Analyse des BMP2-Einflusses auf die Knorpelregeneration mittels quantitativer RT-PCR in vitro und in vivo

Jonas Christian François Wilisch

Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Medizin
genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. E. J. Rummeny
Prüfer der Dissertation:
 1. Priv.-Doz. Dr. St. W. Vogt
 2. Univ.-Prof. Dr. J. Schlegel

Meinen Lieben
Abkürzungsverzeichnis

1 Einleitung

1.1 Gelenkknorpel
 1.1.1 Aufbau und Funktion
 1.1.2 Sox9
 1.1.3 Cbfa1 resp. Runx2
 1.1.4 Bone Morphogenetic Protein 2 (BMP2)

1.2 Knorpelschäden
 1.2.1 Ätiologie
 1.2.2 Einteilungen

1.3 Regenerationsmöglichkeiten und therapeutische Ansätze
 1.3.1 Stammzellrekrutierende Verfahren resp. Mikrofrakturierung
 1.3.2 Autologe und Matrix-induzierte Chondrozytenimplantation (ACI/MACI)
 1.3.3 Knorpel-Knochen-Transplantationen z.B. Osteochondral Autograft Transplantation (OATS)
 1.3.4 Ausblick

1.4 Ziele dieser Arbeit

1.5 Polymerase-Kettenreaktion (PCR)
 1.5.1 Die Entwicklung der molekularen DNA-Analytik
 1.5.2 Funktionsweise der Polymerase-Kettenreaktion (PCR)
 1.5.3 Primerdesign
 1.5.4 Quantitative PCR
 1.5.5 Real-Time-PCR
 1.5.6 Reverse Transkription (RT-PCR)

2 Material und Methodik

2.1 Förderung

2.2 Tierversuche
 2.2.1 Begründung
 2.2.2 Tierart
 2.2.3 Herkunft/Züchtungsort
 2.2.4 Tierhaltung
 2.2.5 Versuchsgruppen
 2.2.6 Operatives Vorgehen

2.3 Zellkultivierung sowie Vektor-Generierung und -Transduktion
 2.3.1 Generierung des nicht-viralen Vektors und Einschleusung
Abkürzungsverzeichnis

- % – Prozent
- °C – Grad Celsius
- µg – Mikrogramm
- µl – Mikroliter
- 293T-Zellen – HEK (Human Embryonic Kidney)-Zellen welche zusätzlich das SV40-large T-Antigen exprimieren
- ACI – Autologe Chondrozyten-Implantation
- AMV – Avian Myeloblastosis Virus
- AT – Adenin Thymin (komplementäre DNA-Basen)
- BMP2 – Bone Morphogenetic Protein 2 (hBMP2 – humanes BMP2)
- Bp – Basenpaare
- CD – Campomele Dysplasie
- cDNA – komplementäre DNA (nach reverser Transkription von RNA)
- Col – Kollagen, z.B. Col2 für Kollagen Typ 2
- DMEM - Dulbecco’s Modified Eagle Medium
- DNA – Desoxyribonukleinsäure
- dsDNA – Doppelstrang-DNA
- EDTA – Ethylenammedintetraacetat
- et al. – et altera
- EZM – Extrazelluläre Matrix
- Fam – Reporterfluor der RNA-Sonden
- GAG-Ketten – Glycosaminoglykanketten
- GC – Guanin Cytosin (komplementäre DNA-Basen)
- HA – Hyaluron-Säure
- hBMP2-COPROG – hBMP2-Copolymer-protected-Gene-Vector
• hBMP2-pBullet – viraler hBMP2-Vektor, ein Derivat des MoMLV-Vektors
• HD – Homeodomain
• HMG-box – High mobility group box
• HSS-score – Hospital for Special Surgery score
• i.v. – intravenös
• ICRS – International Cartilage Repair Society
• Ihh – Indian Hedgehog
• IU – International unit
• kg – Kilogramm
• l – Liter
• LTR – Lange terminale Repetitionen der Virus-RNA
• m – Meter
• m² – Quadratmeter
• MACI – Matrix induzierte autologe Chondrozyten Implantation
• mg – Milligramm
• Mg²⁺ – Magnesium
• min – Minute
• ml – Milliliter
• mm – Millimeter
• MoMLV – Moloney Murine Leukemia Virus
• mRNA – Messenger Ribonukleinsäure
• MRT – Magnetresonanztomographie
• MSZ – Mesenchymale Stammzelle
• NaCl – Natriumchlorid
• NCBI – National Center for Biotechnology Information
• NFQ – Non-fluorescent Quencher
• NZW – Weiße Neuseeländer Kaninchen
• OATS – Osteochondrale Autografttransplantation (Osteochondrales Autologes Transfer-System)
• OD – Osteochondrosis dissecans
• Oligo-dT – Basensequenz aus 15-25-Desoxythymidinen
• PBS – Phosphatgepufferte Salzlösung (englisch phosphate buffered saline)
• PCR – Polymerasekettenreaktion
• pH – pondus Hydrogenii oder potentia Hydrogenii
• PTHrP – parathyreoid related Peptid
• qRT-PCR – quantitative RT-PCR
• RNase – Ribonuklease
• rRNA – ribosomale Ribonukleinsäure
• RT-PCR – PCR mit vorausgegangener reverser Transkription
• s.c. – subcutan
• SCID-X1 – Severe Combined Immunodeficiency
• SEM – Standard Error of the Mean, Standardfehler
• SIN-Vektor – Self inactivating Vector
• Tet-System – Über Tetracyclin regulierbares Vektorsystem
• TGFß – Transforming growth factor ß
• Tm – Schmelztemperatur
• tRNA – Transfer-Ribonukleinsäure
• UV – Ultraviolett
• VSV.G. – Glykoprotein G des Vesicular-Stomatitis-Virus (Hüllprotein)
• ZNS – Zentrales Nervensystem
• ZPF – Zentrum für präklinische Forschung (am Klinikum rechts der Isar)
1 Einleitung

1.1 Gelenkknorpel

1.1.1 Aufbau und Funktion

Der Hauptanteil des Matrixgerüstes des hyalinen Knorpels besteht aus Kollagen-Typ-II-Fasern (Col2). Im Gegensatz hierzu besteht der Faserknorpel zum Großteil aus Kollagen Typ I (Col1). Daneben findet sich in weit
geringeren Anteilen Kollagen Typ V, IX, und XI. Auf der Fähigkeit der Proteoglykan, freies Wasser zu binden, beruhen die typischen viskoelastischen Eigenschaften des hyalinen Knorpels. Für die Elastizität und Resistenz gegen Scherkräfte sind die Kollagenfibrillen verantwortlich. Die Schichtdicke des hyalinen Gelenkknorpels ist je nach Topographie unterschiedlich und kann im Bereich der Patella 7-8 mm erreichen (Fritz, Gaissmaier et al. 2006).

Proteoglykane bestehen aus einem Core-Protein und an dieses kovalent gebundene polyanionische Glykosaminoglykanketten (GAG-Ketten). Die Monomere bilden ein Netzwerk, indem sie sich untereinander über Hyaluronsäure und anderen Bindungsproteine verbinden und so die Zwischenräume zwischen den Kollagenfasern ausfüllen.

1 Einleitung

1.1.2 Sox9

Sox9 gehört zur Familie der Sox-Transkriptionsfaktoren. Diese sind durch eine High-mobility-group-(HMG)-Box-DNA-Bindungsdomäne charakterisiert. Der Name stammt von der großen Homologie zwischen den HMG-Boxen der Sox-Familie und der des SRY-Faktors ab, welche auch als SRY-Box bekannt ist. Der SRY-Faktor spielt eine Rolle in der Geschlechtsdeterminierung. Sox9 ist ein typischer Transkriptionsfaktor. Es bindet an eine potente

Abb. 2 aus Stanton, Underhill et al. 2003: Schematische Darstellung der Chondrogenese
Aktivierungsdomäne und an eine spezifische Sequenz in einer kleinen Furche der DNA (Wegner 1999).

Die essentielle Rolle, die Sox9 für die Kondensation der Chondrozyten und somit für die Einleitung der Differenzierung dieser spielt, wurde in einer Versuchsreihe von Bi et al. im Jahre 1999 dargestellt. Es zeigte sich, dass Sox9-/--Zellen aus dem Verbund der kondensierenden Chondrozyten ausgeschlossen wurden und diese Zellen kein Col2a1, Col9a2, Col11a2 und Aggrecan bildeten. Zudem bildeten in derselben Versuchsreihe induzierte Teratome zwar alle üblicherweise vorhandenen Gewebetypen, jedoch kein Knorpelgewebe (Bi, Deng et al. 1999).

1.1.3 Cbfa1 resp. Runx2

Cbfa1 (core binding factor 1), welches auch Runx2 genannt wird, gehört zur Familie der Runt-Domänen-Transkriptionsfaktoren. Es wird vor allem in Osteoblasten, aber auch in hypertrophen Chondrozyten sowie zu Beginn der chondrogenetischen, mesenchymalen Kondensation exprimiert (de Crombrugghe, Lefebvre et al. 2001).

1 Einleitung

![Diagramm](image)

1.1.4 Bone Morphogenetic Protein 2 (BMP2)

Einleitung

1 Einleitung

1.2 Knorpelschäden

1.2.1 Ätiologie

Die Ursachen für Knorpeldefekte können vielseitig sein. Neben Traumata und chronischer Überbelastung bei Sportlern, Fehlstellungen und/oder

1.2.2 Einteilungen

ermittelt werden und ermöglichen, Knorpelschäden bereits in frühen Stadien zu diagnostizieren und bei Beschwerden frühzeitig zu therapieren.

\textbf{Grad 0} = Normalbefund, intakter Knorpel mit glatter, weißer Oberfläche und Konsistenz

\textbf{Grad 1} = Erweichung, aber glatt erhaltene Oberfläche ohne Fibrillation

\textbf{Grad 2} = Aufgefaserte Oberfläche mit Einrissen und deutlicher Fibrillation

\textbf{Grad 3} = Tiefe Fissuren, Ulzera oder Krater mit instabilen oder unterminierten Rändern. Der subchondrale Knochen ist noch nicht erreicht

\textbf{Grad 4} = Vollschichtiger Knorpelverlust bis auf den subchondralen Knochen

Typ I oder lineare Knorpelfraktur (Linear): isolierte lineare Knorpelfraktur, die bis zum subchondralen Knochen reichen kann.

Typ II oder sternförmige Läsion (Stellate): mehrere divergierende Frakturlinien, z.T. mit Ausbruch eines zentralen Flakes.

Typ III oder lappenförmiger Ausriss (Flap): Ausriss einer Knorpellamelle, die jedoch noch mit dem umgebenen Knorpel verbunden ist.

Typ IV oder Kratertyp (Crater): Ausriss und Ablösen eines Knorpelstücks vom subchondralen Knochen.

Typ V oder Fibrillationstyp (Fibrillation): feine, faserförmige Aufruhung der Knorpeloberfläche ohne Ablösung.

Typ VI oder degenerativer Typ (Degradation): der Knorpel ist erweicht, kleinere und größere Knorpelstücke sind abgelöst.

<table>
<thead>
<tr>
<th>Stadien</th>
<th>Röntgen</th>
<th>MRT</th>
<th>Arthroskopie</th>
<th>Befund</th>
</tr>
</thead>
<tbody>
<tr>
<td>I A</td>
<td>Eventuell verminderte Knorpeldicke</td>
<td>Bereits erstarnte, geringere Signalintensität T1, Oden T2, kein Genuzs zum</td>
<td>Intakter Knorpel</td>
<td>Knochennarbe</td>
</tr>
<tr>
<td>II A</td>
<td>Verminzerte Knorpeldicke</td>
<td>Mittlere Signalintensität T1/T2, Signalanisotropie nach L.-Gd., verminderte Signalintensität T2, Genuzs zum, Knorpeldefekt</td>
<td>Knorpel demarkiert, aber intakt</td>
<td>Demarkation ohne Sklerose, Knorpel intakt</td>
</tr>
<tr>
<td>II B</td>
<td>Verminderte Knorpeldicke, Abgrenzung durch Sklerose</td>
<td>Idem, kein Signalanisotropie nach L.-Gd.</td>
<td>Knorpel demarkiert, aber intakt</td>
<td>Demarkation mit Sklerose, größer, Knorpel intakt</td>
</tr>
<tr>
<td>III A</td>
<td>Partiell gequetsches Fragment</td>
<td>Mittlere Signalintensität T1/T2, Signalanisotropie nach L.-Gd. im Knorper, kein Genuzs zum, Knorpeldefekt</td>
<td>Knorpel partiell gequetscht, Knorpel intakt</td>
<td>Partielle Ablösung, vitales Fragment, Knorpel intakt, ohne Sklerose</td>
</tr>
<tr>
<td>III B</td>
<td>Partiell gequetsches Fragment, Sklerosezone</td>
<td>Idem, aber kein Signalanisotropie nach L.-Gd.</td>
<td>Knorpel partiell gequetscht, intakt</td>
<td>Partielle Ablösung, vitales Fragment, oder mangelnder Knorpel, deutliche Sklerose</td>
</tr>
<tr>
<td>IV A</td>
<td>Komplett gequetsches Fragment mit/ohne Dislokation</td>
<td>Hochintensive Signalintensität, Genuzs zum, Knorpeldefekt, Signalanisotropie im Knorper nach L.-Gd.</td>
<td>Freies Discokat</td>
<td>Vitales freies Fragment, keine Sklerose</td>
</tr>
<tr>
<td>IV B</td>
<td>Komplett gequetsches Fragment mit/ohne Dislokation</td>
<td>Idem, kein Signalanisotropie im Knorper nach L.-Gd.</td>
<td>Freies Discokat</td>
<td>Vitales freies Fragment, deutliche Sklerose</td>
</tr>
<tr>
<td>V A</td>
<td>Zystische verminderte Knorpeldicke, keine Sklerose</td>
<td>Niedrige Signalintensität T2 (Anfangsphase)</td>
<td>Knorpel intakt oder Knorpeldefekt</td>
<td>Zyste ohne Sklerose</td>
</tr>
<tr>
<td>V B</td>
<td>Idem, Sklerosezone</td>
<td>Idem, Genuzs zum, niedrige Signalintensität T1/T2</td>
<td>Idem</td>
<td>Zyste mit Sklerose</td>
</tr>
</tbody>
</table>

Abb. 5 aus Imhoff und König 2003: Einteilung osteochondraler Läsionen des Knies

Einleitung

Bis zum heutigen Tage fehlt eine einheitliche Klassifikation. Es bestehen lediglich mehrere Systeme nebeneinander. Eine einheitliche Klassifikation
wäre zur Erforschung und Verbesserung der Diagnose- und Therapieoptionen wünschenswert.

ICRS Grade 0 - Normal

ICRS Grade 1 – Nearly Normal
Superficial lesions. Soft indentation (A) and/or superficial fissures and cracks (B)

ICRS Grade 2 – Abnormal
Lesions extending down to ~50% of cartilage depth

ICRS Grade 3 – Severely Abnormal
Cartilage defects extending down >50% of cartilage depth (A) as well as down to calcified layer (B) and down to but not through the subchondral bone (C). Blisters are included in this Grade (D)

ICRS Grade 4 – Severely Abnormal

Abb. 6 aus: Brittberg, Aglietti et al. 2000: Gradeinteilung der Knorpelschäden nach der International Cartilage Repair Society (ICRS)
1.3 Regenerationsmöglichkeiten und therapeutische Ansätze

Einleitung

1.3.1 Stammzellrekrutierende Verfahren resp. Mikrofrakturierung

1.3.2 Autologe und Matrix-induzierte Chondrozytenimplantation (ACI/MACI)

1 Einleitung

1.3.3 Knorpel-Knochen-Transplantationen z.B. Osteochondral Autograft Transplantation (OATS)

Einleitung

größer als der des ausgestanzten Defektbereichs, welches eine Press-Fit-Insertion ermöglicht.

Der Vorteil dieser Technik liegt in der Qualität des Transplantats, welches aus lebendem hyalinen Knorpel und Knochen besteht. Der Nachteil ist jedoch die Morbidität der Donorseite. Diese füllt sich zwar zum Teil mit Faserknorpel auf, die biologische Qualität entspricht jedoch nicht der des ursprünglichen Knorpels. Zudem sind die Spenderregionen limitiert. Es ist darauf zu achten, dass der Zylinder genau mit dem umgebenden Knorpel abschließt.

Indikationen für diese Technik sind Knorpelschäden des Knies der Grade III/IV nach Outerbridge, die einen Durchmesser von 3 cm nicht überschreiten, sowie fokale Osteonekrosen oder Defekte bei Osteochondrosis dissecans Grad III/IV. Behandelt werden können aber auch Knorpelschäden des Capitulum und der Trochlea humeri (Ellenbogen) sowie des Talus (Sprunggelenk).

randomisiert. Bei Patienten der ersten Gruppe wurde eine Mikrofrakturierung, in der zweiten Gruppe eine OATS-Operation durchgeführt. Die Patienten wurden anhand des modifizierten Hospital for Special Surgery (HSS) und des ICRS-Scores evaluiert. Die Untersuchungen zeigten nach dem modifizierten HSS und dem ICRS-Score gute bis exzellente Ergebnisse bei 96% in der OATS-Gruppe im Vergleich zu 52% in der Gruppe der Mikrofrakturierung. Nach durchschnittlich 6,5 Monaten konnten nach OATS-Operation 93%, nach Mikrofrakturierung 52% der Athleten das sportliche Niveau, welches sie vor der Verletzung hatten, wieder erlangen (Gudas, Stankevicius et al. 2006).

1.3.4 Ausblick
In Erforschung sind zurzeit Therapieoptionen, die auf Methoden des „Tissue Engineerings“ beruhen. Hierbei wird in vitro biologisches Ersatzgewebe unter Kontrolle der physikalisch-chemischen sowie mechanischen Parameter synthetisiert (Stoltz, Bensoussan et al. 2006). Eine wichtige Rolle spielen dabei Wachstumsfaktoren, Zytokine, die eine zusätzliche Stimulation zur Differenzierung, Migration, Proliferation und Matrixsynthese der Zellen bewirken. In Kombination mit gentherapeutischen Methoden können nach Implantation die Proliferation, Synthese und Differenzierung der Zellen über die Expression von Genen und die Synthese von Wachstumsfaktoren gesteuert werden (Cucchiarini and Madry 2005). Der Vorteil gentherapeutischer Methoden gegenüber matrixassoziierter oder direkter Applikation von Wachstumshormonen durch Injektion liegt in den geringeren
Einleitung

regionalen und systemischen Nebenwirkungen bei länger anhaltendem Effekt.

Als besonders effizientes und stabiles Vektorsystem stellte sich der VSV.G pseudotyped retroviral vector (pBullet) heraus. Vogt et al. ermittelten eine Transduktionsrate von über 90%, wobei die Expression der Reportergene auch nach 52 Wochen hoch war (Vogt, Ueblacker et al. 2008).
1.4 Ziele dieser Arbeit

Knorpelschäden sind häufige Verletzungen, die zu Morbidität und einem starken Leidensdruck führen können. Es wurden mehrere Methoden, wie die Mikrofrakturierung, autologe Chondrozyten-Implantation (ACI) und die osteochondrale Autografttransplantation (OATS), experimentell und klinisch entwickelt und erprobt. Sie finden klinische Anwendung, führen jedoch entweder zu einer nicht vollständigen Heilung des hyalinen Knorpels oder zu einer iatrogenen Läsion bei der Gewebeentnahme (siehe hierzu auch Punkt 1.3).

1 Einleitung

nach stabiler Transduktion und stabiler Expression des für BMP2 kodierenden Gens untersucht. Der Langzeiteffekt bleibt somit unklar.

Ziel dieser Arbeit ist die Analyse von BMP2-überstimulierten Knorpelregeneraten mittels quantitativer RT-PCR (qRT-PCR) sowohl in vitro als auch in vivo in einem Kaninchenmodell.

Während der vorbereitenden Literaturrecherche kristallisierten sich fünf Marker heraus, die in der Chondrogenese eine wichtige Rolle spielen oder spezifisch für verschiedene Stadien derselben sind:

- **Kollagen Typ I** als Bestandteil des reparaturbedingten Faserknorpels
- **Kollagen Typ II** als essentieller Bestandteil des hyalinen Knorpels und als Marker der Proliferationsphase der Chondrogenese
- **Kollagen Typ X** als Marker des hypertrophen Knorpels
Einleitung

- **Sox9**, ein Transkriptionsfaktor, der für die Reifung der mesenchymalen Zellen zu reifen Chondrozyten eine essentielle Rolle besitzt und gleichzeitig den Übergang in die hypertrophe Phase bremst.

- **Cbfa1/Runx2**, ein Transkriptionsfaktor, der die Fähigkeit besitzt, die Differenzierung zu hypertrophen Chondrozyten zu fördern und damit einen Gegenspieler zu Sox9 bildet.

Zusätzlich wurde die Expression von BMP2, einem der wichtigsten Wachstumsfaktoren in der Osteo- und Chondrogenese mit osteo- und chondroinduktivem Potential, untersucht.

Für diese Arbeit wurden zunächst Primer und Sonden der fünf erstgenannten Markerproteine etabliert. Mit Hilfe der qRT-PCR konnte nun die Wirkung des Transkriptionsfaktors BMP2 auf die Chondrogenese und die regenerative Fähigkeit am Kaninchenmodell analysiert werden. Hierfür wurde isolierten und proliferierten Chondrozyten das Gen des Wachstumsfaktors BMP2 mithilfe von zwei Vektorsystemen transduziert. Zum einen über eine Plasmid-DNA (COPROG), zum anderen über ein virales Vektorsystem (pBullet).

Zunächst wurde die Proteinsynthese viral transduzierter Chondrozytenkulturen nach 7 und 10 Tagen mittels der in dieser Arbeit etablierten qRT-PCR untersucht. Des Weiteren wurden Chondrozyten nach
Zellkultur in Knorpel-Knochendefekte reimplantiert und die Transkription der Markerproteine im entstandenen Regeneratknorpel analysiert.

1.5 Polymerase-Kettenreaktion (PCR)

1.5.1 Die Entwicklung der molekularen DNA-Analytik

Noch in den 70er Jahren war die Desoxyribonukleinsäure eines der am schwersten zu analysierenden Moleküle. Untersuchungen des Informationsgehalts der Basensequenz waren nur indirekt möglich, z. B. dem Informationsfluss folgend durch RNA- resp. Protein-Sequenzierungen oder durch genetische Analysen an geeigneten Organismen.

Die Untersuchung der DNA vereinfachte sich erheblich mit dem Aufkommen einfacher technischer Verfahren zur Vervielfältigung definierter DNA-Sequenzen, wodurch diese einer Analyse zugänglich wurden. Mit Hilfe der

1.5.2 Funktionsweise der Polymerase-Kettenreaktion (PCR)
1 Einleitung

Matrize für die enzymatisch katalysierte Polymerisation von Desoxyribonukleotiden, wodurch wieder doppelsträngige DNA-Moleküle entstehen.

Abb. 7 aus Bustin 2005: Schematische Repräsentation eines PCR-Zyklus. (Hier einer Real-Time PCR mit Molecular-Beacon-Sonden). Die Temperatur wird zunächst erhöht, so dass die DNA-Doppelstränge denaturieren. Hiernach wird die Temperatur auf die Annealing-Temperatur gesenkt, so dass die Primer komplementär an die Zielsequenz binden. Nun wird die Temperatur erneut auf die für die DNA-Polymerase spezifische Temperatur erhöht und die Sequenz repliziert.

Abb. 8 aus NBII: Die Doppelstrang-DNA wird durch Hitzeeinwirkung denaturiert. Die Primer bilden die Startpositionen für die Replikation durch die DNA-Polymerase. Wird der Zyklus mehrmals wiederholt, steigt die Anzahl der primerpaarspezifischen Sequenz exponentiell.
Die als Primer bezeichneten Oligodesoxyribonukleotide definieren dabei den zu kopierenden Sequenzabschnitt, indem sie an Orten komplementärer Sequenz mit der Ziel-DNA hybridisieren und als Starter für die Polymerisation dienen. Hierfür wird nach der Denaturierung der DNA-Doppelstrangmoleküle die Temperatur verringert (Annealing-Temperatur), wodurch sich die Primer an die Sequenzen binden.

Nun wird die Temperatur erneut erhöht und eine DNA-Polymerase repliziert die Sequenz. Dieser Zyklus wird mehrmals wiederholt, so dass die Produktmenge exponentiell ansteigt. Dieser Prozess der exponentiellen Produktbildung wird von verschiedenen Faktoren begrenzt und erreicht schließlich einen Plateauwert.

Damit wurde eine schnelle, einfache und automatisierbare in-vitro-Amplifikation definierter DNA-Fragmente aus geringen Mengen heterogener DNA möglich. Eine Übersicht zu Anwendungen der PCR-Technik geben

1.5.3 Primerdesign

Das Primerdesign ist von mehreren Faktoren abhängig, die beachtet werden müssen:

1. Die beiden Primer eines Primerpaares sollten eine ähnliche Schmelztemperatur (T_m) besitzen. Diese ist bei Sequenzen einer Länge von weniger als 25 Basenpaaren (bp) annäherungsweise zu errechnen. Hierfür wird einer GC-Bindung 4°C und einer AT-Bindung...
1 Einleitung

2°C als Beitrag zur Schmelztemperatur zugewiesen (Thein and Wallace 1986).

2. Die Primer sollten eine Länge von 18-22 bp besitzen.

3. Das PCR-Produkt sollte zwischen 100-1000 bp lang sein.

4. Handelt es sich um eine Untersuchung von mRNA, ist es wichtig, die Primer möglichst Intronübergreifend auszuwählen, so dass sie von einem Exon zum nächsten reichen. Ist dies nicht möglich, können die Primerpaare so platziert werden, dass sie jeweils auf verschiedenen Exons liegen. So kann verhindert werden, dass fälschlicherweise DNA-Sequenzen repliziert werden und ein falsch positives Ergebnis liefern.

Hilfestellung bei der Ermittlung der Primer bieten verschiedene Programme wie z.B. „PrimerSelect“ des Produkts „Lasergene“ der Firma „DNASTAR“. Es
gibt viele weitere. Diese ermöglichen, Sequenzen aus Datenbanken herunter zu laden, verschiedene Kriterien und die Lokalisation der gewünschten Primer anzugeben und dann aus einer Liste die Primer auszuwählen.

Die oben genannten Regeln sind jedoch nicht absolut, so dass die Primer überprüft und der Versuchsaufbau angepasst werden muss. Dieses ist durch die Modifikation vier essentieller Parameter einer PCR möglich: 1. die Mg²⁺-Konzentration, 2. die Annealing-Temperatur, 3. der pH-Wert und 4. die Zyklenanzahl.

1.5.4 Quantitative PCR

Ein weiteres Verfahren ist die Real-Time-PCR.

1.5.5 Real-Time-PCR
Dieses ist wohl das meistgenutzte Verfahren. Hier wird die Produktakkumulation in Echtzeit (Real-Time) verfolgt. Dieses geschieht störungsfrei über Fluoreszenzlicht, welches in Abhängigkeit der
Produktmenge generiert wird und zur Quantifizierung ausgenutzt werden kann (Arya, Shergill et al. 2005).

Ein weiterer, heute häufig genutzter Fluoreszenzfarbstoff ist „SYBER-Green I“. Dieser Cyaninfarbstoff hat eine ca. 100mal stärkere Affinität zu dsDNA als Ethidiumbromid und kann durch Blaulicht angeregt werden. Geschieht dies,
verstärkt sich die Fluoreszenz im gebundenen Zustand um das 1000fache gegenüber dem freien Zustand. SYBER-Green I ist somit sehr gut geeignet, um doppelsträngige Produkte zu quantifizieren (Arya, Shergill et al. 2005; Kubista, Andrade et al. 2006).

Zu den bekanntesten Varianten von Real-time-Detektionssystemen, die FRET zur Generierung sequenzspezifischer Fluoreszenzsignale nutzen, zählen:

- **Hybridisierungssonden**: Hybridisierungssonden bestehen aus einem Sondenpaar. Sie hybridisieren auf der Zielsequenz an nah beieinander gelegenen Stellen. Die erste Sonde hat an Ihrem Ende ein Donorfluorophor, die zweite ein Akzeptorfluorophor. Angereg wird sie durch Licht einer Wellenlänge, die vom Donorfluorophor absorbiert wird.

Einleitung

1 Einleitung

Abb. 12 Modifiziert aus Jähnichen "Scorpions Probes.jpg" 2005

1.5.6 Reverse Transkription (RT-PCR)
Möchte man die Genaktivität messen, muss zunächst die Total RNA in cDNA mittels einer reversen Transkriptase (RT) umgeschrieben werden.

Dieser Schritt spielt eine wichtige Rolle für die adäquate Quantifizierung der Aktivität. Eine schematische Darstellung der einzelnen Schritte sowie derer Variations- und Fehlerquellen sind in Abbildung 13 dargestellt.

- **Sequenzspezifische Primer** werden oft verwendet, wenn eine geringe Anzahl an RNA analysiert werden sollen. Der Nachteil liegt hier in der Sekundär- bzw. Tertiärstruktur der RNA, die nur schwer vorausgesagt werden kann und nicht nur von der Sequenz, sondern auch von der Temperatur abhängig ist. So müssen oft zunächst mehrere Primer getestet werden, um zum Schluss den auszuwählen, der die größte Ausbeute ermöglicht.

- **Oligo(dT)-Primer** bestehen aus einer Aneinanderreihung von Thymidin-Basen. Sie binden an den Poly(A)-Schwanz, der an vielen 3'-Enden eukaryotischer mRNA zu finden ist und führen so zu einer
Transkription des gesamten Messengers. Dies ist vor allem von Interesse, wenn die cDNA geklont werden soll. Nachteilig wirkt sich aus, dass nur mRNA, aber keine tRNA oder rRNA transkribiert werden, die so auch nicht als interner Standard verwendet werden können. Zudem steht auch hier die Sekundär- bzw. Tertiärstruktur der mRNA einer adäquaten Hybridisierung im Wege oder die Transkription erreicht nicht immer die primerspezifische Sequenz für die darauf folgende PCR.

2 Material und Methodik

2.1 Förderung
Die vorliegende Arbeit ist Teil eines von der Deutschen Forschungsgemeinschaft (DFG) geförderten Projektes.

(DFG-Geschäftszeichen: MA 2454/2-1, 2-2)

2.2 Tierversuche
Die Tierhaltung sowie die Tierversuche wurden im Zentrum für präklinische Forschung (ZPF) am Klinikum rechts der Isar unter der Leitung von Tierärztin Gabriele Wexel durchgeführt (das ZPF gehörte vor 2005 zum Institut für experimentelle Onkologie und Therapieforschung, als Arbeitsgruppe Experimentelle Chirurgie)

2.2.1 Begründung
Da es sich um ein komplexes Geschehen handelt, ist die Untersuchung der Behandlung von osteochondralen Defekten im Hinblick auf eine Heilung vom intakten Gesamtorganismus abhängig. Es sind verschiedene Gewebestrukturen, hauptsächlich hyaliner Knorpel und subchondraler
2 Material und Methodik

Die Nutzung der Tiere für die beschriebenen Versuche wurde von der Regierung von Oberbayern genehmigt (Aktenzeichen: 55.2-1-54-2531-25-05).

2.2.2 Tierart

Als Versuchstiere wurden ausgewachsene (3,5-4 kg Körpergewicht, geschlossene Epiphysenfugen), weibliche weiße Neuseeländer Kaninchen (NZW) verwendet.

2.2.3 Herkunft/Züchtungsort

Charles River WIGA Deutschland GmbH, Sandhofer Weg 7, D-97633 Sulzfeld
2.2.4 Tierhaltung

Nach Lieferung der Kaninchen wurden diese gewogen und einer tierärztlichen allgemeinen Untersuchung unterzogen, um den aktuellen Gesundheitszustand festzustellen und eventuelle Verletzungen durch den Transport auszuschließen. Danach wurde den Kaninchen eine mindestens 7-tägige Eingewöhnungszeit gewährt. Der Verlauf des Gesundheitszustandes
wurde durch weitere tierärztliche Untersuchungen, Kontrolle des Körpergewichtes und Kontrolle des Blutbildes überwacht.

2.2.5 Versuchsgruppen

<table>
<thead>
<tr>
<th>Versuchsgruppe</th>
<th>Anzahl</th>
<th>Gruppengröße</th>
<th>Tierzahl</th>
<th>Reservetiere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrollgruppe</td>
<td>2</td>
<td>8</td>
<td>16</td>
<td>2</td>
</tr>
</tbody>
</table>

- **BMP2 non viral:** Matrix + autologe Chondrozyten + nicht-viraler BMP2-Vektor (hBMP2-COPROG)

- **BMP2 retroviral/RV:** Matrix + ex vivo retroviral BMP2-transduzierte autologe Chondrozyten (hBMP2-pBullet)

- **Kontrolle:** Matrix + autologe Chondrozyten

2.2.6 Operatives Vorgehen

Blutentnahme

Vor den beiden Eingriffen und vor der Euthanasie wurde den Tieren im Wachzustand aus der Ohrarterie 5 ml Blut entnommen. Das Blut diente der Erstellung eines kleinen Blutbildes, Differentialblutbildes und der Serumgewinnung. Das Serum wurde später zur Suspension der Chondrozyten verwendet. Die Blutabnahme erfolgte im Wachzustand, da
Material und Methodik

durch die Blutdrucksenkung in Narkose eine Blutabnahme aus peripheren Gefäßen erschwert ist und für den Versuch das Serum möglichst frei von Medikamenten- und Narkotikarückständen sein sollte.

Eingriffe

Die Tiere wurden vor den Eingriffen nicht nüchtern gehalten. Zur Verlaufskontrolle und zur Medikamentendosierung wurden die Tiere vor jedem Eingriff gewogen.

Zweiter Eingriff: Nach weiteren zwei Wochen, am Tag 0, erfolgte unter Vollnarkose der zweite, etwa 20-minütige Eingriff am linken Knie. Auch hier wurde eine mediale Arthrotomie unter sterilen Bedingungen durchgeführt und
die Patella ebenfalls zur Darstellung der Trochlea patellaris nach lateral luxiert. Danach wurden in die Trochlea zwei 3 mm tiefe ineinander übergehende Defekte mit einem Bohrer (Durchmesser 3,6 mm) gesetzt (Abbildung 15).

Abb. 15 Präparation eines standardisierten osteochondralen Defektes. Es wurde eine mediale parapatellare Arthrotomie durchgeführt und die Patella nach lateral luxiert. Hierfür wurde ein Stahlbohrer (3,6 mm Durchmesser) mit einer Anschlageinrichtung (A) verwendet. Es wurden 2 Defekte von 3 mm Tiefe in die Trochlea, 1 cm proximal der Knorpel/Knochengrenze der Notch gesetzt (B).

Narkose, intraoperative Analgesie und Antibiose

Die Narkoseeinleitung erfolgte mit einprozentigem Propofol in einer Dosierung von 10 mg/kg intravenös (i.v.) nach Bedarf. Die Narkose wurde mit zweiprozentigem Propofol in einer Dosierung von 1,5 mg/kg/min i.v. nach Bedarf über einen Perfusor aufrechterhalten.

Zur intraoperativen Analgesie erhielten die Tiere nach Wirkung Fentanyl-Boli i.v. und als intraoperative Antibiose 0,5 ml Borgal® 24 %, verdünnt mit NaCl auf 2 ml i.v.

Postoperative Analgesie und Antibiose

Nach der Operation erhielten die Tiere für 3 Tage, alle 24 Stunden Carprofen 4 mg/kg subcutan (s.c.) sowie für mindestens 2 Tage, alle 12 Stunden Buprenorphin 0,03 mg/kg s.c. Bei Bedarf wurde diese Therapie verlängert.

Die antibiotische Therapie wurde für 3 Tage im Abstand von 24 Stunden mit Borgal® 24 % (Sulfadoxinum 200 mg/ml, Trimethoprimum 40 mg/ml) 0,5
ml/Tier s.c., verdünnt mit NaCl auf 2 ml, durchgeführt. Bei Bedarf wurde der
Zeitraum verlängert.

Euthanasie

Am Tag 84 (nach 12 Wochen) erfolgte der 3. Eingriff resp. die Euthanasie der
tiere. Diese wurden gewogen, mit einprozentigem Propofol i.v. narkotisiert
und mit einer Überdosis Pentobarbital i.v. euthanasiert. Die behandelten
Gelenke wurden äußerlich und nach Eröffnung des Gelenkes makroskopisch
untersucht und fotografiert. Hiernach wurde der distale Teil des Femurs
entnommen und der Defekt in zwei gleich große Teile aufgeteilt. Der erste
Anteil wurde für histologische Untersuchungen verwendet, der zweite zur
Bestimmung von BMP2, Col1, Col2, Col10, Sox9 und Cbfa1/Runx2 mittels
quantitativer RT-PCR.

2.3 Zellkultivierung sowie Vektor-Generierung und -Transduktion

Die unter diesem Punkt beschriebenen Vorgehensweisen wurden in
Kollaboration mit Tierärztin Gabriele Wexel und dem Zentrum für präklinische
Forschung (ZPF) am Klinikum rechts der Isar, München, durchgeführt.
2.3.1 Generierung des nicht-viralen Vektors und Einschleusung

Der nicht-virale Vektor wurde wie zuvor von Schillinger et al. beschrieben generiert und eingeschleust (Schillinger, Wexel et al. 2008). Der so entstandene Copolymer-protected polyethylenimine(PEI)-DNA Vektor wurde als hBMP2-COPROG bezeichnet.

2.3.2 Generierung des viralen Vektors und Zelltransduktion

entstandene Vektor wurde hBMP2-pBullet bezeichnet (Vogt, Ueblacker et al. 2008).

2.3.3 Chondrozytenisolierung, Zellkultur und Präparation der Fibrin-Clots

Die Chondrozyten wurden wie von Ueblacker et al. beschrieben isoliert (Ueblacker, Wagner et al. 2007). Die so erhaltenen Chondrozyten wurden in 25-cm²-Zellkulturflaschen ausgesät, bis zu einer 80%igen Dichte kultiviert und erneut in 25-cm²-Flaschen oder 60-mm-Petrischalen ausgesät. Kontrollen und BMP2-transduzierte Zellen wurden gleichermaßen behandelt und alle 5 Tage in einem Verhältnis von 1:3 gesplittet.

Während des Eingriffs zur Chondrozytenimplantation wurden die Kulturen trypsinisiert (0,25% Trypsin-EDTA für 3 min, Trypsinisierung wurde durch DMEM-Zugabe gestoppt), die Zellen in PBS gewaschen und in Mikrozentrifugierungsröhrchen überführt (100.000/Röhrchen). Die Zellen wurden nun durch Zentrifugation verdichtet und mit 34 µl autologem Serum resuspendiert. In jeden doppelten Defekt wurden 100.000 Zellen in autologem Serum implantiert.

Kurz vor der Implantation wurden 50 µl des Fibrinogenklebers TISSUCOL® (Baxter AG, Wien, Österreich) mit dem Chondrozyten-Serumgemisch vermischt.
Zur Bildung eines Fibrin-Clots wurden 16 µl Thrombinlösung (500 IU/l) in den Defekt inokuliert und unverzüglich die Fibrinogen-Zell-Suspension beigefügt. Nach Clotbildung wurde die Gelenkhöhle wie unter Punkt 2.2.6 beschrieben verschlossen.

2.4 RNA-Analysen

2.4.1 Gensequenzen

der Genequenzen konnten so die Exongrenzen auf den Kaninchengenen ermittelt werden.

- **Kollagen I**

NCBI-Sequenz: D49399.1

ggctttcctgagagagaaggtccctctgagcgaggtcaggcttcggctggtactctXggacctctgactgcctctgtcattgactgcctcctctgcagcagttgctggccaggtctgctgttcAGgtcctcttggcatcgcaggtcctgggctcgtggctctgtggtgctggctttgXgggcaacccatggctgtgtgtXggtggtggttggtg
Material und Methodik

• Kollagen II
NCBI-Sequenz: AF050170.1

• Kollagen X
NCBI-Sequenz: AF247705.1
Material und Methodik

- **Sox9**

NCBI-Sequenz: AY598935.1

tgaatctcctggaccccttcataagatgaccgacgagcaggaggggctgttccccgagcccccccagcc
caccatgtccgaggactggcgggctgccccgtcgggtcgggtcgggggtacacgacacccagagaacagc
ggcggagaacaggtttcccaaggggagccggcggacactcaagaaggagacagagacaggaagag
ctcggacggagagtcagccgggctcgccctgcccgtcgggctccggctccgacaccgagaatacac
ggccccagagaacaggtttcccaaggggagccggcggacactcaagaaggagacagagacaggaagag
ctcggacggagagtcagccgggctcgccctgcccgtcgggctccggctccgacaccgagaatacac

- **Cbfa1/Runx2**

NCBI-Sequenz: AY598934.1

tgatgacactgccacctctgacttctgcctctggccttccactctcagtaagaagccaggcaXggtgcttc
gaactggcggctttcaagacccagggcaggttcacaagtcagttcatccctactgagagccggcttccaac
cacgaatgcacatccgcaccccttttactattcaccaccccgcagtcacccacgggctgtctggatggtcgc
ccaccacccactccatactactgtcggaccaccacctccccggctttcccaagccagagt
• BMP2

NCBI-Sequenz: M22489.1

gggacttcttgcaacttgacggagaataaatgcgcaccacccacatttgccgccagtctttgccccacgcgga
gcttgcttcgcagacttgtcggacccgagcggcttcccagtttgagcagttttaggtgctctttctcagttc
cagcgtaggaagagagactgcgcggccggcacccgggagaaggaggagaagaagaaagagacg

gacattctgtccttgccgagaccatgtgctttttgaccagagatttttccatgtggacgctctttcaatggacggtgctcccg
cgtctctttagacggactgcggtctcctaaaggtcgcaaggtgaatggccgggacccgctgtcttctagcgttgctgcttcttccaggt
cctcctccagccggtggcccctgacgaggtcctgagcgagttcgagttgcggctgctca
catgttcggaagctcactcttcagctccggtgcgtactccgagcggccagctggctgcttgcttccccaggtcctcctgggcggcgcggctggcctcgttccggagctgggccgcaggaagttcgcggc
gggctgtcgggcccagccccctcagctccagctccagctcctccgaggtcctgagcgagttcgagttgcggctgctca

ggcttgcttcgggcccctcatccagccccctctgagtttttccatgtggacgctctttcaatggacggtgctcccg
cgtctctttagacggactgcggtctcctaaaggtcgcaaggtgaatggccgggacccgctgtcttctagcgttgctgcttcttccaggt
cctcctccagccggtggcccctgacgaggtcctgagcgagttcgagttgcggctgctca

ggcttgcttcgggcccctcatccagccccctctgagtttttccatgtggacgctctttcaatggacggtgctcccg
cgtctctttagacggactgcggtctcctaaaggtcgcaaggtgaatggccgggacccgctgtcttctagcgttgctgcttcttccaggt

2 Material und Methodik

agtccagctgtaagagacaccctttgtacgtggacttcagtgacgtggggtggaatgactggattgtggctcc
cccgggtatcagccttttactgcacggagaatgcctttttcctcttgctgatcatctgaactccactaatca
tgccatgtcgacgttggtcaactctgttaactctaatcagatgcatgctgtgtcgcagacagaactca
gtgcctatctcgatgtgctgtacctgtgacgagaatgaaaggttgttattaaagaacactatcaggacatgtgtgga
gggtgtgggtgctgctagtacagcaaaatataacataaatatatatatata

2.4.2 Primer und Sonden

Im Folgenden werden die Primer und Sonden dargestellt. Der Reporterfluorophor wird mit FAM, der non-fluorescent-Quencher mit NFQ angegeben.
• **Kollagen I**

 Forward – AACGGTGCTCCTGGTGAAG
 Revers – GCGACCTGGAGGACCAT
 Sonde – Fam-TCGTGATGGCAACCCT-NFQ

• **Kollagen II**

 Forward – GGACGTTCAGGCGAAACTG
 Revers – CAAAGGCGCACATGTCGAT
 Sonde – Fam-CCCTGCTGGTCCTCC-NFQ

• **Kollagen X**

 Forward – TGCCATAAAGAGTAAGGTATACCAGTGAA
 Revers – GGTCCAGAAGGACCTGGGT
 Sonde – Fam-CCAGGAATAACCTTTGTTCTCC-NFQ

• **Sox9**

 Forward – CAAGACCCTCGGGGAAGCT
 Revers – CCGCCTCCTCCACGAA
 Sonde – Fam-CTCGTTTCAGCAGTCTCCA-NFQ
2 Material und Methodik

- **Cbfa1/Runx2**

 Forward – TGGCCTTCCACTCTCAGTAAGAA

 Revers – GGGATGAAATGCTTGGGAACTG

 Sonde – Fam-CCAGGCAGGTGCTTCA-NFQ

- **BMP2**

 Assay ID: Hs00154192_m1

 Der Assay für BMP2 war bereits im Katalog von Applied Biosystems gelistet, so dass er direkt bestellt werden konnte. Die genauen Sequenzen wurde uns aus kommerziellen Gründen nicht mitgeteilt.

2.4.3 RNA-Isolierung

Zur Isolierung der RNA aus dem Knorpelgewebe wurde das „RNeasy® Micro Kit“ der Qiagen GmbH, Qiagen-Straße 1, 40724 Hilden, Deutschland verwendet.

2.4.4 Reverse Transkription
Die reverse Transkription erfolgte nach der offiziellen Anleitung des Herstellers in 20µl Reaktionsansatz, inkl. 2 µg Random-Hexamere und „Superscript II®“ Reverse Transkriptase (Invitrogen, Karlsruhe, Germany).

2.4.5 Quantitative PCR
Die quantitative PCR wurde, wie von Arlt et al. beschrieben, unter Verwendung von TaqMan-Assays in 96 well optical plates durchgeführt und jede Probe 3 Mal gemessen (Arlt, Kopitz et al. 2002). Die mRNA-Werte wurden zur 18S-RNA in Bezug gesetzt.

2.5 Statistische Auswertung
Die Daten wurden als Durchschnitt ± Standardfehler (mean ± standard error SEM) mehrerer Versuchsreihen dargestellt. Jeder Test wurde dreifach durchgeführt. Zur Ermittlung der Signifikanz zwischen den Gruppen wurde ein t-Test verwendet. Ein p-Wert kleiner als 0,05 wurde als signifikant gewertet.
3 Ergebnisse

3.1 Analyse der mit hBMP2-pBullet-transduzierten Chondrozyten

3.1.1 hBMP2-pBullet in vitro – qRT-PCR der Zellkultur

Zunächst wurden die in Fibrin-Clots wachsenden Zellkulturen mittels qRT-PCR auf die Expression der Gene BMP2, Col1, -2, -10, Cbfa1 und Sox9 untersucht (Kontrolle und hBMP2-pBullet). Die Messungen fanden am 7. und 10. Tag nach der Chondrozytenisolierung statt. Die mRNA-Werte wurden zur Kontrolle in Bezug gesetzt und der Quotient aus beiden ermittelt (Probe/Kontrolle) (Abbildung 16). Für alle analysierten Gene fanden sich an beiden Stichtagen eine signifikante Erhöhung des RNA-Niveaus:

Die BMP2-Expression war an beiden Stichtagen gegenüber der Kontrollgruppe deutlich signifikant erhöht, und obwohl die Col2-Expression verstärkt war, fand sich auch eine signifikante Erhöhung des Expressionsniveaus der Gene für Col10 und Cbfa1. Auch Col1 und Sox9 wurden an beiden Stichtagen gegenüber der Kontrollgruppe verstärkt exprimiert.
3 Ergebnisse

3.1.2 hBMP2-pBullet in vivo – qRT-PCR 12 Wochen nach Implantation

Die Expression der für BMP2, Col1, -2, -10, Cbfa1 und Sox9 codierenden Gene des Regeneratknorpels wurde 12 Wochen nach Implantation mittels qRT-PCR gemessen. Die mRNA-Werte wurden zur Kontrolle in Bezug gesetzt und der Quotient aus beiden ermittelt (Probe/Kontrolle) (Abbildung 17).

Die Expression des hBMP2-Gens lag 12 Wochen nach Implantation um den Faktor 10 über dem Niveau der Kontrollgruppe (p=0,0029). Es zeigte sich zudem eine Erhöhung der Col1 und Col10-Expression (6,24 bzw. 4,74; p=0,0143 bzw. 0,0327). Die Col2-Aktivität war gegenüber der Kontrollgruppe
um den Faktor 0,09 signifikant verringert (p=0,0072). Die Sox9-Aktivität als typischer Faktor des Smad-Weges war hingegen erhöht (3,92; p=0,0333). Die Expression des Transkriptionsfaktors Cbfa1, welcher den Übergang in die hypertrophe Phase und Knochenbildung stimuliert, blieb unverändert.

3.2 Analyse der mit hBMP2-COPROG transfizierten Chondrozyten

3.2.1 hBMP2-COPROG in vivo – qRT-PCR 12 Wochen nach Implantation

Idem zur hBMP2-pBullet-Gruppe wurde auch der mit hBMP2-COPROG-transfizierten Chondrozyten behandelte Regeneratknorpel nach 12 Wochen auf die Expression der Gene für BMP2, Col1, -2, -10, Cbfa1 und Sox9 hin
3 Ergebnisse

mittels qRT-PCR analysiert. Die mRNA-Werte wurden zur Kontrolle in Bezug gesetzt und der Quotient aus beiden ermittelt (Probe/Kontrolle).

Es fand sich eine leichte, jedoch nicht signifikante Erhöhung der hBMP2-Expression in der hBMP2-COPROG/Plasmid-Gruppe (Abbildung 18). Eine verstärkte Aktivität der BMP2-abhängigen Gene war nicht zu detektieren. Weder die Genexpression der als Markergene der proliferierenden Phase geltenden Col2 und Sox9, noch die der Markergene hypertropher Chondrozyten und des Faserknorpels, Col1, -10 und Cbfa1, zeigten gegenüber der Kontrollgruppe eine erhöhte Aktivität.

Abb. 18 Quantitative RT-PCR-Analyse (Kontrolle und hBMP2-COPROG/Plasmid) des Regeneratknochs aus osteochondralen Defekten des Kaninchenmodells nach 12 Wochen (n=6, mean±SEM, p<0.05).
4 Diskussion

Implantation in einen Knorpeldefekt mithilfe der quantitativen RT-PCR gemessen.

In vorausgegangenen Versuchen wurde gezeigt, dass eine hohe, lang anhaltende und stabile Transduktion des hBMP2-Genes mittels des VSV.G-pseudotypisierten MoMLV-retroviralen Vektors „pBullet“ in primäre Chondrozyten möglich ist und diese Methode bezüglich Effizienz, Stabilität

Die Wirkung einer langanhaltenden und stabilen BMP2-Exposition des Regeneratknorpels konnte mithilfe des hBMP2-pBullet Vektors untersucht werden. Die in-vitro-Experimente zeigten zunächst eine erfolgreiche Transduktion und Expression des für BMP2 kodierenden Gens. Das Expressionsniveau war, wie für alle Analysen der mit hBMP2-pBullet
behandelten Chondrozyten, gegenüber der Kontrollgruppe signifikant erhöht. Die erhöhte Expression von Col2, Col10 und Sox9 am 7., sowie die weitere Steigerung am 10. Tag der Col2- und Sox9-Expression weist auf eine verstärkte Proliferation der Chondrozyten hin. Ab dem 10. Tag kam es zur weiter verstärkten Expression von Col1 und Cbfa1, was einerseits als Übergang in die hypertrophe Phase und Einleitung der Osteogenese (Cbfa1) interpretiert werden kann und andererseits aber auch die Entstehung von Faserknorpel wiederspiegelt (Col1).

Weiter zeigte sich zwölf Wochen nach Reimplantation eine kontinuierliche Erhöhung des Sox9-mRNA-Niveaus. Sox9 gilt sowohl als Aktivator des Übergangs der MSZ in die Phase der mesenchymalen Kondensation und somit als Aktivator der Proliferation, als auch als Inhibitor der Differenzierung...

Homeodomain-(HD)-Proteine, die unter anderem die Cbfa1-Expression beeinflussen. So wird in der frühen Embryogenese die Expression von Cbfa1 durch das HD-Protein Nkx3.2 inhibiert (Lengner, Hassan et al. 2005; Lian, Stein et al. 2006). Weiter regulieren die HD-Proteine Msx2, Dlx3 und Dlx5 durch Bindung an derselben knochenzugehörigen Promotorregion die Cbfa1-Expression. Hierbei inhibiert Msx2 die Expression, Dlx3 und Dlx5 aktivieren diese (Lian, Stein et al. 2006). Inwiefern direkte Interaktionen für dieses Ergebnis verantwortlich sind, kann hier nicht ermittelt werden. Es deutet jedoch ebenfalls auf die herabgesetzte Wirkung von BMP2 auf die chondrale Differenzierung nach zwölf Wochen und eine konsekutive Ausbildung von hypertrophen Chondrozyten und Aktivierung der Osteogenese hin.

Knorpeldefekte, gelang jedoch nicht. Dieses spiegelt sich in der Abnahme der Col2-Expression in der RT-PCR wieder.

Diskussion

Weitere Untersuchungen sind zur Entwicklung gentherapeutischer Verfahren im Hinblick auf die Behandlung von Knorpelschäden notwendig. Eine Untersuchung des Effektes von Stimulation durch andere Wachstumsfaktoren wie „Indian hedgehog“ (Ihh) und „parathyroid hormon related peptide“
(PTHrP), welche die Rate der den Zellzyklus verlassenen Chondrozyten verrin-
5 Zusammenfassung

Die qRT-PCR wurde als sicheres und effizientes Analysemittel bestätigt. Es zeigte sich, dass BMP2 lediglich bei stabiler und langanhaltender Expression einen Einfluss auf die Knorpelregeneration hat. Stimulation durch hBMP2-pBullet bewirkte zunächst eine Verstärkung der Proliferation und Verbesserung der Qualität des gebildeten Knorpels. Bis zur zwölften Wochen nach Implantation stieg der Qualitätsunterschied weiter an. Es wurden jedoch zunehmend Chondrozyten-hypertrophe Charakteristika festgestellt mit einer
Abnahme der Col2-Produktion. Im Gegensatz hierzu zeigte sich der hBMP2-COPROG-Vektor insuffizient in der Langzeitstimulation und der Qualitätsverbesserung des Regeneratknorpels.

6 Literaturverzeichnis

20

21

22

23

24

25

26

27

28

29

30

51

52

53

54

55

56

57

58

59

60

71

72

73

74

75

76

77

78

79

80

81
82

83

84

85

86

87

88

89

90

91
6 Literaturverzeichnis

92

93

94

95

96

97

98

99

100

101
102

103

104

105

106

107

108

109
7 Abbildungsverzeichnis

Abbildung 1 modifiziert aus Horton, Moran et al. 2008:
Schematische Darstellung der Proteoglycane

Abbildung 2 aus Stanton, Underhill et al. 2003:
Schematische Darstellung der Chondrogenese

Abbildung 3 aus de Crombrugghe, Lefebvre et al. 2001:
Zusammenfassung der Wirkungsmechanismen verschiedener Transkriptionsfaktoren in der Chondrogenese

Abbildung 4 modifiziert aus Bauer and Jackson 1988:
Einteilung der Knorpelschäden nach Bauer

Abbildung 5 aus Imhoff and König 2003:
Einteilung Osteochondraler Läsionen des Knies nach Imhoff

Abbildung 6 aus Brittberg, Aglietti et al. 2000:
Einteilung der Knorpelschäden nach dem ICRS-score
Abbildung 7 aus Bustin 2005:
Schematische Repräsentation eines PCR-Zyklus

Abbildung 8 aus NBII:
Schematische Repräsentation der DNA-Replikation während einer PCR

Abbildung 9 modifiziert aus Jähnichen "LightCycler Probes.jpg" 2005:
Quantifizierung von Nukleinsäuren mit Hilfe der Real-Time PCR und Hybridisierungssonden

Abbildung 10 modifiziert aus Jähnichen "TaqMan Probes.jpg" 2005:
Quantifizierung von Nukleinsäuren mit Hilfe der Real-Time-PCR und TaqMansonden

Abbildung 11 modifiziert aus Jähnichen "Molecular Beacons.jpg" 2005:
Quantifizierung von Nukleinsäuren mit Hilfe der Real-Time-PCR und Molecular Beacons

Abbildung 12 modifiziert aus Jähnichen "Scorpions Probes.jpg" 2005:
Quantifizierung von Nukleinsäuren mit Hilfe der Real-Time PCR und Scorpion Probes

Abbildung 13 modifiziert aus Kubista, Andrade et al. 2006:
Schema der Variations- bzw. Fehlerquellen der DNA/RNA-Analyse
Abbildung 14 aus Kubista, Andrade et al. 2006:
Primingstrategien der reversen Transkription

Abbildung 15:
Präparation eines standardisierten osteochondralen Defektes

Abbildung 16:
RT-PCR-Analyse der in Fibrin-Clots wachsenden Zellkulturen

Abbildung 17:
Quantitative RT-PCR-Analyse (Kontrolle und pBullet-hBMP2) des Regeneratknorpels aus osteochondralen Defekten des Kaninchenmodells nach zwölf Wochen.

Abbildung 18:
Quantitative RT-PCR-Analyse (Kontrolle und hBMP2-COPFROG/Plasmid) des Regeneratknorpels aus osteochondralen Defekten des Kaninchenmodells nach zwölf Wochen.
8 Danksagung

Mein ganz besonderer Dank gilt Herrn Priv.-Doz. Dr. med. Stephan Vogt für die Überlassung des Themas, seiner ununterbrochenen Hilfestellung und freundlichen Beratung bei allen durchgeführten Experimenten.

Herrn Univ.-Prof. Dr. med. Bernd Gänsbacher danke ich für die Überlassung der Räumlichkeiten für die Laborarbeiten im Institut für experimentelle Onkologie und Therapieforschung.

Bei Frau Dr. med. Sarah Furchert bedanke ich mich herzlich für Ihre wertvollen Tipps bei der Verfassung der Arbeit und das Korrekturlesen.

Größter Dank gilt meiner Ehefrau Yamina, meinen beiden Töchtern, Elisa und Louise, sowie meiner gesamten Familie.
10 Veröffentlichungen

Die vorliegende Arbeit wurde in zwei Artikeln veröffentlicht:
