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ABSTRACT

This paper addresses the optimization of constrained station-
ary Markov input processes which achieve high information
rates on intersymbol-interference (ISI) channels. The consid-
ered Markov processes define an optimized subset of equiprob-
able input symbols for each channel state and are thus uniquely
described by the set of branches in a trellis section. We pro-
pose an iterative algorithm that efficiently solves the opti-
mization problem. The algorithm successively removes the
worst branches and thereby constructs a reduced trellis code
that is matched to the channel. The second contribution of
this paper are tight lower bounds for the mutual information
rate (MIR) of Markov sources on ISI channels with finite in-
put and output alphabets. The bounds can be evaluated within
a small trellis window without using Monte Carlo methods.

1. INTRODUCTION

Recently, several methods for the construction of capacity-
achieving codes for channels with memory were proposed
[1, 2, 3]. In [1], Kav̌cić et al. show that the capacity of
channels with ISI and finite input alphabets is greater than the
i.u.d. capacity, which is the MIR induced by independently
and uniformly distributed input. Moreover, they demonstrate
that rates above the i.u.d. capacity cannot be achieved by ran-
dom linear codes. To overcome this limitation, they introduce
matched information rate codes. Their idea is to combine an
inner trellis code which mimics an information rate maximiz-
ing input Markov process with interleaved outer low-density
parity-check (LDPC) codes.
Channel-matched coding requires that the transmitter and re-
ceiver exchange information about the channel, codebook etc.
Also, many communication applications do not tolerate long
delays. Hence, the code length is bounded in practice.

In this paper, we present a novel method for constructing
channel-matched inner trellis codes that when combined with
outer (random linear) codes enable reliable communicationat
information rates above the i.u.d. capacity of finite-state(FS)
ISI channels. The method is a generalization of the approach
in [4, 5] to ISI channels. The key idea is to consider the input

Markov process as a means to virtually transform asymmetric
channels into almost symmetric ones with lower conditional
entropy. Given the reduction in conditional entropy, compar-
atively short outer codes are sufficient to communicate reli-
able at high information rates and at a relatively low delay.In
addition, we present an efficient method for the computation
of tight lower bounds for the MIR of Markov sources on ISI
channels with finite input and output alphabets. Finally, we
provide simulation results for Gaussian MIMO channels with
ISI, quaternary-phase shift-keyed (QPSK) input symbols and
single-bit outputs.
Please note, that the use of single-bit digital-to-analog and
analog-to-digital converters allows for a low complexity and
power efficient transceiver implementation. This is partic-
ularly beneficial in high-speed MIMO communication sys-
tems, e.g. ultra-wideband communications. Also, the power
penalty with respect to the mutual information due to1-bit
quantization is approximately equal toπ/2 at low SNR [6].

Notation: ∗, T andH denote the conjugate, transpose and
Hermitian transpose operators. Scalars, vectors and matri-
ces are written in lower case, lower case bold and upper case
bold italic letters, respectively. A random variableX and its
realizationx are written in upper and lower case italic let-
ters, respectively. Random variables in a random sequence
are marked with a time indext, e.g.,Xt. A random sequence
[Xt,Xt+1, . . . ,Xn] is shortly denoted byXn

t . |X | is the size
of the alphabetX . We use the short notationsPt(i, j|Y n

1 ) =
Pr(St−1 = i, St = j|Y n

1 ), Pt(i|Y n
1 ) = Pr(St−1 = i|Y n

1 ),
Pt(Y

n
1 |i, j) = Pr(Y n

1 |St−1 = i, St = j) andPt(Y
n
1 |i) =

Pr(Y n
1 |St−1 = i).

2. SOURCE AND CHANNEL MODEL

We consider a stationary Markov source of orderM , which
generates a random processXt, whose realizationsxt take
values from a finite-size source alphabetX . The correspond-
ing Markov source distribution satisfies

Pr(Xt|Xt−1
1−M ) = Pr(Xt|Xt−1

t−M ), t = 1, 2, . . . . (1)

Besides, we consider a time-invariant ISI channel with input
alphabetX , output alphabetY and memory lengthL ≤ M .



The joint source/channel state is given by

St = Xt
t−M+1 = [Xt−M+1,Xt−M+2, . . . ,Xt], (2)

and the corresponding realizationst is an element of the state
index setS = {1, 2, . . . , |X |M}. From (1) we have

Pr(St|St−1
0 ) = Pr(St|St−1), t = 1, 2, . . . . (3)

We assume that the state sequenceSt forms an irreducible
and aperiodic Markov chain. Given an initial states0 =
[x−M+1, x−M+2, . . . , x0] the input sequencext

1 and state se-
quencest

1 determine each other uniquely. The first order
Markov processSt can also be represented by the following
set of transition probabilities

Pij = Pr(St = j|St−1 = i), t > 0, (i, j) ∈ T , (4)

which fulfills
∑

j:(i,j)∈T Pij = 1, ∀i ∈ S. Here,T is the
set of all possible state pairs(St−1 = i, St = j). From (2) it
is clear, that not all state transitions from statei to statej are
possible. Each statei ∈ S exhibits a steady-state probability

µi = lim
l→∞

Pr(St+l = i|St = j), t > 0, ∀j ∈ S. (5)

The steady-state probability of every statei ∈ S satisfies

µi =
∑

j:(i,j)∈T
µjPji ≥ 0, (6)

and the set of steady-state probabilities fulfills
∑

i∈S µi = 1.
The state sequenceSt induces a hidden Markov sequenceYt

with realizationsyt ∈ Y. The channel output satisfies

Pr(Yt|S∞
0 , Y t−1

1 , Y ∞
t+1) = Pr(Yt|St

t−1), t > 0. (7)

The MIR of the considered FS ISI channel is defined as [7]

I(Xt;Yt) = I(St;Yt) = lim
n→∞

1

n
I(Sn

1 ;Y n
1 |S0), (8)

whereI(Sn
1 ;Y n

1 |S0) denotes the mutual information between
Sn

1 andY n
1 given the initial stateS0. The maximal informa-

tion rate for a Markov source of orderM is defined as

CM = max
Pij : (i,j)∈T

I(St;Yt), (9)

whereSt = Xt
t−M+1. The i.u.d. capacity is given by

Ci.u.d. = I(St;Yt) s.t. Pij = |X |−1
, ∀(i, j) ∈ T . (10)

3. A NEW EXPRESSION FOR THE MUTUAL
INFORMATION RATE

In this section, we derive a new expression for the MIR, which
will be used in the following section to construct lower bounds
for the MIR. The MIR in (8) can be rewritten as [7]

I(St;Yt) = lim
n→∞

1

n

n
∑

t=1

I(St;Y
n
1 |St−1)

= lim
n→∞

1

n

n
∑

t=1

H(St|St−1) − H(St|Y n
1 , St−1). (11)

Due to the stationarity the first term in (11) simplifies to

H(St|St−1) = −
∑

(i,j)∈T
µiPij log2(Pij). (12)

The second term in (11) can be expressed as [7]

−H(St|St−1, Y
n
1 ) = EY n

1 ,St
t−1

[log2(Pr(St|St−1, Y
n
1 ))]

=
∑

i,j:(i,j)∈T
µiPij EY n

1 |St−1=i,St=j [log2(Pt(i, j|Y n
1 ))]

−
∑

i∈S
µi EY n

1 |St−1=i[log2(Pt(i|Y n
1 ))]. (13)

The last line in (13) can be expanded as follows
∑

i∈S

µi EY n
1 |St−1=i[log2(Pt(i|Y n

1 ))]

=
∑

i∈S

µi

∑

Y n
1 ∈Yn

Pr(Y n
1 |St−1 = i) · [log2(Pt(i|Y n

1 ))]

=
∑

i∈S

µi

∑

Y n
1 ∈Yn

∑

j:(i,j)∈T
Pr(Y n

1 , St = j|St−1 = i) · [. . .]

=
∑

i,j:(i,j)∈T
µiPij EY n

1 |St−1=i,St=j [log2(Pt(i|Y n
1 ))]. (14)

Inserting (14) into (13) yields

−H(St|St−1, Y
n
1 ) =

∑

i,j:(i,j)∈T
µiPij EY n

1 |St−1=i,St=j

[

log2

(

Pt(i, j|Y n
1 )

Pt(i|Y n
1 )

)]

.(15)

Hence, the MIR in (11) is also given by

I(St;Yt) =
∑

i,j:(i,j)∈T
µiPij · (Uij − log2(Pij)) , (16)

where the expectationUij is defined as

Uij = lim
n→∞

1

n

n
∑

t=1

EY n
1 |St−1=i,St=j

[

log2

(

Pt(i, j|Y n
1 )

Pt(i|Y n
1 )

)]

.

(17)
Combining the relations

Pt(i, j|Y n
1 )

Pt(i|Y n
1 )

=
Pt(Y

n
1 |i, j) · Pij

∑

u:(i,u)∈T Pt(Y n
1 |i, u) · Piu

, (18)

Pt(Y
n
1 |i, j) = P (Y n

t |i, j) · Pt(Y
t−1
1 |i), (19)

as well as
∑

Y
t−1
1 ∈Yt−1 Pr(Y t−1

1 |St−1 = i) = 1, the expres-
sion forUij in (17) simplifies to

Uij = lim
n→∞

1

n

n
∑

t=1

∑

Y n
t ∈Yn−t+1

Pt(Y
n
t |i, j)

· log2

(

Pt(Y
n
t |i, j) · Pij

∑

u:(i,u)∈T Pt(Y n
t |i, u) · Piu

)

. (20)



4. TIGHT LOWER BOUNDS FOR THE MUTUAL
INFORMATION RATE

In this section, we derive tight lower bounds for the MIR of
ISI channels with finite input and finite output alphabets.
As the frame lengthn goes to infinity and as the Markov chain
St is irreducible and aperiodic, the MIR does not depend on
the initial or terminal state. Moreover, as conditioning re-
duces uncertainty and as the considered Markov processes are
stationary, (11) can be lower bounded with

I(St;Yt) ≥ lim
n→∞

1

n

n
∑

t=1

I(St;Y
t+v
t |St−1)

= I(St;Y
t+v
t |St−1), (21)

assumingv < n. ReplacingY n
t with Y t+v

t in the derivation
of Uij in Section 3 gives rise to the lower bound

IÛij(v)(St;Yt) =
∑

i,j:(i,j)∈T
µiPij ·

(

Ûij(v) − log2(Pij)
)

= I(St;Y
t+v
t |St−1), (22)

where the truncated expectationÛij(v) is defined by

Ûij(v) =
∑

Y
t+v

t ∈Yv+1
Pt(Y

t+v
t |i, j)

· log2

(

Pt(Y
t+v
t |i, j) · Pij

∑

u:(i,u)∈T Pt(Y
t+v
t |i, u) · Piu

)

.(23)

Clearly, forv1 > v2 we have

I(St;Y
t+v1
t |St−1) ≥ I(St;Y

t+v2
t |St−1). (24)

Thus, by increasing the truncation parameterv, the MIR can
be tightly lower bounded. The computation ofIÛij(v)(St;Yt)
is straightforward, because (23) is exclusively composed of
channel and state transition probabilities, that is

Pt(Y
t+v
t |i, j) = Pt+1(Y

t+v
t+1 |j) · Pt(Yt|i, j), (25)

andPt+1(Y
t+v
t+1 |j) can be computed recursively

Pt+1(Y
t+v
t+1 |j) =

∑

l:(j,l)∈T
Pt+1(Yt+1|j, l)·Pjl ·Pt+2(Y

t+v
t+2 |l).

(26)
Clearly, the complexity of the expression (23) grows expo-
nentially with v. However, the simulation results show that
choosing smallv > L results in tight lower bounds.

The MIR can also be estimated numerically using [7]

I(St;Yt) =
∑

i,j:(i,j)∈T
µiPij · (Tij − log2(Pij)), (27)

where

T̂ij(n) =
1

n

n
∑

t=1



log2





Pt(i, j|Y n
1 )

Pt(i,j|Y n
1 )

µiPij

Pt(i|Y n
1 )

Pt(i|Y n
1 )

µi







 , (28)

and limn→∞ T̂ij(n) = Tij . It is worth mentioning, that the
forward recursion of the Baum-Welch/BCJR algorithm is suf-
ficient to estimate the MIR [8].

5. CHANNEL-MATCHED REDUCED
TRELLIS CODES

In this section, we propose a new method for constructing
channel-matched trellis codes. The method is a generalization
of the approach in [4, 5] to ISI channels.
The code construction is based on the following optimization

C uniform
M = max

Pij : (i,j)∈T
I(St;Yt)

s.t. Pij ∈ {0,K−1},
∑

j:(i,j)∈T
Pij = 1. (29)

Here, C uniform
M is the maximal information rate, which can

be achieved with a Markov source of orderM that is con-
strained to a subset ofK equiprobable input symbolsxt for
each channel statest−1 ∈ S. Such a Markov input process
is completely characterized by a reduced set of branches in a
trellis section. Hence, the namereduced trellis code (RTC).
The RTC induces a MIR of

I(St;Yt) =
∑

i,j:(i,j)∈TK

µiPij · (Tij − log2(Pij)), (30)

whereTK denotes the set of selected state pairs

TK = {(i, j)|(i, j) ∈ T , Pij = K−1}. (31)

The iterative information rate maximization (IR-max) al-
gorithm in Algorithm 1 efficiently computes near-optimal so-
lutions of (29). The IR-max algorithm uses eitherT̂ij(n) or
Ûij(v) as a measure for the qualityQij of trellis branches
(i, j) ∈ T . In every iteration of thek-loop, the algorithm de-
termines the worst branch with the lowestQij for each state
i ∈ S and removes it, that isPid = 0. After K iterations the
algorithm returns the optimized transition probabilitiesPij ,
i.e., a channel-matched RTC.

Algorithm 1 Iterative Information Rate Maximization

1: initialization: Pij =

{

1/|X |
0

if (i, j) ∈ T
otherwise

ChooseK and decide whether to useQij = T̂ij(n) or
Qij = Ûij(v) for all (i, j) ∈ T

2: for k = |X | down to K do
3: estimate all Qij

4: for all i ∈ S do
5: d = arg min

j:Pij>0
{Qij}

6: Pid = 0
7: for all (i, j) ∈ T do
8: Pij = Pij · k/(k − 1)

6. GAUSSIAN MIMO CHANNELS WITH ISI AND
SINGLE-BIT OUTPUTS

Consider the MIMO channel with ISI and single-bit output
quantization shown in Fig. 1. The channel has a memory of
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Fig. 1. MIMO channel with ISI and single-bit outputs.

lengthL and it is governed by the channel law

yt = Q{rt} = Q
{

∑L

k=0
Hkxt−k + ηt

}

. (32)

Here,Hk ∈ C
N×N is thek-th channel matrix.xk ∈ X , ηk ∈

C
N , rk ∈ C

N andyk ∈ Y = {α + jβ|α, β ∈ {+1,−1}}N

denote the channel input vector, the noise vector, the unquan-
tized receive vector and the channel output vector, at thek-th
time instant, respectively. The single-bit quantization opera-
tor Q returns the sign of the real and imaginary part of each
component of the unquantized received signalrt, i.e.,

Q{rt} = sign(real{rt}) + j · sign(imag{rt}). (33)

The conditional probability of the channel output satisfies

Pr(yt|x∞
−L,yt−1

1 ,y∞
t+1) = Pr(yt|xt

t−L), t ≥ 0. (34)

Here,x∞
0 andyt−1

1 stand for the sequences[x−L, x−L+1, . . .]
and[y1,y2 . . . ,yt−1], respectively. The noise is additive white
Gaussian with covariance matrixE[ntn

H
t ] = σ2

ηIN . The
transmit signal energy is normalized to1, that is‖xt‖2 = 1.
The (i, j)-th real and imaginary component of thet-th chan-
nel matrix[Ht]i,j is zero-mean Gaussian with varianceσ2

t /2.
On average the channel taps are normalized pursuant to

∑L

t=0
σ2

t = 1, ∀(i, j). (35)

The signal-to-noise ratio is given by

SNR = 1/σ2
η. (36)

The channel transition probabilities can be calculated via

Pr(yt|xt
t−L) =

∏

c∈{R,I}

N
∏

i=1

Φ

(

[yt]c,i · [r̄]c,i

ση/
√

2

)

. (37)

Here,[xt]R,i ([xt]I,i) denotes thei-th real (imaginary) compo-
nent of the input vectorxt, r̄ =

∑L

k=0 Hkxt−k is the noise-

free unquantized receive vector andΦ(x) = 1√
2π

∫ x

−∞ e−
t2

2 dt

is the cumulative normal distribution function. The input sym-
bols are modulated using QPSK. Consequently, we consider
FS ISI channels with|X | = |Y| = 4N and|T | = (4N )M+1.
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Fig. 2. Tightness of the lower bounds in (22) forv ∈ {1, 2, 3}.

7. SIMULATION RESULTS

We consider the FS ISI channels of Section 6 withN = 2
transmit and receives antennas and channel memory length
L = 1. On average, two thirds of the transmit energy is con-
veyed over the undelayed channel tapH0, that isσ2

0 = 2/3
andσ2

1 = 1/3. We choose a Markov source of orderM = L,
becauseCL is noticeably larger compared to the i.u.d. ca-
pacity, whereas memory lengths aboveL yield only a small
additional gain in MIR. Thus, we consider FS ISI channels
with |X | = |Y| = 16 and|T | = 256.

Fig. 2 demonstrates that the derived lower bounds for the
MIR in (22) are very tight even for smallv > L. The re-
sults are averaged of50 channels. The MIR was evaluated us-
ing randomly generated (and properly normalized) state tran-
sition probabilitiesPij . Please note, that the evaluation of
Ûij(v = 2) is computational inexpensive compared to a (pre-
cise) Monte Carlo simulation of̂Tij(n).
Fig. 3 shows how the information rate and conditional en-
tropy evolve during the first12 iterations of the IR-max algo-
rithm and the generalized Blahut-Arimoto (GBA) algorithm
[9] at anSNR of 10dB. The GBA is initialized with i.u.d. state
transition probabilitiesPij . The results are averaged over10
channels. ForK ≤ 7 iterations, the IR-max algorithm de-
creases the conditional entropy while increasing the informa-
tion rate. This result reflects our code design methodology.In
contrast to an unconstrained information rate maximization,
the enforced reduction of entropy in (29) is compensated as
much as possible by decreasing the conditional entropy.
Finally, Fig. 4 investigates the performance of the IR-max al-
gorithm over the whole SNR range. The results are averaged
over 10 channels. In order to avoid the use of distribution
shapers, the target rate is fixed atlog2(K) = 3bits per chan-
nel use (bpcu). Hence, the code bits of outer standard codes
can be mapped directly to the input symbols of the RTC and
vice versa. The plots indicate, that RTCs achieve informa-
tion rates well aboveCi.u.d. as long asCM ≤ log2(K) − 1.
The complexity of the IR-max algorithm can be adjusted by
choosing smallern (or rather smallerv). Fortunately, the
IR-max algorithm exhibits a good performance with as few
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as20 estimates (on average) per state transition(i, j) ∈ T .
This property might be crucial, if the channel is time-varying.
Moreover, RTCs are delay-free and completely describable
with |T | feedback bits. Though, most importantly, RTCs pro-
vide a reduction of conditional entropy of approximately∆ ≈
1bpcu forSNR < 13dB compared to i.u.d. input. Thus, if the
SNR is below13dB, the reduction fromHi.u.d.(St|Y n

1 , St−1)
down toHIR-T(St|Y n

1 , St−1) would render it possible to com-
municate reliable at information rates close toCi.u.d. using
considerably shorter, less complex outer standard codes. In
addition, the computation of APPs for the outer code is less
complex on a reduced trellis. Unfortunately, a brute-force
computation ofC uniform

M , which is the maximum of (29), is
not feasible.

8. CONCLUSION

In this paper, we presented a novel method for construct-
ing channel-matched trellis codes, which induce information
rates that surpass the i.u.d. capacity of FS ISI channels.
The proposed trellis codes can be easily combined with any
standard code on any FS ISI channel. The basic idea is to con-
sider the input Markov process as a means to virtually trans-

form asymmetric channels into almost symmetric ones with
lower conditional entropy.
In addition, we derived tight lower bounds for the mutual in-
formation rate of FS ISI channels with finite input and output
alphabets. The bounds can be evaluated within a small trel-
lis window without using Monte Carlo simulation techniques.
In the future, we will apply the reduced trellis codes to other
communication channels.
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