
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Statik

Isogeometric Analysis and Shape Optimal Design of
Shell Structures

Josef M. Kiendl

Vollständiger Abdruck der von der Fakultät für Bauingenieur- und Vermessungswesen
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender:
Univ.-Prof. Dr.-Ing. Gerhard H. Müller

Prüfer der Dissertation:
1. Univ.-Prof. Dr.-Ing. Kai-Uwe Bletzinger
2. Univ.-Prof. Dr. rer. nat. Ernst Rank
3. Univ.-Prof. Dr. Thomas J.R. Hughes, Univ. of Texas at Austin, USA

Die Dissertation wurde am 23.11.2010 bei der Technischen Universität München eingere-
icht und durch die Fakultät für Bauingnieur- und Vermessungswesen am 14.03.2011
angenommen.



 



I

Isogeometric Analysis and Shape Optimal Design of Shell
Structures

Abstract
Isogeometric analysis is a new method of computational analysis with the goal of merg-
ing design and analysis into one model by using a unified geometric representation.
NURBS (Non-Uniform Rational B-Splines) are the most widespread technology in to-
day’s CAD modeling tools and therefore are adopted as basis functions for analysis.

In this thesis, the isogeometric concept is applied to the analysis and shape optimization
of shell structures. A new, rotation-free shell element is developed, using the Kirchhoff-
Love shell theory and NURBS as basis functions. NURBS-based analysis provides advan-
tages especially for shells, since the structural behavior of a shell is mainly determined by
its geometry and therefore a good geometric description is essential. Furthermore, due
to the exact geometry description with NURBS, curvatures can be evaluated directly on
the surface without rotational degrees of freedom or nodal directors.

Different examples show the good performance and accuracy of the method, for geo-
metrically linear and nonlinear problems. Aspects concerning boundary conditions and
the treatment of multiple patch structures are investigated, and solutions are proposed
which allow the use of this method for a broad variety of problems. Furthermore, the de-
veloped shell formulation proves as very well suited for a direct integration into a CAD
model, which is also realized in a commercial CAD software. The practical application
of this integrated method for different examples also reveals problems and limitations of
the present approach, which are discussed subsequently. Another goal of this thesis is to
extend the isogeometric concept to shape optimization. After a brief review of shape opti-
mization using CAD-based or FE-based design models, isogeometric shape optimization
is introduced as a combination of both existing approaches which enhances flexibility in
choosing the design space.

In the context of a cooperation project, the developed structural formulation is inte-
grated into a fluid-structure interaction (FSI) environment and is applied to the three-
dimensional FSI simulation of a wind turbine blade rotating in the air flow. This example
shows the relevance of this method to large industrial applications.



II

Isogeometrische Analyse und Formoptimierung von Schalen

Zusammenfassung
Isogeometrische Analyse ist ein neuer Ansatz für computergestützte Berechnungsver-
fahren, mit dem Ziel, Entwurf und Berechnung durch eine gemeinsame geometrische
Darstellung in ein gemeinsames Modell zusammenzuführen. Die am weitesten verbre-
itete Technologie in heutigen CAD Systemen sind NURBS (Non-Uniform Rational B-
Splines). Sie werden daher als Ansatzfunktionen für das Berechnungsmodell übernom-
men.

Im Rahmen der vorliegenden Arbeit wird dieses Konzept für die Berechnung und For-
moptimierung von Schalen angewandt. Es wird ein neues, rotationsfreies Schalenele-
ment nach der Kirchhoff-Love Schalentheorie mit NURBS als Ansatzfunktionen entwick-
elt. Der Einsatz von NURBS für die Berechnung zeigt sich speziell für Schalen von Vorteil,
da das Tragverhalten einer Schale vornehmlich durch ihre Geometrie bestimmt wird
und somit eine gute Geometriebeschreibung von großer Bedeutung ist. Des Weiteren
ermöglicht die exakte Geometriebeschreibung mit NURBS die Berechnung von Krüm-
mungen direkt auf der Fläche, wodurch auf Rotationsfreiheitsgrade und Knotendirek-
toren verzichtet werden kann.

In verschiedenen Beispielen wird die Zuverlässigkeit und Genauigkeit dieser Methode
für geometrisch lineare sowie nichtlineare Probleme gezeigt. Es werden verschiedene
Aspekte bezüglich Randbedingungen sowie das Modellieren von Strukturen, welche
aus mehreren Flächen bestehen, untersucht und passende Lösungsmethoden entwick-
elt, welche die Anwendung dieser Methode für eine breite Vielfalt von Strukturen er-
möglichen. Des Weiteren erweist sich das entwickelte Schalenmodell als sehr geeignet
für die direkte Integration in ein CAD Modell, was mittels eines kommerziellen CAD
Programms auch verwirklicht wird. Durch den praktischen Einsatz dieses integrierten
Modells für verschiedene Beispiele zeigen sich ferner die Grenzen und Probleme dieses
Ansatzes, welche im Anschluss diskutiert werden. Ein weiterer Arbeitspunkt ist es, das
isogeometrische Konzept auf Formoptimierung zu erweitern. Nach einem Überblick
über Formoptimierung mit CAD-basierten oder FE-basierten Methoden wird isoge-
ometrische Formoptimierung als eine Kombination dieser beiden Methoden vorgestellt,
die eine weitaus größere Flexibilität bei der Wahl des Entwurfsraums gestattet.

Das entwickelte Strukturmodell wird im Zusammenhang eines Kooperationsprojektes in
ein Programm für Fluid-Struktur-Interaktion (FSI) implementiert und für die Berechnung
eines in der Windströmung rotierenden Windturbinenblattes eingesetzt. Dieses Beispiel
verdeutlicht die Relevanz dieser Methode für industrielle Anwendungen.
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Chapter 1

Introduction

It is a basic principle in engineering science to describe the objects in nature by reduced
and simplified models. A main aspect in this model building is the dimensional reduc-
tion. While every object in reality is a three-dimensional body, it might be described by
a model of reduced dimensionality, according to its extensions. Objects that are signif-
icantly larger in one dimension than the other two, are described by one-dimensional
models, such as trusses and beams. If only one dimension is much smaller than the other
two, two-dimensional models are employed, such as plates, membranes, and shells. A
shell is a thin-walled structure with arbitrary curvature in the three-dimensional space.
Both plates and membranes can be considered as special cases of shells. A plate is a plane
shell, whereas a membrane is a shell that can carry tangential forces only. With increas-
ing dimensionality, the models become mathematically more complicated, i.e. a plate is
more complex than beams and trusses, and a shell is more complex than a plate. There-
fore, it might seem somewhat surprising that a fully three-dimensional continuum model,
which has even more complex stress and strain states, is usually less difficult to describe
than a shell model. This is because for a three-dimensional solid, the general formula
of continuum mechanics can be applied without regard to its shape, while for a shell an
appropriate mathematical description of its geometry and of geometrical properties like
curvatures is necessary. There is a long history of shell theories and new developments
are still being made even today [YSMK00, BWBR04]. The need for shell theories lies in
the fact that shell structures are ubiquitous in nature and technology. A shell carries the
load “through its shape” and thus is very efficient in saving material and weight. It is due
to the curvature that transversal loads can be carried by tension and compression, while
bending moments are minimized. This load carrying behavior allows a very efficient use
of the material. This effect was already understood by the Romans, who built large circu-
lar cupolas, for example in the Pantheon. Nowadays, shells are used everywhere, where
a minimization of weight is important, e.g. in the aerospace and automotive industry. In
civil engineering and architecture they are used to span large distances, e.g. large roofs
and domes, and for aesthetic reasons. Slender structures with a smoothly curved shape
are perceived as being elegant and natural.
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The first shell theory goes back to Gustav R. Kirchhoff, who in 1850 developed the first
plate theory [Kir50]. The Kirchhoff plate theory is also called the “classical plate theory”,
and it is the basis for different tables for plates (Czerny, Stiglat-Wippel, etc.), that are
still used today in civil engineering. August E.H. Love developed a shell theory [Lov88]
that is based on Kirchhoff’s assumptions, and therefore it is known as the Kirchhoff-Love
shell theory. A second prominent shell theory is the Reissner-Mindlin theory which, in
contrast to the Kirchhoff-Love theory, takes into account transverse shear deformations
[Rei45]. These are negligible for thin shells but can be of importance for thick shells. The
limit between thick and thin is defined by the shell’s slenderness which is defined as
the ratio of curvature radius over thickness. A thick shell is defined by a slenderness
of R/t < 20. Although most shells in practical applications can be classified as thin
shells, the Reissner-Mindlin theory plays a dominant role in shell analysis using the finite
element method.

The finite element method [ZTZ05, Hug00], which is a computer-based method, had its
origins in the early 1960s and is nowadays the predominating method in structural anal-
ysis. While the solutions from classical plate and shell theory are restricted to regular
shapes like, for example, rectangular plates or rotationally symmetric shells, arbitrary
structures can be analyzed by the finite element method. It decomposes the structural do-
main into many small, “finite” elements with simple shapes. These elements are defined
by a set of nodal points, which are connected by basis functions. Linear polynomials are
the most used basis functions, due to their simplicity and the versatility of the resulting
elements. The problem is that with such elements there is usually no continuity higher
than C0 between elements possible. Even with higher order polynomials it is not possi-
ble to guarantee C1 continuity for arbitrarily shaped elements. This limitation prohibits
a straight-forward use of the Kirchhoff-Love shell theory since it requires integrability of
second derivatives and therefore at least C1 continuity. The Reissner-Mindlin shell the-
ory, where rotations and deflections are treated as two independent fields, requires only
C0 continuity. Therefore, most shell element formulations are based on this theory, inde-
pendent of the distinction between thick and thin shells. The problem is that especially
for thin shells, these elements suffer from various locking phenomena which are mostly
attributed to the use of low-order basis functions. Locking is a typical problem for shell
elements, and huge effort has been devoted and many different methods have been devel-
oped to prevent or at least reduce locking effects [Gel88, Kab92, BBR00, CdSNJFVAA02,
Bra98, L.Y98, Kos04, BS92a, AB97, SB82, BS92b, Bis99].

As mentioned above, the introduction of the finite element method made it possible to
analyze and therefore design structures of arbitrary shape for which no solutions had
existed before. The design of such free-from shapes by mathematical methods is another
field of science, termed CAD. CAD is the abbreviation of Computer Aided Design and
had its origins in the late 1960s, i.e. a bit later than the upcoming of the finite element
method which is a part of Computer Aided Engineering, in short CAE. The first method
to construct free-form curves and surfaces was developed by Pierre Bézier at Renault in
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1966 [Béz66]. Actually, another French engineer, Paul de Casteljau at Citroën developed
the same technology some years earlier, but his work was never published and there-
fore the name of Beziér was attributed. A further development to Beziér’s method were
B-Splines which provide more flexibility in the modeling of free-form curves and sur-
faces. Rational techniques had already been applied to Beziér curves, which allows the
exact description of all conic sections, such as ellipses and circles. The development of
non-uniform rational B-Splines (NURBS) provided a technology that can exactly describe
circular shapes (cylinders, spheres, etc.) which are basic elements in geometric modeling,
but also allows very flexible modeling of free-form surfaces. For this reason, NURBS
have become the standard technique in CAD modeling until today.

These historic remarks show that the methods in CAE and CAD were developed sepa-
rately and as a consequence they use completely different methods to describe the same
structural object. The design needs to be transformed into an analysis-suitable geometry,
i.e. a finite element mesh. Although mesh generation to a large extent is performed
automatically, it still requires manual control and adjustments by the engineer. In order
to obtain reliable results, a series of analyses with different mesh refinements has to be
performed. The fact that every FE mesh is only an approximation to the original geom-
etry means that a finer mesh has to be completely rebuilt from the CAD geometry. The
creation of an analysis-suitable geometry from the CAD geometry is nowadays the bot-
tleneck for large engineering computations, and mesh creation is one part of this model
transfer. A new form of analysis, called isogeometric analysis, tries to close this gap be-
tween the CAD and CAE world such that both disciplines work on the same geometric
models.
The term “isogeometric analysis” was coined by Hughes et al. in 2005 [HCB05]. The basic
idea is to avoid the meshing process by adopting the geometry description from design
for analysis. As mentioned above, NURBS are the most widespread technology in CAD
programs and thus, they are used as basis functions for analysis. It has been shown that
they fulfill the necessary conditions for basis functions and therefore, analysis can be per-
formed on the NURBS model without geometry conversion. Since then, NURBS-based
isogeometric analysis has gained increasing interest and it has been applied with great
success to the study of solids, shells, fluids, fluid-structure interaction, turbulence, and
structural optimization [BCHZ08, BH08, HBC+10, EBCH08, CRBH06, BCZH06, WFC08,
KBLW09, KBH+10, BBHH10, CH09, HCC10].

In this thesis, the isogeometric concept is applied for shell analysis and shape optimiza-
tion. Firstly, NURBS as basis for geometric modeling are studied profoundly as well as
their use for isogeometric analysis. A new isogeometric element, a shell element using
Kirchhoff-Love kinematics and NURBS as basis functions, is developed. It is formulated
geometrically nonlinear so that it is applicable for large deformations. Different bench-
mark examples are performed to test this element formulation. Special aspects concern-
ing boundary conditions and the modeling with multiple NURBS patches are discussed,
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and solutions are presented and tested. After a thorough testing of the presented method,
it is shown how it can be used to integrate isogeometric analysis into a commercial CAD
software. Furthermore, the concept of isogeometric analysis is extended to isogeometric
shape optimization. After a review on shape optimization, the advantages of having a
unified geometry description in all involved models are presented. In the last chapter,
the presented method is applied to a coupled fluid-structure-analysis of a wind turbine
blade which serves also as a demonstration of the relevance of this method for realistic
industrial problems.

The thesis is outlined as follows:

Chapter 2: The geometrical basics needed in this thesis are reviewed. First, the fundamen-
tals for geometric modeling of curves and surfaces are presented, which are necessary
in order to understand NURBS. Secondly, the formulas of the differential geometry of
surfaces are reviewed, which are needed for the kinematic equations of the shell theory.

Chapter 3: In the third chapter, the fundamentals of structural mechanics are reviewed.
First, the general equations of continuum mechanics are presented. Then, they are speci-
fied to the Kirchhoff-Love shell theory, employing the respective kinematic assumptions.
Furthermore, a short review of the laminated plate theory is given which will be used
for the example in Chapter 10. The last part of this chapter provides a general procedure
for computing physical stress values from the solution obtained by a displacement-based
analysis.

Chapter 4: The basics of isogeometric analysis are reviewed, and particularities and differ-
ences to traditional FE analysis are discussed.

Chapter 5: The formulation of the isogeometric Kirchhoff-Love shell is presented. The
equations are derived in detail such that the reader can use them for implementing this
element. As a special aspect, the treatment of rotational boundary conditions with this
formulation is discussed.

Chapter 6: The presented shell formulation is tested on a set of benchmark examples for
geometrically linear and nonlinear problems.

Chapter 7: The problem of structures consisting of multiple NURBS patches is discussed
and two different solutions are presented. The second one, the so-called bending strip
method, is further applied to couple shell elements with solid elements.

Chapter 8: In this chapter, the integration of CAD and CAE is studied. A commercial
CAD program is used to demonstrate the feasibility of this integration using the devel-
oped shell formulation. Furthermore, general problems and limitations of NURBS-based
analysis for the CAD-CAE integration are discussed.

Chapter 9: The concept of isogeometric shell analysis is extended to shape optimization.
First, the basics of shape optimization are reviewed. The two existing approaches, CAD-
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based and FE-based shape optimization, are reviewed and isogeometric shape optimiza-
tion is presented as a new way to combine the advantages of both approaches.

Chapter 10: In this chapter, the presented method is applied to fluid-structure interaction
and it shows its application on a realistic, large-scale example. It presents the isogeo-
metric FSI simulation of a wind turbine blade, which was done in cooperation with the
department of structural engineering at UC San Diego.

Chapter 11: The final chapter gives conclusions and outlooks. The results of the various
studies performed are summarized and discussed, and ideas for future research are pro-
posed.



Chapter 2

Geometric Fundamentals

In this chapter, the geometric fundamentals of surfaces are reviewed. The first part gives
a short overview of methods for the mathematical description of free-form curves and
surfaces, with focus on NURBS, which are the basis for the following chapters. In the
second part, the most important formulas of the differential geometry of surfaces are
presented. These formulas are the basis for the kinematic equations of shells which are
derived in Chapter 3.

2.1 Mathematical Description of Curves and Surfaces

There are different ways for the mathematical description of curves and surfaces. The
three basic types are the explicit, implicit and parametric description. Each of them has
different formulations for analyzing derivatives, continuities and geometrical properties
of the curve or surface, and each of them has advantages as well as disadvantages for
different applications. In the following, these three representations are shortly presented
with the focus on curves. However, the conclusions regarding the applicability for geo-
metrical modeling are valid for surfaces as well.

2.1.1 Explicit Representation

The explicit representation of a curve is the simplest but also the most limited one. Here,
one coordinate is a function of the other one, usually y = f (x) (for surfaces, usually the
z coordinate is a function of x and y: z = f (x, y)). As an example, the quadratic parabola
y = x2 − 2 is plotted in Figure 2.1. The advantage of the explicit representation is that
it is easy to evaluate the derivatives and by this obtain geometric properties like slope,
curvature, etc. It is furthermore easy to determine if a given point is on the curve and to
find the intersection of two curves. The significant disadvantage is that the set of possible
curves is very limited, since each x-value can take only one y-value. Furthermore, this
representation is axis-dependent, i.e. a quadratic interpolant through three points is dif-
ferent for every different coordinate system. For this reason, the explicit representation is
rarely used for modeling in computer aided design.
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restart;
with(plots):

x(t):= t:
y(t):= t^2:
plot([t, t*t-2,t=-2..2]);

K2 K1 0 1 2

K2

K1

1
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for i from 0 by 1 to n+PP do
 for t from 0 by 1 to PP do
  X1[i+t]:= 0:  X2[i+t]:= 0:
 end do:
end do:
BSPLINE:={}:
for i from 0 by 1 to n do

y(x) = x2 − 2

Figure 2.1: Explicit representation of a quadratic parabola.

2.1.2 Implicit Representation
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restart;
with(plots):

pi;
π

x(t):= t:
y(t):= t^2:
plot([1.5*cos(t), 1.5*sin(t),t=0..2*3.14159]);
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K2
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1

2

for i from 0 by 1 to n+PP do
 for t from 0 by 1 to PP do
  X1[i+t]:= 0:  X2[i+t]:= 0:
 end do:
end do:
BSPLINE:={}:

x2 + y2 = 1.5

Figure 2.2: Implicit representation of a circle.

A curve in implicit representation is the solution set to an equation of the form f (x, y) = 0
(for surfaces: f (x, y, z) = 0). With this description, it is possible that more than one point
has the same x-value and therefore important geometric objects like, for example, a cir-
cle can be described, see Figure 2.2. Obviously, every explicit curve can be expressed in
implicit representation but not vice versa. Similar to the explicit representation, it is easy
to determine whether a point is on the curve or not. However, it is rather difficult to find
the intersection of two curves. Although the variety of possible curves is bigger than in
the case of explicit representation, it is still limited. Nevertheless, the implicit description
is also used in computer aided design.
For the modeling of free-form curves and surfaces it is in general difficult to find the
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correct analytic function, which makes both the explicit and the implicit description in-
convenient.

2.1.3 Parametric Representation

O O 

O O 
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O O 

(1)(1)

restart;
with(plots):

pi;
π

x(t):= t:
y(t):= t^2:
plot([0.25*t*cos(t), 0.25*t*sin(t),t=0..4*3.14159]);

K2 K1 0 1 2 3

K2

K1

1

for i from 0 by 1 to n+PP do
 for t from 0 by 1 to PP do
  X1[i+t]:= 0:  X2[i+t]:= 0:
 end do:
end do:
BSPLINE:={}:

x(t) = 0.25 t cos(t)

y(t) = 0.25 t sin(t)

Figure 2.3: Parametric representation of an archimedean spiral.

The most suitable representation for free-form geometries is the parametric description.
Here, the coordinates x, y and z are explicit functions of an independent parameter (for
surfaces two parameters). This representation is extremely flexible and gives the biggest
variety of possible geometries. Figure 2.3 shows an archimedean spiral and its parametric
description. With parametric representation, it is also possible to define space curves,
whereas with explicit and implicit representation curves can only be defined on a plane.
The independent parameter, often denoted as t, is defined in an interval a ≤ t ≤ b. For
designing curves, this gives the additional advantage that the curve has a start and an
end point which is not the case for the explicit and implicit representation. Although not
necessary, this interval is usually normalized to [0,1]. As a drawback of the parametric
representation, it is difficult to determine whether a point lies on the curve or not and to
find the intersection of two curves.
All the methods presented in the next section for modeling free form curves and surfaces
are based on the parametric representation.

2.2 NURBS Curves and Surfaces

The first antecedents of NURBS were Bézier curves. B-Splines have emanated from Bézier
curves and NURBS from B-Splines. Therefore, this chapter starts with a short review of
Bézier curves as an introduction to B-Splines. B-Spline curves and surfaces are explained
in more detail since most of the definitions and properties of B-Splines apply to NURBS
as well. Finally, NURBS as a generalization of B-Splines are presented.
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2.2.1 Bézier Curves
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(b)

Figure 2.4: Fitting data points. (a) Interpolating polynomial. (b) Approximating Bézier curve

A fitting curve is a curve that should approximate a set of given points. If an interpo-
lating polynomial is used, the data points are represented exactly. However, oscillations
between the points can occur, see Figure 2.4(a). A Bézier curve is an approximating curve,
where the data points, called control points, are not interpolated but only approximated.
By this, a smooth and non-oscillating curve is obtained, and the curve “stays inside” the
control polygon, see Figure 2.4(b). The control polygon is the linear connection of the
control points. As can be seen, only the first and the last point of the control polygon are
interpolated. This is important for curve design, because a designer usually wants to be
able to exactly specify the beginning and the end of the curve. A Bézier curve is defined
by the linear combination of basis functions and control points:

C(ξ) =
n∑

i=1

Bi,p(ξ)Pi (2.1)

where n is the number of control points and Bi,p(ξ) are the Bernstein polynomials of
polynomial degree p. The polynomial degree is related to the number of control points
by: p=n−1. The Bernstein polynomials are defined by [BSMM00]:

Bi,p(ξ) =
n!

i!(n− i)!
ξ i(1− ξ)n−i (2.2)

In this form, ξ is defined as ξ ∈ [0,1].

The problem of Bézier curves is that with an increasing number of control points, the
polynomial degree has to be increased. However, with increasing polynomial degree, the
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approximation to the control polygon deteriorates and furthermore, the algorithms get
numerically instable. Furthermore, the global support of the basis functions is a problem
for geometric modeling, because it means that any modification of a control point has
influence on the whole curve and no local changes can be made to the curve. Another
drawback is the fact that no points of reduced continuity, such as kinks, can be inserted
inside the curve. These problems can be overcome by using B-Splines.

(a) (b)

Figure 2.5: Fitting data points. (a) Bézier curve, p = 6. (b) B-Spline curve, p = 3.

2.2.2 B-Splines

Similar to Bézier curves, B-Spline curves are defined by a linear combination of control
points and basis functions over a parametric space. The basis functions are called B-
Splines (short for Basis-Splines). The parametric space is divided into intervals and the
B-Splines are defined piecewise on these intervals, with certain continuity requirements
between the intervals. Since the number of intervals is arbitrary, the polynomial degree
can be chosen independently of the number of control points. Therefore, a large set of
data points can be approximated while using a low polynomial degree. This is illustrated
in Figure 2.5. It shows seven control points which are approximated once by a Bézier
curve with p = 6 (a) and once by a B-Spline curve with p = 3 (b). As a consequence of
the lower polynomial degree, the B-Spline curve consists of four sections. Their limits,
the so-called knots, are indicated by small crosses on the curve. As can be seen, the
B-Spline curve stays closer to the control polygon due to the lower polynomial degree.
B-Spline basis functions are defined to be unequal to zero only on a restricted range of
intervals which means a local influence of the control points on the curve. Furthermore, it
is possible to reduce the continuity in the basis functions between intervals and therefore
create kinks inside a curve.
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2.2.2.1 Knot Vector

The parametric space is defined by the so called knot vector Ξ = [ξ1, ξ2, . . . , ξn+p+1]. It is
a set of parametric coordinates ξi in non-descending order which divide the parametric
space into sections. If all knots are equally spaced, the knot vector is called uniform. A
B-Spline basis function is C∞ continuous inside a knot span, i.e. between two distinct
knots, and Cp−1 continuous at a single knot. A knot value can appear more than once
and is then called a multiple knot. At a knot of multiplicity k the continuity is Cp−k, i.e.
by increasing the multiplicity of a knot the continuity can be decreased.
If the first and the last knot have the multiplicity p + 1, the knot vector is called open,
clamped, or nonperiodic [PT97]. In this thesis, the term “open” is used. In a B-Spline
with an open knot vector the first and the last control point are interpolated and the
curve is tangential to the control polygon at the start and the end of the curve, which will
be explained in more detail. Since for designing a curve one usually wants to specify its
start and end point, open knot vectors are standard in CAD applications and are assumed
for the remainder of this thesis, unless stated otherwise.

2.2.2.2 Basis Functions

||||

0.75

0.5
0.0

1.0

0.25

0.0

0.5

0.25 1.00.75

Figure 2.6: Cubic B-Spline basis functions with open knot vector Ξ =

[0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1].

Based on the knot vector and the polynomial degree, B-Spline basis functions are com-
puted by the Cox-deBoor recursion formula. It starts for p=0 with:

Ni,0(ξ) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise
(2.3)

For p ≥ 1 it is

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (2.4)
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From this formulation some important properties of B-Spline basis functions can be de-
duced:

• Local support, i.e. a basis function Ni,p(ξ) is non-zero only in the interval
[ξi, ξi+p+1].

• Partition of unity, i.e.
n∑

i=1
Ni,p(ξ) = 1.

• Non-negativity, i.e. Ni,p(ξ) ≥ 0.

• Linear independence, i.e.
n∑

i=1
αiNi,p(ξ) = 0 ⇔ αj = 0, j = 1,2, . . . , n.

Figure 2.6 shows an example of cubic B-Spline basis functions with an open knot vector.
These are the basis functions corresponding to the curve in Figure 2.5(b). The longer
vertical lines on the x-axis indicate the inner knot locations which divide the curve into
sections.

|| ||
1.0

-5

-10

10

0
0.50.0

5

0.750.25

Figure 2.7: First derivatives of cubic B-Spline basis functions with open knot vector Ξ =

[0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1].

The first derivative of a B-Spline basis function is computed by the following formula:

N′i,p(ξ) =
p

ξi+p − ξi
Ni,p−1(ξ)−

p
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (2.5)

Figure 2.7 shows the first derivatives of the cubic basis functions from Figure 2.6.
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The open knot vector has the following effects on the basis functions and their deriva-
tives:
At ξ = 0 all basis functions except the first one vanish:

N1,p(0) = 1

Ni,p(0) = 0, i 6= 1
(2.6)

For the derivatives, only the first two are non-zero and N′1,p(0) = −N′2,p(0) holds:

N′1,p(0) = −
p

ξp+2

N′2,p(0) =
p

ξp+2

N′i,p(0) = 0, i > 2

(2.7)

The same applies to the basis functions at the end of the parametric space, which can be
seen in Figures 2.6 and 2.7.

As mentioned above, at multiple knots the basis functions have reduced continuity Cp−k,
with k as the knot multiplicity. If k = p, the basis functions are C0 continuous at this
knot. In such a case, all basis functions at this knot vanish, except one which takes on the
value 1. Figure 2.8 shows the cubic basis functions for a knot vector with an inner knot
of multiplicity k= p=3.

||

1.0

0.75
0.0

0.5 1.00.0

0.25

0.5

0.25

0.75

Figure 2.8: Cubic B-Spline basis functions with a multiple inner knot, Ξ =

[0, 0, 0, 0, 0.5, 0.5, 0.5, 1, 1, 1, 1].

2.2.2.3 B-Spline Curves

Similar to Bézier curves, a B-Spline curve of degree p is computed by the linear combina-
tion of control points and the respective basis functions:

C(ξ) =
n∑

i=1

Ni,p(ξ)Pi (2.8)
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The first derivative of the curve is obtained by the linear combination of control points
and the derived basis functions:

C′(ξ) =
n∑

i=1

N′i,p(ξ)Pi (2.9)

In Figure 2.5(b) a cubic B-Spline curve with open knot vector is given. As can be seen,
the first and last control point are interpolated and the curve is tangential to the control
polygon at its start and end. This is the effect of the open knot vector which can be
understood by inserting equations (2.6) and (2.7) into equations (2.8) and (2.9):

C(0) =
n∑

i=1

Ni,p(0)Pi = P1 (2.10)

C′(0) =
n∑

i=1

N′i,p(0)Pi =
p

ξp+2
(P2 − P1) (2.11)

Equation (2.10) shows that for an open knot vector, the first control point is interpolated
at ξ = 0, while equation (2.11) shows that the curve is tangential to P1P2 at ξ = 0. The
same holds for the other end of the curve, i.e. for ξ = 1 and the respective control points.
Understanding these properties is very important for defining continuity conditions be-
tween B-Spline curves and surfaces, which will be treated in Section 2.3.

If an inner knot has the multiplicity k = p, the continuity at this point is reduced to C0,
i.e. by this a kink can be inserted in the curve. As can be seen in Figure 2.8, one basis
function takes on the value 1 at this point which means that the corresponding control
point is interpolated by the curve. Figure 2.9 shows a cubic B-Spline with a multiple inner
knot of k= p. For this curve, the basis functions from Figure 2.8 have been applied to the
control points from Figure 2.5.

Figure 2.9: Interpolating cubic B-Spline curve due to a multiple inner knot, Ξ =

[0, 0, 0, 0, 0.5, 0.5, 0.5, 1, 1, 1, 1].
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The local support property of B-Splines is demonstrated in Figure 2.10. A B-Spline curve
is modified by changing the y-coordinate of the last control point. As shown in Figure
2.6, the corresponding basis function has support only in the last knot span. Therefore,
this modification has effect on the curve only in the last section, which can be seen in
Figure 2.10(b). If one of the inner control points is modified, it has influence on a couple
of sections, at maximum on p + 1 sections.

(a) (b)

Figure 2.10: Local influence of control points on B-Spline curves. (a) Initial curve. (b) The last
control point is modified.

Important properties of B-Spline curves are:

• Convex hull property: the curve is contained inside the convex hull of the control
polygon.

• In general, the control points are not interpolated.

• The control points have influence on maximum p + 1 sections.

• For open knot vectors, the first and the last control point are interpolated and the
curve is tangential to the control polygon at the start and the end of the curve.

• The curve is C∞ continuous between two knots and Cp−k continuous at a knot of
multiplicity k.

• Affine transformations of the B-Spline curve are performed by transforming the
control points correspondingly.

• A Bézier curve is a B-Spline curve with only one knot interval.
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2.2.2.4 B-Spline Surfaces

A B-Spline surface is computed by the tensor product of B-Spline basis functions in two
parametric dimensions ξ and η. It is defined by a net of n× m control points, two knot
vectors Ξ and H, two polynomial degrees p and q (which do not need to be equal), and
correspondingly the basis functions Ni,p(ξ) and Mj,q(η). It is described as:

S(ξ , η) =
n∑

i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Pi,j (2.12)

Figure 2.11 shows an example of a quadratic B-Spline surface and its control net (dashed
lines). The isocurves on the surface mark the knots which divide the surface into ele-
ments. Open knot vectors are employed in both directions. Therefore, the boundaries of
the surface are solely defined by the control points at the boundary and the vertices of the
surface are interpolated. Analogously to curves, the slopes along a boundary are defined
by the first two rows of control points from the boundary.

Figure 2.11: B-Spline surface.

2.2.2.5 B-Spline Solids

Similar to surfaces, a B-Spline solid is obtained by the tensor product of B-Spline basis
functions in three parametric dimensions ξ, η and ζ:

B(ξ , η, ζ) =
n∑

i=1

m∑
j=1

l∑
k=1

Ni,p(ξ)Mj,q(η)Lk,r(ζ)Pi,j,k (2.13)

Since this thesis focuses on surface structures, B-Spline solids are not regarded in more
detail here.
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2.2.3 NURBS

“NURBS” is the abbreviation for Non-Uniform Rational B-Splines. The term “non-
uniform” refers to the knot vector which in general is not uniform. The term “rational”
refers to the basis functions. While for B-Splines, the basis functions are piecewise poly-
nomials, for NURBS they are piecewise rational polynomials.

For a NURBS curve, each control point has additionally to its coordinates an individual
weight wi. Such a point Pi(xi, yi, zi, wi) can be represented with homogeneous coordi-
nates Pw

i (wixi, wiyi, wizi, wi) in a projective R4 space. A NURBS curve is the projection of
a B-Spline in R4 with homogeneous control points onto R3 [PT97]:

C(ξ) =

n∑
i=1

Ni,p(ξ)wiPi

n∑
i=1

Ni,p(ξ)wi

(2.14)

Defining NURBS basis functions as:

Ri,p(ξ) =
Ni,p(ξ)wi

n∑
i=1

Ni,p(ξ)wi

(2.15)

one can write a NURBS curve in the common way as the sum of control points times the
respective basis functions:

C(ξ) =
n∑

i=1

Ri,p(ξ)Pi (2.16)

If all control weights are equal, the rational functions in equation (2.15) reduce to the
normal B-Spline functions. This means that a B-Spline is a special case of NURBS with
equal control weights, and all properties of B-Splines listed in Section 2.2.2.3 apply to
NURBS as well.

In Figure 2.12, a cubic NURBS curve is defined through the control points of the previous
example, with an increased weighting on the uppermost control point w5 = 10. It can
be seen that due to this higher control weight, the curve is “pulled” towards this control
point.

The significant advantage of the rational basis functions is that they allow an exact repre-
sentation of conic sections, which includes circles and ellipses. Figure 2.13 shows a circle
represented by a NURBS curve. Therefore, NURBS are able to represent smooth free form
shapes as well as linear shapes, sharp edges, and kinks, and also such important geomet-
ric objects like spheres, cylinders, etc. This is why NURBS have become established as a
standard in CAD modeling.
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Figure 2.12: NURBS curve with increased weighting on the uppermost control point w5 = 10.

Figure 2.13: Exact circle represented by a NURBS curve.

Similar to B-Splines, a NURBS surface is defined as:

S(ξ , η) =
n∑

i=1

m∑
j=1

Rp,q
i,j (ξ , η)Pi,j (2.17)

with the basis functions:

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)wi,j
n∑

i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)wi,j

(2.18)

and a NURBS solid is defined as:

B(ξ, η, ζ) =
n∑

i=1

m∑
j=1

l∑
k=1

Rp,q,r
i,j,k (ξ , η, ζ)Pi,j,k (2.19)

with the basis functions:

Rp,q,r
i,j,k (ξ , η, ζ) =

Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k
n∑

i=1

m∑
j=1

l∑
k=1

Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k

(2.20)
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It is important to note that two- and three-dimensional NURBS basis functions (equa-
tions (2.18) and (2.20)) are not tensor products of one-dimensional NURBS basis functions
(equation (2.15)). They are obtained as the weighted ratio of tensor products of B-Spline
basis functions.

In Figure 2.14(a), a sphere which is modeled by a NURBS surface is depicted. Figure
2.14(b) shows the geometry and the control points.

(a) (b)

Figure 2.14: Exact sphere represented by a NURBS surface. (a) Surface. (b) Surface and control
grid.

2.2.4 Refinement

There are two ways of mesh refining a NURBS curve or surface, namely knot insertion
and order elevation. Both methods enhance the design space by adding control points to
the geometry. In knot insertion, the knot spans are divided into smaller ones by inserting
new knots. As a consequence, at this point the continuity is reduced by one. For each
additional knot, an additional control point is inserted. In order elevation, the number
of knot intervals remains unchanged but the polynomial degree of the basis functions is
increased. While increasing the order, existing knots are repeated so that the continuity
at these points remains unchanged. For surfaces, these refinement procedures can be
applied to both parametric directions ξ and η independently from each other. A very
important feature of both methods is that they do not change either the geometry or the
parametrization. There are standard algorithms for knot refining and order elevating B-
Splines, see [PT97]. For NURBS, the same algorithms can be used, however, they have
to be applied to the homogeneous control coordinates Pw

i , which means refining a B-
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Spline in the projective R4 space. After having obtained the refined control points in the
projective space, they are projected back to the R3 space.

(a) (b)

Figure 2.15: NURBS refinement. (a) Order elevation. (b) Knot refinement.

Figure 2.15(a) shows the sphere after order elevation. The control grid is refined, while
the number of knot spans remains unchanged. In Figure 2.15(b), knot refinement has
been performed. Both the knot mesh and the control grid are refined.

2.3 Continuity

For the isogeometric shell formulation presented in Chapter 5, the continuity between ele-
ments and patches plays a crucial role. Therefore, in this section the continuity conditions
for B-Splines and NURBS are investigated.

For parametric curves and surfaces there are two kinds of continuity, the geometric and
the parametric continuity. For the zeroth order continuity they are equal G0 = C0, but
for a degree of continuity k ≥ 1 they have to be distinguished. Generally, the parametric
continuity Ck implies the geometric continuity Gk but not vice versa. For the proposed
method, the geometric continuity G1 between surfaces is needed, so at first the difference
between G1 and C1 is briefly discussed.

2.3.1 Geometric vs. Parametric Continuity

Given are two curves C1(ξ) and C2(ξ), 0 ≤ ξ ≤ 1, which join at their ends:

C1(1) = C2(0) (2.21)
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The curves are C1 continuous if their first derivatives at the joint are equal:

∂C1(1)
∂ξ

=
∂C2(0)

∂ξ
(2.22)

This means that their tangent vectors at the joint are parallel and have the same magni-
tude. For G1 continuity, the tangent vectors only have to be parallel but not necessarily
of the same magnitude [Rog01]. So for G1 the following equation must hold:

∂C1(1)
∂ξ

= c · ∂C2(0)
∂ξ

(2.23)

where c is a scalar multiplier.

2.3.2 G1 Continuity for B-Spline Curves

The first derivatives at the endpoints of a B-Spline curve are given by equation (2.11):

∂C(0)
∂ξ

=
p

ξp+2
(P2 − P1) (2.24)

∂C(1)
∂ξ

=
p

1− ξn
(Pn − Pn−1) (2.25)

The factors p
ξp+2

and p
1−ξn

are scalar multipliers of the tangent vectors and therefore irrele-
vant for the geometric continuity. The last control point of the first curve is equal to the
first control point of the second curve, P1

n = P2
1, so the curves are G1 continuous if the

following condition holds:

(P2
2 − P1

n) = c · (P1
n − P1

n−1) (2.26)

This means that the control points P1
n−1, P1

n and P2
2 are collinear, as illustrated in Figure

2.16.

Figure 2.16: G1-continuous B-spline curves.



2. Geometric Fundamentals 22

2.3.3 G1 Continuity for B-Spline Surfaces

For two surfaces being G1 continuous along a common edge, the derivatives w.r.t. both
parameters ξ and η have to fulfill the condition of equation (2.23). The first derivatives of
a B-Spline surface at the edges ξ = 0 and ξ = 1 are:

∂S(0, η)

∂ξ
=

p
ξp+2

m∑
j=1

Mj,q(η)(P2,j − P1,j) (2.27)

∂S(0, η)

∂η
=

m∑
j=1

∂Mj,q(η)

∂η
P1,j (2.28)

∂S(1, η)

∂ξ
=

p
1− ξn

m∑
j=1

Mj,q(η)(Pn,j − Pn−1,j) (2.29)

∂S(1, η)

∂η
=

m∑
j=1

∂Mj,q(η)

∂η
Pn,j (2.30)

Given are two patches with a common edge and the same parametrization along the
common edge:

S1(1, η) = S2(0, η) (2.31)

P1
n,j = P2

1,j M1
j,q(η) = M2

j,q(η) j = 1, . . . , m (2.32)

Then, the derivative w.r.t. η along the edge is equal on both surfaces for any point on the
edge:

∂S1(1, η)

∂η
=

∂S2(0, η)

∂η
(2.33)

The condition:
∂S1(1, η)

∂ξ
= c · ∂S2(0, η)

∂ξ
(2.34)

is fulfilled if for all control points across the edge the following relation holds:

(P2
2,j − P1

n,j) = c · (P1
n,j − P1

n−1,j) j = 1, . . . , m (2.35)

2.3.4 G1 Continuity for NURBS Surfaces

For the G1 continuity between NURBS patches, the surfaces have to be G1 continuous
in the homogeneous setting, i.e. equation (2.35) has to be applied to the homogeneous
control points [FHK02]:

(Pw,2
2,j − Pw,1

n,j ) = c · (Pw,1
n,j − Pw,1

n−1,j) j = 1, . . . , m (2.36)
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2.4 Differential Geometry of Surfaces

In this section, the basics of the differential geometry of surfaces are reviewed which are
the basis for the structural shell model described in Chapter 3.

Each point in the three-dimensional space can be identified by its position vector x:

x = x1e1 + x2e2 + x3e3 = xiei (2.37)

where ei are the global Cartesian base vectors and xi the respective coordinates. The
Einstein summation convention is used as well as the convention that indices in Latin
letters take the values {1,2,3} whereas indices in Greek letters take the values {1,2}.
For the description of free-form geometries, especially surfaces, it is advantageous to use
curvilinear coordinates and local bases. Two important bases are the covariant basis gi

and the contravariant basis gi. With the corresponding contravariant coordinates θi and
covariant coordinates θi, the position vector x can be expressed as:

x = θigi = θigi (2.38)

The covariant base vectors are defined as:

gi =
∂x
∂θi = x,i (2.39)

Covariant and contravariant base vectors are related by the following condition:

gi · gj = δ
j
i =

{
0 i 6= j

1 i = j
(2.40)

A surface is a parametrically two-dimensional geometry and each point on the surface is
described by two curvilinear coordinates (θ1, θ2). This means that the first two covariant
base vectors gα can be computed as in equation (2.39) whereas the third covariant base
vector g3 is defined as the normalized vector orthogonal to g1 and g2:

g3 =
g1 × g2

|g1 × g2|
(2.41)

As can be deduced from equation (2.40), the contravariant base vectors gα lie in the tan-
gential plane spanned by the covariant base vectors gα. Therefore, the third contravariant
base vector g3 is equal to g3:

g3 = g3 (2.42)
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The base vectors g1, g2 can also be used to define a local Cartesian basis. This is an
orthogonal and normalized basis with an arbitrary orientation. Here, it is defined such
that its first base vector e1 is parallel to g1, and e2 is orthogonal to it, lying in the plane of
g1, g2. The third base vector e3 is equal to g3:

e1 =
g1

‖g1‖
(2.43)

e2 =
g2 − (g2 · e1)e1

‖g2 − (g2 · e1)e1‖
(2.44)

e3 = g3 (2.45)

An important quantity for the description of surfaces is the metric tensor g, also called
identity tensor. It can be expressed in the covariant and contravariant basis:

g = gαβ gα ⊗ gβ = gαβ gα ⊗ gβ (2.46)

The covariant metric coefficients gαβ are computed by the scalar product of covariant base
vectors [Kli89]:

gαβ = gα · gβ (2.47)

Equation (2.47) is called the first fundamental form of surfaces. It contains important prop-
erties of the surface as length of the base vectors and the angles between them. The con-
travariant metric coefficients gαβ are obtained by the inverse of the covariant coefficient
matrix: [

gαβ
]
=
[
gαβ

]−1 (2.48)

With the contravariant metric coefficient matrix gαβ, the contravariant base vectors can
be computed from the covariant base vectors:

gα = gαβ gα (2.49)

and vice versa:
gα = gαβ gα (2.50)

The second fundamental form of surfaces (equation (2.51)) describes the curvature properties
of a surface. The curvature tensor coefficients bαβ are defined as [Kli89, BK85a]:

bαβ = −gα · g3,β = −gβ · g3,α = gα,β ·g3 (2.51)
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In the following chapters, transformations of tensor coefficients between different bases
are needed several times. Here, a general approach for such transformations is explained
on a general example:
Two different bases ai ⊗ aj and bi ⊗ bj as well as their contravariant counterparts ai ⊗ aj

and bi ⊗ bj are given. A tensor M can be expressed using these bases as:

M = aijai ⊗ aj = aijai ⊗ aj = bijbi ⊗ bj = bijbi ⊗ bj (2.52)

Exemplarily, the covariant coefficients aij shall be transformed to the covariant coeffi-
cients bij:

aijai ⊗ aj = bijbi ⊗ bj (2.53)

The trick is multiplying the covariant base vectors bk, bl from two sides, using the fact
that co- and contravariant base vectors are related by bi · bj = δ

j
i :

aijbk(ai ⊗ aj)bl = bijbk(bi ⊗ bj)bl

aij(bk · ai)(aj · bl) = bij(bk · bi)(bj · bl)

= bijδ
i
kδ

j
l

= bkl

(2.54)

The same can be done for contravariant coefficients for both bases. So there are four
possible transformations:

bkl = aij(bk · ai)(aj · bl) (2.55)

bkl = aij(bk · ai)(aj · bl) (2.56)

bkl = aij(bk · ai)(aj · bl) (2.57)

bkl = aij(bk · ai)(aj · bl) (2.58)

Equations (2.55) to (2.58) provide the transformation rules for all cases of coefficient trans-
formations that are needed in the following chapters.



Chapter 3

Structural Mechanics of Shells

3.1 Fundamentals of Continuum Mechanics

In this section, the fundamentals of continuum mechanics are reviewed. The basic quan-
tities of differential geometry have been introduced in Section 2.4 and based on these, the
most important kinematic equations are derived in the following. Large displacements
and small strains are assumed and the Lagrangian description is used.

3.1.1 Kinematics

The kinematics describe the deformation of a body. For a material point on the body it
has to be distinguished between the reference (undeformed) and the actual (deformed)
configuration. All quantities in the reference configuration are denoted by upper case
letters, those referring to the actual configuration by lower case letters.
The deformation u of a material point is defined by its position vectors in the actual and
reference configuration:

u = x− X (3.1)

The mapping of a differential line element in the reference configuration dX into a line
element in the deformed configuration dx is described by the deformation gradient F
[Hol04]:

dx = F · dX (3.2)

The deformation gradient is defined by the base vectors in the reference and actual con-
figuration [BW00]:

F = gi ⊗Gi FT = Gi ⊗ gi (3.3)

F−1 = Gi ⊗ gi F−T = gi ⊗Gi (3.4)

and can be used for the mapping between deformed and undeformed base vectors:

gi = F ·Gi Gi = F−1 · gi (3.5)

gi = F−T ·Gi Gi = FT · gi (3.6)
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The deformation gradient describes the deformation of a body including rigid body mo-
tions. Therefore, it cannot be used directly as a measure for strains. Different strain mea-
sures exist, the one used in this thesis is the Green-Lagrange strain tensor E. It describes
a nonlinear relation between deformations and strains and therefore it is an appropri-
ate measure for strains under large deformations. It is defined through the deformation
gradient and the identity tensor I:

E =
1
2
(FT · F− I) = Eij Gi ⊗Gj (3.7)

Inserting equation (3.3) into (3.7) and recalling that the identity tensor is identical to the
metric tensor yields:

E =
1
2
((Gi ⊗ gi) · (gj ⊗Gj)− Gij Gi ⊗Gj)

=
1
2
(gij − Gij)Gi ⊗Gj (3.8)

Thus, the Green-Lagrange strain coefficients Eij are computed from the metric coefficients
in the actual and reference configuration:

Eij =
1
2
(gij − Gij) (3.9)

and they refer to the contravariant basis Gi ⊗Gj of the undeformed configuration.

3.1.2 Constitutive Equations

The constitutive equations describe the relation between strains and stresses via a mate-
rial law. Similar to strain tensors, there exist different definitions of stress tensors. The
energetically conjugate quantity to the Green-Lagrange strain tensor E is the second Piola-
Kirchhoff (PK2) stress tensor S [BW00]. It can be derived from the strain energy W int:

S =
∂W int

∂E
(3.10)

Stress and strain tensor are related by the elasticity tensor C, also called material tensor.
It is a fourth order tensor and is defined as:

C =
∂S
∂E

=
∂2W int

∂E2 (3.11)

In this thesis, a St.Venant-Kirchhoff material model is used, which means that a linear
relation between strains and stresses is assumed:

S = C : E (3.12)

Sij = CijklEkl (3.13)

S = SijGi ⊗Gj (3.14)
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For the description of an isotropic elastic material, two independent parameters are suf-
ficient. There are different parameters used in mathematical and engineering literature.
Usually, in the engineering literature the Young’s modulus E and Poisson’s ratio ν are
used whereas in mathematical literature, the Lamé constants λ and µ can be found. They
are connected by the following relations:

λ =
Eν

(1 + ν)(1− 2ν)
µ =

E
2(1 + ν)

(3.15)

As mentioned above, the second Piola-Kirchhoff stress tensor S is the energetically conju-
gate to the Green-Lagrange strain tensor. However, it does not represent physical stresses.
Those are described by the Cauchy stress tensor σ. The Cauchy and the PK2 stress tensor
are related by the deformation gradient as follows:

σ = (detF)−1 · F · S · FT (3.16)

S = detF · F−1 · σ · F−T (3.17)

Another common stress tensor is the first Piola-Kirchhoff (PK1) stress tensor P, which can
be obtained by:

P = detF · σ · F−T = F · S (3.18)

3.1.3 Equilibrium

The equilibrium equations describe the balance between internal and external forces. If
these equations are satisfied, the system is in equilibrium. In the reference configuration,
the equilibrium is formulated as:

divP + ρ0B = div(F · S) + ρ0B = 0 (3.19)

where ρ0 is the density and B the vector of body forces, both in the reference configura-
tion.

Equations (3.7), (3.12) and (3.19), together with the appropriate boundary conditions, rep-
resent the strong form of the boundary value problem. For general three dimensional
problems, the strong form of the problem cannot be solved exactly and discretization
methods are employed, like the Finite Element Method, which is also used in this the-
sis. In the Finite Element Method, the field equations and boundary conditions are not
satisfied point-wise, but in an integral sense only. The resulting equation of equilibrium
is called the weak form of the problem. The finite elements developed in this thesis are
based on the Principle of Virtual Work, to be more precise, the Principle of Virtual Dis-
placements. It says that if an infinite small virtual displacement δu is applied to a system,
the sum of internal and external virtual work, done by the internal and external forces on
the virtual displacement, vanishes if the system is in equilibrium [WP03]:

δW = δWint + δWext = 0 (3.20)
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The internal and external virtual work are defined as:

δWint = −
∫
Ω

δE : S dΩ (3.21)

δWext =

∫
Γ

T · δu dΓ +

∫
Ω

ρB · δu dΩ (3.22)

where Ω is the domain and Γ the domain boundary in the reference configuration and T
is the vector of boundary forces.
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3.2 Kirchhoff-Love Shell Theory

The Kirchhoff-Love theory is a shell theory based on the “direct approach”. It means
that the shell formulation is not derived from three-dimensional continuum mechanics,
but the shell is regarded ab initio as a two-dimensional surface and proper kinematic
assumptions, representing the three-dimensional behavior, are postulated. The director,
which is a vector field on the shell’s middle surface, describes the thickness extension
of the shell. For a comprehensive review of the different approaches to shell theories,
reference is made to [BWBR04].
For shell theories based on the direct approach, normal strains and stresses in through-
the-thickness direction are not regarded. In the Kirchhoff-Love shell theory, cross sections
are assumed to remain straight during deformation, which corresponds to a linear strain
distribution through the thickness. Furthermore, it assumes that the cross sections that
are normal to the middle surface, remain normal to the middle surface in the deformed
configuration. This means that the director is always normal to the middle surface and
as a consequence the definition of an independent director is redundant and the shell
can be completely represented by its middle surface. Mechanically, the assumption of
cross sections remaining normal to the midsurface means that transverse shear strains
are neglected. This is a reasonable assumption for thin structures. The range where this
assumption is valid, is defined by the shell’s slenderness R/t > 20, with R as the radius
of curvature and t as the shell’s thickness. Therefore, most shells in practical application
can be classified as thin shells.
In the following, these assumptions are applied to the kinematic, constitutive, and equi-
librium equations introduced in the previous chapters.

Since both transversal normal strains and transversal shear strains are neglected, only the
in-plane strain coefficients are considered and equation (3.7) reduces to:

E = Eαβ Gα ⊗Gβ (3.23)

According to equation (3.9), the strain coefficients Eαβ are defined by:

Eαβ =
1
2
(gαβ − Gαβ) (3.24)

Due to the assumption of straight cross sections, every point in the shell continuum can
be described by the middle surface and its normal vector. With t as the shell thickness
and θ3 as the thickness coordinate ranging from (−0.5t ≤ θ3 ≤ 0.5t), the middle surface
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is defined by x(θ3 = 0). The base vectors on the middle surface are denoted by ai and
obtained by:

aα = x,α (θ3=0) (3.25)

a3 =
a1 × a2

|a1 × a2|
(3.26)

Corresponding to equations (2.47) and (2.51), the metric and curvature coefficients of the
middle surface are defined by:

aαβ = aα · aβ (3.27)

bαβ = −aα · a3,β = −aβ · a3,α = aα,β ·a3 (3.28)

The position vector x of a point in the shell continuum is then defined by:

x = θαaα + θ3a3 (3.29)

which yields for the base vectors gα:

gα = aα + θ3a3,α (3.30)

and for the metric coefficients gαβ:

gαβ = (aα + θ3a3,α ) · (aβ + θ3a3,β )

= aαβ − 2 θ3 bαβ + (θ3)2 a3,α · a3,β
(3.31)

For thin and moderately thick shells, the quadratic term with respect to θ3 is neglected
[BWBR04], which yields:

gαβ = aαβ − 2 θ3 bαβ (3.32)

Inserting (3.32) into (3.24) yields:

Eαβ =
1
2
(aαβ − Aαβ) + θ3(Bαβ − bαβ) (3.33)

With this formula, the strains in the shell continuum are represented by the metric and
curvature coefficients of the middle surface. It can be seen that the strains consist of a
constant and a linear part. The constant part describes the strains in the middle surface
and corresponds to membrane action. Correspondingly, the membrane strains εαβ are
defined as:

εαβ =
1
2
(aαβ − Aαβ) (3.34)

The linear part (symmetric with respect to the middle surface) represents the change in
curvature and is the effect of bending. The change in curvature is denoted by καβ:

καβ = Bαβ − bαβ (3.35)
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With εαβ and καβ, equation (3.33) can be rewritten as:

Eαβ = εαβ + θ3καβ (3.36)

The separation into membrane and bending action is also applied to the stresses, and
an integration through the thickness is performed, which yields the stress resultants n
for normal forces and m for bending moments. Since the stress distribution through the
thickness is defined to be linear, a pre-integration can be performed analytically:

Sαβ = CαβγδEγδ (3.37)

nαβ =

∫ t/2

−t/2
Sαβ dθ3 = Cαβγδεγδ · t (3.38)

mαβ =

∫ t/2

−t/2
Sαβ · θ3 dθ3 = Cαβγδκγδ ·

t3

12
(3.39)

As the strain and the stress tensor are both symmetric, there are only three independent
strain coefficients E11, E22 and E12 as well as three independent stress coefficients S11, S22

and S12. They can be gathered in vectors, and the constitutive equation can be written in
Voigt notation: 

S11

S22

S12

 = D̃ ·


E11

E22

2E12

 (3.40)

where D̃ is the material matrix. Usually, the material matrix is built using physical ma-
terial parameters like the Young’s modulus E. Since these quantities refer to normalized
units (like m or mm), the strains and stresses in equation (3.40) need to be expressed in
a local Cartesian coordinate system. Equation (2.55) can be used to transform the strain
coefficients from Eαβ to Ēαβ, where the upper bar signifies that these coefficients refer to
a local Cartesian basis:

Ēγδ = Eαβ(Eγ ·Gα)(Gβ · Eδ) (3.41)

The local Cartesian base vectors Eγ, Eδ are obtained by equations (2.43)-(2.44) and are
denoted by capital letters here, to make clear that they refer to the reference configuration.

Now, a material matrix D using physical components can be used to compute the PK2
stress coefficients S̄αβ. As for the strains, the upper bar notation refers to a local Cartesian
basis:
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S̄11

S̄22

S̄12

 = D ·


Ē11

Ē22

2Ē12

 (3.42)

For an isotropic material, the material matrix is defined as:

Diso =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 (3.43)

with E as the Young’s modulus and ν as the Poisson’s ratio.
In the case of an orthotropic material, there are different Young’s moduli E1, E2 and Pois-
son’s ratios ν12, ν21 for the two material directions, where ν21E1 = ν12E2 must hold to
ensure the symmetry of the material matrix. Together with the shear modulus G12, the
orthotropic material matrix is defined as:

Dort =



E1

(1− ν12ν21)

ν21E1

(1− ν12ν21)
0

ν12E2

(1− ν12ν21)

E2

(1− ν12ν21)
0

0 0 G12

 (3.44)

Like the stress tensor S, the tensors n and m are symmetric and their coefficients can be
computed using the material matrix and Voigt notation, analogously to equation (3.42).
The bar over the coefficients (¯) again refers to a local Cartesian basis:

n̄11

n̄22

n̄12

 = t ·D ·


ε̄11

ε̄22

2ε̄12

 (3.45)


m̄11

m̄22

m̄12

 =
t3

12
·D ·


κ̄11

κ̄22

2κ̄12

 (3.46)

With normal forces and bending moments, the internal virtual work can now be formu-
lated as:

δWint = −
∫

Ω
(S : δE)dΩ = −

∫
A
(n : δε + m : δκ)dA (3.47)

where dA is the differential area of the midsurface in the reference configuration. Equa-
tion (3.47) is a weak form of the partial differential equations for the Kirchhoff-Love shell.
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3.3 Laminated Plate Theory

A composite laminate is a material that is composed of a series of plies with orthotropic
material behavior, where the plies can have different orientations of their principal mate-
rial coordinates. For thin shells, such materials can be modeled by the classical laminated
plate theory [Red04, Sch05, Bai07], which creates homogenized material matrices, so that
the stress resultants n and m can be directly obtained from ε and κ. In the case of a
non-symmetric layout of the plies, a coupling between membrane strains and bending
moments, as well as curvatures and normal forces occurs. Therefore, three material ma-
trices are defined, the extensional stiffness A, the coupling stiffness B and the bending
stiffness D.

The homogenized material matrices are obtained by integrating the material matrices of
each ply over the height.

For a single ply, the material is described by an orthotropic material matrix Dort as defined
in (3.44). Since this matrix is referred to the ply’s principal direction, i.e. its fiber direction,
it needs to be transformed to the shell’s principal directions by a rotation matrix T(φ):

T(φ) =

 cos2 φ sin2 φ sin φ cos φ

sin2 φ cos2 φ − sin φ cos φ

−2 sin φ cos φ 2 sin φ cos φ cos2 φ− sin2 φ

 (3.48)

where φ is the fiber angle. The rotated material matrix of a ply k is then obtained by:

Dk = TT(φ)Dort
k T(φ) (3.49)

For a laminate with n plies of equal thickness t/n, the matrices A, B and D are obtained
by the following formulas:

A =
t
n

n∑
k=1

Dk (3.50)

B =
t2

n2

n∑
k=1

Dk

(
k− n

2
− 1

2

)
(3.51)

D =
t3

n3

n∑
k=1

Dk

[(
k− n

2
− 1

2

)2

+
1
12

]
(3.52)

Normal forces and bending moments are then obtained by:
n̄11

n̄22

n̄12

 = A ·


ε̄11

ε̄22

2ε̄12

+ D ·


κ̄11

κ̄22

2κ̄12

 (3.53)



3. Structural Mechanics of Shells 35


m̄11

m̄22

m̄12

 = D ·


ε̄11

ε̄22

2ε̄12

+ B ·


κ̄11

κ̄22

2κ̄12

 (3.54)

Having computed normal forces and bending moments by this modified material law,
the shell formulation of equation (3.47) can be used without any further modifications.

3.4 Stress Recovery

The derivations and equations in Section 3.2 are the basis for a structural analysis using
the Kirchhoff-Love theory. If such a problem is solved by a finite element analysis, the
results are usually displacements. This means that the analysis yields as result the de-
formed configuration of the geometry. Other important quantities of interest in structural
analysis are the stresses and stress resultants. Computing the stresses from the obtained
displacements is called stress recovery.
In the following, a procedure for stress recovery is presented, which is generally valid
and not related to a finite element discretization. The only aspect that refers to a finite
element analysis is the fact that the deformed geometry is obtained as solution of the
structural analysis and stresses are to be computed from this. The basic formulas for this
are already given in Sections 3.1 and 3.2. However, in order to actually obtain meaning-
ful stress values, a series of postprocessing steps is necessary, which is presented here
in more detail. In the first part of this section, the procedure is presented for general
continuum mechanics, and in the second part it is applied to the Kirchhoff-Love shell
theory.

The result of the analysis provides the displacements and therefore, the geometry in the
deformed configuration. As shown in equation (3.9), the Green-Lagrange strain coeffi-
cients are obtained by the metric coefficients in the deformed and reference configura-
tion:

Eij =
1
2
(gij − Gij)

The second Piola-Kirchhoff (PK2) stresses are obtained via the material law. As described
in Section 3.2, the coefficients in the constitutive equation are usually referred to a local
Cartesian coordinate system, which is denoted by a bar (¯) over the coefficients:

Sij
= CijklEkl (3.55)
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The PK2 stresses Sij are obtained from Sij
by a transformation from the local Cartesian

basis Ei ⊗ Ej (reference configuration) to the covariant basis Gi ⊗Gj (reference configura-
tion), according to equation (2.58):

Skl = Sij
(Gk · Ei)(Ej ·Gl) (3.56)

As has been mentioned above, the PK2 stresses do not represent physical stresses, which
are described by the Cauchy stress tensor. The relation between the second Piola-
Kirchhoff stress tensor S and the Cauchy stress tensor σ is given in equation (3.17) and
repeated here for clarity:

S = detF · F−1 · σ · F−T

Expressing the stress tensors with coefficients and bases, it can be written as:

SijGi ⊗Gj = detF · F−1 (σijgi ⊗ gj) F−T (3.57)

With the transformation rule given in equation (3.5):

Gi = F−1gi

equation (3.57) can be rewritten:

SijGi ⊗Gj = detF · σijGi ⊗Gj (3.58)

In equation (3.58) there is the same basis on the left and the right side. Therefore, Cauchy
and PK2 stress coefficients are related by:

σij =
1

detF
Sij (3.59)

The stress coefficients σij refer to the actual basis gi ⊗ gj which is (in general) not nor-
malized and therefore these values are not expressed in normalized units (e.g. N/mm2).
Thus, they are transformed into a local Cartesian coordinate system in the actual configu-
ration ek ⊗ el , according to equation (2.58):

σ̂kl = σij(ek · gi)(gj · el) (3.60)

The stress coefficients σ̂kl finally are real physical stress values.

This procedure of transformations for the stresses can be applied equivalently to the
stress resultants in shell analysis. This means that n̄αβ and m̄αβ can be computed accord-
ing to equations (3.45) and (3.46) and then be transformed into physical values n̂αβ, m̂αβ

by the procedure shown above. With normal forces and bending moments, the in-plane
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stresses σ̂αβ can be determined at any point in the shell continuum
Since transverse shear strains are neglected in the Kirchhoff-Love shell theory, the trans-
verse shear forces q̄α cannot be obtained via the material law, but from equilibrium consid-
erations. For shallow shells, the shear force is defined by the derivatives of the bending
moments [BK85a]:

q̄α =
∂m̄αα

∂sα
+

∂m̄αβ

∂sβ
(3.61)

where sα are the arc length parameters on the surface, defined by:

dsα =
√

aαα dθα (3.62)

with aαα as the metric coefficients of the middle surface (equation (3.27)). Thus, equation
(3.61) can be rewritten:

q̄α =
∂m̄αα

∂θα

√
aαα
−1

+
∂m̄αβ

∂θβ

√
aββ
−1 (3.63)

Similar to normal forces and bending moments, the shear forces q̄α need to be trans-
formed into physical values q̂ α as shown above. The transverse shear stresses σ̂3α in the
shell continuum can be computed from the transverse shear force q̂ α, where a quadratic
stress distribution through the shell thickness is assumed.



Chapter 4

Isogeometric analysis

4.1 Motivation

The term “isogeometric analysis” was defined by Hughes et al. [HCB05, CHB09] and
means that the analysis model uses the same mathematical description as the geometry
model. It is an enhancement to “isoparametric analysis”. The isoparametric concept
states that the same functions are used to describe the initial geometry and the unknown
solution field, e.g. displacements [ZTZ05]. Note that in this context, “initial geometry”
refers to the initial geometry of the analysis model. The isoparametric concept is an impor-
tant prerequisite for the correct treatment of rigid body motions. In traditional FEA, low-
order, mostly linear, Lagrange polynomials are used as basis functions for the analysis,
whereas computer aided geometry modeling is based on techniques like spline-functions
and subdivision surfaces. As a consequence, a model conversion is necessary if a geome-
try designed in a CAD program is to be analyzed by FEA. For analysis, the geometry is
converted into a mesh of finite elements, which is why this process is called “meshing”.
This model conversion causes a series of problems. The most obvious problem is that
due to the model conversion, geometric information is lost. The finite element geometry
is only an approximation to the original geometry and the quality of this approximation
depends on the mesh density. However, an exact description of the geometry is crucial
if small geometric imperfections can decide about the overall structural behavior, like
in buckling of thin shells. The second aspect is the time impact of meshing, which is a
serious problem in industrial applications, especially since the whole process has to be
redone every time a mesh needs to be refined or modified.

The idea of isogeometric analysis is that the functions used for the geometry description
in CAD are adopted by the analysis for the geometry and the solution field (isoparametric
concept). By this, the whole process of meshing can be omitted and the two models for
design and analysis merge into one.
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4.2 NURBS-based Isogeometric Analysis

Basically, all functions used in computer aided design could be used as basis for isogeo-
metric analysis, provided that they fulfill the necessary conditions for basis functions,
such as linear independence and partition of unity. NURBS (Non-Uniform Rational B-
Splines) are the most widespread technology in today’s CAD programs and they fulfill
the necessary conditions mentioned above, therefore they are adopted for analysis. Al-
ternative methods which have already been applied to analysis are subdivision surfaces
[COS00, CO01] and T-Splines [BCC+10, DJS10, UY09, UKY08, BBDL+10].
Similar to finite element analysis, isogeometric analysis works with elements. For using
NURBS-based isogeometric analysis, there are two possible definitions of an element. In
the approach that is used in this thesis, the NURBS elements are defined by the knot spans
of the knot vectors. This means that the domain consists of a couple of NURBS patches
and each patch is a subdomain that is divided into elements by the knot vectors. An alter-
native definition is that the whole patch is considered as one NURBS element. There are
reasons and counter-arguments for both approaches, and in the end it is only a question
of terminology. In the following, the definitions for isogeometric NURBS-elements are
presented, as well as their consequences for analysis and the differences to classical finite
element analysis.

4.2.1 Elements

As shown in Chapter 2, a NURBS patch is defined over a parametric domain, which is
divided into intervals by the knot vectors. These intervals are defined as elements. The
reason for this definition is that inside a knot interval, B-Spline basis functions are poly-
nomials and therefore Gauss quadrature can be used for integration on element level.
NURBS basis functions are not polynomials but rational polynomials. Therefore, the inte-
gration with Gauss quadrature is only approximative for NURBS basis functions. But it
is important to remind that not the basis functions per se are integrated, but the element
formulation, which in general results in the integration of rational polynomials anyhow.
For example, the standard formulation of a solid element includes the integration over
the inverse Jacobian determinant. Only in the case of rectangular or paralleloid elements,
the integrand is a non-rational polynomial. The use of Gauss quadrature for NURBS ele-
ments has been investigated and proven as reliable in the literature [HCB05] as well as in
the benchmark examples in this thesis. Hughes et al. have described a new integration
rule for NURBS that makes use of the higher continuities between elements, and there-
fore is more efficient than Gauss quadrature [HRS10]. For the examples presented in this
thesis, however, Gauss integration has been used.
Equivalently to finite elements, a NURBS element is defined by a set of nodes and cor-
responding basis functions. The nodes are the NURBS control points. They carry the
degrees of freedom for the analysis and boundary conditions are applied to them. Since
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the element formulation in this thesis is displacement-based, the degrees of freedom are
the displacements of the control points. For three-dimensional structures this means that
every control point has three degrees of freedom, namely the displacements in x-, y- and
z-direction.

||||
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0.5
0.0

1.0

0.25

0.0

0.5

0.25 1.00.75

 Element 1  Element 2  Element 3  Element 4

Figure 4.1: Isogeometric elements. The basis functions extend over a series of elements.

It is important to note that with this definition of elements, the basis functions are not
confined to one element but extend over a series of elements, as illustrated in Figure 4.1.
This is a very important difference to classical finite elements because it allows higher
continuities of shape functions over the element boundaries. As in the p-version of the
finite element method [SDR04, RDN+04], the high-order nature of the basis functions
generally results in higher accuracy compared to low-order elements. In contrast to p-
version elements, NURBS-elements also have high-order continuities between elements,
which is the basis for the element formulation presented in the next chapter. On the
other hand, it means that the elements are interconnected and not independent of each
other. The basis functions inside a knot span are defined by the Cox-deBoor recursion
formula and depend on the neighboring knot spans, see equation (2.4). Therefore, it is
not possible to define a single NURBS element without a complete NURBS patch. In
this context, it is worth discussing the term “elements” since they are not independent,
elementary parts that can be assembled arbitrarily to form a bigger model. Nevertheless,
for implementation, these elements can be treated exactly in the same way as classical
finite elements. The stiffness matrix, for example, is evaluated on element level and
assembled to the global stiffness matrix. The only difference is the use of different shape
functions. The fact that the corresponding nodes, i.e. control points, usually lie outside
the element, is solely a consequence of the used basis functions and does not make any
difference in the treatment of these elements in a finite element code.

Many locking phenomena in structural analysis, and especially in shell and plate analysis,
are a consequence of the low-order basis functions that cannot correctly represent the
physical behavior [Kos04, KBCB04, KJ03, Cha04, Lee05]. Since NURBS are higher order
functions, these locking effects can be avoided ab initio.
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The following important properties of NURBS as basis for analysis are summarized:

• The basis functions fulfill the requirements of linear independence and partition of
unity. They have a local support, depending on the polynomial degree.

• Basis functions have higher-order continuities over element boundaries.

• Degrees of freedom are defined on the control points.

• The isoparametric concept is used.

• Rigid body motions are treated correctly (zero strains) due to the affine covariance
property of NURBS.

• Locking effects stemming from low-order basis functions can be precluded ab initio.

4.2.2 Mesh Refinement

The methods of knot insertion and order elevation presented in Chapter 2.2.4, are used
for mesh refinement in the analysis. Here, knot insertion corresponds to h-refinement of
classical FEA since the number of elements is increased and order elevation corresponds
to p-refinement. An important difference to refinement in classical FEA is that the refine-
ment for NURBS does not change the geometry. This means that in each refinement step,
the geometry is represented exactly and therefore a refined mesh can be further refined
without the necessity of going back to the original model. As described in Chapter 2, a
NURBS curve can be refined by knot insertion, where knots can be inserted arbitrarily.
This means that local refinement for a NURBS curve is possible. For NURBS surfaces
however, a knot inserted in ξ-directions extends over the whole patch in η-direction and
vice versa, see Figure 4.2. In (a), the unrefined parametric space is shown. The first
element, which is highlighted, shall be refined. Figure (b) shows the corresponding phys-
ical model. In (c), the refined parametric space is depicted and in (d) the corresponding
physical model. As can be seen, the inserted knots extend over the whole patch in the
respective direction. Therefore, pure local refinement is not possible for NURBS patches
[CHR07]. The reason for this is the tensor product structure of NURBS surfaces. An alter-
native could be the use of T-Splines, which are not confined to a tensor product structure.
Knot refinement and order elevation can also be combined, but it is important to know
that the sequence is not interchangeable. While order elevation preserves all continu-
ities, the insertion of a knot decreases the continuity at this location. This means that
performing order elevation before knot insertion yields higher continuities in the refined
geometry than vice versa. For better understanding, this is explained on a simple exam-
ple. A curve of polynomial degree p= 2 shall be order elevated to p= 3 and a knot shall
be inserted at a location ξ. Now, the two possible cases are considered:
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Figure 4.2: “Local” refinement of a NURBS element. The Element is highlighted. (a) Unrefined
parametric space. (b) Unrefined physical model. (c) Refined parametric space. (d) Refined physi-
cal model.

Case A: First, order elevation is performed, the polynomial degree is now p = 3.
Then, the knot is inserted. The continuity at this knot is Cp−k = C3−1 = C2.

Case B: First, the knot is inserted. The continuity at this knot is then Cp−k =

C2−1 = C1. Then, order elevation is performed. Since order elevation
preserves all continuities, the continuity at ξ remains C1.

Unless low continuities are desired, order elevation is always performed before knot in-
sertion. This is often referred to as k-refinement [HCB05, CHR07, CHB09].



Chapter 5

The NURBS-based Kirchhoff-Love
shell

5.1 Element Formulation

In Section 3.2, the Kirchhoff-Love shell theory was presented and the corresponding
differential equations were formulated in the weak form. In this chapter, these equations
are derived for a discretized system. The variational variables are the nodal displacement
variables. This formulation is generally valid for a displacement-based formulation of
the Kirchhoff-Love theory and is not specific to NURBS. However, the advantage of the
NURBS discretization is that an exact description of the surface is provided and therefore
all geometric quantities which appear in the kinematic equations can be evaluated with-
out further assumptions [KBLW09]. This is important in particular for the computation
of curvatures.

The equilibrium condition of virtual work must be fulfilled for any arbitrary variation of
the displacement variables δur:

δW =
∂W
∂ur

δur = 0 (5.1)

∂W
∂ur

= 0 (5.2)

Equation (5.2) represents a nonlinear equation system which is linearized in order to
solve it. For solving the linearized equation system the Newton-Raphson method is used:

∂W
∂ur

+
∂2W

∂ur∂us
∆us = 0 (5.3)

The virtual work is defined as the sum of internal and external virtual work (3.20). The
internal virtual work was formulated in equation (3.47) and is repeated here for a better
understanding of the following formulas:

δWint = −
∫

A
(n : δε + m : δκ)dA
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The first derivative of the virtual work w.r.t. a displacement variable yields the residual
force vector R:

Rr =

(
∂Wint

∂ur
+

∂Wext

∂ur

)
= Fint

r + Fext
r (5.4)

where Fext is the vector of external nodal loads, and Fint is the vector of internal nodal
forces:

Fint
r = −

∫
A

(
n :

∂ε

∂ur
+ m :

∂κ

∂ur

)
dA (5.5)

The second derivatives of the virtual work yield the stiffness matrix. Splitting into inter-
nal and external virtual work, the stiffness matrix K is:

Krs = −
(

∂2Wint

∂ur∂us
+

∂2Wext

∂ur∂us

)
= Kint

rs + Kext
rs (5.6)

The stiffness matrix Kext is the derivative of the external loads w.r.t. the displacement
variables, i.e. it is considered only in the case of displacement-dependent loads [SR84].
The internal stiffness matrix Kint is obtained by deriving the above term for the internal
virtual work w.r.t. the displacement variables:

Kint
rs =

∫
A

(
∂n
∂us

:
∂ε

∂ur
+ n :

∂2ε

∂ur∂us
+

∂m
∂us

:
∂κ

∂ur
+ m :

∂2κ

∂ur∂us

)
dA (5.7)

where the first two terms represent the membrane stiffness and the latter two the bending
stiffness. Inserting equations (5.4)–(5.7) into (5.3) yields the equation system:

K ∆u = R (5.8)

Equation (5.8) is a linearized step of the nonlinear problem, which is solved for ∆u, where
u is the vector of nodal displacements.

For problems where only small deformations appear, it is appropriate to perform a geo-
metrically linear analysis. This could be done by performing only one iteration step of
the nonlinear analysis. However, for efficiency reasons it is better to use a geometrically
linear formulation. In the linear case, the actual configuration is equal to the reference
configuration. Since strain and change of curvature are computed by the difference be-
tween actual and reference configuration, they become zero, and also the normal forces
and bending moments. As a consequence, the internal nodal forces (5.5) vanish and equa-
tion (5.7) reduces to:

Kint,lin
rs =

∫
A

(
∂n
∂us

:
∂ε

∂ur
+

∂m
∂us

:
∂κ

∂ur

)
dA (5.9)

which leads to the typical equation system of a geometrically linear problem:

Klin u = Fext (5.10)
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As can be seen in equation (5.9), the second derivatives disappear in the linear formula-
tion which means an exponential gain in efficiency with increasing number of degrees of
freedom, compared to the nonlinear formulation.

In the equations above, the derivatives of strains and curvatures w.r.t. the displacement
variables ∂ur, ∂us are needed. The derivatives of the normal forces and moments can then
be obtained via the material law. Therefore, all the kinematic quantities which lead to the
computation of strains and curvatures as presented in Section 3.2 have to be derived
w.r.t. ∂ur, ∂us. This is shown in the following. Since the resulting expressions become
very lengthy, intermediate steps are introduced to keep it clear and comprehensible.
We start with the position vector, which in a discretized system is defined by the linear
combination of shape functions and discrete nodal values which are denoted by (ˆ):

x =
∑

i

Nix̂i =
∑

i

Ni(X̂i + ûi) (5.11)

where x̂i and X̂i are the nodal coordinates in the actual and reference configuration, re-
spectively, and ûi are the nodal displacements. Here, all parameters refer to the shell’s
middle surface.
The derivatives ∂

∂ur
will be denoted as (. . .),r for a shorter notation. Obviously, all quan-

tities in the reference configuration are invariant to the variations ∂ur and therefore the
derivatives vanish:

x,r =
∑

i

Ni(X̂i + ûi),r =
∑

i

Niûi,r (5.12)

First, all quantities needed for the membrane strains are derived. With the first derivative
of the base vectors:

aα,r = x,α ,r =
∑

i

Ni,α ûi,r (5.13)

we get the derivation of the metric coefficients:

aαβ,r = (aα aβ),r = aα,r aβ + aα aβ,r (5.14)

and finally the derived strain coefficients:

εαβ,r =
1
2
(aαβ − Aαβ),r =

1
2

aαβ,r (5.15)

It is more efficient to compute and store the results of equations (5.12)-(5.14) rather than
inserting these equations into equation (5.15), because they are needed again for other
derived variables in the sequel.

In the next step, the second derivatives of the strain coefficients are computed, which is
done in the same manner as for the first derivatives.
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In the vector of nodal displacement variables ûi, the displacement variables appear lin-
early, and therefore the second derivatives ûi,rs vanish. As a consequence, the second
derivatives of the position vector x,rs vanish as well:

x,rs =
∑

i

Niûi,rs = 0 (5.16)

The same holds for the second derivatives of the base vectors:

aα,rs =
∑

i

Ni,α ûi,rs = 0 (5.17)

Thus, the second derivatives of metric coefficients become:

aαβ,rs = aα,rs aβ + aα,r aβ,s +aα aβ,rs +aα,s aβ,r
= aα,r aβ,s + aα,s aβ,r

(5.18)

With this result, the second derivatives of the strain coefficients can be computed:

εαβ,rs =
1
2

aαβ,rs (5.19)

For the bending strains, the curvatures have to be derived w.r.t. the displacement vari-
ables ∂ur. These are more involved than the derivations of the membrane strains and
intermediate steps are introduced. These intermediate steps are also used in the imple-
mentation, i.e. they are computed and saved as temporary variables. This significantly
increases efficiency because these variables appear several times in the subsequent for-
mulas.
Recalling equations (3.35) and (3.28), the first derivative of the change in curvature w.r.t.
∂ur is:

καβ,r = (Bαβ − bαβ),r = −bαβ,r = −(aα,β a3),r (5.20)

According to equation (5.20) the derivatives of aα,β and a3 are needed. Additionally to
the unit normal vector a3, the not-normalized normal vector ã3 and its length ā3 are intro-
duced.

ã3 = a1 × a2 (5.21)

ā3 =
√

ã3 ã3 (5.22)

And therefore a3 can be written as:

a3 =
ã3

ā3
(5.23)

These values are now derived w.r.t. ∂ur.

ã3,r = a1,r×a2 + a1 × a2,r (5.24)

ā3,r =
1

2 ā3
2 ã3 ã3,r =

ã3 ã3,r
ā3

(5.25)
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a3,r =
ã3,r ā3 − ã3 ā3,r

ā2
3

(5.26)

As can be seen, the result from (5.24) can be inserted into (5.25), and these results, together
with (5.21) and (5.22), are used to compute the derivative a3,r (5.26).
The derivative of aα,β reads as follows:

aα,β ,r =
∑

Ni,αβ ûi,r (5.27)

With (5.26) and (5.27) the derivative of the curvature coefficients can be computed:

bαβ,r = aα,β ,r a3 + aα,β a3,r (5.28)

And finally:
καβ,r = −bαβ,r (5.29)

For the second derivatives καβ,rs, all the results from equation (5.24) to equation (5.29)
have to be derived by ∂us. Starting with ã3,rs:

ã3,rs = a1,rs×a2 + a1,r×a2,s +a1,s×a2,r +a1 × a2,rs

= a1,r×a2,s +a1,s×a2,r
(5.30)

the derivative ā3,rs can be computed:

ā3,rs =
(ã3,rs ã3 + ã3,r ã3,s ) ā3 − ã3,r ã3 ā3,s

ā2
3

=
ã3,rs ã3 + ã3,r ã3,s

ā3
− (ã3,r ã3) (ã3,s ã3)

ā3
3

(5.31)

and finally the second derivative of the normal unit vector:

a3,rs =
ã3,rs ā3 − ã3,r ā3,s

ā2
3

− (ã3,s ā3,r +ã3 ā3,rs )ā2
3 − ã3 ā3,r 2ā3 ā3,s

ā4
3

=
ã3,rs

ā3
− ã3,r ā3,s

ā2
3
− ã3,s ā3,r

ā2
3
− ã3 ā3,rs

ā2
3

+
ã32ā3,r ā3,s

ā3
3

(5.32)

All quantities in equation (5.32) have been computed in the previous formulas.
Similar to x,rs and aα,rs, the second derivatives aα,β ,rs vanish:

aα,β ,rs =
∑

i

Ni,αβ ûi,rs = 0 (5.33)

Finally, the second derivatives of the curvature coefficients can be computed:

bαβ,rs = aα,β ,rs a3 + aα,β ,r a3,s +aα,β ,s a3,r +aα,β a3,rs

= aα,β ,r a3,s +aα,β ,s a3,r +aα,β a3,rs
(5.34)
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and with those, the second derivatives καβ,rs are obtained:

καβ,rs = −bαβ,rs (5.35)

Equations (5.15) and (5.29) contain the first derivatives of ε and κ w.r.t. a displacement
variable. The derivatives of the normal forces ∂n

∂us
and bending moments ∂m

∂us
are obtained

via the material law:
∂n
∂us

= t ·C :
∂ε

∂us
(5.36)

∂m
∂us

=
t3

12
·C :

∂κ

∂us
(5.37)

Finally, with equations (5.15), (5.19), (5.29), (5.35), (5.36), and (5.37), all quantities are
provided which are needed to compute the stiffness matrix as in equation (5.7) and the
internal nodal forces as in (5.5):

Fint
r = −

∫
A

(
n :

∂ε

∂ur
+ m :

∂κ

∂ur

)
dA

Kint
rs =

∫
A

(
∂n
∂us

:
∂ε

∂ur
+ n :

∂2ε

∂ur∂us
+

∂m
∂us

:
∂κ

∂ur
+ m :

∂2κ

∂ur∂us

)
dA

It is important to point out that all the formulas above are generally valid for a
displacement-based Kirchhoff-Love shell formulation and not specific to the discretiza-
tion with NURBS. Since the curvatures κ contain the second derivatives of the geometry
description, the variational index is two, and therefore C1 continuity between elements
is necessary to fulfill the compatibility conditions. This is not generally possible using
Lagrange polynomials as basis functions. For bilinear elements, which are the most com-
mon shell elements, it is obvious that C1 continuity between elements is not possible.
With higher order Lagrange elements, C1 continuity between all elements can only be
obtained for regular shapes but not for arbitrary free-form surfaces. This is the reason
why Kirchhoff-based formulations are less widespread in finite elements than Reissner-
Mindlin elements. In the Reissner-Mindlin shell formulation, where the transverse shear
strain is taken into account, the variational index is one and therefore C0 continuity be-
tween elements is sufficient. It is also possible to use the Kirchhoff kinematics, avoiding
the second derivatives. In this case, the computation of the curvature requires consider-
ing a patch of elements surrounding the element to be evaluated [OnZ00, OnF05, LWB07].
As has been shown in the previous chapters, NURBS basis functions offer C1 and higher
continuities between elements and therefore the Kirchhoff-Love shell formulation as pre-
sented above, can be implemented without further modifications.
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5.2 Treatment of Rotational Boundary Conditions

It is an advantage of the NURBS-based Kirchhoff-Love shell that it needs neither rota-
tional degrees of freedom nor nodal directors. However, there are cases where the ro-
tations are to be described at the shell’s boundary, e.g. in the case of clamped edges,
symmetry conditions, and the coupling of NURBS patches. In all these cases, in addition
to the displacement also the slope of the surface has to be prescribed along the boundary.
As has been explained in Section 2.2.2.3, the slopes at the boundary of a NURBS surface
are determined by the first two rows of control points from this boundary. For a clamped
edge, this means that the first two rows of control points from this edge have to be fixed.
It is important to note that this does not introduce a support inside the shell, but only
concerns the support conditions at the boundary. This will be shown on an example in
the next chapter. For symmetry conditions, the first two rows of control points along
the edge have to be coupled so that the slope remains constant. This will be applied to
the benchmark examples of the shell obstacle course in the next chapter. The same idea
holds for the coupling of NURBS patches to multipatch structures which will be treated
in detail in Chapter 7.



Chapter 6

Benchmarking

In this chapter, the presented shell formulation is tested on a series of benchmark exam-
ples. Tests for geometrically linear and nonlinear analyses are performed and, at the same
time, modeling aspects such as clamped edges are presented.

6.1 Cantilever Plate

The first example is a simple cantilever plate and it serves to demonstrate the modeling
of a clamped edge. Figure 6.1 shows the setup. The plate is modeled by one element with
cubic basis functions in the length direction and linear in the width direction. The control
net is shown by dashed lines. The plate is subjected to a vertical load at the right edge and
clamped at its left edge. For constraining the rotation, the second row of control points is
fixed, as can be seen in Figure 6.1. A linear computation is performed in order to compare
the result to the one from linear beam theory wbeam = PL3

3EI . As the analytical solution of
the deformation is a cubic function, already one element with cubic basis functions in the
length direction yields the exact solution. Due to this coarse discretization, the second
row of control points, which is fixed for constraining the rotation, is quite far inside the

(a) (b)

Figure 6.1: Cantilever plate under vertical load. (a) Undeformed. (b) Deformed. Fixing the second
(from the left) row of control points keeps the tangent at the left end fixed, which represents the
clamped support.
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plate. It is important to note that fixing these control points does not fix the displacements
inside the plate but only the rotation at the boundary.

6.2 Shell Obstacle Course

For testing the element’s robustness and accuracy in complex strain states, the well-
known shell obstacle course proposed by Belytschko et al. [BSL+85] is applied. It consists
of three geometrically linear problems, namely the Scordelis-Lo roof, the pinched cylin-
der with diaphragms and the hemispherical shell. For all three problems, a convergence
study is performed where different mesh refinements (4, 8, 16 and 32 elements per edge)
and different polynomial orders (p=2, 3, 4, 5) are used. In all problems, small displace-
ments occur and therefore, geometrically linear computations are performed.

L = 50.0

R = 25.0

t = 0.25

E = 4.32× 108

ν = 0.0

Figure 6.2: Scordelis-Lo roof, problem setup. The roof is subjected to self weight of 90.0 per unit
area. The ends are supported by rigid diaphragms.

6.2.1 Scordelis-Lo Roof

The Scordelis-Lo roof is a section of a cylindrical shell. It is supported by rigid di-
aphragms at its ends, whereas the side edges are free. The roof is subjected to a uniform
gravity load. The problem setup and parameters are depicted in Figure 6.2. The vertical
displacement at the midpoint of the side edge is given as the reference solution. Due to
symmetry, only one quarter of the geometry is modeled. Figure 6.3 shows the conver-
gence of the displacement for the different polynomial orders, and the reference solution.
The converged solution is u = 0.3006 which is slightly lower than the reference value
ure f = 0.3024 from [BSL+85, MH85]. For all polynomial orders, the convergence is quite
fast. For quartic and quintic shape functions, already the second refinement step yields
the converged solution. In Figure 6.4, the resulting deformation of the roof is shown. For
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visualization, the complete roof has been assembled and a scaling factor of 10 has been
applied to the displacements.
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Figure 6.3: Scordelis-Lo roof. Convergence of the vertical displacement at the midpoint of the free
edge.

Figure 6.4: Scordelis-Lo roof, resulting deformation. The complete roof has been assembled for
visualization and the displacements are scaled by a factor of 10.

6.2.2 Pinched Cylinder

The second problem of the shell obstacle course is a cylinder supported by rigid di-
aphragms at the ends and subjected to two opposite point loads in the middle, as shown
in Figure 6.5. The reference solution ure f = 1.8248 · 10−5 is given as the radial displace-
ment under the point loads [BSL+85]. Due to symmetry, only one eighth of the geometry
is modeled. In Figure 6.6, the convergence curves are shown. The converged solution is
u = 1.8264 · 10−5. Figure 6.7 shows the deformation of the pinched cylinder. For visu-
alization, half of the cylinder has been assembled and the displacements are scaled by a
factor of 3× 106.
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L = 600.0

R = 300.0

t = 3.0

E = 3.0× 106

ν = 0.3

F = 1.0

Figure 6.5: Pinched cylinder, problem setup. The cylinder is subjected to equal and opposite
concentrated forces at its midspan. The ends are constrained by rigid diaphragms.
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Figure 6.6: Pinched cylinder. Convergence of the displacement under the load.

Figure 6.7: Pinched cylinder, resulting deformation. Half the cylinder has been assembled for
visualization and the displacements are scaled by a factor of 3× 106.
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R = 10.0

t = 0.04

E = 6.825× 107

ν = 0.3

F = 2.0

Figure 6.8: Hemispherical shell, problem setup. The hemisphere is subjected to two diametrically
opposite point loads. The bottom circumferential edge is free.

6.2.3 Hemispherical Shell

In this problem, a hemispherical shell is subjected to two opposite point loads. The bot-
tom circumferential edge of the hemisphere is free. Figure 6.8 shows the problem setup.
The reference solution is given as the radial displacement under the point loads. Due to
symmetry, only one quarter of the geometry is modeled. Figure 6.9 shows the conver-
gence curves. The converged solution u = 0.0924 is equal to the reference value given in
[BSL+85]. The deformed hemisphere, assembled for visualization with a scaling factor of
20, can be seen in Figure 6.10.

6.2.4 Stress Recovery

In the shell obstacle course literature [BSL+85], there are only reference values for the
displacements given, but not for stresses or stress resultants. In order to test the stress
recovery as described in Section 3.4, the Scordelis-Lo roof is computed by a shell analysis
in Abaqus [aba] and the results are compared to those of the isogeometric Kirchhoff-Love
shell. Figure 6.11 shows the stress resultants n̂11, m̂11, q̂ 1 obtained by an isogeometric shell
analysis (θ1 is the surface parameter in the short direction, and the notation (̂) refers to
physical components, as described in Section 3.4). Figure 6.12 shows the corresponding
results from Abaqus. These plots look slightly different compared to those in Figure 6.11,
which is due to the fact that the two programs use different color interpolation schemes.
Nevertheless, the good agreement in the distribution of the stress resultants can be ob-
served and comparing Tables 6.1 and 6.2 also shows the good agreement of the maximum
values.Special emphasis is put on the shear forces, Figure 6.11(c). As explained in Section
3.4, in the Kirchhoff theory, shear forces (and stresses) cannot be obtained from the cor-
responding strains since those are assumed to be zero. Instead, they can be obtained by
the derivatives of the bending moments (equation (3.63)). Using higher-order functions
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Figure 6.9: Hemispherical shell. Convergence of the radial displacement under the load.

Figure 6.10: Hemispherical shell, resulting deformation. The complete hemisphere has been as-
sembled for visualization and the displacements are scaled by a factor of 20.

as basis functions, it is possible to evaluate the derivatives of the bending moments and
to obtain a smooth distribution of the shear forces, as can be seen in Figure 6.11(c).

n̂11 m̂11 q̂ 1

min. -3510 -91 -280
max. 25 2053 280

Table 6.1: Scordelis-Lo roof, maximum stress resultants by isogeometric Kirchhoff-Love shell anal-
ysis.

6.3 Benchmarks for Large Deformations

In the previous section, the shell formulation has successfully passed all problems of
the shell obstacle course. Since these benchmark examples were all geometrically linear
problems, the behavior under large deformations is tested in this section. Two examples
are investigated, a plate under pure bending moment and a plate under pure twisting
moment. The loading is chosen such that large deformations and rotations occur and the
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(a) n̂11 (b) m̂11 (c) q̂ 1

Figure 6.11: Stress resultants of the Scordelis-Lo roof. Isogeometric Kirchhoff-Love shell analysis.

(a) n̂11 (b) m̂11 (c) q̂ 1

Figure 6.12: Stress resultants of the Scordelis-Lo roof. Abaqus shell analysis.

problems are solved by geometrically nonlinear analysis. For both examples an analytical
solution is given as reference.

6.3.1 Plate bent to a Circle

In the first test, the cantilever plate from above is subjected to a constant bending mo-
ment. The moment is chosen such that a tip rotation of 360◦ is expected, i.e. the straight
plate shall be bent to a circle. The bending moment is defined by M = EIκ, with E as
the Young’s modulus, I as the moment of inertia, and κ as the curvature which is the
inverse of the radius (κ = 1

R ). The relation between the plate’s length L and the radius R
is L = 2πR. Thus, the corresponding moment is M = 2πEI

L . Since there are no rotational
degrees of freedom, the moment is modeled by pairs of forces. For this, an additional
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n̂11 m̂11 q̂ 1

min. -3417 -93 -278
max. 127 2079 278

Table 6.2: Scordelis-Lo roof, maximum stress resultants by Abaqus shell analysis.

Figure 6.13: Plate under large deformation. A straight plate is bent to a circle.

row of control points is inserted close to the right edge by knot insertion. These forces
need to be orthogonal to the shell, therefore they have to follow the deformation and the
stiffness contribution from displacement-dependent loads has to be taken into account.
The nonlinear calculation has been performed in four load steps. Quintic NURBS func-
tions in the long direction have been used. Figure 6.13 shows the deformation of the plate
in the four load steps. As can be seen, in each step the plate is deformed by an incremen-
tal rotation of 90◦ and the correct result is obtained.
Remark: In NURBS-based isogeometric analysis, only the control coordinates are vari-
ables, not the control weights. This means that in the resulting deformation, the control
weights are those of the initial geometry. Therefore, the result in this example cannot be
an exact circle, since a circle is defined by different control weights than a straight plate.
Due to the fine discretization however, the approximation is very close.
The bent plate is tested further by increasing the moment to the double value, i.e.
M = 4πEI

L . For this case, a polynomial degree p = 6 in the long direction is used. Figure
6.14 shows the deformation for the additional four load steps after completing 360◦. For
a tip rotation larger than 360◦, the plate overlaps itself. The figure shows that the over-
lapping parts follow precisely the same deformation such that the deformed geometry
appears as one circle with decreasing radius, and the correct solution of 720◦ tip rotation
is obtained.

6.3.2 Twisted Plate

For the next test, the plate is subjected to a pure twisting moment, which again is rep-
resented by a pair of follower forces with opposite directions. The problem setup is
depicted in Figure 6.15(a). For this example, quadratic basis functions are used in the
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Figure 6.14: Plate under large deformation, case 2. The bending moment is increased correspond-
ing to a tip rotation of 720◦. For tip rotations > 360◦, the plate overlaps itself.

width direction so that straight cross-sections, which are to be expected, are not defined
ab initio. Quintic NURBS are employed in the length direction. The results are compared
to the reference results from beam theory, i.e. Mt = θ GIt

L , where Mt is the torsional mo-
ment, θ is the twist angle at the tip, G is the shear modulus and L is the plate length. The
torsion constant It is defined by It =

b t3

3 , with b as the plate’s width and t as the thickness.
Moments are applied corresponding to expected tip rotations of 90◦, 180◦, and 360◦. The
results are collected in Figure 6.15(b)-(d). As can be seen, the correct deformations are
obtained in all cases and furthermore, the plate cross-sections correctly remain straight
in the deformed configurations.

(a) (b)

(c) (d)

Figure 6.15: Twisted plate under large rotations. (a) Initial configuration. (b) Twisted by 90◦. (c)
Twisted by 180◦. (d) Twisted by 360◦.



Chapter 7

Multipatches

In the previous chapter, it has been shown that NURBS are ideal as basis functions for
a Kirchhoff-Love shell since they provide C1 continuity between elements for arbitrarily
curved surfaces. If the structure is made up of several NURBS patches, the question is
how this continuity can be established between patches. If patches are connected with C0

continuity only, it means that only the displacements at the interface are coupled, but not
the slopes. In a mechanical sense, this represents a hinge connection where the respective
bending moments cannot be transfered. The same applies if a C0 continuity occurs inside
a patch, due to knot multiplicity. In the following, different solutions are discussed for
multipatches. However, all the methods apply to C0 continuities inside patches as well.
For the connection of two patches, two basic cases need to be distinguished. There are
smooth, i.e. G1-continuous patches on the one hand, and patches forming a kink on
the other hand. For G1-continuous patch interfaces, this continuity must be maintained
during analysis, whereas for patches enclosing a kink, the angle between the patches
must be maintained.

7.1 Smooth Multipatches

In Section 2.3, the difference between parametric and geometric continuity has been dis-
cussed. The continuity between two patches for analysis has to be independent from the
parametrization of the single patches and therefore, the geometric continuity is the one
of interest. For parametric surfaces, G1-continuity means that two surfaces joining at a
common edge have a common tangent plane at each point along that edge. For B-Spline
surfaces this results in the condition presented in equation (2.35), which is repeated here
for clarity:

(P2
2,j − P1

n,j) = c · (P1
n,j − P1

n−1,j)

For NURBS, the same condition has to be applied to the homogeneous coordinates of the
control points (2.36):

(Pw,2
2,j − Pw,1

n,j ) = c · (Pw,1
n,j − Pw,1

n−1,j)
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Since in isogeometric analysis only the physical coordinates are degrees of freedom,
whereas control weights are invariant, the continuity condition for B-Splines (2.35) is
employed. This is an approximation for NURBS and the continuity might not be fulfilled
exactly at any point if the weights of the involved control points are different. However,
as by refinement the differences in the weights of neighboring control points become
minimal, the error is negligible.

For preserving G1 continuity in the deformed configuration, equation (2.35) has to hold
for the control points in the deformed configuration (denoted as P):

(P2
2,j − P1

n,j) = c · (P1
n,j − P1

n−1,j)

P2
2,j = (1 + c) · P1

n,j − c · P1
n−1,j

(7.1)

and therefore the same relation applies to the displacements:

u2
2,j = (1 + c) · u1

n,j − c · u1
n−1,j (7.2)

Equation (7.2) represents linear constraints between the system’s degrees of freedom
which can be fulfilled exactly by static condensation of the stiffness matrix, making u2

2,j

slaves of u1
n,j and u1

n−1,j [Fel04].

7.1.1 Cantilever Plate

The method is demonstrated on the example of a cantilever plate which has been used
as a benchmark example in the previous chapter. There, the plate has been modeled by
one element with cubic basis functions in the length direction and linear in the width
direction (see Figure 6.1). That discretization has yielded the exact reference solution
from linear beam theory, since this solution is a cubic function for the displacements.
Now, the plate is modeled by two patches, each of them consisting of one cubic-linear
element, see Figure 7.1. The control points which define the continuity at the interface are
highlighted. They are coupled by the constraints of equation (7.2), and remain collinear
in the deformed configuration. As a consequence, the resulting deformation is identical
to the solution of a single patch with C1 continuity everywhere.

In this example, the control grids of both patches are rectangular, i.e. the lines of control
points which are to be coupled are orthogonal to the patch interface. It is important
to note that this is not a necessary condition. In order to demonstrate this, the plate
is now composed of two patches with a skew interface, see Figure 7.2(a). The continuity
constraint is applied in the same way as in the previous example, and Figure 7.2(b) shows
that the correct solution is obtained also in this case. A detailed study of the results
yields that there is a very small error in the resulting displacements, which is due to
the distortion in the mesh. The continuity across the interface, however, is maintained
exactly.



7. Multipatches 61

Figure 7.1: Cantilever plate, multipatch. Control points defining the continuity at the interface
are highlighted.

(a) (b)

Figure 7.2: Cantilever plate, multipatch with a skew interface. (a) Two patches before assembly.
(b) Resulting deformation.

7.1.2 Free Form Shell

In the previous two examples, simple plate geometries have been used to better illustrate
the method. Since the continuity condition (2.35) defines the continuity for general three-
dimensional B-Spline surfaces, the presented method is applicable to arbitrarily curved
shells. This is exemplified on the free-form shell depicted in Figure 7.3. Figure (a) shows
the free-form geometry. The shell is simply supported at the left (front) edge and the right
(rear) edge, and is subjected to self-weight. The shell is computed once as a single patch
and once as a multipatch geometry. For the multipatch case, the shell is divided into two
parts as illustrated in Figure 7.3(c). A static analysis is performed for both cases and the
results are compared to each other. Figure 7.3(b) shows the color plot of deformations for
the single patch solution and (d) for the multipatch solution. As can be seen, the results
are identical.



7. Multipatches 62

(a) (b)

(c) (d)

Figure 7.3: Free form shell under self-weight. (a) Single patch. (b) Deformation plot from the
single patch solution. (c) Two patches, separated for visualization. (d) Deformation plot from the
multi patch solution.

7.1.3 Automated Coupling of Multiple Patches

Due to the rectangular topology of NURBS control grids, it is easy to find the control
points which have to be coupled for the connection of two patches, and the constraints
between them are determined by their coordinates, see equations (2.35) and (7.2). There-
fore, it is easy to find and set up all the constraints for merging two NURBS patches with
G1-continuity automatically. However, care has to be taken at points where more than
two patches meet. This is illustrated in Figure 7.4. It shows a plate consisting of four
patches. The four patches are indicated by different colors and the control grid is plotted
as dashed lines. Figure 7.4(a) shows a correct coupling of control points for maintaining
G1-continuity everywhere on the plate. For having G1-continuity between all patches
at the middle point, the nine control points in the middle must lie on a bilinear surface.
Since a bilinear surface has four degrees of freedom, four out of the nine control points
are free variables, or master nodes, whereas the other five are slave nodes. Consequently,
five constraint equations are necessary. The constellation in Figure 7.4(a) is one out of
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(a) (b)

Figure 7.4: Four patches meeting at one point. The control grid is depicted by dashed lines, the
control points to be coupled are connected by small boxes. (a) Correct G1 continuity at the middle
point is maintained by five constraints. (b) Over-constraining at the middle point.

7 8 9

4 5 6

1 2 3

Figure 7.5: Detail sketch of the four-patch interface with over-constraining. Solid points are mas-
ter nodes, non-solid points are slave nodes.

several possibilities for choosing the five constraints. However, performing the coupling
automatically (always two patches at a time) results in six constraints as depicted in Fig-
ure 7.4(b). Including all six constraints by master-slave relations is an over-constraining
which leads to a wrong result. This can be explained with the help of Figure 7.5. It
shows a detail sketch of the nine nodes on the four-patch interface. Nodes 1, 2, 4, and 5
are chosen as master nodes, indicated by solid points, whereas the rest are slave nodes.
The boxes around the points illustrate the constraints. As can be seen, node 9 is a slave
of nodes 7, 8 and of 3, 6. Nodes 3 and 7 however, are both slaves of node 1. As a con-
sequence, the information (nodal stiffness) of node 9 is added to node 1 twice, once via
node 3 and once via node 7. After solving, the solution (displacement) of node 1 is added
to node 9 twice, which even leads to a gap in the resulting geometry. To obtain the correct
solution, one of the constraints must be deleted where it is free to choose which one to
delete. Figure 7.6 finally shows the result with the correct coupling applied. In (a), the
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(a) (b)

Figure 7.6: Cantilever plate consisting of four patches with single load. (a) Problem setup. (b)
Resulting deformation.

problem setup is shown and in (b) the resulting deformation can be seen. The continuity
in both directions is maintained correctly between all patches.
As a short summary, it must be said that it is no problem to correctly join more than two
patches at one point, however, care has to be taken if an automated routine for patch cou-
pling is used. Reference is also made to the “continuity elements” described in [Ble90].
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7.2 The Bending Strip Method for Arbitrary Multipatches

While for smooth patch connections G1 continuity has to be maintained, for patches meet-
ing at a kink with a certain angle, the angle between the two patches has to be maintained
in the deformed configuration. Similar to the smooth case, it is achieved by coupling the
degrees of freedom defining this angle. These are the control points on the common edge
and their neighboring points on each side. For each triple of control points P2

2,j, P1
n,j and

P1
n−1,j along the edge, the angle spanned by these control points must remain constant

during deformation. The angle can be expressed e.g. using the scalar product formula:

α = cos−1


(

P1
n,j − P1

n−1,j

)
·
(

P2
2,j − P1

n,j

)
∣∣∣P1

n,j − P1
n−1,j

∣∣∣ · ∣∣∣P2
2,j − P1

n,j

∣∣∣
 (7.3)

which does not lead to a linear constraint relationship for the displacement degrees of
freedom in the general case. Equation (7.3) is one possibility to express the angle spanned
by three points. There are other alternatives (e.g. via the cross product), however, none of
them results in a linear relationship between the affected degrees of freedom. As a result,
the angle constraint cannot be enforced in a strong sense by direct coupling of degrees of
freedom as in the G1-continuous case. In this section, a method is presented that satisfies
the constraints in a weak sense, which means the angle is kept constant approximately.
The method can be applied to smooth multipatches as well, which can be regarded to
form a kink of 180◦. Thus, it can be used as a general method to handle multipatch struc-
tures.
The angle constraint is enforced by an additional NURBS patch with special properties.
The triples of control points at the patch interface, consisting of the shared control point
at the interface and one on each side, are extracted and used as control net for the addi-
tional patch, see Figure 7.7. The parametric domain of this patch consists of one quadratic
element in the direction transverse to the interface and, for simplicity and computational
efficiency, of n− 1 linear elements along the interface where n is the number of control
points in this direction. This additional patch, called “bending strip” [KBH+10] has spe-
cial material properties: it has no membrane stiffness and bending stiffness only in the
direction transverse to the interface. By this, it is ensured that only the three control
points P2

2,j, P1
n,j and P1

n−1,j in a triple across the edge are coupled with each other but no
coupling between control points along the edge is made. This is a very important feature
because it guarantees that no additional stiffness is added to the structure.
It is important to note that although the bending strips are implemented as additional
structural patches, which makes implementation easy and efficient, they do not repre-
sent structural parts but only constraints on the angle between patches. The bending
strips also have zero mass for the case of dynamic computations. Mathematically, the



7. Multipatches 66

1

2

x( )

S 11

S 22

S 12

 

 

 

 

 

 

 

 

 

 

=

0 0 0

0 0 0

0 0 0

 

 

 

 

 

 

 

 

 

 

 11

 22

2  12

 

 

 

 

 

 

 

 

 

 

+
3

Es 0 0

0 0 0

0 0 0

 

 

 

 

 

 

 

 

 

 

 11

 22

2  12

 

 

 

 

 

 

 

 

 

 

Figure 7.7: Schematic of the bending strip method.

method consists of augmenting the principle of virtual work with additional terms of the
form:

δWs
int = −

∫
A

t3

12
κTCsδκ dA (7.4)

for every bending strip. The bending strip constitutive material matrix Cs is given by:

Cs =

 Es 0 0
0 0 0
0 0 0

 (7.5)

where Es is the directional bending stiffness. The crucial point is the correct choice for Es.
It must be high enough that the change in angle is within an acceptable tolerance. How-
ever, if Es is chosen too high, the global stiffness matrix may become badly conditioned
and the solution unstable.

7.2.1 Choosing a Reliable Bending Strip Stiffness

In the following, the effect of different choices for Es is investigated on different examples
in order to obtain a range of values, which can be used in the general case. The bending
strip stiffness Es is chosen as a decimal power of the Young’s modulus of the structure E
in a range from Es/E = 100 to Es/E = 1010.
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7.2.1.1 L-beam

The first example is an L-shaped beam consisting of two NURBS patches. It is clamped
on the one end and subjected to a point load at the other end, see Figure 7.8(a). In Figure
7.8(b), it is demonstrated what happens if the patches are connected by only C0 continu-
ity without a bending strip. As can be seen, the structural behavior is the one of a hinge
connection where bending moments are not transferred between the patches. A bending

(a) (b)

Figure 7.8: L-shaped cantilever consisting of two patches. (a) Problem setup. (b) The patches are
connected by C0 continuity only. The connection acts as a hinge.

strip is added for the correct transfer of bending moments between the patches. In Fig-
ure 7.9(a), the control points to be coupled by the bending strip are highlighted, while
Figure 7.9(b) shows the bending strip built from these control points. The computation

(a) (b)

Figure 7.9: L-shaped cantilever. (a) Control points to be coupled by a bending strip are high-
lighted. (b) Bending strip built by these control points.

is performed for different bending strip stiffnesses as described above, and the change in
the angle between the patches is recorded at the tip. The results are collected in Figure
7.10. For stiffness ratios Es/E = 103 and higher, the relative error is less than 10−3. Fur-
ther computations reveal that the solution becomes unstable not before a stiffness ratio
Es/E > 1013, so there is a very large range for Es in which the bending strip method yields
correct and stable solutions. In Figure 7.11 the resulting deformation of the L-shape can-
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Figure 7.10: L-shape cantilever. Relative change in the angle between two patches at the cantilever
tip as a function of the bending strip stiffness.

tilever using a bending strip is shown. As can be seen, the angle between the patches is
maintained in the deformed configuration.

Figure 7.11: L-shaped cantilever with a point load. Deformed configuration using the bending
strip method.

7.2.1.2 Cantilever Plate

In the second example, the bending strip is applied to a multipatch structure with C1

continuity at the interface. For this, the same cantilever plate as in Section 7.1.1 is used,
i.e. the plate is divided into two patches at half length and each patch consists of one
cubic-linear element. It is obvious that this structure without continuity constraints at
the interface would be kinematic, and therefore the overall structural response greatly
depends on the behavior of the bending strip. The displacement at the tip of the can-
tilever is computed for different values of Es, and is compared to the reference solution
from linear beam theory. The results are collected in Figure 7.13. For all ratios Es/E ≥ 103

the relative error is less than 10−3.
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Figure 7.12: Two-patch model of a cantilever plate connected by a bending strip, deformed con-
figuration.
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Figure 7.13: Cantilever plate tip displacement as a function of the bending strip stiffness.

This simple example allows to point out an important feature of the bending strips. The
discretization of the plate has been chosen very coarse (one cubic element for each plate)
which is enough since the reference solution is a cubic function. As a consequence, the
bending strip is quite large, overlapping big parts of the plate, as can be seen in Figure
7.12. However, as shown in the computations, the result is correct and the bending strip
does not influence the overlapped regions. This confirms what has been stated above,
that the bending strip is not to be considered as an additional structural part but only as
a constraint on the interface, independent of its extensions.

7.2.1.3 Hemispherical Shell

In the examples above, the relative error is less than 10−3 for a stiffness ratio Es/E = 103

and continuously decreasing for higher ratios. Problems of numerical instability due to a
bad conditioning of the stiffness matrix did not appear before a ratio of Es/E = 1013. For
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Figure 7.14: Hemispherical shell. The complete hemisphere is modeled by four patches with
bending strips.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1E+00 1E+02 1E+04 1E+06 1E+08 1E+10

Es / E

d
is

p

reference
solution
multipatch
solution

Figure 7.15: Pinched hemisphere. Displacement under the point load as a function of the bending
strip stiffness.

determining an upper limit for the range of possible values, a more sensitive problem
is chosen, where high differences in the stiffness matrix appear even before adding the
bending strips. The hemispherical shell from the shell obstacle course is a good example
for this test, since there are huge differences in element sizes on the rim and on the pole of
the hemisphere. The hemisphere is modeled by four patches connected by bending strips,
see Figure 7.14. Each patch is discretized by 16× 16 quartic elements which has yielded
the reference solution for the single patch case (see Chapter 6). Again, the displacement
under the loaded points is observed and compared to the reference solution for different
stiffness ratios Es/E. The results are collected in Figure 7.15. For 102 ≤ Es/E ≤ 105 the
reference solution is obtained. But for ratios Es/E ≥ 106 the stiffness matrix is badly
conditioned and the solution becomes unstable. So even in this example with extreme
differences in element sizes there is still quite a large range of bending strip stiffness
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values which yield reliable results.

Further tests on various geometries, which are not presented here, have been performed
in order to determine the range of reliable stiffness values. Summarizing, all stiffness
values in the range of 103 ≤ Es/E ≤ 105 gave reliable and stable results and as a conse-
quence, this range is proposed as a rule of thumb for choosing the bending strip stiffness.

7.2.2 Automated Coupling of Multiple Patches with Bending Strips

(a) (b)

Figure 7.16: Four-patch cantilever plate with bending strips. Bending strips overlap each other at
the middle point. (a) Problem setup. (b) Resulting deformation.

In Section 7.1.3 it has been discussed that for enforcing continuity constraints by direct
coupling of displacements, care has to be taken at points where four patches meet (Fig-
ures 7.4, 7.6). This is because applying the corresponding constraint equation to all inter-
faces by an automated procedure produces one superfluous constraint which yields to a
wrong result. This is not the case if bending strips are used. In Figure 7.16, the four-patch
cantilever plate is shown again, where the patches are connected by bending strips. As
can be seen, the bending strips overlap each other at the middle point where the four
patches meet. In the overlap region, the bending strip stiffnesses are added. Since, the-
oretically, a bending strip stiffness Es → ∞ yields the correct solution, the strips can be
added and can overlap arbitrarily without problem. The resulting deformation, shown in
Figure 7.16(b), is identical to the correct solution presented in Section 7.1.3. This feature
makes the bending strip method very practical for large structures consisting of many
patches, because an automatic coupling of patches can be employed.

7.2.3 Numerical Benchmarks using Bending Strips

In Section 7.2.1, different examples have been used to find a reliable choice for the bend-
ing strip stiffness. In the following, this value is kept fixed at Es/E = 103 and the bending
strips are applied to the numerical benchmarks presented in Chapter 6 for a complete and
thorough testing.
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7.2.3.1 Shell Obstacle Course

The examples of the shell obstacle course, presented in Section 6.2, are performed model-
ing the structures as multipatches with bending strips. For investigating their efficiency,
convergence studies are performed for polynomial degrees p = 2, 3, 4, 5 and are com-
pared to the results from the single patch solutions of Section 6.2. The hemispherical
shell problem is omitted here since it has been investigated already in Section 6.2.

(a) (b)

(c)

Figure 7.17: Two-patch model of the Scordelis-Lo roof. (a) Reference configuration. The patch
interface is marked by a dashed line. (b) Deformed configuration using the bending strip method.
(c) Deformed configuration without a bending strip. A kink in the deformed geometry is clearly
visible.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1000 2000 3000 4000 5000

degrees of freedom

d
is

p

reference
p=2
p=3
p=4
p=5

(a)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1000 2000 3000 4000 5000

degrees of freedom

d
is

p

reference
p=2
p=3
p=4
p=5

(b)

Figure 7.18: Two-patch model of the Scordelis-Lo roof. Convergence study. (a) Two-patch com-
putation with a bending strip. (b) Single patch computation.

Scordelis-Lo roof: The Scordelis-Lo roof is divided into two patches by repeated knot
insertion. Figure 7.17(a) depicts the roof consisting of two patches with the interface
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(a) n̄11 (b) m̄11 (c) q̄ 1

Figure 7.19: Two-patch model of the Scordelis-Lo roof. Stress resultants.

n̂11 m̂11 q̂1

min. -3510 -91 -280
max. 27 2053 280

Table 7.1: Two-patch model of the Scordelis-Lo roof. Maximum stress resultants.

marked by a dashed line. Figure 7.17(c) shows the resulting displacement if no bending
strip is applied. As can be seen, a kink is developing along the patch interface, and the
vertical displacement at the midpoint of the side edge u = 0.3871 is significantly higher
than the reference value of ure f = 0.3024. A bending strip is applied along the patch
interface and the resulting deformation is shown in Figure 7.17(b), which corresponds to
the correct solution from the single patch computation. The convergence results of the
bending strip solution are plotted in Figure 7.18(a). For comparison, the complete roof
is modeled by a single patch (i.e., no C0 lines), and the convergence results are collected
in Figure 7.18(b). It can be seen that the convergence behavior is nearly identical in both
cases. Figure 7.19 shows the distribution of the stress resultants from the bending strip
solution and in Table 7.1, the maximum values are collected. As can be seen, the stresses
in the shell are smooth across the patch interface, and they are nearly identical to those
of the single patch solution, compare to Figure 6.11 and Table 6.1. It is important to note
that the stresses in the region where the bending strip overlaps the structure, are not
carried by the bending strip but the structure itself. This affirms once more that the bend-
ing strips are not to be considered as structural patches but solely as an angle constraint
between the patches.

Pinched cylinder: In this example, half of the pinched cylinder is modeled by four
patches, connected by overlapping bending strips. Figure 7.20 shows the problem setup,
in Figure 7.21 the convergence study is plotted and compared to the results from a single
patch solution. As in the previous example, the convergence behavior of the bending
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strip solution is nearly identical to the single patch solution.
Remark: Since the half cylinder cannot be modeled by one patch without C0 continuity,
the single patch computation is performed on one eighth of the cylinder, as in Section 6.2.
As a consequence, the single patch computations use one quarter of degrees of freedom
for corresponding results, see Figure 7.21.

Figure 7.20: Pinched cylinder. Half of the cylinder is modeled by four patches connected by
bending strips.
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Figure 7.21: Pinched cylinder. Convergence study. (a) Multi-patch computation with bending
strips. (b) Single patch computation with symmetry boundary conditions. Convergence behavior
is nearly identical in both cases.

7.2.3.2 Bending Strips for Large Deformations

Applying the bending strips to the examples of the shell obstacle course has proven their
validity for geometrically linear problems, i.e. small deformations. In this sections, the
benchmark tests for large deformations, which have been used in Section 6.3, are revis-
ited using multipatch geometry models and bending strips. For these tests, a cantilever
plate is split into two patches which are joined by a bending strip. For the geometrically
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nonlinear tests, the plate is subjected to a pure bending moment and a pure twisting mo-
ment, as described in Section 6.3. The results are depicted in Figure 7.22 for the bending
case and in Figure 7.23 for the twisting case. As can be seen, the correct results are ob-
tained and the applicability of the bending strips for large deformations and rotations is
demonstrated.

(a)

(b) (c)

Figure 7.22: Bent plate with bending strip. (a) Initial configuration. (b) Deformed configuration.
(c) Deformed configuration with a bending strip shown on the bottom.

(a) (b)

(c) (d)

Figure 7.23: Twisted plate with bending strip. (a) Initial configuration. (b) Twisted by 90◦. (c)
Twisted by 180◦. (d) Twisted by 360◦.
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7.2.4 Bending Strips for Coupling of Shells and Solids

Structures of practical interest are often assemblies of different parts, of which some can
be classified as shells and others as solids. If both shell and solid elements shall be em-
ployed in one structural model, the difficulty is how to treat the interface between shell
and solid elements. This is a general problem of shell analysis since most shell elements
use rotational degrees of freedom whereas solids usually have only translational degrees
of freedom. Thus, there is a misfit of discretization at the interface i.e. the shell’s de-
grees of freedom cannot be transferred correctly to the solid. Using a rotation-free shell
formulation, the shell has the same degrees of freedom as the solid. For transferring
the rotations between shell and solid, the bending strips can be applied like in the case
of coupling two shells. A further problem, when coupling shells and solids, is the fact
that shells are represented as surfaces. It means that a shell geometry is a structure of
zero thickness, which at the interface introduces a singularity in the solid. For correctly
modeling the connection, the bending strips cover the area of the intersection shell-solid.
For covering the whole intersection area, bending strips with more than one quadratic
element in the transverse direction may be necessary. As a result, the strips maintain the
correct width under mesh refinement.

Comparing the results for hierarchical shell and solid elements, it is evident that they are almost identi-

cal. A degree of 2 in thickness direction is needed for a precise computation of the displacement of point A.

In [24] it was shown that for a linear elastic problem a degree of 1 in thickness direction is quite sufficient.

However, the volume locking effect, arising in elastoplatic computations, calls for a higher polynomial de-

gree in thickness direction. The small deviation between the results of the solid and the shell element may be
due to the different number of integration points.

4.2. A hemispherical shell with stiffener

As a further example we consider a hemispherical shell including a stiffener. Geometry, boundary con-

ditions and material parameters of linear elasticity are depicted in Fig. 12. The cylindrical stiffener with a

square cross-section is hard simply supported at the bottom surface. The structure is subjected to self-

weight and a pressure q is acting on the outer surface of the shell and stiffener. Due to symmetry only a
quarter of the system has to be considered.

Two different discretizations will be compared: the hierarchic shell approach as well as the finite element

formulation based on hexahedral elements. In the latter case, the mesh is strongly refined towards the inter-

section of the shell and the stiffener, where stress singularities are to be expected due to reentrant corners.

The corresponding finite element mesh, consisting of 117 hexahedrals, is depicted in Figs. 13(b) and 14(b).

Fig. 12. Hemispherical shell with stiffener.

E. Rank et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 2494–2512 2505

Figure 7.24: Hemispherical shell with a stiffener. Problem setup from [RDN+04]
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t=0.1

  bending strips covering the 
  whole area of the interface

Figure 7.25: Hemispherical shell with a stiffener. Solid-shell coupling using bending strips.

(a) Mesh 1 (b) Mesh 2

Figure 7.26: Hemispherical shell with a stiffener. Meshes employed for a p−refinement study.

The “hemispherical shell with a stiffener” problem presented by Rank et al. [RDN+04]
is used to demonstrate the method. The problem setup is depicted in Figure 7.24. Rank
et al. have used two different methods to solve this problem: a) a hierarchical shell ap-
proach where both shell and stiffener are modeled with high-order shell elements and b)
a 3D solid formulation for both shell and stiffener based on p−version hexahedral finite
elements [SDR04]. Here, a hybrid approach is used, where the stiffener is modeled as a
3D solid and the hemisphere as a shell. For the solid, a standard solid formulation using
NURBS as basis functions, as presented in [HCB05], is used. The shell is modeled by
the NURBS-based Kirchhoff-Love shell. As a consequence, shell and solid elements have
the same discretization at the interface. Four solid patches are used to model the stiffener,
and bending strips are defined to extend over the patches that cover the interface. By this,
it is assured that the bending strips retain the correct width under mesh refinement. Fig-
ure 7.25 illustrates the shell-solid intersection and the bending strips. The dashed lines
show the real 3D dimensions of the shell while its midsurface is depicted by a solid line.
The bending strips, placed on both sides of the shell, cover the entire overlap region.
A p−refinement study was performed using two different NURBS meshes. The results
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Figure 7.27: Hemispherical shell with a stiffener. Displacement convergence at point B.

for the displacement at point B, located at the top of the shell (see Figure 7.24), are com-
pared to the value given in [RDN+04]. Figure 7.26 shows the meshes. In both cases, two
cubic elements are used in the circumferential direction. The stiffener cross section is
discretized using 6× 6 rectangular elements. Mesh 1 and Mesh 2 use 8 and 16 elements,
respectively, in the meridian direction (see Figure 7.26). In the p−refinement study, the
polynomial degree is raised from quadratic to quintic for both the shell and stiffener.
No refinement is necessary in the circumferential direction due to axisymmetry. The dis-
placement at point B is plotted in Figure 7.27. Rapid convergence to the reference value
is observed for both discretizations.



Chapter 8

Integration of Design and Analysis

In this chapter, the isogeometric Kirchhoff-Love shell is applied to the integration of anal-
ysis into CAD. The suitability of the presented shell formulation for this integration is
demonstrated and different aspects of geometric modeling and their effects on isogeo-
metric analysis are discussed.

(a) (b)

Figure 8.1: Modeling of a cube in a CAD program. It appears as a volumetric object (a), but the
underlying description is defined as a set of boundary surfaces (b).

8.1 Integrating Isogeometric Shell Analysis into CAD

A general problem of using CAD geometries for analysis is that most CAD programs use
the boundary representation (B-Rep) method for volumetric objects. This means that a
volumetric object, e.g. a cube is not stored as a trivariate NURBS object, but as a set of
surfaces, which are its boundary. This is illustrated in Figure 8.1. Obviously, this B-Rep
representation cannot be used as geometry model for analysis. It is necessary to create a
trivariate (volumetric) NURBS model from the boundary surfaces.
Thin-walled structures like, for example, car bodies or ship hulls are usually designed as
surfaces with a certain thickness, rather than volumetric objects. This corresponds to the
structural model in shell analysis. Of course, such structures could also be analyzed with
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(a) (b)

(c) (d)

Figure 8.2: Isogeometric shell analysis. (a) CAD model. (b) The same model in the analysis code.
(c) The analysis model is refined, boundary conditions and material properties are applied. (d)
Displacement plot as result of the isogeometric analysis under self-weight.

solid elements, but then again, a volumetric geometry has to be created from the surface
model first. For isogeometric shell analysis, the NURBS surface designed in a CAD pro-
gram can be used as the shell’s geometry. If a shell formulation using rotational degrees
of freedom or nodal directors is used [BWBR04], these directors need to be assigned ad-
ditionally in the analysis model, since they do not exist in the design model. Using a
rotation-free shell formulation allows the use of exactly the same geometry description
for design and analysis. This is demonstrated in Figure 8.2. It shows the single steps
from the CAD geometry to the result of the isogeometric analysis. Figure (a) shows the
geometry of a plate with beads in the CAD model. This geometry is exported without
modification to the isogeometric analysis code (b). Here, refinement is performed and
boundary conditions as well as material properties are applied (c). The plate is simply
supported on two sides and subjected to self-weight. Figure (d) shows the color plot of
the resulting deformation.
The geometry shown in Figure 8.2(a) has been created in Rhino [rhi], which is a powerful,
NURBS-based CAD program used for ship design, industrial design, etc. For the next
examples, a user-implemented plug-in [Sch09, Bre10] for Rhino has been employed. With
this plug-in, a complete integration of isogeometric analysis into Rhino is realized, as il-
lustrated in Figure 8.3. Figure (a) shows an oil barrel, modeled in Rhino. In (b), the same
geometry is displayed with shaded environment to emphasize the CAD capabilities of
this program. In (c), boundary conditions are applied (fixed support at the bottom and
internal pressure) and material parameters are assigned. The boundary conditions are
defined by surface parameters, so for analysis, different refinements can be performed
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without resetting the boundary conditions. As result of the analysis, the normal forces in
circumferential direction are plotted onto the deformed geometry in (d).

(a) (b) (c) (d)

Figure 8.3: Integration of isogeometric analysis into a commercial CAD program. (a) Design
model of an oil barrel. (b) Barrel with shaded environment mapping. (c) Boundary conditions
and material properties are assigned in the CAD program through a user-implemented plug-in.
(d) Isogeometric analysis is performed on a refined model. The normal forces in circumferential
direction are plotted on the deformed geometry.

It is just important that the necessary continuity conditions for analysis are ensured. Es-
pecially for rotational surfaces, this is a point which might not be obvious immediately.
Rotational surfaces such as a cylinder or the barrel in Figure 8.3 appear as closed, smooth
surfaces. In the NURBS representation, however, there is first of all a location where the
start and end of the NURBS patch meet, which is a location of C−1 continuity. Further-
more, there are three locations of C0 continuity due to multiple knots in the knot vector.
Additional constraints are needed to enforce the necessary continuity conditions for anal-
ysis. C0 continuity is necessary to guarantee a closed surface, independent of the element
type used in analysis, and is obtained by coupling the control points of the patch at its
meeting ends. For the presented Kirchhoff-Love shell formulation, at least G1 continu-
ity is necessary everywhere on the patch. This means that the C0 locations need to be
identified and corrected by the methods presented in Chapter 7.

8.2 Analysis-Aware Modeling

In the previous section, the possibility of integrating isogeometric analysis into CAD
with the developed shell formulation was shown. In this chapter, different aspects of
geometric modeling and their effects on isogeometric analysis are investigated. Some of
these aspects refer to this specific shell analysis, but most of them are generally valid for
NURBS-based isogeometric analysis.
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8.2.1 Alternative Parametrizations

There are typically several different parametrizations possible to describe the same ge-
ometry. While for a design model it might be of less importance how the geometry is
parametrized, it has important consequences for the analysis model. This is exemplified
on a circular disc [CMK+10, SKBW10]. Two possible parametrizations are considered.
The first one is obtained by rotating a straight line around one of its endpoints, as illus-
trated in Figure 8.4. This can be considered as the easiest and most intuitive way to
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Figure 8.4: Circular disc, modeled by rotating a straight line.

Figure 8.5: Refined model of the disc shown in Figure 8.4.

Figure 8.6: Color plot of the Jacobian for the disc model in Figure 8.4.

model a circular disc. However, it yields a rather bad parametrization. As can be seen,
the disc consists of 18 control points, where nine of them coincide at the center of rotation.
Obviously, this yields a singularity at the disc’s center. Figure 8.5 shows this parametriza-
tion after some refinement. All the elements at the center are topologically quadrilaterals
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degenerated to triangles, and with increasing refinement they become very small. For
investigating the parametrization quality, the Jacobian is plotted onto the disc in Figure
8.6. As can be seen, the Jacobian becomes zero at the center due to the singularity at this
point. Furthermore, there are four locations with only C0 continuity due to the rotational
definition. For the presented shell formulation, at least G1 continuity is necessary, which
means that continuity constraints as presented in Chapter 7 have to be applied in order
to use this geometric model for analysis.
A second alternative to model this circular disc is degenerating a square. This is illus-
trated in Figure 8.7. Starting from a biquadratic square with the edge length a, the mid-
points of the edges (P2, P4, P6, P8) are pulled outwards by a/2 and their weights are
adjusted to

√
0.5. In this case, only nine control points are needed and the parametriza-
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Figure 8.7: Circular disc, modeled by degenerating a square.

Figure 8.8: Refined model of the disc shown in Figure 8.7.

tion is better than in the first model. Figure 8.8 shows this model after some refinement.
As can be seen, the elements are less distorted than in the first model (Figure 8.5). In
Figure 8.9 it can be seen that the variations in the Jacobian are smaller than in the first
model (Figure 8.6). Furthermore, there is C1 continuity or higher everywhere, and no ad-
ditional continuity constraints are necessary. However, singularities appear also in this
model. They are at the points P1, P3, P7 and P9, i.e. the corners of the former square.
As can be seen in Figure 8.7, at point P1, the two parametric directions ξ and η become
collinear. The same problem occurs at the points P3, P7 and P9. These singularities can
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Figure 8.9: Color plot of the Jacobian for the disc model in Figure 8.7.

also be seen in the plot of the Jacobian in Figure 8.9. So, in both models geometric singu-
larities occur, however they do not pose severe problems for analysis since they do not
lie on integration points.

Figure 8.10: Simply supported circular plate under self-weight.

For evaluating the effect of the two different parametrizations on isogeometric analysis, a
static analysis is performed for both cases. The disc acts as a plate, it is simply supported
on its boundary and subjected to self-weight, see Figure 8.10. The displacement at the

center is observed and compared to the analytical solution wanal =
5

64
pr4

K where p is the
load, r the radius and K = Et3

12 the plate stiffness [Ble08]. For both parametrizations,
biquadratic NURBS are used, knot refinement is applied and the results are compared to
the analytical solution. The results are gathered in the convergence plot in Figure 8.11. It
can be seen that Parametrization 2 converges faster, as it is to be expected due to the better
parametrization. But it is also important to note that model 1, although highly distorted,
converges to the correct result as well, with an acceptable convergence rate. This shows
that NURBS-based elements are rather insensitive to mesh distortions [LEB+10].

8.2.2 Trimmed Surfaces

Trimming is a very important method in CAD modeling and a standard feature in CAD
programs. It allows the modification of NURBS surfaces by “cutting off” parts along
an arbitrary trimming curve. The Boolean operations unite, divide and intersection,
which are essential operations for creating complex objects from geometric primitives,
also make use of the trimming technique. The intersection curve between two objects is
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Figure 8.11: Simply supported circular plate under self-weight. Convergence plot of the center
displacement.

then the trimming curve. However, trimming does not really divide the patch into two
new NURBS patches of which one is then deleted. It rather maps the trimming curve
onto the surface which divides the patch into a valid and an invalid part. The invalid
part is made invisible in the program. However, the underlying NURBS description still
contains the complete patch. This is illustrated in Figure 8.12. Figure (a) shows a square

(a) (b)

Figure 8.12: Trimming. (a) A square plate with the underlying control net. (b) A circular hole is
cut into the plate by trimming. The underlying control net is still the same.

plate and its underlying control net. A circular hole is cut into this plate by trimming (b).
In the control net of the trimmed surface, it can be seen that the underlying NURBS de-
scription is still the same. The “cut-off” part is only made invisible in the CAD program.
It is obvious that this is not a valid representation for a NURBS-based analysis. The idea
of disregarding the invalid elements during assembly for the analysis fails since the trim-
ming curve can be arbitrary and is not confined to the existing knots which in fact define
the element boundaries. An alternative representation is depicted in Figure 8.13. It is
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the closed patch between a circle as the inner boundary and a square as the outer bound-
ary. In this representation, there are no trimmed parts and the model is analysis-suitable.
However, it is more complicated to construct than the trimmed model.

Figure 8.13: Analysis-suitable representation of the plate with hole.

The same problem can even appear without having performed a trimming operation. It
is the case when modeling a simple triangle in a NURBS-based program. Due to their
tensor product nature, NURBS always have a quadrilateral topology and a triangle with
only three control points cannot be modeled by NURBS. Figure 8.14 shows what usually
happens in a NURBS-based CAD program. A triangle is specified by three points (a).
The underlying NURBS description can be seen by visualizing the control grid (b): in-
stead of a triangle, a quadrilateral is constructed where half of the surface is trimmed. In
(c), the analysis-suitable alternative is shown. The triangle is modeled as a degenerate
quadrilateral, where the upper two control points coincide.

(a) (b) (c)

Figure 8.14: Modeling a triangle with NURBS. (a) A triangle is defined by three points. (b) Inter-
nally, a quadrilateral is created with half of it trimmed. (c) Analysis-suitable model: A square is
degenerated to a triangle by coinciding two control points.

These examples show that if isogeometric analysis is to be performed on a CAD model,
the designer has to be aware of the demands that the analysis has on the geometric
model. If there are alternative parametrizations for the same shape, the one which is
best suited for isogeometric analysis should be chosen. The biggest problem for NURBS-
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based isogeometric analysis is that trimmed surfaces, which are standard in CAD mod-
eling, cannot be computed. It has been shown that trimmed surfaces can be avoided by
using alternative, non-trimmed parametrizations. However, this is not a feasible solution
for complex geometry models. Replacing all trimmed surfaces by untrimmed surfaces
would result in a huge remodeling effort and the advantage of isogeometric analysis
would get lost. An approach to perform analysis on trimmed surfaces is presented in
[KSY09, KSY10] for plane 2D problems. It uses NURBS-enhanced finite elements (NE-
FEM) [SFMH08] for those elements which are divided by the trimming curve. A general
problem of trimming is that the intersection of two NURBS surfaces cannot be repre-
sented exactly by a NURBS trimming curve [SFLL08]. This leads to small gaps between
the patches which can be neglected for design but are crucial for analysis. This can be re-
paired by using T-Splines. T-Splines are a generalization of NURBS [SZBN03] that is not
restricted to a tensor product structure. This means that T-junctions in the control grid
are possible, which allows local refinement [SCF04]. Furthermore, it is possible to con-
vert trimmed NURBS surfaces into untrimmed T-Spline surfaces [SFLL08] and then close
the gaps between these patches. There are T-Spline plug-ins available for the NURBS-
based CAD programs Rhino and Maya. Nevertheless, NURBS are still the predominant
technology in CAD programs. Isogeometric analysis using T-Splines has been studied
in [DJS10, BCC+10, UY09, UKY08, BBDL+10] and good results were obtained. However,
there are still open questions about the linear independence of T-Splines, which is an
indispensable prerequisite for analysis, as discussed in [BCS10] and [SLZ+10].



Chapter 9

Isogeometric Shape Optimization

In this chapter, the isogeometric concept is extended to shape optimization. Shape opti-
mization is a subcategory of structural optimization with the goal of finding the optimal
shape of a structure with respect to a certain objective. The optimization process can be
split into two main steps. The first step is formulating the optimization problem, the
second step is choosing a proper optimization strategy. For setting up the optimization
problem, the designer must define the objective which shall be optimized, and formulate
it in the objective function. The next crucial step is defining the design model. The choice
for a certain design model specifies the possible solutions of the optimization and there-
fore this step can be regarded as the most decisive step in the whole optimization process.
In structural shape optimization, there are two different approaches concerning the de-
sign models, namely the CAD-based [Ble90, Ble93, BR01, BWDC05] and the FE-based
[BFLW08, Dao05, DCB04] approach. In the CAD-based approach, the design model is
specified by the CAD description of the structure, whereas in the FE-based approach, the
finite element mesh is used as design model. These two approaches are reviewed, and
isogeometric shape optimization is introduced as a possibility to merge the advantages of
both approaches. The chapter starts with a short review of the fundamentals of structural
optimization, and different solution strategies are presented. Due to the huge variety of
optimization algorithms, only a few are presented. For an introduction to structural opti-
mization, reference is made to [Aro89, BK85b].

9.1 Mathematical Formulation of a Structural Optimization
Problem

A structural optimization problem can be defined mathematically in the following form:

Minimize f (s) s ∈ Rns (9.1)

such that gi(s) ≤ 0 i = 1, . . . , ng

hj(s) = 0 j = 1, . . . , nh

sl ≤ s ≤ su
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where f is the objective function, s is the vector of the design variables, gi is the set of
inequality constraints and hj are the equality constraints. sl and su are the lower and
upper bounds of the design variables. In fact, they are explicit inequality constraints on
the design variables and therefore could be included in the set of inequality constraints,
but in view of their simplicity they are treated separately.

9.1.1 Objective Function

The objective function describes the objective that has to be minimized by the optimiza-
tion. Alternatively, optimization can also be formulated as maximization of the objective
function, which in fact is equivalent to a minimization of its negative. It is important to
be aware of the fact that complex and multidimensional objective functions usually have
many local minima and it is not guaranteed that the global minimum is found by the
optimization. Often, there are also more than one objectives. They can be transformed
into one objective by the weighted sum of the single objective functions. Typical objec-
tives for structural optimization are, for example, minimization of mass, minimization of
compliance, maximization of eigenfrequency, maximization of buckling load, etc.

9.1.2 Design Variables

The design variables are the structural parameters which can be altered by the optimiza-
tion in order to minimize the objective function. Depending on the type of design vari-
ables, structural optimization can be classified into four subcategories, namely sizing,
material, topology and shape optimization. In the first two, the geometry of the structure
remains unchanged. In sizing, only the sizes of the cross sections are to be optimized.
This is applicable especially for truss structures. Material optimization aims at finding
the best material parameters for non-isotropic materials, e.g. the fiber directions in com-
posite laminated plates and shells. Topology optimization determines the best distribu-
tion of material in the design space. This means that no type of structure is specified a
priori, but the whole design space is free to be filled with material. The result of topol-
ogy optimization is usually not a practical and ready-to-build structure, but serves as a
help to determine the appropriate type of structure and a coarse design for the given de-
sign space. In shape optimization, the type of structure is defined but its shape can be
modified. For a geometric model defined by nodal points which are connected by certain
basis functions, this means that the connectivity between the points remains fixed, but
their position, i.e. their spacial coordinates, can be modified. If shape optimization is
performed using finite element analysis, there are basically two types of design models,
namely the CAD-geometry model and the finite element mesh. In both cases the design
variables are nodal coordinates, for the first approach referring to control nodes in the
second approach referring to FE-nodes. If the design model is described by NURBS, also
the weights of the control points can be used as design variables. The different design
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models and corresponding design variables for shape optimization will be reviewed in
more detail later in this chapter.

9.1.3 Constraints

The solution is usually restricted by some constraint functions which divide the design
space into a feasible and an infeasible region. The constraint functions are classified into
equality and inequality constraints. As mentioned above, the variable bounds sl and
su which describe the upper and lower bound of admissible values for the design vari-
ables, could also be regarded as inequality constraints, but due to their simplicity they are
treated separately. For a certain design, constraints can be either fulfilled (gi ≤ 0, hj = 0)
or violated (gi > 0, hj 6= 0). Inequality constraints which are fulfilled can furthermore
be classified into active and inactive. A constraint is active if it determines the optimum
(gi = 0), i.e. the optimum point lies on the border between feasible and infeasible design.
An equality constraint can only be active or violated. If a constraint has no influence on
the solution of the optimization problem, it is called redundant. Typical constraints in
shape optimization are, for example, stress, mass, deformation, etc. Generally, all quan-
tities which can be used as objective function could also serve as constraint function.
Therefore, objective and constraint functions which describe responses of the structure to
a variation in the design, are summarized in the term “response functions”.

9.1.4 Lagrangian Function and Kuhn-Tucker conditions

For unconstrained optimization problems, the optimum is defined by the minimum of
the objective function, i.e. the gradient of the objective function vanishes (assuming con-
tinuous first derivatives):

∇ f (s) = 0 (9.2)

For constrained problems, the auxiliary function L is introduced which includes the ob-
jective and the constraint functions:

L(s, λ, µ) = f (s) + λTg(s) + µTh(s) (9.3)

This function is called the Lagrangian function and λ, µ are the Lagrangian multipliers.
The optimum of the Lagrangian function is defined by the Kuhn-Tucker conditions:

∇sL(s, λ, µ) = ∇s f (s) + λT∇sg(s) + µT∇sh(s) = 0

∇µL(s, λ, µ) = h(s) = 0

λi∇λi L(s, λ, µ) = λigi(s) = 0

λi ≥ 0

(9.4)

The Lagrangian function combines the objective function and the constraints into one
function with additional variables λ and µ. By this, the problem is transformed into
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the unconstrained problem of finding the stationary point of the Lagrangian function
w.r.t. the primal variables s and the dual variables λ and µ, and solution strategies from
unconstrained optimization can be applied.

9.2 Optimization Algorithms

Optimization algorithms can be classified into different categories by the order of infor-
mation they use. Therefore, the categories are zero, first and second order methods. For
each of the categories, there exists a variety of algorithms which are not reviewed here,
but only a general introduction is given.
Zero order methods evaluate only the function but not its derivatives. They are therefore
the most simple but also the least efficient methods. Since they do not use any gradient
information, they can be applied to very complex problems where evaluating the gradi-
ents is not possible or at least not effective, or to problems where the gradients cannot be
evaluated due to discontinuous derivatives.
First order methods use the information of the gradient for determining the search direc-
tion. The simplest is the steepest descent method. It evaluates the gradient and uses its
negative as search direction. A one-dimensional line search usually has to be performed
to determine the optimal step size. The problem of steepest descent is that for badly con-
ditioned problems it exhibits “zigzagging” and becomes inefficient. In these cases, conju-
gate gradient methods are better, which additionally use the gradient information of the
last step to determine the search direction. Quasi-Newton methods, which work with an
approximated inverse of the Hessian matrix, are classified as first order methods as well
since they approximate the inverse Hessian by first order information. Very efficient algo-
rithms like sequential quadratic programming (SQP) make use of Quasi-Newton meth-
ods.
Second order methods, also called Newton methods, make use of the second derivatives,
the Hessian matrix, to obtain the search direction. Evaluating the Hessian matrix is usu-
ally very time-consuming. Therefore, Quasi-Newton methods are usually more efficient.

9.3 Sensitivity Analysis

Sensitivity analysis describes how much the objective changes due to a variation of a de-
sign variable [AH79]. Therefore, it is the gradient of the objective function w.r.t. the
design variables. With this gradient, the search direction for the next step is deter-
mined. Sensitivity analysis can be performed using finite differences, analytically, or
semi-analytically, which are explained in the following.
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9.3.1 Global Finite Differences

The gradient can be obtained approximately by global finite differences, e.g. by forward
differentiation:

d f
ds

=
f (s + ∆s)− f (s)

∆s
(9.5)

Obviously, this requires solving the whole equation system for each single variation ∆si,
which makes this method very inefficient for large systems. The advantage is that it
is universally applicable, it does not need any information of the underlying analysis
formulation. Thus, this method finds its application if, for example, a finite element code
should be used as a black box inside the optimization algorithm.

9.3.2 Analytical Sensitivity Analysis

In analytical sensitivity analysis, the gradients are computed analytically. Obviously, this
needs insight into the element formulation. For analytical sensitivity analysis, the objec-
tive function in the general optimization problem (9.1) is reformulated in the following
way:

f = f (s, u(s)) (9.6)

where u are called state variables, which in shape optimization are usually the displace-
ments. The state variables, in turn, are functions of the design variables u = u(s). This
formulation accounts for the fact that most response functions are a function of the dis-
placements and facilitates the formulation of the following derivations. The derivative
of the objective function w.r.t. variations of the design variables can then be formulated
using the chain rule:

d f
ds

=
∂ f
∂s

+

(
∂ f
∂u

)T du
ds

(9.7)

The partial derivative of the objective w.r.t. to the design variable ∂ f
∂s is usually easy to

compute and in many cases it is even zero. The most involved part is the derivative of
the state variables w.r.t. the design variables du

ds . For mechanically linear problems, these
can be obtained by deriving the equilibrium condition w.r.t. s:

K u = R (9.8)
dK
ds

u + K
du
ds

=
dR
ds

(9.9)

du
ds

= K−1
(

dR
ds
− dK

ds
u
)

(9.10)

where R is the load vector. Due to the similarity of equation (9.10) with equation (9.8),
the term in parenthesis is also called pseudo load vector R∗:

R∗ =
dR
ds
− dK

ds
u (9.11)
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Inserting (9.10) into equation (9.7) yields the equation for the analytical sensitivity analy-
sis:

d f
ds

=
∂ f
∂s

+

(
∂ f
∂u

)T

K−1
(

dR
ds
− dK

ds
u
)

(9.12)

=
∂ f
∂s

+

(
∂ f
∂u

)T

K−1 R∗ (9.13)

As can be seen, the pseudo load vector requires the derivative of the stiffness matrix
and the load vector w.r.t. the design variables. This is computationally very expensive,
especially for complicated element formulations. And it means that access to the element
formulation is necessary and the sensitivity analysis has to be reformulated for each new
element type. By this, a general optimization environment which can be adopted for
arbitrary element types is not possible.

9.3.3 Semi-Analytical Sensitivity Analysis

Semi-analytical sensitivity analysis [BFD08] is based on the analytical sensitivity as in
equation (9.13). The difference is that the pseudo load vector is approximated by comput-
ing the sensitivities of the stiffness matrix and load vector by finite differences:

R∗ =
R(s + ∆s)−R(s)

∆s
− K(s + ∆s)−K(s)

∆s
u (9.14)

By this, the derivation of the element formulation w.r.t. the design variables is circum-
vented, and an optimization algorithm using equation (9.14) can be applied to any new
element type. Compared to global finite differences it is much more efficient because for
every variation ∆si only a modified stiffness matrix (and load vector) has to be computed
but no additional equation system needs to be solved.

9.3.4 Direct vs. Adjoint Sensitivity Analysis

For analytical and semi-analytical sensitivity analysis, a distinction can be drawn be-
tween the direct and the adjoint method. The difference lies merely in the order in which
matrix multiplications in equation (9.13) are executed. In the direct method, first the

product K−1 · R∗ is evaluated, whereas in the adjoint approach the product
(

∂ f
∂u

)T
·K−1

is evaluated first. This can have a significant effect on the numerical efficiency, depend-
ing on the number of design variables compared to the number of response functions.
The adjoint method is more efficient if there are more design variables than response
functions, which is usually the case in shape optimization problems. For more details,
reference is made to [Ble90, BFD08].
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9.4 Shape Parametrization

As stated above, shape optimization is a subcategory of structural optimization, where
the design variables are geometrical parameters describing the shape of the structure.
Generally, there are different possible representations to describe the same geometry and
therefore different shape parameters can be chosen for optimization. For shape optimiza-
tion using finite element analysis, there are even two different geometric models, namely
the CAD model and the finite element model which is an approximation to the CAD
model, created by meshing. Therefore, two different approaches for shape optimization
have developed, the CAD-based approach on the one hand and the FE-based approach
on the other hand.

9.4.1 CAD-based Shape Optimization

In the CAD-based approach, the CAD model represents the optimization model, which
means that the parameters describing the CAD geometry, or a subset of them, are used
as design variables for optimization. By this, the optimization works with a rather small
number of design variables, which is numerically efficient and guarantees a certain regu-
larity and smoothness in the solution due to the restricted solution space. Obviously, the
latter is also a disadvantage. The optimization does not have much freedom, especially
if the geometry is defined by very few parameters only. An extreme example of this is
a sphere which is defined solely by its radius. For shape optimization on this model,
it means that there is only one design variable and the solution can only be a sphere
with a bigger or smaller radius, independent of the objective, the constraints, boundary
conditions, etc. Then it is necessary to think of alternative parametrizations. This can be
explained well with the example of the sphere. Instead of one radius R it could be defined
by three radii R1, R2, R3 which are equal at the beginning. With this parametrization, the
solution would include elliptic shapes. A completely different parametrization could be
a NURBS description of the sphere with the control point coordinates as design variables.
This would allow for much more geometric flexibility in the solution. This example re-
veals two important aspects. Generally, it can be said that due to the relatively small
number of shape variables, the variety of possible solutions is restricted and especially
local effects can usually not be accounted for. It is furthermore obvious that the choice
of parametrization strongly determines the solution. Although the latter generally holds
for any kind of shape optimization (refer to the following subsections), it is much more
pronounced in these cases where few variables define the whole shape. Therefore, this
approach is, compared to the FE-based approach, applicable if the designer has already
some predefined idea of what the solution should look like.
There is another drawback to this approach concerning the communication between dif-
ferent models. The optimization is performed on the CAD model, for evaluating the
objective function and sensitivities, a finite element analysis has to be performed. This
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means that for each optimization step, actually for each design variation ∆si, the finite
element model has to be rebuilt.

9.4.2 FE-based Shape Optimization

In this approach, shape optimization is performed on the finite element model. This
means that the transfer from the CAD to the FE model has to be done only once. The
FE nodes, i.e. their coordinates, are the design variables, which provides a huge design
space. This is advantageous in the sense that there is a big solution space and the solu-
tion is less predefined as in the CAD approach. At the same time, it is a problem because
very irregular shapes and shapes that are infeasible in the sense of manufacturability
can occur. To avoid this, filtering techniques and mesh regularization have to be applied
[BDF06, DCB04]. By filtering, a filter with a certain radius is applied on the gradients
which smoothens the gradients inside the filter radius. The size of the filter radius deter-
mines the wavelength of possible waves in the solution. If the filter radius is chosen too
small, the result can still be a very irregular shape. If it is chosen too large, the solution
might be constrained too much and be far from optimal. Therefore, the decision for a
certain filter radius determines the possible solutions, similar to choosing a parametriza-
tion for the CAD approach. However, the finite element approach still has a significantly
larger design space, and hence more different and locally adapted solutions are possible.
Therefore, this approach is applicable to cases where no coarse shape shall be predefined
for the solution and where local load-carrying behavior shall be encouraged, such as in
bead optimization for thin metal sheets.
The fact that the finite element mesh has to be created only once and no further trans-
fer between CAD model and FE model is necessary can be seen as a gain in efficiency
compared to the CAD approach. On the other hand, it is obvious that this gain is compen-
sated by the huge number of design variables and the necessity for additional operations
(filtering, regularization).

An important aspect in choosing design variables for shape optimization is the question
of prescribed directions. If nodal coordinates are used as design variables, it is reasonable
to allow only variations which really vary the shape of the structure. This is explained
best on the example of a flat plate. For any node on the inside, i.e. not on the plate’s
boundary, a variation tangential to the plate has no influence on the shape of the plate. A
bad consequence is that these nodes can move “freely” on the plate during optimization
and create a distorted mesh. To prevent this, only variations perpendicular to the surface
are allowed. The variations that influence the shape depend on the topological position
of the node. While for all inner nodes only variations perpendicular to the surface are of
interest, for nodes on the edges only the variation parallel to the edge is to be prevented
and for vertex nodes, all variations have influence on the shape.
For the inner nodes on curved surfaces, like shell structures, only a variation perpen-
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Figure 9.1: Isogeometric shape optimization. Optimization can be performed on the original CAD
model, on the refined analysis model, or on any refinement level in between.

dicular to the tangent plane affects the shape. Being precise, also a variation inside the
tangent plane has a small effect on the shape, due to the curvature. However, this con-
tribution is negligible and variations are usually prescribed to be perpendicular to the
surface. Obviously, this normal direction changes during the optimization procedure, i.e.
the “prescribed” direction for each node has to be updated in each optimization step.
Allowing variations only in normal direction is not only applicable for FE nodes as de-
sign variables but also for the control nodes of a CAD optimization model. In CAD-based
shape optimization, the problem of in-plane movements of nodes is less severe since the
control nodes have a bigger region of influence and therefore also variations in the tan-
gent plane have a considerable effect on the shape. Therefore, it is not generally necessary
to restrict the variations to the direction normal to the plane. Nevertheless, variations in
the tangent plane still have significantly less effect on the shape than perpendicular vari-
ations, and they can cause mesh distortion. Therefore, also for optimization on the CAD
model, it is often advantageous to prescribe the variations to be in normal direction.

9.5 Isogeometric Shape Optimization

As has been shown in the previous chapters, in the isogeometric concept the CAD geom-
etry and the analysis model rely on the same geometry description. As a consequence,
the aforementioned distinction between CAD-based and FE-based shape optimization
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Isogeometric Shape Optimization

Example: Tube under constant internal pressure

Find optimal shape of the section in order to maximize the stiffness

Isogeometric Shape Optimization

constant pressure

Figure 9.2: Tube with square cross section under constant internal pressure.

can be omitted using isogeometric analysis. It has also been shown in the previous chap-
ters that for obtaining reliable results in isogeometric analysis, refinement of the original
NURBS model is necessary. This means that it still can be distinguished between the de-
sign model, which is the geometry in a coarse NURBS representation, and the analysis
model, which is the same geometry in a refined NURBS representation. For NURBS-
based shape optimization this means that the optimization can be carried out both on
the design model and on the analysis model, since both are NURBS geometries. Further-
more, an additional model with a refinement level between the design and the analysis
model can be introduced. So there are three NURBS models of the same geometry with
different refinement levels, namely the design model, the optimization model and the
analysis model. In the first step, the design model is refined yielding the optimization
model and in the second step the latter is refined yielding the analysis model. The two
refinement steps are independent of each other, which means that a certain refinement
for the analysis model can be chosen independently of the optimization model and vice
versa. Figure 9.1 illustrates the model hierarchy for isogeometric shape optimization on
the example of a half-sphere. The CAD model is represented by a very coarse NURBS
description. In a first refinement step, the optimization model is defined, where the level
of refinement can be chosen freely. In a second refinement step, the analysis model is ob-
tained. Since, in both steps, it is also possible to perform no refinement, the two classical
approaches of optimizing on the CAD model and optimizing on the analysis model are
included in this approach as well. Thus, this approach is an enhancement to the existing
approaches, including both of them as special cases.
This approach also allows for an adaptive optimization. A coarse optimization model
can be used to determine the global shape of the structure accounting for global loads.
Further optimization on refined models can then be performed to account for local loads.
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Figure 9.3: Tube under internal pressure. (a) Design variables: x-, y-coordinates and the weights
of the indicated control points. (b) Optimal geometry after shape optimization.

9.5.1 Example: Tube under internal pressure

In the following, an example is presented which demonstrates the abilities of isogeomet-
ric shape optimization. A tube with a square cross section under constant internal pres-
sure is given, Figure 9.2. The cross-sectional shape shall be optimized with respect to
linear compliance, i.e. internal energy. In Figure 9.3(a), the NURBS parametrization of
the tube is shown and the design variables are indicated. The cross section is modeled
by a quadratic NURBS with nine control points. In the figure, only eight control points
can be seen, since the first and the last control point coincide. As indicated, the design
variables are the control points at the middle of the edges. In detail, it is the x- and y-
coordinates (the cross section lies in the x-y-plane) of these control points, and also their
weights. The cross-sectional shape shall remain constant along the tube, therefore the
design variables apply to both the top and the bottom of the tube. Symmetry inside the
cross-sectional plane is not used, i.e. the control points on all four sides are independent
design variables.
The result of the shape optimization is depicted in Figure 9.3(b). As to be expected, the
optimal shape of the cross section is a circle, because a circle carries the constant internal
pressure by pure membrane stresses without bending moments. It is pointed out that the
resulting shape is an exact circle which is possible by using NURBS for the geometry de-
scription. This result can be obtained only by including the weights of the control points
as design variables. However, it must also be stated that this example is an academic
example where the optimal solution is known in advance, and this optimal shape needs
the adjustment of the weights. For the shape optimization of free form shapes it can be
reasonable to use only control point coordinates and not the weights, since the influence
of weights on the shape is less compared to the influence of the coordinates. This is es-
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Figure 9.4: Cylindrical tube with local loads.

pecially the case if the optimization is performed on a rather fine NURBS model with a
dense control grid.
Remark: As has been explained in Chapter 4, the weights of the control points are not used
as degrees of freedom for isogeometric analysis. Nevertheless, they can be used as design
variables for isogeometric shape optimization since parameters of optimization and anal-
ysis model are not identical. The weights can be varied for a design update, while inside
each optimization step an isogeometric analysis is performed where weights remain con-
stant.
The shape optimization shown above was performed on a very coarse NURBS descrip-
tion which was adequate to account for the globally constant pressure load. In the next
step, local loads are applied and optimization is performed on refined optimization mod-
els where different levels of refinement are employed. Figure 9.4 shows the setup. The
starting geometry is now the geometry obtained by the first shape optimization, i.e. a
cylinder. Two opposite point loads are applied at the middle of the cylinder’s height.
The NURBS model of the cylinder is refined in both circular and height direction. The
control points over the height are now independent design variables as well. The direc-
tion of the design variation is prescribed to be perpendicular to the surface and weights
are not used as design variables.
Remark: Since NURBS control points do not lie on the surface in general, the question
is how to assign them a direction which is normal to the surface. In the present exam-
ple, this normal direction is determined by vector products of the neighboring control
points. An alternative would be to find the closest point on the surface by point projec-
tion, evaluate the normal there and assign it to the control point. This, however, would
be much more time-consuming since for every point projection a Newton iteration has to
be solved.
Two different refinements are used as optimization model. The first case is depicted in
Figure 9.5. Subfigure (a) shows the control grid of the optimization model indicated by
dashed lines. For analysis, additional refinement is performed, as indicated in Figure
9.5(b). It shows the resulting geometry after shape optimization. Buckles have formed
under the point loads to carry the load primarily by membrane forces. Due to the rather
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(a) (b)

Figure 9.5: Cylindrical tube with local loads, coarse refinement for optimization model. (a) Con-
trol grid of the optimization model. (b) Result of shape optimization. Buckles form under the
point loads, which affects the global shape.

(a) (b)

Figure 9.6: Cylindrical tube with local loads, fine refinement for optimization model. (a) Control
grid of the optimization model. (b) Result of shape optimization. The load is carried locally by
small beads.

coarse optimization model, the buckles are relatively big and affect the whole shape of
the cylinder.
In the next case, a very fine optimization model is chosen, see Figure 9.6(a). The point
loads can now be captured more locally by small beads which affect only a small region
around the point loads, as shown in Figure 9.6(b). Here, the same refinement has been
used for optimization and analysis.

In a classical FE-based shape optimization, the optimized geometry is a faceted finite
element geometry. Such a geometry cannot be used as design model for manufacturing
and therefore this optimized geometry must be approximated by a continuous surface,
e.g. by NURBS. Obviously, this is another challenging step. An appropriate model has
to be chosen to accurately reproduce the shape and in any case geometric information is
lost due to the approximation. Using isogeometric shape optimization, the result of the
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Figure 9.7: The optimized geometry from Figure 9.6(b) as design geometry in a CAD environ-
ment.

optimization is a NURBS geometry and therefore it can be used as the design model for
production without model conversion. This is illustrated in Figure 9.7 which shows the
optimized geometry from Figure 9.6(b) as design geometry in a CAD environment. At
this point it is repeated that in isogeometric shape optimization all involved models are
based on a common geometry description. These models are: the initial design model,
the optimization model, the analysis model and the final design model.



Chapter 10

FSI Simulation of a Wind Turbine
Blade

In this chapter, the applicability of the isogeometric Kirchhoff-Love shell for coupled
Fluid-Structure Interaction (FSI) computations is shown and at the same time it is an ap-
plication of the method to a realistic large-scale structure. It is demonstrated on the fully
coupled FSI analysis of a 63 m long offshore wind turbine blade which is rotating and de-
flecting under the wind loading. This work has been done in cooperation with Professor
Bazilevs at the Department of Structural Engineering at the University of California, San
Diego. Professor Bazilevs and his group use NURBS-based isogeometric fluid analysis
for a three-dimensional simulation of the air flow around rotating turbine blades.
At the moment, the common practice for the design of wind turbine blades is to use the
steady-state, two-dimensional aerodynamic models for airfoil sections on a set of cross
sections along the blade. With these models, the air pressure on the blades is determined,
which defines the aerodynamic torque on the one hand, as well as the forces acting on the
blade for structural analysis on the other hand. Obviously, these simplified models can-
not capture three-dimensional and time-dependent effects of the fluid or the interaction
between blade deformation and the air flow. For a better prediction of both the aerody-
namic efficiency and the structural behavior of the blades, these effects can be studied
precisely by a numerical 3D FSI-simulation.
For this joint project, the isogeometric Kirchhoff-Love shell and the bending strips, as
presented in this thesis, have been implemented into the FSI environment of Professor
Bazilevs. This allows a detailed structural analysis of the wind turbine blade inside the
FSI analysis of the rotating and deflecting turbine blade. The results are presented in
detail in [BHK+10].

10.1 Geometry Description

The turbine blade under consideration is related to a NREL 5MW offshore baseline wind
turbine described in detail in [JBMS09]. It is described by a set of airfoil sections which
vary along the blade’s length and a cylindrical cross section at the hub. The blade is 61 m
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long and attached to a hub with a radius of 2 m so the total rotor radius is 63 m. The
cross sections switch from circular at the hub into to a series of DU (Delft University)
profiles and then to the NACA64 profile. Figure 10.1(a) shows the definition of the dif-
ferent airfoil profiles, in Figure 10.1(b) the profiles are depicted in their actual size and
orientation, and 10.1(c) indicates their position on the blade. These cross sections are
modeled by NURBS curves and from these curves a NURBS surface is created by lofting.
The surface is partitioned into 20 NURBS patches which is due to the decomposition of
the fluid domain for parallel computing. The wind turbine consists of three blades, but
due to symmetry only one blade in conjunction with appropriate boundary conditions is
considered in the simulation.
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Figure 10.1: Airfoil cross-sections. (a) Definition of different airfoil profiles. (b) Airfoil cross
sections of the wind turbine blade. (c) Distribution of the profiles along the blade.

10.2 Fluid Mechanics and Mesh Motion Part

The details of the fluid computations are presented in [BHA+10]. Its basics are reviewed
here shortly for completeness but not in detail since this is not in the scope of this thesis.
For the fluid computations in the moving domain, the Arbitrary-Lagrangian-Eulerian
(ALE) description is employed. Turbulence is modeled by the residual-based variational
multiscale method [BCC+07, BMCH10] which has proved to be very accurate for turbu-
lence modeling, especially for rotating flows [BA10, BHA+10]. The large dimensions and
high flow velocities with Reynolds numbers in the Range of 107− 108 in this example are
very challenging for the fluid computations and fine grids are necessary. NURBS-based
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(a)

(b)

Figure 10.2: (a) Fluid mesh around the blade, consisting of 1,449,000 volumetric NURBS elements.
(b) The mesh is refined at the blade’s surface.

fluid analysis has proved to be more accurate and efficient compared to low-order finite
elements for these computations [BHA+10].
The mesh motion is divided into the parts due to rotation and blade deflection. The rota-
tional part is handled exactly while the mesh motion due to the deflection of the blade is
computed using the equations of linear elasticity.
Due to symmetry, only one third (i.e. 120◦) of the whole cylindrical domain is modeled,
see Figure 10.2. The fluid mesh is constructed around the blade by volumetric NURBS
and consists of 1,449,000 quadratic NURBS elements.
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10.3 Structural Mechanics Part

The NURBS-based Kirchhoff-Love shell turns out to be a very appropriate choice for the
structural analysis in this coupled problem for several reasons:
The turbine blade represents a thin and slender structure which undergoes large defor-
mations. Therefore, a locking-free shell with a geometrically nonlinear formulation is
needed. The smooth, curved geometry of the blade can be exactly represented by the
NURBS-based elements which is important for a correct buckling behavior of the shell.

Figure 10.3: Structural model of the blade.

As shown in Chapter 8, the NURBS surface description of the blade can be used as struc-
tural model for the isogeometric shell without further modification and since the fluid
mesh is built from this surface model, the meshes at the interface match and no mapping
between meshes is necessary. For a coupling without any mapping, it is also necessary
that the control points on the fluid and the structural side have the same degrees of free-
dom, which is the case here, since the shell formulation is rotation-free. Thus, a clear
advantage of the presented shell formulation for this coupled computation is the fact
that it matches to the discretization of the fluid field which in turn has proved to be very
efficient and accurate for rotating and highly turbulent flows as appearing in this prob-
lem.
In [HCB05], it is described that flow simulations around airfoil shapes are very sensitive
to geometrical imperfections of the airfoil, i.e. small kinks due to a piecewise linear ap-
proximation of the geometry. According to [Bar98], spurious entropy layers occur in the
case of linear geometry approximation and they disappear for smooth geometry descrip-
tions, even if the flow field still is discretized by linear polynomials. Thus, for the FSI
simulation of the blade, which in fact is composed by airfoil cross sections, a smooth de-
scription of the structure by NURBS-based elements is crucial for a good behavior of the
flow around the blade.
The blade’s surface model as described above is used as the structural shell model of the
blade. The “inner parts” of the blade, such as spar webs or spar boxes, have been ne-
glected in this first model. For a comprehensive overview of different structural types for
rotor blades, reference is made to [Hau06]. According to the geometry model, the shell
consists of 20 quadratic NURBS patches which are connected by a total of eight bending
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Figure 10.4: Blade thickness

strips: Four bending strips in the longitudinal direction and four bending strips in the
tangential direction, see Figure 10.3. It can be seen that this creates overlaps between the
longitudinal and tangential bending strips which indeed does not impose problems, as
has been described in Chapter 7. It must be noted that the last four patches and the corre-
sponding bending strip are very small and close to the tip so they are hard to capture in
the figure. As mentioned above, the division of the patches is governed by the division
of the fluid mesh.
For the material, a multilayer fiberglass-epoxy composite with a symmetric lay-up of 16
plies with equal thickness and the orientation [±45/0/902/03]s is employed. The lay-up
description gives the orientation angle of the fibers for each ply, starting with the outer-
most ply. The notation ±45 stands for two plies, one with +45◦ and one with −45◦. A
subscript number, as in 902 and 03 represents two and three layers, respectively, with the
same orientation, and the subscript “s” at the end is for symmetric. The angles of the
fibers are referred to the circumferential direction of the blade. The material is modeled
by laminated plate theory as described in Section 3.3, i.e. the composite is represented
by a homogenized material. All plies use the same material properties and differ only
in their orientation. The orthotropic material properties for a ply are gathered in Table
10.1. The blade’s thickness distribution is illustrated in Figure 10.4. For simplicity, the
number of plies is assumed to be constant along the blade, and their thickness decreases
with decreasing shell thickness.

E1 (GPa) E2 (GPa) G12 (GPa) ν12 ρ (kg/m3)
39 8.6 3.8 0.28 2.1

Table 10.1: Material properties of a unidirectional E-glass/epoxy composite [DI94].
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10.4 Results

The computation has been performed for a wind speed of 11.4 m/s and a rotor angular
velocity of 12.1 rpm (rotations per minute), as illustrated in Figure 10.5. These values
correspond to one of the cases reported in [JBMS09].

Figure 10.5: Setup of the problem.

In Figure 10.6, one can see the deforming blade in the flow field at a time t = 0.7 s. The
airflow is visualized by the isocontours of air speed at a planar cut through the turbine’s
center and the deformation of the blade can clearly be seen. Figure 10.7 shows the deform-
ing blade at four different time steps with isocontours visualized on a plane at a radial
distance of 30 m. The maximum displacement appears at a time t = 0.7 s. Therefore, the
results at this time step are used for a detailed structural analysis in the sequel.
The maximum displacement of the blade tip is 5.9 m in flap-wise direction, see Figure
10.8, which is consistent with the data reported in [JBMS09]. The maximum stresses ap-
pear in the blade’s longitudinal direction. Figure 10.9 shows the stress resultant n22. This
is the normal force in longitudinal direction and it shows the main load carrying behav-
ior of the blade: There is tension at the front side and compression at the back side of the
blade, as to be expected. On both sides, the highest forces (in absolute values) appear
close to the leading edge and the normal force decreases towards the tip.
The normal forces are useful to study the structural behavior of the blade. In order to
check the material for failure, the stresses in the laminate are evaluated and compared
with the maximum allowable values for each ply. For a fiber-reinforced composite ma-
terial, the material strength is different in fiber direction and transverse direction, and it
is also different with respect to tension and compression. Consequently, there are five
maximum values to check for each ply: the maximum tension and compression in fiber
direction, σt

1 and σc
1 , as well as the maximum tension and compression in transverse di-
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Ply no. Position σt
1 σc

1 σt
2 σc

2 |σ12|
16 (45◦) Top 60.774 -61.631 17.312 -19.949 14.344

Bottom 57.601 -58.019 15.857 -18.663 13.930
15 (−45◦) Top 70.223 -75.571 14.823 -15.644 13.949

Bottom 63.786 -70.405 14.097 -14.712 13.553
14 (0◦) Top 40.400 -52.065 22.629 -19.840 5.490

Bottom 34.075 -43.919 22.376 -19.744 5.045
13 (90◦) Top 105.350 -91.728 9.242 -11.688 5.061

Bottom 104.635 -92.211 7.842 -9.737 4.616
12 (90◦) Top 104.635 -92.211 7.842 -9.737 4.616

Bottom 103.968 -92.693 6.443 -9.028 4.171
11 (0◦) Top 21.426 -36.385 21.982 -19.717 4.157

Bottom 19.018 -36.384 21.813 -19.746 3.771
10 (0◦) Top 19.018 -36.384 21.813 -19.746 3.771

Bottom 16.995 -36.384 21.750 -19.790 3.851
9 (0◦) Top 16.995 -36.384 21.750 -19.790 3.851

Bottom 15.047 -36.384 21.686 -19.834 3.931
8 (0◦) Top 15.047 -36.384 21.686 -19.834 3.931

Bottom 15.070 -36.384 21.623 -19.877 4.193
7 (0◦) Top 15.070 -36.384 21.623 -19.877 4.193

Bottom 23.381 -36.383 21.652 -19.937 4.490
6 (0◦) Top 23.381 -36.383 21.652 -19.937 4.490

Bottom 32.250 -36.383 21.682 -20.024 4.821
5 (90◦) Top 100.120 -95.590 7.235 -8.837 4.826

Bottom 99.655 -96.072 9.065 -8.837 5.304
4 (90◦) Top 99.655 -96.072 9.065 -8.837 5.304

Bottom 99.189 -96.555 10.895 -8.837 5.781
3 (0◦) Top 49.988 -36.383 21.740 -20.198 5.776

Bottom 58.856 -36.757 21.792 -20.453 6.253
2 (−45◦) Top 60.694 -52.822 16.683 -12.365 12.956

Bottom 64.454 -55.162 17.496 -12.712 13.717
1 (45◦) Top 70.418 -47.956 15.694 -13.656 13.731

Bottom 73.840 -49.168 16.658 -14.237 14.511

Table 10.2: Maximum stresses in [MPa] for each ply, at the time step of maximum tip displace-
ment.

σt,u
1 (MPa) σc,u

1 (MPa) σt,u
2 (MPa) σc,u

2 (MPa) σu
12 (MPa)

1080 620 39 128 89

Table 10.3: Tensile, compressive, and shear strengths of a unidirectional E-glass/epoxy composite
lamina [DI94].
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Ply no. Position σt
1

σt,u
1

σc
1

σc,u
1

σt
2

σt,u
2

σc
2

σc,u
2

|σ12|
σu

12
Tsai-Wu

16 (45◦) Top 0.056 0.099 0.444 0.156 0.161 0.360
Bottom 0.053 0.094 0.407 0.146 0.157 0.325

15 (−45◦) Top 0.065 0.122 0.380 0.122 0.157 0.287
Bottom 0.059 0.114 0.361 0.115 0.152 0.270

14 (0◦) Top 0.037 0.084 0.580 0.155 0.062 0.513
Bottom 0.032 0.071 0.574 0.154 0.057 0.508

13 (90◦) Top 0.098 0.148 0.237 0.091 0.057 0.160
Bottom 0.097 0.149 0.201 0.076 0.052 0.130

12 (90◦) Top 0.097 0.149 0.201 0.076 0.052 0.130
Bottom 0.096 0.150 0.165 0.071 0.047 0.101

11 (0◦) Top 0.020 0.059 0.564 0.154 0.047 0.497
Bottom 0.018 0.059 0.559 0.154 0.042 0.494

10 (0◦) Top 0.018 0.059 0.559 0.154 0.042 0.494
Bottom 0.016 0.059 0.558 0.155 0.043 0.491

9 (0◦) Top 0.016 0.059 0.558 0.155 0.043 0.491
Bottom 0.014 0.059 0.556 0.155 0.044 0.488

8 (0◦) Top 0.014 0.059 0.556 0.155 0.044 0.488
Bottom 0.014 0.059 0.554 0.155 0.047 0.485

7 (0◦) Top 0.014 0.059 0.554 0.155 0.047 0.485
Bottom 0.022 0.059 0.555 0.156 0.050 0.483

6 (0◦) Top 0.022 0.059 0.555 0.156 0.050 0.483
Bottom 0.030 0.059 0.556 0.156 0.054 0.482

5 (90◦) Top 0.093 0.154 0.186 0.069 0.054 0.124
Bottom 0.092 0.155 0.232 0.069 0.060 0.162

4 (90◦) Top 0.092 0.155 0.232 0.069 0.060 0.162
Bottom 0.092 0.156 0.279 0.069 0.065 0.202

3 (0◦) Top 0.046 0.059 0.557 0.158 0.065 0.480
Bottom 0.054 0.059 0.559 0.160 0.070 0.479

2 (−45◦) Top 0.056 0.085 0.428 0.097 0.146 0.334
Bottom 0.060 0.089 0.449 0.099 0.154 0.351

1 (45◦) Top 0.065 0.077 0.402 0.107 0.154 0.308
Bottom 0.068 0.079 0.427 0.111 0.163 0.329

Table 10.4: Maximum stress criterion and Tsai-Wu criterion for each ply, at the time step of maxi-
mum tip displacement.
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Figure 10.6: The deforming blade in the air flow, visualized by isocontours of air velocity, at
t = 0.7 s. The single-blade results are assembled to the whole turbine consisting of three blades.

rection, σt
2 and σc

2 , and the maximum in-plane shear stress σ12. In Table 10.2, these results
are listed for each ply, evaluated at the bottom and the top of each ply, since it is not clear
in advance where the maximum stress appears. The material strength values are given in
Table 10.3, where σt,u

1 and σc,u
1 are the longitudinal tensile and compressive strength, re-

spectively, σt,u
2 and σc,u

2 are the transverse tensile and compressive strength, respectively,
and σu

12 is the in-plane shear strength. The ratios of maximum stresses over respective
strengths for all plies are listed in Table 10.4. Furthermore, the Tsai-Wu criterion is given.
This widely used failure criterion computes one value that takes into account the interac-
tion of the different stresses, but it does not provide information about the failure mode.
For fulfilling the Tsai-Wu criterion, this value has to be between minus one and one. For
more details, reference is made to [DI94]. As can be seen in Table 10.4, all stress criteria
are fulfilled in all plies. The maximum Tsai-Wu value appears in ply no.14. The high-
est value in the Maximum Stress criterion appears for σt

2, also in ply no.14. Figure 10.10
shows the stress distribution for σ22 in ply no.14.

For investigating the aerodynamic efficiency of the blade, the aerodynamic torque is plot-
ted over time in Figure 10.11. For validation, the torque obtained by the FSI simulation
is compared with the reference value reported in [JBMS09]. Furthermore, the result from
the computation with the blade modeled as a rigid structure is depicted. It can be seen
that both cases are in good accordance with the reference value. However, there are also
clear differences between the rigid and the flexible case, which shows that also in terms of
design for aerodynamic efficiency, it is important to take the blade’s structural behavior
into account. It can be seen that the torque undergoes oscillations for the flexible blade
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(a) t = 0.7 s (b) t = 1.201 s

(c) t = 1.7 s (d) t = 2.4165 s

Figure 10.7: Deformation of the blade and the air flow at 30 m radial distance, at four different
time steps.

that stem from vortex shedding at the trailing edge, which in turn causes twisting defor-
mations of the blade. For a more detailed explanation, reference is made to [BHK+10].

For the computations presented here, a simplified structural model has been used, which
considers only the shell of the rotor blade. For more realistic results, the inner parts of the
blade, such as spars, need to be included in the model. Nevertheless, the results obtained
are in good accordance with the results reported in the literature [JBMS09].



10. FSI Simulation of a Wind Turbine Blade 112

Figure 10.8: Front, side and top view of the blade deflection at the point of maximum tip displace-
ment.

(a) (b)

Figure 10.9: Normal force in longitudinal direction of the blade at the time step of maximum tip
displacement. (a) Front view. (b) Rear view.

(a) (b)

Figure 10.10: Normal stress in ply no.14, in longitudinal direction of the blade at the time step of
maximum tip displacement. (a) Front view. (b) Rear view.
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Figure 10.11: Aerodynamic torque



Chapter 11

Conclusions and Outlook

In this thesis, the isogeometric concept has been applied to shell analysis and shape op-
timization. A new shell element has been developed based on the Kirchhoff-Love shell
theory, with NURBS as basis functions. Hereby, the Kirchhoff-Love theory and NURBS
as basis functions have proved as an excellent combination. On the one hand, NURBS
are the ideal basis functions for a Kirchhoff-Love shell, since they provide the necessary
C1 continuity between elements. They allow a straightforward implementation of the
Kirchhoff-Love theory without additional modifications, which is not possible with stan-
dard finite elements using low-order polynomials. Due to the exclusion of transverse
shear and due to the higher order nature of NURBS, this element is free from the typical
shell locking phenomena. Various benchmark tests have shown its good performance,
even in the case of very large deformations.

In order to ensure the necessary continuities over patch boundaries, two different meth-
ods have been developed. For smooth patches, i.e. patches that are G1 continuous at
the interface, this continuity can be maintained by a direct coupling of the respective de-
grees of freedom via master-slave constraints. For patches that meet at a certain angle,
i.e. there is a kink at the interface, the necessary constraint equations describe nonlinear
relations between the degrees of freedom and therefore an exact compliance by direct
coupling is not possible. The bending strip method has been developed which fulfills the
angle constraint in an approximate sense. It has been tested on a series of examples and
proven to be reliable, and it can handle both smooth patches and patches forming a kink.
The advantages of this method are flexibility and simplicity in both implementation and
application. Due to the regular topology of NURBS, the bending strips can be created au-
tomatically. For the integration into CAD, this means that they do not need to be added
in the design model, but are created automatically during analysis. Furthermore, this
method can be used for the coupling of shell and solid elements.

The work for this thesis focused on structural analysis, but within a cooperation project
with Prof. Bazilevs (University of California, San Diego) it was integrated into a fluid-
structure interaction environment and was successfully applied to the three-dimensional
FSI simulation of an offshore wind turbine blade. This project also shows the relevance
of this work for industrial applications.
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The isogeometric concept furthermore has been extended to shape optimization. Due
to the common geometry description of design and analysis, the traditional distinction
between CAD-based and FE-based shape optimization is superfluous. Therefore, isogeo-
metric shape optimization combines the advantages of both approaches and gives more
possibilities in defining the design space. In this thesis, the principle of isogeometric
shape optimization has been shown and it has been successfully applied to examples
with different refinement levels for the optimization model. Nevertheless, there are still
interesting aspects open to be studied in future research. Different methods known from
FE-based optimization could be applicable to the isogeometric approach as well, such
as filtering and weighted sensitivities. The question of weighted sensitivities is more
complicated for NURBS than for standard finite elements. Control points have different
influence on the shape, depending on the corresponding shape function. An interpolated
control point, e.g. a vertex point, has more influence on the shape than a non-interpolated
point. On the other hand, a vertex node has a smaller area of influence. The correct com-
bination of these effects for an appropriate weighting of sensitivities is a complicated task
and should be part of further research.

As mentioned in the first paragraph, NURBS have proved to be an ideal basis for a
Kirchhoff-Love shell formulation. On the other hand, the Kirchhoff-Love shell has also
emerged as very well-suited for effectively integrating analysis into CAD. CAD programs
usually work with surface description, which means that for using isogeometric solid
elements, the surface model needs to be transformed into a volumetric model, which
is a complicated task and subject of actual international research. While for volumet-
ric objects this is indispensable, for thin-walled structures a shell formulation enables
the analysis on the CAD surface model. With a rotation-free shell formulation as pre-
sented in this thesis, design and analysis actually use the same geometry description.
This makes it easy to effectively integrate isogeometric analysis into a CAD environ-
ment, which has been demonstrated by integrating the developed method into Rhino,
a commercial CAD program. Nevertheless, the applicability of this approach is still very
limited, due to the fact that it is restricted to untrimmed NURBS surfaces. Trimming
however, is a basic method in CAD modeling and complex geometries can hardly be
constructed without it. There is actual research on analysis of trimmed NURBS surfaces
[KSY09, KSY10], which at the moment is restricted to plane 2D geometries. Alternatively,
trimmed NURBS can be converted into untrimmed T-Splines [SFLL08] which also allow
for local refinement. Isogeometric analysis using T-Splines has been successfully per-
formed in [DJS10, BCC+10, UY09, UKY08, BBDL+10]. However, there are still open ques-
tions about the linear independence of T-Splines, as discussed in [BCS10] and [SLZ+10].
Concluding, it can be said that using NURBS as basis for analysis is a first step towards
the integration of design and analysis. And it is a step towards this goal from the FE
community. Significant changes are also necessary in CAD modeling which concern the
creation of analysis-suitable geometries. For a successful integration of isogeometric anal-
ysis, the CAD and FE communities will have to work together more closely in order to
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understand each other’s demands on a geometric model and to agree on a common iso-
geometric representation.
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