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ABSTRACT Markov process as a means to virtually transform asymmetric

This paper addresses the optimization of constrainedatati channels into almost symmetric ones with lower conditional
pap P entropy. Given the reduction in conditional entropy, compa

ary Markov input processes which achieve high information__. " : .
: ) . atively short outer codes are sufficient to communicate reli
rates on intersymbol-interference (ISI) channels. Thesicbn S : .
. - . gble at high information rates and at a relatively low delay.
ered Markov processes define an optimized subset of equiprab, ... - .
. . ‘addition, we present an efficient method for the computation
able input symbols for each channel state and are thus upiqu

described by the set of branches in a trellis section. We pro%]c tight lower bounds for the MIR of Markov sources on IS

. . . . .channels with finite input and output alphabets. Finally, we
pose an iterative algorithm that efficiently solves the -opti . . ; . .
L . . rovide simulation results for Gaussian MIMO channels with
mization problem. The algorithm successively removes th

worst branches and thereby constructs a reduced trellis codsl’ quaternary-phase shift-keyed (QPSK) input symbots an

) L ingle-bit outputs.
that is matched to the channel. The second contribution 9 P

this paper are tight lower bounds for the mutual information lease note, that the use of single-bit digital-to-analod a
rate (MIR) of Markov sources on ISI channels with finite in- analog-to-digital converters allows for a low complexityoa

. wer efficient transceiver implementation. This i rti
put and output alphabets. The bounds can be evaluated wnh?r? er etiicie .t t_a Scelve plementatio IS 1S pa tic

- ; : ularly beneficial in high-speed MIMO communication sys-
a small trellis window without using Monte Carlo methods.

tems, e.g. ultra-wideband communications. Also, the power
penalty with respect to the mutual information dueltbit
1. INTRODUCTION quantization is approximately equal4g2 at low SNR [6].

Notation: *, T and" denote the conjugate, transpose and

Recently, several methods for the construction of capacityHermitian transpose operators. Scalars, vectors and-matri

achieving codes for channels with memory were proposedes are written in lower case, lower case bold and upper case

[1, 2, 3]. In[1], KakiC et al. show that the capacity of bold italic letters, respectively. A random variabfeand its

channels with ISI and finite input alphabets is greater than t realizationz are written in upper and lower case italic let-

i.u.d. capacity, which is the MIR induced by independentlyters, respectively. Random variables in a random sequence

and uniformly distributed input. Moreover, they demonistra are marked with a time index e.g.,X;. A random sequence

that rates above the i.u.d. capacity cannot be achievedby rajX,;, X;,,..., X,,] is shortly denoted byX /. |X| is the size

dom linear codes. To overcome this limitation, they introglu  of the alphabeft’. We use the short notatiord (i, j|Y;*) =

matched information rate codes. Their idea is to combine arr(S, ; = i,S; = j|Y{*), P.(i|]Y?*) = Pr(S;_1 = i|Y"),

inner trellis code which mimics an information rate maximiz P,(Y*|i,j) = Pr(Y{*|S;_1 = i,S; = j) and P,(Y{*]i) =

ing input Markov process with interleaved outer low-densit Pr(Y}*|S;_1 = ).

parity-check (LDPC) codes.

Channel-matched coding requires that the transmitterend r 2 SOURCE AND CHANNEL MODEL

ceiver exchange information about the channel, codebaok et

Also, many communication applications do not tolerate longye consider a stationary Markov source of ordér which
delays. Hence, the code length is bounded in practice. generates a random proceXs, whose realizations;, take

In this paper, we present a novel method for constructingalues from a finite-size source alphaBét The correspond-
channel-matched inner trellis codes that when combinel witing Markov source distribution satisfies

outer (random linear) codes enable reliable communication 21\ i1 B
information rates above the i.u.d. capacity of finite-s{&®) Pr(Xy|XiZp) = Pr(Xe|X;Zy), t=1,2,.... (1)
ISI channels. The method is a generalization of the approadBesides, we consider a time-invariant ISI channel with thpu
in [4, 5] to ISI channels. The key idea is to consider the inputalphabetX, output alphabed and memory lengti, < M.



The joint source/channel state is given by Due to the stationarity the first term in (11) simplifies to

St =Xinrn = ey Xeopra, o Xl (@) H(SilSi1) = =3 #iPiloga(Py). (12)
1,7)€

and the corresponding realizatisnis an element of the state ’
index setS = {1,2,...,|X|}. From (1) we have The second term in (11) can be expressed as [7]

Pr(St|Séfl) = PI'(St‘St,]_), t= 1, 2, e (3) *H(S”St_l,yln) = Eyln75§71 [logQ(Pr(St\St_l, Yln))]
We assume that the state sequefSgdorms an irreducible = Z 1iPij Eynis, =i s,—;ll0gy(Pi(i, §|Y7"))]
and aperiodic Markov chain. Given an initial statge = iji(00)eT Y
[T_are1, T pao,---,20] the input sequence) and state se- -
quences! determine each other uniquely. The first order _Z“i Eyrs, i=illoga (P (i[Y7"))]. (13)
Markov processS; can also be represented by the following ies
set of transition probabilities The last line in (13) can be expanded as follows

P, =Pr(S; =j|S¢—1=14),t>0, (i,j) €T, (4 -

;=Pr(Sy =j|Si—1 =1i), t >0, (i,4) € (4) > i Byps,_y—illogy (P (i]Y7))]
which fulfills >_,.; yer Pij = 1, Vi € S. Here,T is the i€s
set of all possible state pais;_1 = i, S; = j). From (2) it ZM Z Pr(Y"|Si—1 = 4) - [logy (P:(i]Y7"))]
is clear, that not all state transitions from state statej are ies  Yreyn
possible. Each statec S exhibits a steady-state probability " . .

. . . . = i Y, Y. Pr(W S =S =) [.]

= llggj Pr(Siy =i[Si =j), t>0,VjeS. (5 i€S Y eEYn ji(ig)eT

The steady-state probability of every state S satisfies = Y WPy Byps,—is—;lloga(P([YT)]. (14)
Z P >0 (6) i,5:(3,5) €T
Hi = o HjiLE5i = U, . . .
' J(ig)er I Inserting (14) into (13) yields

and the set of steady-state probabilities fulfils g 1; = 1. HSIS. - ™) —
The state sequenc® induces a hidden Markov sequence (Se]Se—1,¥1") =

with realizationsy; € V. The channel output satisfies Z WPy By 51151 [log2 ( ]t:<(l|ji|/nl))>] (15)
Pr(Yy[Sg°, Vi~ Vi) = Pr(Yi|Si_y), ¢ > 0. (7)  iilid)eT A
The MIR of the considered FS ISI channel is defined as [7] Hence, the MIR in (11) is also given by
: 1 n n
I(XpYy) =I(SpYy) = lim ~I(ST:Y{'(S0).  8)  Z(SuY)=D_ . wiPy- (U —logs(Py)), (16)

wherel (S7; Y7"|Sy) denotes the mutual information between where the expectatioli; ; is defined as
ST andY7" given the initial state5;. The maximal informa-

tion rate for a Markov source of ord@r is defined as Py(i, j|Y"
Uij = nh_{rgo* E :EY "8t 1=i,50=j [bgz (]tj(()/nl))>:|
Cu = _ max TI(S;Y:), 9) " A
Pyj;: (i,j)eT (17)

whereS; = X!_,,.,. The i.u.d. capacity is given by Combining the relations

Pt(i’jpfln) _ Pt(YYlli7j)'P

Ciud. =Z(Si;Y:) st Py =|x|"", V(i,j) e T. (10) , - : , (18)
Pt(ZD/ln) Zu:(i,u)ET Pt(Yln‘Zv u) : Piu,
3. A NEW EXPRESSION FOR THE MUTUAL
INFORMATION RATE P(Yi,j) = PY™i ) P(Y{ ),  (19)

In this section, we derive a new expression for the MIR, whicras well asy -1y Pr(Y{"!S;_1 = i) = 1, the expres-
will be used in the following section to construct lower bdan sion forU;; in (17) simplifies to
for the MIR. The MIR in (8) can be rewritten as [7]

Uj = lim =% > P(Y/']i,))
(Sta }/t) = 7L1LH('}O E ZI St, 1/1 |St 1) n—oeon t=1 Y eyn—t+l

P (Y"[i,j) - P
. n -1 . (20
- nhigo ﬁ Z H(St‘St_l) B H(St|Y1 7St_1)' (11) o <Zu:(i,u)€'f Pt(Y;fnhv u) ' P’Lu ( )
t=1




4. TIGHT LOWER BOUNDSFOR THE MUTUAL 5. CHANNEL-MATCHED REDUCED
INFORMATION RATE TRELLISCODES

In this section, we derive tight lower bounds for the MIR of In this section, we propose a new method for constructing
ISI channels with finite input and finite output alphabets.  channel-matched trellis codes. The method is a genetializat
As the frame lengtlr goes to infinity and as the Markov chain of the approach in [4, 5] to ISI channels.

S, is irreducible and aperiodic, the MIR does not depend ormhe code construction is based on the following optimizatio
the initial or terminal state. Moreover, as conditioning re uniform _

duces uncertainty and as the considered Markov processes ar Cm - P, :H(l%gz (St Yz)

stationary, (11) can be lower bounded with .
st. P € {0, K71}, Zj:(m_)g Pj=1. (29

Here, C o™ js the maximal information rate, which can

I v
(S Vi) > T}LH;CEZI(S&K” 1Si-1)
=1
' be achieved with a Markov source of ord&f that is con-

_ . ytto
= 1085 Y7"]Se-), (21) strained to a subset df equiprobable input symbols; for
assuming < n. ReplacingY;" with ;""" in the derivation each channel state_; € S. Such a Markov input process
of U;; in Section 3 gives rise to the lower bound is completely characterized by a reduced set of branches in a
) _ - trellis section. Hence, the nameduced trellis code (RTC).
Lo, S ¥) = (Z) Raaih (Uis (v) = logs(P)) e RTC induces a MIR of
2,7:(2,7)€
= (S YIS, ), (2)  T(SuY) =3 . wiPi- (T —logy(Py)), (30)
where the truncated expectatidiy (v) is defined by whereTy denotes the set of selected state pairs
Uij(v) = Zyﬁvew“ P,(Y i, ) Tk = {(i,5)|(4,j) € T, Py = K '}. (31)

CIF ATy -3 Theiterative information rate maximization (IR-max) al-
P(Y i, 5) - Py Lo : o .
- log, > P i) P {(23)  gorithm in Algorithm 1 efficiently computes near-optimat so

()T =t ’ o lutions of (29). The IR-max algorithm uses eittigf (n) or
Clearly, forv; > v, we have U;;(v) as a measure for the quality;; of trellis branches
I(S; Y, S, 1) > I(Sy; Y,T2 (S, 1). (24) (z’,j)_e 7. In every iteration qf thé-loop, the algorithm de-
. . . termines the worst branch with the lowég}; for each state

Thus, by increasing the truncation parametethe MIR can i € S and removes it, that i§,; = 0. After K iterations the

be tightly lower bounded. The computatlonlg St’Yt) algorithm returns the optimized transition probabilitieg,
is straightforward, because (23) is excluswefy compos‘ed Qe achannel-matched RTC

channel and state transition probabilities, that is

PV li, 4) = Poa (Y215) - Pu(Yili 4),  (25) Algorithm 1 Iterative Information Rate Maximization

and P, (Y,;7]5) can be computed recursively 1: initialization: P;; = { (1)/|X| gtézé}yvzliieT
P (Y t+1 °lj) = Z Pii1(Yes1ld, 1) - Py Pryo (Y t+2 210). ChooseK and decide whether to usg;; = 7;,(n) or
LGDET Qij = Ui(v) forall (i,5) € T
(26) 2 for k = |X| down to K do
Clearly, the complexity of the expression (23) grows expo- 3.  egtimate all Qi
nentially withv. However, the simulation results show that 4.  for all i € S do
choosing smalb > L results in tight lower bounds. 5: d=arg min {Qy;}
The MIR can also be estimated numerically using [7] _ o 01=Pif>0
. id —
(S V) = Z 5 hilij - (Tij —logy(Pyg)),  (27) 7. for all (i,j) € T do
BEDET & Py=Dy k/(k—1)
where
n P Py (4, ,}ID\Yl )
N 0.1 n Hiq g
T‘”(n) _ %Z 10g2 t(l7]|Y1 )pt(l‘yl’ﬂ-) ; (28)
-1 P(i|YR) m 6. GAUSSIAN MIMO CHANNELSWITH ISl AND

. SINGLE-BIT OUTPUTS
andlim,,_,., T;;(n) = T;;. Itis worth mentioning, that the
forward recursion of the Baum-Welch/BCJR algorithm is suf-Consider the MIMO channel with ISl and single-bit output
ficient to estimate the MIR [8]. quantization shown in Fig. 1. The channel has a memory of
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Fig. 1. MIMO channel with ISI and single-bit outputs. SNR [dB]

Fig. 2. Tightness of the lower bounds in (22) foe {1, 2, 3}.
lengthL and it is governed by the channel law

L
¥, =Q{r) =0 {ZH Hyxi i + m} N 7)) 7. SIMULATION RESULTS

Here,H), € CN*N isthek-th channel matrixz, € X, n, €  We consider the FS ISI channels of Section 6 with= 2
CN,r, e CN andy, € Y = {a+jpla, g € {+1,—1}}¥  transmit and receives antennas and channel memory length
denote the channel input vector, the noise vector, the unqual = 1. On average, two thirds of the transmit energy is con-
tized receive vector and the channel output vector, akitie  veyed over the undelayed channel #p, that isog = 2/3

time instant, respectively. The single-bit quantizatipea- ando? = 1/3. We choose a Markov source of ordef = L,

tor Q returns the sign of the real and imaginary part of eaclPecauseC’, is noticeably larger compared to the i.u.d. ca-

component of the unquantized received signal.e., pacity, whereas memory lengths abaveield only a small
additional gain in MIR. Thus, we consider FS ISI channels

Q{ri} =sign(rear:}) +j - sign(imag{r;}).  (33)  with |[X| = |Y| = 16 and|T| = 256.

Fig. 2 demonstrates that the derived lower bounds for the
MIR in (22) are very tight even for small > L. The re-
Pr(y |z, yi L yis,) = Pr(yel_,), t > 0. (34) sults are averaged 60 channels. The MIR was evaluated us-

ing randomly generated (and properly normalized) state tra

The conditional probability of the channel output satisfies

Here,xzg° andy’ ™! stand for the sequencs 1,z _;.,...] sition probabilitiesP;;. Please note, that the evaluation of
and[y1,y . .., y:—1], respectively. The noise is additive whiteU;; (v = 2) is computational inexpensive compared to a (pre-
Gaussian Wlth covariance matrinni'] = o2Iy. The cise) Monte Carlo simulation af;; (n).

transmit signal energy is normalized tpthat is||33t||2 =1.  Fig. 3 shows how the information rate and conditional en-
The (i, j)-th real and imaginary component of th¢h chan-  tropy evolve during the first2 iterations of the IR-max algo-
nel matrix|H,); ; is zero-mean Gaussian with variang&/2.  rithm and the generalized Blahut-Arimoto (GBA) algorithm
On average the channel taps are normalized pursuantto  [9] at anSNR of 10dB. The GBA is initialized with i.u.d. state

I transition probabilities”;;. The results are averaged ovér
Y, oi =1 V(0,5). (35)  channels. For < 7 iterations, the IR-max algorithm de-

_ _ S creases the conditional entropy while increasing the inger
The signal-to-noise ratio is given by tion rate. This result reflects our code design methodolbgy.
SNR — 1/02. (36) contrast to an unconstrained information rate maximizatio

the enforced reduction of entropy in (29) is compensated as
The channel transition probabilities can be calculated via Much as possible by decreasing the conditional entropy.
Finally, Fig. 4 investigates the performance of the IR-mlax a
[Yilei - [Fles gorithm over the whole SNR range. The results are averaged
Pr(y|z;_ 1) H H o /\[ (37)  over 10 channels. In order to avoid the use of distribution
ce{R,1} i=1 K shapers, the target rate is fixed@, (K) = 3bits per chan-
nel use (bpcu). Hence, the code bits of outer standard codes
can be mapped directly to the input symbols of the RTC and
2 vice versa. The plots indicate, that RTCs achieve informa-
free unquantized receive vector abflr) = \/% ffoo e~ zdt tion rates well above; 4 as long as’y; < log,(K) — 1.
is the cumulative normal distribution function. The inpytrs The complexity of the IR-max algorithm can be adjusted by
bols are modulated using QPSK. Consequently, we considehoosing smaller (or rather smallew). Fortunately, the
FS ISl channels withY | = || = 4" and|T | = (4V)M+1, IR-max algorithm exhibits a good performance with as few

Here,[z¢|r i ([x:]1:) denotes the-th real (imaginary) compo-
nent of the input vectae;, 7 = Zﬁzo H,x;_; is the noise-
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Fig. 3. Comparison of the GBA algorithm (labeled 'GBA)
and IR-max algorithm (labeled 'IR-T’) over the iteratiorts a
anSNR of 10dB usingT;;(n = 800 - | 7).
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Fig. 4. Performance of the IR-max algorithm usiiﬁg (n =
800-|7|) (labeled "IR-T"),T;;(n = 20-|T]) (labeled 'IR-Ts’)
andU;; (v = 2) (labeled 'IR-U") for K = 8.

as20 estimates (on average) per state transitigri) € 7.
This property might be crucial, if the channel is time-varyi

Moreover, RTCs are delay-free and completely describable
with | 7| feedback bits. Though, most importantly, RTCs Pro-(g] A. Mezghani and J. A. Nossek

vide a reduction of conditional entropy of approximateiy~
1bpcu forSNR < 13dB compared toi.u.d. input. Thus, if the
SNR is below13dB, the reduction fron;  q.(S:|Y7", St—1)
down toH\r.1(S;|Y{", S;—1) would render it possible to com-
municate reliable at information rates closedq, 4. using
considerably shorter, less complex outer standard codes.

addition, the computation of APPs for the outer code is less
complex on a reduced trellis. Unfortunately, a brute-force

computation ofC "™ which is the maximum of (29), is
not feasible.

8. CONCLUSION

form asymmetric channels into almost symmetric ones with
lower conditional entropy.

In addition, we derived tight lower bounds for the mutual in-
formation rate of FS ISI channels with finite input and output
alphabets. The bounds can be evaluated within a small trel-
lis window without using Monte Carlo simulation techniques
In the future, we will apply the reduced trellis codes to othe
communication channels.
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