due to the fact that
the plain SSR cannot distinguish a broken link from a link with packet loss.
Thus, the plain SSR might keep on sending packets to a broken link until the
breakage is detected via a timeout of a hello message. Obviously, this would
cause a large packet loss.

According to the enhanced SSR, a broken link can be quickly replaced by an-
other available link. As shown in the simulation, both variants of the enhanced
SSR achieve a delivery ratio of more than 80% even when the node moves at
a speed of 20m/s. In particular, the variant of waiting for all the ACKs before
determining the next hop achieves an even higher delivery ratio of 97% at that
node speed.

14.4.3 Scenario with Churn

In this scenario, 10 (and 50) of the 100 nodes are inactive from the 300th second
to the 330th second. Note that the inactive nodes are chosen in such a way that
the remaining network of the active nodes is still connected and the traffic during
this period is only generated between the active nodes.

In Figure 14.8, we observe that with respect to a moderate churn rate of
10%, the packet delivery ratio of the original SSR drops dramatically to 65%,
while the packet delivery ratio of the enhanced SSR is almost uninfluenced.
The performance drop of the original SSR can be ascribed to the deterministic
forwarding mechanism based on the potentially outdated neighbor information.
In contrast, in the enhanced SSR, the opportunistic forwarding mechanism using
timely neighbor information is applied.

In Figure 14.9 we observe that the PDRs of both the original SSR and the
enhanced SSR are affected during the churn period. The PDR of the original
SSR drops to 20% and then slowly recovers to 100%. However, the PDR of the

14.4. PERFORMANCE EVALUATION 117

 20

 30

 40

 50

 60

 70

 80

 90

 100

 260 280 300 320 340 360

P
ac

ke
t d

el
iv

er
y

ra
tio

(%
)

Time (s)

Scenario with Churn (50%)

SSR
SSR+broadcast (all ack)

SSR+broadcast (1st ack)

Figure 14.9: Packet delivery ratio in churn scenarios (churn rate 50%)

two variants of the SSR enhancement stays above 70%.
Figure 14.10 shows the path lengths of the original SSR and the enhanced

SSR with respect to an extreme churn rate of 50%. We observe that at the
beginning of the churn period the path length of the original SSR drops severely
while both variants of the enhanced SSR protocol are only slightly affected. This
can be explained by the fact that when churn begins, most of the present multi-
hop paths will break. Thus, the original SSR protocol can only route packets to
the destinations that happen to be close to the source node, which implies very
short path lengths. As for the enhanced SSR, timely neighbor information can
be used to repair some of the broken paths, so that the overall path lengths are
barely affected.

118 CHAPTER 14. OPTIMIZING SSR WITH LINK-LAYER BROADCAST

 0

 1

 2

 3

 4

 5

 6

 260 280 300 320 340 360

H
op

s

Time (s)

Scenario with Churn (50%)

SSR
SSR+broadcast (all ack)

SSR+broadcast (1st ack)

Figure 14.10: Packet hops in churn scenarios (churn rate 50%)

Chapter 15

Conclusions

15.1 Summary

In this part of the dissertation, I have presented three cross-layer designs to
improve the performance of the Lite-Ring system. They are Proximal Neighbor
Selection (PNS) in the Lite-Ring module, intermediate caching in the DHT
module, and link-layer broadcast in the SSR module.

• PNS in the Lite-Ring module is done with the interaction between Lite-
Ring and SSR. Each node in ad-hoc networks is both an end-host and a
router. Thus, each node that runs the SSR protocol has partial topology
information. Lite-Ring can utilize SSR’s topology information to perform
PNS.

• Intermediate caching in the DHT module is achieved by the interaction
between DHT and SSR. With the support of the upcall feature of SSR,
the DHT module can cache the data of the by-passing put messages. This
significantly reduces the lookup time and the network traffic.

• Link-layer broadcast in the SSR module is actually interacting SSR with
MAC. In wireless networks, the packets are delivered to a shared medium
and can thus be overheard by the sender’s neighbors. SSR can utilize this
feature to allow the neighbors to co-determine the route.

The evaluations presented in Chapter 13.3 show that with PNS and inter-
mediate caching, the Lite-Ring system achieves a higher PDR as well as a lower
packet delay. The simulations in Chapter 14.4 show that by the use of link-
layer broadcast, the new proposed SSR achieves comparable routing efficiency
as the original SSR but with a significantly smaller per-node state. Moreover,
the proposed SSR enhancement is able to greatly improve SSR’s performance
in scenarios with high node mobility and node churn.

15.2 Discussion

Providing an efficient KBR service to multiple applications in wireless ad-hoc
networks is a relatively new research topic. The Lite-Ring system together with
some cross-layer designs offers a feasible solution. Nevertheless, there are still

119

120 CHAPTER 15. CONCLUSIONS

some open issues concerning the performance of the Lite-Ring system for the
future development.

15.2.1 PNS in the Balancing Mechanism of Lite-Ring

With topology information from the network layer, the Lite-Ring module could
find some proximal nodes for bootstrapping. This reduces the physical distance
of the overlay links. According to the balancing mechanism in the Lite-Ring
protocol (cf. Chapter 5.5), the leaf nodes on the overweight side of the address
tree will be moved to the underweight side. The balancing mechanism increases
the hit rate of a correct estimation of the destination node ID for a given key.
However, it might break the proximal overlay links and generate overlay links
that cross the entire network. Thus, a proximity-aware balancing mechanism is
desirable: when a node has to be shifted into a certain address range, it can ask
the SSR module whether there are already some proximal nodes in this address
range. If yes, it can rejoin the overlay via one of these nodes. Otherwise, the
original balancing mechanism can be applied.

15.2.2 Caching the Data from DHT Result Messages

As demonstrated before, the DHT lookup performance is significantly improved
when the intermediate nodes cache the data from the passing by put messages.
The get messages could then retrieve the cached data before reaching the key’s
root. Obviously, the trade-off is the local state. When the intermediate nodes
have enough cache space, they can also cache the data from the passing by
get-result messages. This would further reduce the lookup time and network
traffic. However, the space consumption would further increase.

15.2.3 Including MAC into Lite-Ring System

Although the SSR performance can be improved by using link-layer broadcast,
the achieved performance gain is sub-optimal due to the additional handshak-
ing overhead in the network layer. To avoid such overhead, modifications in the
MAC protocols (for heterogeneous underlying layers) are necessary but very
costly. Hence, in the general version of the Lite-Ring system, the cross-layer de-
sign between SSR and the MAC layer is not included. However, this cross-layer
optimization will make sense when deploying the Lite-Ring system concretely
in a specific wireless network, e. g. in an IEEE 802.11 network.

15.2.4 Asymmetric Links

According to some empirical studies [37, 52, 132], there frequently exist uni-
directional links in wireless networks. Theoretically, the network performance
could be improved by utilizing these links. However, only a few routing pro-
tocols support unidirectional links, e. g. DSR [63], some variants of AODV and
DSDV [92].

Similar to most routing protocols, SSR works only with bidirectional links,
i. e. unidirectional links are detected and then excluded in routing process. Birn-
still et al. [11] proposed several algorithms for SSR, which enable SSR to use the

15.2. DISCUSSION 121

unidirectional links. They also demonstrated that the SSR performance can be
improved by about 20% by utilizing these unidirectional links.

15.2.5 MAC Protocols

For sake of a brief illustration, only the IEEE 802.11 MAC layer has been
simulated for this work. As mentioned in Chapter 14.2, some handshaking
functions of the MAC layer are implemented in the enhanced SSR. This in
turn increases packet delay and network traffic, as shown in the simulations in
Chapter 14.4.1. As mentioned, modifications in the different MAC protocols
are needed to avoid such overhead.

Note that the IEEE 802.11 MAC protocol used in this work is more rele-
vant to the MANETs than the low-power WSNs. Since the energy efficiency is
one of the most important factors in the WSNs, some specific low-power MAC
protocols are developed, e. g. IEEE 802.15.4 MAC [61], S-MAC [128] and B-
MAC [91]. Thus, if the SSR enhancement would be implemented for a WSN, a
low-power MAC protocol should be used.

122 CHAPTER 15. CONCLUSIONS

Part V

The End

123

Chapter 16

Conclusions

In this dissertation, I have presented the Lite-Ring overlay network protocol
and the Lite-Ring system that implements the Lite-Ring protocol in wireless
ad-hoc networks. Moreover, I have proposed some cross-layer optimizations for
the Lite-Ring system.

Contributions

In recent decades, the application of structured overlays has become more and
more popular, not only in conventional file-sharing programs, but also in many
other areas, such as in distributed file systems, in distributed databases, etc..
One of the main features of a structured overlay is the Key-Based- Routing
(KBR) service that it provides. KBR enables each overlay node to be coop-
eratively responsible for a certain range of the address space and to route the
messages to their responsible nodes with a limited amount of overlay hops, typ-
ically O(log N)) hops. In addition, the node state of a structured overlay is
usually limited within O(log N). The small routing overhead and the small
node state enable the applications to scale well.

Although the node state of a structured overlay is typically O(log N), the
node state could be relatively large in practice due to the extra state introduced
for performance improvement. Therefore, if multiple applications are installed
locally and need KBR services at the same time, the overall node state could
overload the node and/or its bandwidth.

Lite-Ring provides a new way to build structured overlay networks for various
applications that need KBR services in a more efficient manner. The node in
Lite-Ring overlay maintains only O(1) state. However, it is able to provide
the KBR service to an application just as a conventional full-fledged structured
overlay does.

Lite-Ring applies a predicable addressing scheme, which uniformly dis-
tributes the node addresses in the address space. This, in turn, allows each
node to estimate the overlay size based on the addresses of its overlay neigh-
bors. Subsequently, the node is able to estimate the addresses of all the other
nodes and thus calculate the address of the destination node for an arbitrary key.
In short, the address of the destination node is calculated by local calculation
instead of the recursive overlay routing procedure as applied by conventional
structured overlays.

125

126 CHAPTER 16. CONCLUSIONS

With the help of a public DHT service, where each node stores its trans-
port layer address under its overlay address, the transport layer address of the
destination node can be solved by one DHT request on the calculated overlay
address, and the message can be delivered as long as the DHT request succeeds.

As the address estimation is rough, the calculation of the destination ad-
dress can sometimes yield an incorrect result. Nevertheless, the delivery to an
incorrect destination can be corrected either by the sender with new address
calculations or by the receiver with further routing steps. As shown in the early
chapters, if the address tree is balanced, the probability of an incorrect address
calculation of the destination node is only approximately 17%, i. e. the address
calculation yields the correct destination node address. In another words, the
routing overhead of Lite-Ring is relatively small, i. e. only 0.17.

As previously stated, for a balanced address tree, the routing overhead is
very small. To this end, different approaches have been proposed in the thesis
in order to keep the address tree balanced.

In short, with the predictable address assignment schema, Lite-Ring achieves
a small (O(log N)) routing overhead despite a small (O(1)) node state. The mes-
sage delivery in Lite-Ring requires in most cases only one DHT lookup to solve
the transport layer address of the final destination, regardless of the application
overlay size and the number of applications. Thus, Lite-Ring is able to provide a
more efficient KBR service than other approaches, e. g. ReDiR and Diminished
Chord.

The KBR service is not only required in many distributed applications in
the Internet, but also in some distributed applications in wireless ad-hoc net-
works. However, there is still no well-known solution to provide efficient KBR
services for multiple applications in wireless ad-hoc networks. In this thesis, I
have also presented the Lite-Ring system to solve this problem. To the best
of my knowledge, the Lite-Ring system is the first exploratory study aiming at
providing KBR services to multiple applications in a wireless ad-hoc network.

The Lite-Ring system consists of three components: a Lite-Ring module
that implements the Lite-Ring protocol and provides the KBR service to the
application, a DHT module that provides a basis DHT service needed by the
Lite- Ring protocol, and a SSR module that provides the routing service in the
network layer. Some exploratory simulations have demonstrated the feasibility
of the Lite-Ring system to provide KBR services to multiple applications.

In the later chapters, I have also introduced three cross-layer optimizations
designed for the Lite-Ring system. They are the Proximal Neighbor Selection
(PNS) in the Lite-Ring module, the use of data caching in the DHT module,
and the link-layer broadcast in the SSR module. The simulation results have
shown significant performance improvement by applying these optimizations.

Outlook

This work has proposed Lite-Ring overlay network protocol, a novel solution to
build structured overlays and provide efficient KBR services for multiple appli-
cations. However, there are still some open topics that need to be investigated
before it can be deployed in practice. For example, as a public DHT service
is required by Lite-Ring and its reliability and performance have direct impact

127

on the quality of the KBR service that Lite-Ring provides, some survey of cur-
rent public DHT services would be necessary. Moreover, the common security
problems of P2P applications apply also to the Lite-Ring overlay network. al-
though they are not in the scope of this thesis. Thus, the attack resistance of
the Lite-Ring overlay network is also an important research topic in the future.

128 CHAPTER 16. CONCLUSIONS

Chapter 17

Acknowledgments

The work presented here has been carried out during the years 2005-2009 at the
Department of Informatics, Karlsruhe Institute of Technology as well as at the
Department of Informatics, Technical University Munich, Germany.

First of all, I would like to express my sincere appreciation to my doctoral
supervisor Dr. Thomas Fuhrmann for providing me the opportunity to work in
the research area of informatics, for his expert guidance and mentorship, for his
motivation and help at all levels.

Moreover, I would like to thank professor Dr. Georg Carle and professor Dr.
Michael Gerndt for accepting to be the co-referees of this thesis.

Also, I would like to thank all my colleagues for the good and encouraging
collaboration, for their friendship and for many enjoyable times. Especially I
would like to mention Dr. Kendy Kutzner, Carola Kutzner, Dr. Curt Cramer,
Stefan Denk, Dr. Sean O’Donoghue, Yaser Houri, Dr. Björn Saballus, Johannes
Eickhold, Sven Schlender, Pascal Birnstill, Dr. Benedikt Elser and Dr. Bernhard
Amann. Thank you!

Many special thanks to my parents for their love and for their warm encour-
agement to let me be able to finish this thesis.

129

Appendix A

Balancing Cost with Node
Count

In this appendix I briefly describe the derivation of the balancing cost in the
case that the nodes use the node count information (cf. Chapter 5.5.2).

Let’s define the symbol P p,q
a,n as follows: Assume that there are a positions in

the lowest level in total, of which n are occupied and (m = a− n) vacant. P p,q
a,n

is the probability that when choosing p positions from all the a positions q posi-
tions among the p chosen positions are already occupied. Simple combinatorics
yields:

P p,q
a,n = (

q−1∏
i=0

n− i
a− i

)(

p−q−1∏
i=0

a− n− i
a− q − i

)(

q−1∏
i=0

a− i
i+ 1

) (A.1)

When a new node joins the overlay, it might choose a position that makes
the tree become unbalanced. In that case, one of its parent nodes will detect
the imbalance. It thus recommends the node to move to the subtree on the
other side of said parent node. Figure A.1(c) illustrates an example: The new
node joins below node 1 and thus causes the tree to become unbalanced. Node
4 detects the imbalance and recommends the newly joined node to move to
another position.

Let P (d) be the probability for an unbalanced tree with depth d. Then:

P (d) = P 2d,2d

a,n − P 2d+1,2d+1

a,n

In the example of Figure A.1(c), where a = 8 and n = 2, we can get the
probability for this case as follows:

P (2) = P 2,2
8,2 − P

4,4
8,2 =

2

8
· 1

7
− 0 =

1

28

Let J(a, n) be the expected number of node shifts of the newly joining node,
where there exist in total a positions in the lowest level of the address tree and
n of them are occupied. Thus, for an address tree with 10 nodes, the expected
number of node shifts of the joining node, J(8, 2), is:

131

J(8, 2) = 0 · P (0) + 1 · P (1) + 1 · P (2) + 1 · P (3)

= 0 · P 1,0
8,2 + 1 · (P 1,1

8,2 − P
2,2
8,2) + 1 · (P 2,2

8,2 − P
4,4
8,2) + 1 · P 4,4

8,2

= 0.25

This formula corresponds the three possible scenarios in Figure A.1. The co-
efficients in the formula are the expected number of node shifts in each scenario
and they can be achieved from Equation A.2. (Note that in this case, it is not
possible that the imbalance happens at a depth greater than 2, i. e. P (3) = 0.)

In general, the (n + 1)th node in the lowest level needs to shift its position
J(a, n) times to balance the tree, where{

J(1, 0) = 0

J(a, n) =
∑log2 a

i=1 P (i) · (
∑i−1

j=0 P
j,2i

a−2i,n−2i · J(2i, j))
(A.2)

where P j,2i

a−2i,n−2i is the probability for the various node distributions in the
other side of the subtree of the parent node that detects the imbalance and
J(2i, j) is the expected node shifts further within the subtree.

So, let J ′(n) be the expected number of address shifts for the nth node of
the entire overlay. We can get:

J ′(n) = J(2l, n− 2l)

where l = blog2(n− 1)c is the depth of the existing completely filled part of the
binary tree.

k=1

k=3

0
8

12
10 146

4
2

3 7 11 13 15

k=0

k=2

k=4

New Node

51 9

(a) Balanced tree with probability P (0)

k=1

k=3

0
8

12
10 146

4
2

7 11 13 15

k=0

k=2

k=4

New Node

5 91 3

(b) Unbalanced tree with depth 1. The proba-
bility is P (1)

k=1

k=3

0
8

12
10 146

4
2

31 5 7 9 11 13 15

k=0

k=2

k=4

New Node
(c) Unbalanced tree with depth 2. The proba-
bility is P (2)

Figure A.1: Different scenarios when a node joins

Appendix B

Curriculum Vitae

Pengfei Di

Address Schlippehof 3
79110 Freiburg
Germany

E-Mail pengfei.di@live.de

Date and place of birth
1978-Oct-06 in Jiangsu, China

Education
01/2009 - 12/2009 Ph. D Candidate, Department of Informatics, Technical

University Munich, Germany. Dissertation Title “Providing
Efficient Key Based Routing for Multiple Applications”.

04/2005 - 12/2008 Ph. D Candidate, Department of Informatics, Karlsruhe
Institute of Technology, Germany.

09/2002 - 02/2005 Master of Science in Computational Science in En-
gineering, Technical University Braunschweig, Germany.
Master Thesis “Simulation and Evaluation of DCCP-lite in
OPNET Modeler”.

09/1997 - 07/2002 Bachelor in Mechanical Engineering, Tongji University,
Shanghai, China.

09/1994 - 07/1997 High School of Liyang, Jiangsu, China

Professional Experience
03/2013 - Senior Software Engineer, Infor Global Solutions,

Breisach, Germany

135

10/2010 - 06/2012 Software Developer, match2blue Software Development
GmbH, Jena, Germany

01/2009 - 12/2009 Research Assistant, Technical University Munich, Ger-
many

04/2005 - 12/2009 Research Assistant, Karlsruhe Institute of Technology,
Germany

Professional Affiliations
2009 – 2011 TPC Member of the IEEE Consumer Communications and

Networking Conference (CCNC)

2009 IEEE Student Member

Knowledge of Languages
Chinese Native

English Fluent

German Fluent

Miscellaneous
2001 Award of “Excellent Graduate of Shanghai 2001”, Shanghai,

China

1998-2001 University Scholar, Tongji University, Shanghai, China

01/2010 - 09/2010 Parental leave

Freiburg im Breisgau, Germany, August 2014

Appendix C

List of Publications

• Pengfei Di, Matthias Wählisch, Georg Wittenburg, “Modeling the Net-
work Layer and Routing Protocols”. In Modeling and Tools for Network
Simulation (Klaus Wehrle, Mesut Günes, James Gross Ed.), Pages 359-
384, Springer, 2010, ISBN: 978-3-642-12330-6

• Pascal Birnstill, Pengfei Di and Thomas Fuhrmann, “Using Asymmet-
ric Links to Improve SSR’s Routing Performance”. In Proceedings of the
9th IFIP Annual Mediterranean Ad Hoc Networking Workshop (MedHoc-
Net’10), Juan-Les-Pins, France, June 23-25, 2010

• Pengfei Di and Thomas Fuhrmann, “Scalable Landmark Flooding - A
Scalable Routing Protocol for WSNs”. In Proceedings of the CoNEXT
Student Workshop, Rome, Italy, December 1, 2009

• Pengfei Di and Thomas Fuhrmann, “Using Link-Layer Broadcast to Im-
prove Scalable Source Routing”. In Proceedings of the 5th Interna-
tional Conference on Wireless Communications and Mobile Computing
(IWCMC’09), Leipzig, Germany, June 21-24, 2009

• Pengfei Di, Yaser Houri, Kendy Kutzner and Thomas Fuhrmann, “To-
wards Comparable Network Simulations”. Technical Report 2008-9, ISSN
1432-7864, Department of Informatics, Universität Karlsruhe (TH), Ger-
many, August 2008

• Pengfei Di, Johannes Eickhold, and Thomas Fuhrmann, “Linyphi: Cre-
ating IPv6 Mesh Networks with SSR”. Concurrency and Computation:
Practice and Experience, Volume 20, Issue 6, Pages 675-691, April 2008

• Pengfei Di, Kendy Kutzner and Thomas Fuhrmann, “Providing KBR Ser-
vice for Multiple Applications”. In Proceedings of the 7th International
Workshop on Peer-to-Peer Systems (IPTPS’08), Tampa Bay, Florida,
USA, February 25-26, 2008

• Pengfei Di, M. Yaser Houri, Qing Wie, Joerg Widmer, and Thomas
Fuhrmann, “Application of DHT-Inspired Routing for Object Tracking”.
In Proceedings of the 4th IEEE International Conference on Mobile Ad-
hoc and Sensor Systems (MASS’07), Pisa, Italy, October 8-11, 2007

137

138 APPENDIX C. LIST OF PUBLICATIONS

• Thomas Fuhrmann, Pengfei Di, Kendy Kutzner, and Curt Cramer, “Push-
ing Chord into the Underlay: Scalable Routing for Hybrid MANETs”.
Technical Report 2006-12, Department of Informatics, Universität Karl-
sruhe (TH), Germany, June 2006

• Pengfei Di, Massimiliano Marcon, and Thomas Fuhrmann, “Linyphi:
An IPv6-Compatible Implementation of SSR”. In Proceedings of the
3rd International Workshop on Hot Topics in Peer-to-Peer Systems
(HotP2P’06), Rhodes Island, Greece, April 25-29, 2006

• Xiaoyuan Gu, Pengfei Di, and Lars Wolf, “Performance Evaluation
of DCCP: A Focus on Smoothness and TCP-friendliness”. Annals of
Telecommunications Journal, Special Issue on Transport Protocols for
Next Generation Networks, Volume 61, No. 1, Pages 191-216, January
2006

• Pengfei Di, “Simulation and Evaluation of DCCP-lite in OPNET Mod-
eler”. Master Thesis, Technical University Braunschweig, Germany, 2005

List of Figures

2.1 Chord ring and its finger table (from [115], Figure 4a) 10

2.2 Screenshot of aMule on 01.Jan.2010 19

2.3 Example of a ReDiR tree with branching factor b=2. 20

3.1 Illustration of SSR’s routing process (from [51], Figure 1). 28

4.1 Lite-Ring stack in the Internet 33

4.2 Overlay shared by different applications with the concatenated
IDs (Ai : N) . 34

4.3 Overlay shared by different applications with the concatenated
IDs (N : Ai) . 35

5.1 Application overlay ring with 10 application instances 38

5.2 Binary address tree structure . 38

5.3 Star structure with a DHT as the central node 39

5.4 Join mechanism with address picking and probing 41

5.5 Probability of a wrong calculation with local knowledge 44

5.6 Probability of a wrong calculation with precise node count infor-
mation . 45

5.7 Address tree with synthetic nodes 45

5.8 Unbalanced tree defined by depth. (The numbers in brace are
kmax and kmin) . 46

5.9 Unbalanced tree defined by node count. (The numbers in brace
are Nl and Nr) . 47

6.1 Expected node shifts at the nth node for balancing the address
tree with node count. 52

6.2 Average number of the node shifts of the first n nodes for bal-
ancing the address tree with node count. 53

6.3 Expected node shifts at the nth node for balancing the address
tree with vacant position. 53

6.4 Average number of the node shifts of the first n nodes for bal-
ancing the address tree with vacant position. 54

6.5 Comparison of different balancing mechanisms (node shifts) . . . 55

6.6 Comparison of different balancing mechanisms (time) 55

6.7 Distribution of the node shifts with 1024 nodes 56

139

140 LIST OF FIGURES

6.8 The maximal height, the average node depth and the saturated
level of the unbalanced address trees with up to 105 Lite-Ring
overlay instances . 56

6.9 Routing overhead with random address tree (with different esti-
mation strategies) . 57

6.10 Routing overhead with an unstable DHT 58
6.11 Cumulative address updates during node churn 59
6.12 Comparison between Lite-Ring and ReDiR, both run with

OpenDHT . 60

9.1 The Lite-Ring system . 73
9.2 Network topology with 100 nodes 75
9.3 Node structure in the Lite-Ring system 76
9.4 Sub-modules inside the wlan module 77

10.1 Network performance with one application 82
10.2 Cumulative distribution of packet delay with one application . . 83
10.3 Network performance with two applications 84
10.4 Packet delivery ratio in case of an overloaded DHT 85
10.5 Packet delay in case of an overloaded DHT 86
10.6 Routing overhead in case of an overloaded DHT 86
10.7 PDR with increasing payload . 87

13.1 Packet delivery ratio of Lite-Ring with and w/o PNS 101
13.2 Hop count of the overlay links of Lite-Ring with and w/o PNS . 102
13.3 Packet delay of Lite-Ring with and w/o PNS 102
13.4 Packet delivery ratio of Lite-Ring with and w/o DHT caching . . 103
13.5 Packet delay of Lite-Ring with and w/o DHT caching 104
13.6 Entries stored in the DHT modules with and w/o caching 104
13.7 Packet delivery ratio of Lite-Ring with and w/o both extensions

(PNS and DHT caching) . 105
13.8 Packet delay of Lite-Ring with and w/o both extensions (PNS

and DHT caching) . 106

14.1 Packet delivery sequence: The sender always waits for the first
ACK. If the default candidate responds, candidate 1 and 2 will
cancel their ACKs upon receiving the RTS; otherwise, candidate 1
and 2 will send their ACKs in the predetermined sequence unless
they receive an RTS. 109

14.2 Packet delivery sequence: If the default candidate responds, can-
didate 1 and 2 will cancel their ACKs upon receiving the RTS;
otherwise the sender waits for the ACKs of all candidates before
it selects the forwarder. 109

14.3 Packet delivery sequence: If the default candidate succeeds to
respond, other candidates may nevertheless acknowledge to im-
prove future forwarding actions. 110

14.4 Static scenarios (100 nodes) . 113
14.5 Static scenarios (225 nodes) . 113
14.6 Packet delay in static scenarios (sorted packet delay) 114
14.7 Scenarios with mobility . 115

LIST OF FIGURES 141

14.8 Packet delivery ratio in churn scenarios (churn rate 10%) 116
14.9 Packet delivery ratio in churn scenarios (churn rate 50%) 117
14.10Packet hops in churn scenarios (churn rate 50%) 118

A.1 Different scenarios when a node joins 131

142 LIST OF FIGURES

List of Tables

2.1 The put/get interfaces of OpenDHT (from [100], Table 1) 13

5.1 Comparison of different join mechanisms 42
5.2 Complexity comparison between Lite-Ring and other approaches 49

14.1 Traffic in the network stack (static scenario with 100 nodes, rout-
ing cache size 50, 1 minute) . 115

143

144 LIST OF TABLES

Acronyms

ACK Acknowledgment

ACL Access Control List

ALM Application Layer
Multicast

AODV Ad-hoc On-demand
Distance Vector

API Application Programming
Interface

AS Autonomous System

ATP Ad-hoc Transport
Protocol

BGP Border Gateway Protocol

BLR Beacon-Less Routing

CAN Content Addressable
Network

CDN Content Distribution
Network

CTS Clear to Send

DCF Distributed Coordination
Function

DCS Data-Centric Storage,

DHT Distributed Hash Table

DNS Domain Name System+

DOLR Decentralized Object
Location and Routing

DSL Digital Subscriber Line

DSR Dynamic Source Routing

DSDV Destination-Sequenced
Distance Vector

ExOR Extremely Opportunistic
Routing

FIB Forwarding Information
Base

GHT Geographic Hash Table

GNP Global Network
Positioning

GPS Global Positioning
System

GPSR Greedy Perimeter
Stateless Routing

HTTP Hypertext Transfer
Protocol

i3 Internet Indirection
Infrastructure

ICE Interactive Connectivity
Establishment

ID Identifier

IEEE Institute of Electrical and
Electronics Engineers

IGF Implicit Geographic
Forwarding

IP Internet Protocol

IRC Internet Relay Chat

ISP Internet Service Provider

145

146 LIST OF TABLES

KBR Key Based Routing

LER Last Encounter Routing

LRU Least Recently Used

LS Link State

LSU Link State Update

MAC Medium Access Control

MANET Mobile Ad-hoc Network

MORE MAC-independent
Opportunistic Routing
and Encoding

MPR Multipoint Relay

NAT Network Address
Translation

NAV Network Allocation
Vector

NP Nondeterministic
Polynomial

OLSR Optimized Link State
Routing

OSI Open Systems
Interconnection

OSPF Open Shortest Path First

P2P Peer-to-Peer

PDR Packet Delivery Ratio

PIS Proximal Identifier
Selection

PNS Proximal Neighbor
Selection

PPP Point-to-Point Protocol

PRS Proximal Route Selection

ReDiR Recursive Distributed
Rendezvous scheme

RFID Radio Frequency
Identification

RIP Routing Information
Protocol

RPC Remote Procedure Call

RREQ Route Request

RSVP Resource Reservation
Protocol

RTS Ready to Send

RTT Round-Trip Time

SHA Secure Hash Algorithm

SSR Scalable Source Routing

STUN Session Traversal Utilities
for NAT

TC Topology Control

TCP Transmission Control
Protocol

TIV Triangle Inequality
Violation

TTL Time To Live

UDP User Datagram Protocol

URL Universal Resource
Locator

VRR Virtual Ring Routing

WLAN Wireless Local Area
Network

WMN Wireless Mesh Network

WSN Wireless Sensor Network

XOR Exclusive OR

XML Extensible Markup
Language

Bibliography

[1] A C++ Implementation of ReDiR. [Online]. Available: http://opendht.
org/redir++-0.3.tar.gz Accessed 30-Sep-2010.

[2] The aMule Project. [Online]. Available: http://www.amule.org/ Ac-
cessed 30-Sep-2010.

[3] The eMule Project. [Online]. Available: http://www.emule-project.

net/ Accessed 30-Sep-2010.

[4] Vuze - A BitTorrent Client. [Online]. Available: http://www.vuze.com/

Accessed 30-Sep-2010.

[5] Skype Fast Facts Q4 2008. eBay Ink, 2009. [Online].
Available: http://ebayinkblog.com/wp-content/uploads/2009/01/

skype-fast-facts-q4-08.pdf Accessed 30-Sep-2010.

[6] Cisco Visual Networking Index: Forecast and Methodology, 2009-
2014. White Paper, Cisco, June 2010. [Online]. Available:
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/

ns537/ns705/ns827/white_paper_c11-481360.pdf Accessed 29-Sep-
2010.

[7] Vinay Aggarwal, Anja Feldmann, and Christian Scheideler. Can ISPs
and P2P Users Cooperate for Improved Performance? ACM SIGCOMM
Computer Communication Review, 37(3):29–40, 2007.

[8] Marc Sánchez Artigas, Pedro Garćıa López, Jordi Pujol Ahulló, and An-
tonio F. Gómez-Skarmeta. Cyclone: A Novel Design Schema for Hierar-
chical DHTs. In Proceedings of the 5th IEEE International Conference
on Peer-to-Peer Computing (P2P’05), pages 49–56, Konstanz, Germany,
August 31–September 2 2005.

[9] Richard Ernest Bellman. On a Routing Problem. Quarterly of Applied
Mathematics, 16:87–90, 1958.

[10] Ruchir Bindal, Pei Cao, William Chan, Jan Medved, George Suwala,
Tony Bates, and Amy Zhang. Improving Traffic Locality in BitTor-
rent via Biased Neighbor Selection. In Proceedings of the 26th IEEE In-
ternational Conference on Distributed Computing Systems (ICDCS’06),
page 66, Washington, DC, USA, 2006.

147

148 BIBLIOGRAPHY

[11] Pascal Birnstill. Efficient Detection and Utilization of Asymmetric Links
in Scalable Source Routing (SSR). Diploma thesis, System Architecture
Group, University of Karlsruhe, Germany, May 2009.

[12] Sanjit Biswas and Robert Morris. Opportunistic Routing in Multi-Hop
Wireless Networks. In Proceedings of ACM SIGCOMM’05, Philadelphia,
PA, USA, August 2005.

[13] Brain M. Blum, Tian He, Sang Son, and John Stankovic. IGF: A State-
Free Robust Communication Protocol for Wireless Sensor Networks. Tech-
nical report, Department of Computer Science, University of Virginia,
USA, 2003.

[14] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource
ReSerVation Protocol (RSVP) — Version 1 Functional Specification. RFC
2205, September 1997.

[15] Matthew Caesar, Miguel Castro, Edmund B. Nightingale, Greg O’Shea,
and Antony Rowstron. Virtual Ring Routing: Network Routing Inspired
by DHTs. In Proceedings of ACM SIGCOMM’06, Pisa, Italy, September
2006.

[16] Claudio Casetti, Mario Gerla, Saverio Mascolo, M. Y. Sanadidi, and
Ren Wang. TCP Westwood: End-to-End Congestion Control for
Wired/Wireless Networks. Wireless Networks, 8(5):467–479, 2002.

[17] Marcel C. Castro, Andreas J. Kassler, Carla-Fabiana Chiasserini, Claudio
Casetti, and Ibrahim Korpeoglu. Handbook of Peer-to-Peer Networking,
chapter Peer-to-Peer Overlay in Mobile Ad-hoc Networks. Springer, July
2009.

[18] Marcel C. Castro, Eva Villanueva, Iraide Ruiz, Susana Sargento, and An-
dreas J. Kassler. Performance Evaluation of Structured P2P over Wire-
less Multi-hop Networks. In Proceedings of the 2nd International Con-
ference on Sensor Technologies and Applications (SENSORCOMM’08),
pages 796–801, Washington, DC, USA, 2008.

[19] Miguel Castro, Manuel Costa, and Antony Rowstron. Should we build
Gnutella on a structured overlay? ACM SIGCOMM Computer Commu-
nications Review, 34(1):131–136, 2004.

[20] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and
Dan S. Wallach. Secure routing for structured peer-to-peer overlay net-
works. In Proceedings of the 5th Symposium on Operating Systems Design
and Implementation (OSDI’02), pages 299–314, Boston, MA, USA, 2002.

[21] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Row-
stron. One Ring to Rule them All: Service Discovery and Binding in Struc-
tured Peer-to-Peer Overlay Networks. In Proceedings of the 10th ACM
SIGOPS European Workshop, Saint-Emilion, France, September 2002.

[22] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Row-
stron. SCRIBE: A large-scale and decentralized application-level multi-
cast infrastructure. IEEE Journal on Selected Areas in Communications,
20(8):1489–1499, 2002.

BIBLIOGRAPHY 149

[23] Szymon Chachulski, Michael Jennings, Sachin Katti, and Dina Katabi.
Trading Structure for Randomness in Wireless Opportunistic Routing.
ACM SIGCOMM Computer Communication Review, 37:169–180, October
2007.

[24] Mohit Chawla, Nishith Goel, Kalai Kalaichelvan, Amiya Nayak, and Ivan
StojmenovicIvan. Beaconless Position Based Routing with Guaranteed
Delivery for Wireless Ad-Hoc and Sensor Networks. In Proceedings of the
19th IFIP World Computer Congress, Santiago de Chile, Chile, August
2006.

[25] David R. Choffnes and Fabián E. Bustamante. Taming the Torrent: A
Practical Approach to Reducing Cross-ISP Traffic in Peer-to-Peer Sys-
tems. ACM SIGCOMM Computer Communication Review, 38(4):363–
374, 2008.

[26] T. Clausen and P. Jacquet. Optimized Link State Routing protocol
(OLSR). RFC 3626, October 2003.

[27] Bram Cohen. Incentives Build Robustness in BitTorrent. In Proceeding
of the Workshop on Economics of Peer-to-Peer Systems, Berkeley, CA,
USA, May 2003.

[28] Edith Cohen and Scott Shenker. Replication Strategies in Unstructured
Peer-to-Peer Networks. In Proceedings of ACM SIGCOMM’02, pages 177–
190. 2002.

[29] Curt Cramer and Thomas Fuhrmann. ISPRP: A Message-Efficient Pro-
tocol for Initializing Structured P2P Networks. In Proceedings of the 24th
IEEE International Performance, Computing, and Communications Con-
ference (IPCCC’05), pages 365–370, Phoenix, AZ, USA, April 2005.

[30] Curt Cramer and Thomas Fuhrmann. Proximity Neighbor Selection for
a DHT in Wireless Multi-Hop Networks. In Proceedings of the 5th IEEE
International Conference on Peer-to-Peer Computing (P2P’05), pages 3–
10, Konstanz, Germany, August 31–September 2 2005.

[31] Curt Cramer and Thomas Fuhrmann. Performance Evaluation of Chord in
Mobile Ad Hoc Networks. In Proceedings of the 1st International Work-
shop on Decentralized Resource Sharing in Mobile Computing and Net-
working (ACM MobiShare), Los Angeles, CA, USA, September 2006.

[32] Curt Cramer, Kendy Kutzner, and Thomas Fuhrmann. Bootstrapping
Locality-Aware P2P Networks. In Proceedings of the IEEE International
Conference on Networks (ICON’04), volume 1, pages 357–361, Singapore,
November 2004.

[33] Curt Cramer, Kendy Kutzner, and Thomas Fuhrmann. Distributed Job
Scheduling in a Peer-to-Peer Video Recording System. In Proceedings of
the Workshop on Algorithms and Protocols for Efficient Peer-to-Peer Ap-
plications (PEPPA), pages 234–238, Ulm, Germany, September 23 2004.

150 BIBLIOGRAPHY

[34] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi:
A Decentralized Network Coordinate System. In Proceedings of ACM
SIGCOMM’04, Portland, OR, USA, August 2004.

[35] Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek,
and Robert Morris. Designing a DHT for low latency and high through-
put. In Proceedings of the 1st USENIX Symposium on Networked Systems
Design and Implementation (NSDI’04), San Francisco, CA, USA, March
2004.

[36] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion Sto-
ica. Towards a Common API for Structured Peer-to-Peer Overlays. In
Proceedings of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS’03), Berkeley, CA, USA, February 2003.

[37] Douglas S. J. De Couto, Daniel Aguayo, Benjamin A. Chambers, and
Robert Morris. Performance of Multihop Wireless Networks: Shortest
Path is Not Enough. ACM SIGCOMM Computer Communication Review,
33(1):83–88, 2003.

[38] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s Highly
Available Key-value Store. ACM SIGOPS Operating Systems Review,
41:205–220, 2007.

[39] Franca Delmastro. From Pastry to CrossROAD: CROSS-Layer Ring
Overlay for AD Hoc Networks. In Proceedings of the 3rd IEEE Interna-
tional Conference on Pervasive Computing and Communications Work-
shops(PERCOMW’05), pages 60–64, Washington, CA, USA, 2005.

[40] Luc Devroye. A Note on the Height of Binary Search Trees. Journal of
the ACM, 33(3):489–498, 1986.

[41] Pengfei Di and Thomas Fuhrmann. Scalable Landmark Flooding - A
Scalable Routing Protocol for WSNs. In Proceedings of the 5th ACM
CoNEXT Student Workshop, Rome, Italy, December 2009.

[42] Pengfei Di and Thomas Fuhrmann. Using Link-Layer Broadcast to
Improve Scalable Source Routing. In Proceedings of the 5th Interna-
tional Conference on Wireless Communications and Mobile Computing
(IWCMC’09), Leipzig, Germany, June 2009.

[43] Pengfei Di, M. Yaser Houri, Qing Wei, Jorg Widmer, and Thomas
Fuhrmann. Application of DHT-Inspired Routing for Object Tracking.
In Proceedings of the 4th IEEE International Conference on Mobile Ad-
hoc and Sensor Systems Conference (MASS’07), pages 1–9, Pisa, Italy,
October 2007.

[44] Pengfei Di, Kendy Kutzner, and Thomas Fuhrmann. Providing KBR
Service for Multiple Applications. In Proceedings of the 7th International
Workshop on Peer-to-Peer Systems (IPTPS’08), St. Petersburg, FL, USA,
February 2008.

BIBLIOGRAPHY 151

[45] Edsger Dijkstra. A Note on Two Problems in Connection with Graphs.
Numerische Mathematik, 1:269–271, 1959.

[46] Peter Druschel and Antony Rowstron. PAST: A large-scale, persistent
peer-to-peer storage utility. In Proceedings of the 8th Workshop on Hot
Topics in Operating Systems, pages 75–80, May 2001.

[47] Jakob Eriksson, Michalis Faloutsos, and Srikanth Krishnamurthy. DART:
Dynamic Address RouTing for Scalable Ad Hoc and Mesh Networks.
IEEE/ACM Transactions on Networking, 15:119–132, 2007.

[48] Paul Francis, Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval
Shavitt, and Lixia Zhang. IDMaps: A Global Internet Host Distance
Estimation Service. IEEE/ACM Transactions on Networking, 9(5):525–
540, 2001.

[49] Cheng Peng Fu and Soung C. Liew. TCP Veno: TCP Enhancement for
Transmission Over Wireless Access Networks. IEEE Journal on Selected
Areas in Communications, 21:216–228, 2003.

[50] Thomas Fuhrmann. Scalable Routing for Networked Sensors and Ac-
tuators. In Proceedings of the 2nd Annual IEEE Communications So-
ciety Conference on Sensor and Ad Hoc Communications and Networks
(SECON’05), Santa Clara, CA, USA, September 2005.

[51] Thomas Fuhrmann. Performance of Scalable Source Routing in Hybrid
MANETs. In Proceedings of the 4th Annual Conference on Wireless On
demand Network Systems and Services (WONS’07), pages 122–129, Ober-
gurgl, Austria, January 24–26 2007.

[52] Deepak Ganesan, Bhaskar Krishnamachari, Alec Woo, David Culler, Deb-
orah Estrin, and Stephen Wicker. An Empirical Study of Epidemic Al-
gorithms in Large Scale Multihop Wireless Networks. Technical report,
Intel Research, 2002.

[53] Matthias Grossglauser and Martin Vetterli. Locating Mobile Nodes
With EASE: Learning Efficient Routes From Encounter Histories Alone.
IEEE/ACM Transaction on Networking, 14(3):457–469, 2006.

[54] Krishna Gummadi, Ramakrishna Gummadi, Steve Gribble, Sylvia Rat-
nasamy, Scott Shenker, and Ion Stoica. The Impact of DHT Routing
Geometry on Resilience and Proximity. In Proceedings of ACM SIG-
COMM’03, pages 381–394, Karlsruhe, Germany, 2003.

[55] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. King: Esti-
mating Latency between Arbitrary Internet End Hosts. In Proceedings of
the 2nd ACM SIGCOMM Workshop on Internet Measurement (IMW’02),
pages 5–18, Marseille, France, November 2002.

[56] Piyush Gupta and P. R. Kumar. The Capacity of Wireless Networks.
IEEE Transactions on Information Theory, 46(2):388–404, March 2000.

152 BIBLIOGRAPHY

[57] Marc Heissenbüttel, Torsten Braun, Thomas Bernoulli, and Markus
Wächtli. BLR: Beacon-Less Routing Algorithm for Mobile Ad-Hoc Net-
work. Elsevier’s Computer Communications Journal (ECC), 27(11):1076–
1086, 2004.

[58] Pai-Hsiang Hsiao. Geographical region summary service for geographical
routing. SIGMOBILE Mobile Computing and Communications Review,
5(4):25–39, 2001.

[59] IEEE 802.11 Working Group. IEEE Standard 802.11-1999: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.,
1999.

[60] IEEE 802.15 Working Group. Specification of the Bluetooth System, 2002.

[61] IEEE 802.15 Working Group. IEEE Standard for Information Technology-
Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) specifications for Low Rate Wireless Personal Area Networks (LR-
WPANS), 2006.

[62] Eu jin Goh, Hovav Shacham, Nagendra Modadugu, and Dan Boneh.
Sirius: Securing Remote Untrusted Storage. In Proceedings of the 10th
Annual Network and Distributed System Security Symposium (NDSS’03),
pages 131–145, San Diego, CA, USA, February 2003.

[63] David B. Johnson and David A. Maltz. Dynamic Source Routing in Ad
Hoc Wireless Networks. Mobile Computing, 353:153–181, February 1996.

[64] M. Frans Kaashoek and David R. Karger. Koorde: A simple degree-
optimal distributed hash table. In Proceedings of the 2nd Interna-
tional Workshop on Peer-to-Peer System (IPTPS’03), Berkeley, CA, USA,
February 2003.

[65] Gene Kan. Gnutella. In Peer-to-Peer: Harnessing the Power of Disruptive
Technologies, pages 94–122. O’Reilly, Sebastopol, CA, USA, 2001.

[66] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin. Consistent Hashing and Random Trees: Dis-
tributed Caching Protocols for Relieving Hot Spots on the World Wide
Web. In Proceedings of the 29th annual ACM Symposium on Theory of
Computing, pages 654–663. 1997.

[67] David Karger, Alex Sherman, Andy Berkheimer, Bill Bogstad, Rizwan
Dhanidina, Ken Iwamoto, Brian Kim, Luke Matkins, and Yoav
Yerushalmi. Web caching with consistent hashing. In Proceedings of
the 8th International Conference on World Wide Web (WWW’99), pages
1203–1213, Toronto, Canada, 1999.

[68] David R. Karger and Matthias Ruhl. Diminished Chord: A Protocol
for Heterogeneous Subgroup Formation in Peer-to-Peer Networks. In
Proceedings of the 3rd International Workshop on Peer-to-Peer Systems
(IPTPS’04), pages 288–297, San Diego, CA, USA, 2004.

BIBLIOGRAPHY 153

[69] David R. Karger and Matthias Ruhl. Simple Efficient Load Balancing
Algorithms for Peer-to-Peer Systems. In Proceedings of the 3th Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS’04), San Diego, CA,
USA, 2004.

[70] Brad Karp and H. T. Kung. GPSR: Greedy Perimeter Stateless Routing
for Wireless Networks. In Proceedings of the 6th Annual International
Conference on Mobile Computing and Networking (MobiCom’00), pages
243–254, Boston, MA, USA, August 2000.

[71] D. Katz. IP Router Alert Option. RFC 2113, February 1997.

[72] Vikas Kawadia and P.R. Kumar. A Cautionary Perspective on Cross Layer
Design. IEEE Wireless Communication, 12(1):3–11, February 2005.

[73] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick
Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weath-
erspoon, Chris Wells, and Ben Zhao. OceanStore: An Architecture for
Global-Scale Persistent Storage. In Proceedings of the 9th International
Conference on Architectural Support for Programming Languages and Op-
erating Systems, pages 190–201. 2000.

[74] Kendy Kutzner and Thomas Fuhrmann. Measuring Large Overlay Net-
works - The Overnet Example. In Konferenzband der 14. Fachtagung
Kommunikation in Verteilten Systemen (KiVS’05), Kaiserslautern, Ger-
many, 2005.

[75] Kendy Kutzner and Thomas Fuhrmann. The IGOR File System for Effi-
cient Data Distribution in the GRID. In Proceedings of the Cracow Grid
Workshop (CGW’06), Cracow, Poland, October 2006.

[76] Kendy Kutzner and Thomas Fuhrmann. Using Linearization for Global
Consistency in SSR. In Proceedings of the 4th International IEEE Work-
shop on Hot Topics in P2P Systems (HotP2P’07), Long Beach, CA, USA,
March 2007.

[77] Kendy Kutzner, Christian Wallenta, and Thomas Fuhrmann. Securing the
Scalable Source Routing Protocol. In Proceedings of the World Telecom-
munications Congress 2006, Budapest, Hungary, April 30–May 3 2006.

[78] Sanghwan Lee, Zhi-Li Zhang, Sambit Sahu, and Debanjan Saha. On Suit-
ability of Euclidean Embedding of Internet Hosts. In Proceedings of the
Joint International Conference on Measurement and Modeling of Com-
puter Systems (SIGMETRICS/Performance’06), pages 157–168, Saint
Malo, France, 2006.

[79] Jinyang Li, Charles Blake, Douglas S.J. De Couto, Hu Imm Lee, and
Robert Morris. Capacity of Ad Hoc Wireless Networks. In Proceedings
of the 7th Annual International Conference on Mobile Computing and
Networking (MobiCom’01), pages 61–69, Rome, Italy, June 2001.

[80] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and
Robert Morris. A Scalable Location Service for Geographic Ad Hoc Rout-
ing. In Proceedings of the 6th Annual International Conference on Mobile

154 BIBLIOGRAPHY

Computing and Networking (MobiCom’00), pages 120–130, Boston, MA,
USA, 2000.

[81] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and
Replication in Unstructured Peer-to-Peer Networks. In Proceedings of the
16th ACM International Conference on Supercomputing (ICS’02), pages
258–259, New York, NY, USA, June 2002.

[82] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: A Scalable
and Dynamic Emulation of the Butterfly. In Proceedings of the 21st ACM
Symposium on Principles of Distributed Computing, 2002.

[83] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer In-
formation System Based on the XOR Metric. In Proceedings of the 1st
International Workshop on Peer-to-Peer Systems (IPTPS’02), pages 53–
65. 2002.

[84] National Institute of Standards and Technology. US Secure Hash Stan-
dard. Federal Information Processing Standards Publication 180-1, April
1995.

[85] T. S. Eugene Ng and Hui Zhang. Predicting Internet Network Distance
with Coordinates-Based Approaches. In Proceedings of the 21st Annual
Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM’02), volume 1, pages 170–179, 2002.

[86] Lionel M. Ni, Yunhao Liu, Yiu Cho Lau, and Abhishek P. Patil. LAND-
MARC: Indoor Location Sensing Using Active RFID. Wireless Networks,
10(6):701–710, 2004.

[87] Christina Parsa and J. J. Garcia-Luna-Aceves. Improving TCP Perfor-
mance over Wireless Networks at the Link Layer. Mobile Networks and
Applications, 5(1):57–71, 2000.

[88] Charles E. Perkins and Elizabeth M. Royer. Ad hoc On-Demand Distance
Vector Routing. In Proceedings of the 2nd IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA’99), pages 90–100, New
Orleans, LA, USA, February 1999.

[89] Charles E. Perkins and Kuang-Yeh Wang. Optimized Smooth Handoffs
in Mobile IP. In Proceedings of the IEEE Symposium on Computers and
Communications (ISCC’99), page 340, Los Alamitos, CA, USA, 1999.

[90] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. A
Blueprint for Introducing Disruptive Technology into the Internet. ACM
SIGCOMM Computer Communication Review, 33(1):59–64, 2003.

[91] Joseph Polastre, Jason Hill, and David Culler. Versatile Low Power Media
Access for Wireless Sensor Networks. In Proceedings of the 2nd Interna-
tional Conference on Embedded Networked Sensor Systems (SenSys’04),
pages 95–107, Baltimore, MD, USA, 2004.

[92] Ravi Prakash. A Routing Algorithm for Wireless Ad Hoc Networks with
Unidirectional Links. Wireless Networks, 7:617 – 625, November 2001.

BIBLIOGRAPHY 155

[93] Amir Qayyum. Analysis and Evaluation of Channel Access Schemes and
Routing Protocols for Wireless Networks. PhD thesis, University of Paris
Sud, Orsay, France, 2000.

[94] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A Scalable Content-Addressable Network. In Proceedings of
ACM SIGCOMM’01, pages 161–172, San Diego, CA, USA, August 2001.

[95] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker.
Topologically-Aware Overlay Construction and Server Selection. In Pro-
ceedings of the 21th IEEE Conference on Computer Communications (IN-
FOCOM’02), New York, NY, USA, June 2002.

[96] Sylvia Ratnasamy, Mark Handley, Richard M. Karp, and Scott Shenker.
Application-Level Multicast Using Content-Addressable Networks. In
Proceedings of the 3rd International COST264 Workshop on Networked
Group Communication (NGC’01), pages 14–29, London, UK, 2001.

[97] Sylvia Ratnasamy, Brad Karp, Li Yin, Fang Yu, Deborah Estrin, Ramesh
Govindan, and Scott Shenker. GHT: A Geographic Hash Table for Data-
Centric Storage. In Proceedings of the 1st ACM International Work-
shop on Wireless Sensor Networks and Applications, Atlanta, GA, USA,
September 2002.

[98] Sean Rhea, Byung-Gon Chun, John Kubiatowicz, and Scott Shenker. Fix-
ing the Embarrassing Slowness of OpenDHT on PlanetLab. In Proceedings
of the 2nd Workshop on Real, Large, Distributed Systems (WORLDS’05),
San Francisco, CA, USA, December 2005.

[99] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Han-
dling Churn in a DHT. In Proceedings of the USENIX Annual Technical
Conference, Boston, MA, USA, June 2004.

[100] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia Rat-
nasamy, Scott Shenker, Ion Stoica, and Harlan Yu. OpenDHT: a Public
DHT Service and Its Uses. In Proceedings of ACM SIGCOMM’05, pages
73–84, Philadelphia, PA, USA, August 2005.

[101] Rodrigo Rodrigues and Barbara Liskov. High availability in DHTs: Era-
sure Coding vs. Replication. In Proceedings of the 4th International Work-
shop on Peer-to-Peer Systems (IPTPS’05), 2005.

[102] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal
Utilities for NAT (STUN). RFC 5389, October 2008.

[103] Jonathan Rosenberg. Interactive Connectivity Establishment (ICE):
A Protocol for Network Address Translator (NAT) Traversal for Of-
fer/Answer Protocols. RFC 5245, April 2010.

[104] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proceedings
of the IFIP/ACM International Conference on Distributed Systems Plat-
forms (Middleware’01), Heidelberg, Germany, November 2001.

156 BIBLIOGRAPHY

[105] Antony Rowstron and Peter Druschel. Storage management and caching in
PAST, a large-scale persistent peer-to-peer storage utility. In Proceedings
of the 18th ACM Symposium on Operating System Principles (SOSP’01),
Lake Louise, Banff, Canada, October 2001.

[106] Juan A. Sanchez, Rafael Marin-Perez, and Pedro M. Ruiz. Beacon-less
Geographic Routing in Real Wireless Sensor Networks. In Proceedings
of the 4th IEEE Internatonal Conference on Mobile Adhoc and Sensor
Systems (MASS’07), Pisa, Italy, October 2007.

[107] Maurice Lorrain Schlumberger. De-Bruijn Communications Networks.
PhD thesis, Stanford University, Palo Alto, CA, USA, 1974.

[108] Hendrik Schulze and Klaus Mochalski. Internet Study 2008/2009. ipoque
GmbH, 2009. [Online]. Available: http://www.ipoque.com/study/

ipoque-Internet-Study-08-09.pdf Accessed 30-Sep-2010.

[109] Sanjay Shakkottai, Theodore S. Rappaport, and Peter C. Karlsson. Cross-
Layer Design for Wireless Networks. IEEE Communications Magazine,
41(10):74–80, October 2003.

[110] P. Srisuresh and K. Egevang. Traditional IP Network Address Translator
(Traditional NAT). RFC 3022, January 2001.

[111] V. Srivastava and M. Motani. Cross-Layer Design: A Survey and the
Road Ahead. IEEE Communications Magazine, 43(12):112–119, Decem-
ber 2005.

[112] Moritz Steiner, Taoufik En Najjary, and Ernst W Biersack. A global view
of KAD. In Proceedings of the ACM SIGCOMM Internet Measurement
Conference (IMC’07), San Diego, CA, USA, October 2007.

[113] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh
Surana. Internet Indirection Infrastructure. In Proceedings of ACM SIG-
COMM’02, pages 73–86, Pittsburgh, PA, USA, 2002.

[114] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications. In Proceedings of ACM SIGCOMM’01, pages 149–160, San
Diego, CA, USA, August 2001.

[115] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger,
M. Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: A Scal-
able Peer-to-Peer Lookup Protocol for Internet Applications. IEEE/ACM
Transactions on Networking, 11(1):17–32, February 2003.

[116] Daniel Stutzbach and Reza Rejaie. Improving Lookup Performance Over
a Widely-Deployed DHT. In Proceedings of the 25th IEEE International
Conference on Computer Communications (INFOCOM’06), Barcelona,
Spain, April 2006.

[117] Karthikeyan Sundaresan, Vaidyanathan Anantharaman, Hung-Yun Hsieh,
and Raghupathy Sivakumar. ATP: A Reliable Transport Protocol for Ad-
hoc Networks. In Proceedings of the 4th ACM International Symposium

BIBLIOGRAPHY 157

on Mobile Ad Hoc Networking and Computing (MobiHoc’03), pages 64–75,
Annapolis, MD, USA, 2003.

[118] R. Thurlow. RPC: Remote Procedure Call Protocol Specification Version
2. RFC 5531, May 2009.

[119] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. A Survey of
DHT Security Techniques. ACM Computing Surveys, 43(2), June 2009.
http://www.globule.org/publi/SDST_acmcs2009.html, to appear.

[120] András Varga. INET Framework for OMNeT++.
http://inet.omnetpp.org.

[121] András Varga. The OMNeT++ Discrete Event Simulation System. In
Proceedings of the 15th European Simulation Multiconference (ESM’01),
Prague, Czech Republic, June 2001.

[122] Laurent Viennot, Laurent Viennot, and Projet Hipercom. Complexity
Results on Election of Multipoint Relays in Wireless Networks. Technical
report, Report RR-3584, INRIA, France, December 1998.

[123] Guohui Wang, Bo Zhang, and T. S. Eugene Ng. Towards Network Triangle
Inequality Violation Aware Distributed Systems. In Proceedings of the 7th
ACM SIGCOMM Conference on Internet Measurement (IMC’07), pages
175–188, San Diego, CA, USA, 2007.

[124] Dave Winer. XML-RPC Specification, 1999. [Online]. Available: http:

//www.xmlrpc.com/spec Accessed 30-Sep-2010.

[125] Rolf Winter, Thomas Zahn, and Jochen Schiller. Random Landmarking
in Mobile, Topology-Aware Peer-to-Peer Networks. In Proceedings of the
10th International Workshop on Future Trends in Distributed Computing
Systems (FTDCS’04), pages 319–324, Washington, DC, USA, 2004.

[126] Bernard Wong, Aleksandrs Slivkins, and Emin Gün Sirer. Meridian: A
Lightweight Network Location Service without Virtual Coordinates. In
Proceedings of ACM SIGCOMM’05, pages 85–96, Philadelphia, PA, USA,
August 2005.

[127] Kai Xu, Ye Tian, Nirwan Ansari, and Senior Member. TCP-Jersey for
Wireless IP Communications. IEEE Journal on Selected Areas in Com-
munications, 22:747–756, 2004.

[128] Wei Ye, John Heidemann, and Deborah Estrin. Medium Access Con-
trol with Coordinated Adaptive Sleeping for Wireless Sensor Networks.
IEEE/ACM Transactions on Networking, 12(3):493–506, 2004.

[129] Thomas Zahn and Jochen Schiller. MADPastry: A DHT Substrate for
Practicably Sized MANETs. In Proceedings of the 5th Workshop on Ap-
plications and Services in Wireless Networks (ASWN’05), Paris, France,
June 2005.

158 BIBLIOGRAPHY

[130] Bo Zhang, T. S. Eugene Ng, Animesh Nandi, Rudolf Riedi, Peter Dr-
uschel, and Guohui Wang. Measurement Based Analysis, Modeling, and
Synthesis of the Internet Delay Space. In Proceedings of the 6th ACM
SIGCOMM Conference on Internet Measurement (IMC’06), pages 85–98,
Rio de Janeriro, Brazil, 2006.

[131] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D.
Joseph, and John D. Kubiatowicz. Tapestry: A Resilient Global-scale
Overlay for Service Deployment. IEEE Journal on Selected Areas in Com-
munications, 22(1):41–53, January 2004.

[132] Jerry Zhao and Ramesh Govindan. Understanding Packet Delivery Per-
formance in Dense Wireless Sensor Networks. In Proceedings of the 1st
International Conference on Embedded Networked Sensor Systems (Sen-
Sys’03), Los Angeles, CA, USA, November 2003.

[133] Han Zheng, Eng Keong Lua, Marcelo Pias, and Timothy G. Griffin. Inter-
net Routing Policies and Round-Trip-Times. In Proceedings of the Passive
and Active Measurement Workshop, Boston, MA, USA, March 2005.

