Computer Aided Medical Procedures
(CAMP)
Prof. Dr. Nassir Navab

Dissertation

New Approaches to Computer Assistance for

Endovascular Abdominal Aortic Repairs

Stefanie Demirci

D T

Fakultat fir Informatik
Technische Universitat Minchen







TECHNISCHE UNIVERSITAT MUNCHEN

Chair for Computer-Aided Medical Procedures & Augmented Reality

New Approaches to Computer Assistance for
Endovascular Abdominal Aortic Repairs

Stefanie Demirci

Vollstandiger Abdruck der von der Fakultit fiir Informatik der Technischen Uni-
versitdt Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:

Priifer der Dissertation:

Univ.-Prof. Dr. Johann Schlichter

Univ.-Prof. Dr. Nassir Navab

Prof. Dr. Franjo Pernus
University of Ljubljana/Slowenien

Die Dissertation wurde am 02.11.2010 bei der Technischen Universitat Miinchen

eingereicht und durch die Fakultit fiir Informatik am 06.04.2011 angenommen.






To Mikail, my light






Abstract

With the establishment of minimally-invasive procedures for abdominal surgery,
image guidance has become more and more important. The intraoperative use of
medical imaging data has on the one hand increased the safety and robustness of
such procedures. On the other hand, it has increased the radiation exposure. The
introduction of computer based navigation systems has improved the situation to
a great extent. However, they are not optimized for every application in abdominal
catheter interventions.

This work presents new approaches to computer assistance for endovascular ab-
dominal aortic repairs. In the current clinical workflow there is no technical guid-
ance during the intervention except for two dimensional X-Ray images. An integra-
tion of preoperative three dimensional image data is further complicated by med-
ical instruments occluding relevant anatomical structures in the images. Here, we
introduce interventional registration methods that are able to handle such occlu-
sions and further image dissimilarities. Thereby, contrast removal and disocclusion
techniques are integrated within an image registration procedure. Furthermore, we
show for the first time that a detection of the stent graft in the interventional image
and a three dimensional recovery of its shape can be obtained at the same time.
This allows image-based tracking of the prosthesis and simultaneous visualization
within a volume rendering of the patient scan. All introduced methods are com-
pletely image based and do not require additional equipment to be introduced into
the intervention room. The thesis is completed by presenting detailed evaluation of
the methods using both synthetic images and real clinical data.

Keywords:
Image guided intervention, medical image registration, robust similarity measures,
disocclusion, stent detection.






Zusammenfassung

Mit Einfiihrung von minimal-invasiven Verfahren in der Bauchchirurgie hat die
intraoperative Bildunterstiitzung mehr und mehr an Bedeutung gewonnen. Der
intraoperative Einsatz bildgebender Daten erhtht auf der einen Seite die Sicher-
heit und Robustheit dieser Verfahren. Auf der anderen Seite wurde die Strahlenbe-
lastung dadurch erheblich verstirkt. Die Einfiihrung Computer-basierter Naviga-
tionssysteme hat einen grofien Teil dazu beigetragen die Situation zu verbessern.
Allerdings sind sie nicht fiir jede Art von Bauch-Kathetereingriffen optimiert.

Diese Arbeit stellt neue Ansdtze vor wie mit Hilfe von moderner Comput-
ermethodiken endovaskuldre Bauchaortareparaturen technisch und bildlich un-
terstiitzt werden konnen. Im aktuellen klinischen Arbeitsablauf gibt es keine tech-
nische Navigationsunterstiitzung wihrend des Eingriffs mit Ausnahme von zwei-
dimensionalen Rontgenaufnahmen. Da vor allem bei Baucheingriffen relevante
anatomische Strukturen in den Rontgenbildern durch medizinische Instrumente
verdeckt werden konnen, ist eine Integration der préaoperativen dreidimensionalen
Bilddaten durch existierende Methoden nur unter erheblichem Robustheitsverlust
moglich. Wir stellen hier Methoden zur interventionellen Bildregistrierung vor,
die in der Lage sind mit solchen Verdeckungen und weiteren Bildunterschieden
umzugehen. Dazu werden spezielle robuste Ahnlichkeitsmage sowie Algorithmen
zur Disokklusion entwickelt und in die Bildregistrierung integriert. Dariiber hin-
aus zeigen wir zum ersten Mal, dass es moglich ist den Stentgraft im interven-
tionellen Bild zu detektieren und gleichzeitig seine dreidimensionale Form wieder-
herzustellen. Dies ermoglicht bildbasiertes Tracking der Prothese und gleichzeitige
Darstellung innerhalb eines Volume-Rendering des praoperativen Patientenbildes.
Alle vorgestellten Methoden sind ausschlieflich bildbasiert und bendtigen keine
zusdtzliche technische Ausriistung, die in den Interventionsraum eingegliedert
werden muss. Die Arbeit wird durch detaillierte Auswertungen der Methoden mit
synthetischen Bildern als auch realen klinischen Daten abgerundet.

Schlagworter:
Bildgefiihrte Intervention, medizinische Bildregistrierung, robuste Ahnlichkeits-
mafle, Disokklusion, Stenterkennung.
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1. Introduction

The field of vascular surgery has seen a tremendous evolvement in the past
decades. The care of patients with vascular diseases including the direct repair of
lesions of the vascular tree, was previously the uncontested province of the vas-
cular surgeon. The first use of medical images (X-ray) as an adjunct to surgery re-
ported only a few months after the discovery of X-rays in 1895 [110], marked the
dawn of the image guided surgery (IGS) era. The subsequent rapid progress of IGS
was predominantly made possible by the development of various medical imag-
ing technologies including endoscopic and laparoscopic imaging, Ultrasound (US),
and molecular imaging. For a complete review on the history of IGS the reader is
referred to [136].

In the late 1960s, Charles Dotter, a radiologist, pioneered the concept of endovas-
cular intervention by being able to dilate stenotic atherosclerotic lesions in the iliac
arteries using a series of catheter of increasing diameter. Very soon, catheter-based
therapy became a popular alternative for treating certain vessel lesions. The most re-
cent development has been a hybrid of a limited surgical exposure and the catheter-
based introduction of a stent graft to treat aneurysmal disease. Taken its name from
the English dentist Charles Stent who developed a thermoplastic material for tak-
ing impressions of toothless mouths in 1856 [138], stent grafts became the major
impetus for endovascular procedures excluding an aneurysm, closing an arteriove-
nous fistula, and reconstructing the central lumen of a dissected vessel.

In contrast to conventional open surgery, endovascular interventions are performed
minimally-invasive, i.e. only a small incision is needed to insert instruments such
as catheters and guide wires. Location and navigation of these instruments is then
performed under fluoroscopic and angiographic image guidance.

As endovascular intervention became competitive with and, in many cases, more
desirable than direct vascular surgery, the traditional role of the vascular surgeon
was challenged. To emphasize the fact that intra-arterial intervention was another
form of surgery and, hence, should be included in the repertoire of a vascular sur-
geon, the term endovascular surgery was invented as an alternative to endovascular
intervention.
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Figure 1.1.: Interventional X-ray images with occluding medical instruments

1.1. Motivation

"There must be a perfect coordination between the eyes on the monitor and the
foot on the fluoro pedal, interconnected by a brain that thinks intervention-
ally!”

This quotation found in a textbook for medical students [26], points out very nicely
the challenges a vascular surgeon has to face nowadays. Besides deep knowl-
edge about the history of vascular diseases and extensive training in conventional
treatment methods, they have to acquire certain endo-skills and habits including re-
mote catheter-mediated actions, indirect visualization, interventional mindset, and
catheter and imaging skills. Of course, it is not possible to eliminate these require-
ments, but with the help of computer assistance visualization can be made a lot
more intuitive and thereby support the physician’s actions.

The workflow of endovascular interventions requires that images of patients are ac-
quired before the treatment (preoperatively) for diagnosis and/or procedure plan-
ning. In order to allow most reliable diagnosis and most accurate treatment plan-
ning, most preoperative images are acquired in 3D with high quality settings. In
contrast, imaging data acquired during medical procedures (intraoperatively), is
of less quality with lower signal-to-noise ratio and lower dimensionality (2D slices
or 2D projections). Due to high zooming capabilities of intraoperative imaging de-
vices, they yield a higher spatial resolution, such that the state of instruments and
patient anatomy over time can be assessed quite accurately. Recent advances in in-
traoperative imaging have brought 3D acquisitions into operating rooms. However,
they do not yield nearly the same quality as preoperative scanners and due to hard
time constraints and high X-ray dosage, are performed rarely.

The registration of pre- and intraoperative data sets would fuse patient anatomy
information of superior quality with information capturing the current state of the
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operation. In addition to a speed up in treatment duration and reduction of harm-
ful radiation that physicians and patients are exposed to, such a registration would
pave the way for new image-guided roadmapping and navigation techniques Al-
though registration systems are already commercially available, they are not op-
timized specifically for endovascular surgeries. Most such software works with ex-
ternal (fiducials) or anatomical landmarks launching a point-based registration
method. Here, one problem is the durability of fiducials that need to be attached
to the patient throughout the entire procedural workflow, starting from the acqui-
sition of the preoperative image until the end of the actual intervention. From ex-
perience, these stickers gets displaced very easily by patients’ movement. Another
disadvantage also for anatomical landmarks, is the fact that, in particular in ab-
dominal interventions, medical instruments such as catheters, guide wires, stent
grafts, clips, and scissors, are present within the interventional images (see Fig. 1.1)
might occlude the selected points that are crucial for the registration step. As a solu-
tion to the aforementioned problems would be the use of intensity-based methods
and some commercially available systems also provide this choice. However, even
the incorporation of robust similarity measures can not prevent instability due to
severe outliers introduced by area-wide occlusions.

A second challenge for image guidance during EVAR is the appropriate visual-
ization of the registration result. Whereas in other image guided surgery domains
external tracking is used to locate the current position of a medical tool and visu-
alize it within the preoperative 3D scan, this is not an option for endovascular in-
terventions. Although research in sensor technology has lead to very small devices
that can be mounted onto a guide wire or stent graft catheter, they do not survive
inside the aorta where they are exposed to very high pressure and flow. Therefore
image-based solutions are highly needed.

1.2. Contributions

In the course of this work, we present several approaches for computer assistance
for endovascular abdominal aortic repair including 2D-3D and 3D-3D registration
algorithms as well as stent graft detection methods. Following, we present a sum-
mary of the technical contributions in this thesis, along with the corresponding
publications.

Based on our publications [33, 93, 32], we propose two novel robust similarity
measures that are able to handle image dissimilarities and occlusions for rigid 3D-
3D registration. By a number of experiments, we show that these measures sig-
nificantly improve the accuracy and robustness for matching intraoperative C-arm
cone-beam CT images with preoperative CTA scans compared to existing similar-
ity measures. This conclusion was also confirmed by a medical study comparing
our registration method to a commercially available procedure integrated within
Siemens AXIOM Artis workstations.

In order to address the problem of occluding medical instruments, we present
disocclusion-based 2D-3D registration of medical images [33, 32]. Therefore, we in-
troduce two novel disocclusion techniques, namely Spline Interpolation and Poisson
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Editing, that are integrated into a 2D-3D registration framework. In our process-
ing pipeline, the occluded region is first processed by a disocclusion technique that
reconstructs the obstructed image parts. Then, a robust 2D-3D image registration
algorithm is computed on the processed interventional image and a preoperative
3D scan of the patient. Besides our novel techniques, we also include Digital In-
painting as disocclusion method into an evaluation framework using Gradient Cor-
relation,Gradient Difference,Huber Gradient Correlation, and Tukey Gradient Correlation
as similarity measures.

In this thesis, we show for the first time that image-based tracking of the prosthe-
sis and simultaneous visualization within a volume rendering of the patient scan is
possible. By using a model-based approach, we are able to detect the stent graft in
the interventional image and recover its shape in 3D at the same time. The method
is fully automatic and does therefore not interrupt the medical workflow. By an au-
tomatic preprocessing and choosing a global-to-local registration approach, we are
able to abandon any user interaction and still meet the desired robustness. The com-
plexity of our registration scheme is reduced by including constraints that resemble
the geometric properties of the stent graft, and by applying semi-simultaneous op-
timization strategy.

1.3. Outline of the Thesis

This thesis is subdivided into three parts according to the introduction of back-
ground information, state-of-the-art review, and presentation of novel approaches
to computer assistance for endovascular aortic repair.

Part I: Background Information

CHAPTER 2: MEDICAL BACKGROUND

This chapter gives an overview of medical imaging technologies relevant for this
work followed by a short introduction in the abdominal vessel system with main
focus on the aorta. Eventually, one selected disease of the aorta, abdominal aortic
aneurysm (AAA), is explained.

CHAPTER 3: TECHNICAL PRINCIPLES

The methodological basis of this thesis is presented in this chapter. After clarifying
our notation and usage of images and image functions, the basics of medical im-
age segmentation and registration are detailed. We also give an introduction to the
concept of disocclusion.
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Part II: State of the Art

CHAPTER 4: TREATMENT OF ABDOMINAL AORTIC ANEURYSMS

The state-of-the-art treatment method is endovascular aortic repair (EVAR) which
we describe in detail within this chapter. Here, an exact analysis of the medical and,
more importantly for this thesis, the imaging workflow is given. Additionally, we
present a critical analysis in terms of challenges and applicability of state-of-the-art
algorithms providing computer assistance for EVAR.

CHAPTER 5: DISSIMILARITY IN INTERVENTIONAL IMAGE REGISTRA-
TION

The clinical application that is focused in this work, Transarterial Chemoemboliza-
tion. A short introduction in liver vessel systems and tumor treatment followed by
a critical analysis in terms of challenges and applicability of state-of-the-art algo-
rithms.

Part III: New Approaches to Computer Assistance for Endovas-
cular Abdominal Aortic Repairs

CHAPTER 6: INTERVENTIONAL IMAGE REGISTRATION: ADDRESSING
DISSIMILARITY IN IMAGES

We present an algorithm for robust rigid 2D-3D and 3D-3D registration that is able
to handle image dissimilarities such as varying presence of contrast and small per-
forated occlusions.

CHAPTER 7: DISOCCLUSION-BASED IMAGE REGISTRATION

Targeting the problem of large, area-wide occlusions in the interventional images,
we investigate the effect of disocclusion methods to accuracy and robustness of
rigid 2D-3D registration. We therefore introduce two novel techniques for recon-
structing occluded image parts.

CHAPTER 8: MODEL-BASED DETECTION AND 3D RECOVERY OF STENT
SHAPE

A novel algorithm for automatic detection of the stent graft in intraoperative 2D
images is presented. By employing a model-based approach, we are able to simul-
taneously recover the 3D stent shape and visualize it within a preoperative CTA
scan of the same patient.

CHAPTER 9: CONCLUSION

A short summary followed by a discussion of the integration of the registration
algorithms into clinical workflow and future work.
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Appendix

A. MEDICAL STENTS

The large variety of medical stents is presented in this chapter. The focus is laid on
the classification of vascular stents and stent grafts in terms of their different design
and application.

B. AAA-THROMBUS SEGMENTATION

In this chapter, we present a solution to the problem to accurately segment the
thrombus of AAAs in preoperative 3D images. By using a hybrid approach that
integrates local as well as global image information and combines it with additional
shape constraints, our algorithm is able to overcome leakage into adjacent objects.

C.SASOMI- AN INTUITIVE GUI FOR AAA-THROMBUS SEGMENTATION
REFINEMENT

The design of an interactive graphical user interface is introduced providing an
intuitive solution for refining an automatic AAA presegmentation.

D. QUANTIFICATION OF ABDOMINAL AORTIC DEFORMATION AFTER
EVAR

Here, we present a method for quantifying the deformation of an aneurysmatic
aorta imposed by an inserted stent graft device.

E. ABBREVIATIONS

This chapter includes a list of abbreviations used throughout this thesis.

F. PUBLICATIONS

All publications contributed to the scientific community during this work are listed
in this chapter.
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2. Medical Background

Before addressing the technical details, let us first introduce some medical back-
ground around the main application focus of this thesis. This chapter gives an
overview of different medical imaging techniques that are involved in the treat-
ment process of aortic aneurysms and details the disease itself.

2.1. Medical Imaging

There are mainly two types of medical imaging technologies classified in com-
mon literature. Anatomical Imaging summarizes all modalities that produces images
with anatomical information only whereas Functional Imaging includes techniques
which measure biological and physiological processes. In the following sections
some functional and anatomical imaging techniques are explained. Mind that this
thesis does not aim at giving an entire overview of all existing medical imaging
techniques (the interested reader is referred to [3]) but rather focus on those that
are involved in the treatment process of aortic aneurysmes.

2.1.1. Computed Tomography (CT)

Computed Tomography (CT) has been the first image intensifier that produces digi-
talized information, which can be directly processed by a computer [27]. The device
consists of an X-ray source and a detector both mounted on a gantry. As in conven-
tional radiology, radiation passes the human body from the X-ray source and is
attenuated by different human tissues to varying extents. In today’s common spiral
CT, the table is moved continuously in the longitudinal body axis while the gantry
rotates around the patient.

A CT scan consists of several x-ray images, representing cuts of the anatomy of
an individual along one direction. In most cases, the produced images represent ax-
ial slices of the patient’s anatomy. This data is generated using an x-ray source that
rotates around the patient. An x-ray sensor plate is positioned on the opposite side
of the source and is rotated with it. Many scans, at multiple rotation angles of the
source-sensor system, are progressively acquired, as the patient passes gradually
through the field of electromagnetic emission. The data stream thereby represents
the varying radiographic intensity detected when the rays reach the sensor. After
a rotation of 360° of the source-sensor system, the data is computer processed in
order to calculate cross-sectional estimations of the radiographic density. Further
advanced technology with more effective computers and newer software strate-
gies can process not only stationary cross-sections but also continuously changing
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ones, as the patient slides slowly through the x-ray circle. These are called helical
or spiral CTs, whose processing systems can automatically generate 3D volumet-
ric information by integrating the data of the individual slices. These 3D models
can sometimes be rotated and scaled for multiple perspective views and are able
to demonstrate the acquired anatomy very accurately. Stationary devices can also
reproduce 3D models by interpolation of the missing information between the im-
ages. However, they are of a lower quality, because of that missing data. Further
software of CT intensifiers can reproduce sagital and frontal slices of the acquired
region.

The radiographic density, detected by the sensor, is expressed in Hounsfield units
(HU). They form a spectrum from -1000 (black) to 1000 (white) to classify all kinds
of organic material of the body in CT scans. Each pixel is assigned a numerical
value, which represents the average of all attenuation values contained within the
corresponding position of the patients body. The range of conventional CT scanners
is 2000 HU wide, although some modern scanners have a greater range of HU of
up to 4000. Alternative CT software allows Hounsfield units to be displayed with
color maps, so that every tissue (i.e. organ or structure of interest) can be better
distinguished.

In Computed Tomography Angiography (CTA), the patients vasculature can be
emphasized by injecting a fluid with high X-Ray attenuation, a so-called contrast
agent, prior to imaging.

The invention of CT scanners in 1972 goes back to the British engineer God-
frey Hounsfield working for EMI. While the company is commonly known for
the recording and marketing of popular music, it also maintained a research de-
partment (EMI Laboratories). Interestingly, the development of CT was likely to be
driven by the world-famous music group The Beatles, whose success have helped
raising the urgently needed funds [42].

2.1.2. Magnetic Resonance Imaging (MRI)

In contrast to the X-Ray based CT imaging technique, Magnetic Resonance Imag-
ing (MRI) does not use any ionizing radiation. Based on the principle of nuclear
magnetic resonance, it provides much greater contrast between the different soft
tissues of the body than CT, thus, making it especially useful in neurological, mus-
culoskeletal, cardiovascular, and oncological imaging.

MRI scanners create a strong magnetic field magnetizing small biological mag-
nets in the human body consisting of protons located in the nucleus of the hydro-
gen atom [27]. The body is then stimulated with radio waves in order to change
the steady-state orientation of protons. Once the radio wave emission is stopped,
the magnetic protons emit radiofrequency signals as their excitation decays. The
signals vary in intensity according to nuclear abundance and molecular chemical
environment. They are then used to construct internal images of the body by com-
puterized axial tomography.

There are several MR Angiography techniques, either based on flow effects or
on contrast [27]. Injection of contrast agents similar to CTA, is currently the most
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common method of acquiring MRA. Here, however, the contrast agent need to have
magnetic characteristics and be of extracellular nature. Another possibility is to use
time of flight (TOF) technique where a short echo time and flow compensation is
applied in order to make flowing blood much brighter than stationary tissue. As
this method is dependent on flowing blood, areas with slow flow (such as large
aneurysms) or flow that is in plane of the image may not be well visualized. In
phase contrast imaging (PC-MRA), the phase of the MRI signal is manipulated by
varying magnetic fields. An image acquisition that is orthogonal to the fields is
then acquired and the difference of the two image is calculated. Static tissues such
as muscle or bone will subtract out, however moving tissues such as blood will
acquire a different phase since it moves constantly through the gradient, thus also
giving its speed of the flow. In order to visualize flow in all direction at a time,
three separate image acquisitions must be computed. Despite the slowness of this
method, the strength of the technique is that in addition to imaging the flowing
blood, quantitative measurements of blood flow occur at the same time.

Magnetic resonance imaging is a relatively new technology. Only some years af-
ter the publication of a first MR image in 1973 by Paul Lauterbur (State University
of New York), the first human scan was made in 1977 [42]. By comparison, the first
human X-ray image was taken in 1895.

2.1.3. Positron Emission Tomography (PET)

First introduced in the late 1950s, Positron Emission Tomography (PET) is a nuclear
imaging method that visualizes functional processes in the human body [87]. De-
pending on the part of the body in question, a positron emitting radiotracer is se-
lected and injected into the patient. While he is moved through the scanner, planar
images of the distribution of radioactivity are obtained from many angles around
him. After the employment of mathematical image reconstruction methods this as
a whole allows the 3D and even 4D (the 4th dimension being time) visualisation of
tracer concentration.

The most commonly used radioisotope is FDG (1*F-Fluorodesoxyglucose) ana-
lyzing the glucose metabolism. This is of interest in particular for medical imag-
ing of brain, heart, and tumours, as respective cells have a high carbon hydrate
metabolism.

In recent years, techniques have emerged that combine anatomical with func-
tional imaging techniques facilitating a more accurate localisation of functional in-
formation in the anatomical background of the patient. The invention of PET/CT
scanners in 1998 [133] has improved the clinical workflow by scanning the patient
quasisimultaneously and making the standard PET transmission scan redundant.
Current research projects [31, 122] investigate a similar technique for the combina-
tion of MRI and PET scanners.
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(a) mobile C-arm with image intensifier (b) angiography suite with integrated
flatpanel C-arm

Figure 2.1.: Intraoperative C-arm systems.

2.1.4. Ultrasonography (US)

In Ultrasonography (US), a hand-held transducer is put in direct contact with the
patients skin, using some coupling gel to avoid any air in-between [27]. The trans-
ducer emits short ultrasound pulses that propagate into the body and are reflected
by the anatomic structures. The returning echoes are converted into brightness val-
ues and displayed on the screen as a 2D image, representing a slice of anatomic
information pointed from the transducer downwards into the patient.

Compared to other anatomical imaging techniques like CT and MR, the analysis
of US images requires more education and experience as the produced images are
not as sharp and clear [27]. However it does not employ ionizing radiation and has
therefore found wide applications in medical imaging. Also, the inexpensiveness
and portability of the US equipment is a further advantage compared to CT or MRI.

2.1.5. Intraoperative X-ray Imaging

The most commonly used intraoperative imaging device is a so-called C-arm. Ini-
tially used in general surgery or orthopedic applications, C-arms are now described
by both manufacturers and users as highly versatile, thanks to the technological
advancements made since the original designs. In fact, C-arm usage recently has
expanded to also include minimally invasive surgeries in cardiac and vascular ap-
plications.

A C-arm consists of a C-shaped machine with an X-ray source and a detector
plane each mounted at respective end of the C [145]. The patient can be screened
from different viewpoints by by moving the table into the iso-center of the C and
altering two possible angles, table position, and zoom. Similar to CT imaging, the



2.1 Medical Imaging 13

physical law of radiation attenuation is used to produce images. In contrast to CT,
where a fan beam is traveling through the object (creating only few lines of intensi-
ties), C-arms emit a cone-beam of X-rays that fills a 2D array with intensities.

The minimal functionality of C-arms that are currently used in hospitals covers
fluoroscopic, angiographic, and digital subtraction image acquisition. Fluoroscopic
imaging creates image sequences of up to 15 FPS and thereby allows the physician
to obtain real-time moving images of the internal structures of a patient. Being not
visible in fluoroscopic sequences, the vascular system can be highlighted by angio-
graphic imaging where radio-opaque contrast is injected into the vessels of interest
and X-ray images are captured with a frame rate of approximately 5 FPS. In dig-
itally subtracted angiography (DSA), a non-contrasted X-ray image is subtracted
from a contrasted one to visualize the vessels only. The spatial resolution of fluoro-
scopic, angiographic images or DSAs currently goes down to 0.13mm per pixel.

Depending on the integrated detector system, C-arms use mainly two different
technologies for transferring X-rays into gray values and thereby producing digi-
tized images (see Fig. 2.1). An image intensifier first converts photons into electrons
that, by acceleration, produce photons that can be captured by a CCD camera. A
big disadvantage of this technology is the emerging image distortion caused by a
curve-to-plane warping and the earth magnetic field. For calibration issues, it is
important to know about the presence of distortion in order to determine corre-
sponding points of 2D image plane and 3D image. In order to overcome this major
drawback, flat panel technology has been introduced. It transfers X-rays into light
rays and use thin-film-transistor technology to detect those rays by elements with
the size of a pixel. As an advantage, this technology yields lower patient dose and
increases image quality.

As an advancement of conventional mobile C-arms (Fig. 2.1(a)), fixed angiog-
raphy suites (Fig. 2.1(b)) provide powerful functionality in particular for vascular
applications[67, 39]. The integrated stationary C-arms have the ability to perform a
rotational run around the patient to acquire 150-500 projection images from differ-
ent viewpoints allowing cone beam CT reconstructions. Additional, flat panel de-
tectors provide an efficient and practically distortion free environment. With this,
3D volumes can be computed in less than 1 minute with a spatial resolution of
down to 0.4mm?3 , either visualizing 3D vasculature [55] or intensity volumes mea-
sured in Hounsfield units [128]. Up to now, preoperative CT scanners still have a
better Hounsfield resolution than intraoperative C-arms [128]. A number of terms
have emerged in the literature to describe these new volumetric imaging technolo-
gies, including C-arm CT, cone-beam CT, cone-beam volume CT, volume CT, an-
giographic CT, and flat-panel CT [103]. In the remainder of this work, we will use
the term C-arm cone-beam CT to refer to a 3D reconstruction of projection images
aquired by a rotational run of a stationary flat panel C-arm. When using the term
angiography suites, we refer to any commercially available interventional suite that
is equipped with a stationary C-arm that is able to produce C-arm cone-beam CT
images.

Stationary C-arm machines can be optionally equipped with two (biplane) X-
ray-source detector systems where the two image planes are usually related by a
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90 degree rotation relative to each other. Especially minimally invasive neurologi-
cal surgeries are typically performed using biplane C-arms, whereas abdominal or
cardiac procedures are usually monitored by monoplane imaging systems with just
one X-ray-source detector system.

2.1.6. DICOM-Standard

Digital Imaging and Communications in Medicine (DICOM) is a standard for han-
dling, storing, printing, and transmitting information in medical imaging. Besides
a file format definition it includes a network communications protocol which is an
application protocol that uses TCP/IP to communicate between systems.

Due to the great variety of medical imaging devices and the requirements to store
all acquired image material as well as to communicate between the different de-
vices, the American College of Radiology (ACR) and the National Electrical Man-
ufactures Association (NEMA) were first to release a standard, ACR/NEMA 300,
in 1985 [112]. In the following years, several extensions were created, like Papyrus
developed by the University Hospital of Geneva (Switzerland) and SPI (Standard
Product Interconnect) supported by Siemens Medical Systems and Philips Medi-
cal Systems. A first large scale deployment of this technology was made in 1992
where Siemens Medical Systems and others deployed the first US military Picture
Archiving and Communications System (PACS) at all major Army and Air Force
medical treatment facilities. In 1993 the third version of the standard under a differ-
ent name, DICOM 3.0, was released in which network support was added and the
Conformance Statement was introduced. Officially, the latest version of the stan-
dard is still 3.0, however, it has been constantly updated and extended since its first
publication.

The DICOM format transmits data in an hierarchical model, the real world infor-
mation model [98], grouping information into data sets. It is divided into four layers:
patient, study, series, and instance. This means that every instance of an DICOM
object includes all information that is needed in order to assign it to a certain image
series within a certain study of the same patient. Additionally, the DICOM data ob-
ject has one special attribute containing the image pixel data. For many modalities,
this corresponds to a single image. However, the attribute may contain multiple
frames or slices, allowing storage of multi-frame and multi-dimensional data. The
compression of pixel data can be accomplished using common standards such as
JPEG, JPEG Lossless, JPEG 2000, and Run-length encoding (RLE).

2.2. The Aorta

Every human body contains an intricate network of strong and flexible blood ves-
sels called veins and arteries whose purpose is to carry blood to and from the heart
in order to nourish body cells. The aorta originates in the left ventricle of the heart
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Figure 2.2.: Major vessels of the aorta

as main artery of the circulation system (Figure 2.2!) and is responsible for the blood
supply of the entire body. It belongs to the arteries of elastic type (arteriae elastotyp-
ica), whose wall is separated in three layers: the outer (tunica externa or adventitia),
the middle (tunica media) and the inner (tunica interna or intima). It ends up in the
aortic bifurcation (bifurcatio aortae), where it is further divided in the two iliac arter-
ies. The aorta is seperated into four parts. The ascending part (pars ascendens aortae)
is the area where the coronary arteries of the heart emerge. It is in continuity with
the arch of the Aorta (arcus aortae), from which three main arteries spring up to
supply the upper body: the brachiocephalic trunk (truncus brachicephalicus) for the
right head and arm, the left common carotid (A. carotis communis sinistra) for the
left head and the left subclavian (A. subclavia sinistra) for the left arm. The subse-
quent part is called descending or thoracic (pars descendens aortae) and it ends up
in the diaphragm. The last one is the abdominal part (pars abdominalis aortae) with
bifurcations for all the abdominal organs: the celiac trunk (truncus coeliacus), the
renal arteries (Ae. renales), the superior mesenteric (A. mesenterica superior) and the
inferior mesenteric (A. mesenterice inferior).

The aortic vessel wall consists of three main layers [139] (see Figure 2.3?).

Intima. Also denoted as tunica intima, this layer consists of endothelial cells as well
as fine,elastic and collagen fibers. A number of circularly arranged elastic bands

'Erom The Merck Manual of Medical Information - Second Home Edition, edited by Mark H. Beers.
Copyright 2003 by Merck & Co., Inc., Whitehouse Station, NJ. Available at: http: //www.merck.
com/mmhe/sec03/ch035/ch035b.html.

*From Fuan A. Ashleyjosef Niebauer: Cardiology explained. Copyright 2004 by Remedica,
Chicago, IL. Available at: http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=
cardio&part=A196.


http://www.merck.com/mmhe/sec03/ch035/ch035b.html
http://www.merck.com/mmhe/sec03/ch035/ch035b.html
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=cardio&part=A196
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=cardio&part=A196
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Figure 2.3.: The aortic wall

called the internal elastic lamina forms the border to the next outer layer.

Media. The thickest layer, also called tunica media, is mainly composed of diago-
nally oriented smooth muscle cells and only rare amount of elastic and collagen
fibers. The border to the most outer layer is formed by another thick elastic band
called external elastic lamina.

Adventitia. This outermost layer, also known as tunica externa, is mostly composed
of longitudinal, elastic and collagen fibres mixed with smooth muscel cells.

In the larger blood vessels of the body, such as the aorta, the surrounding of the
adventitia is composed of the vasa vasorum, a network of small nutrient capillaries.

2.3. Abdominal Aortic Aneurysm (AAA)

2.3.1. Definition

Aneurysms are defined as permanent, irreversible, localized dilatations of the ar-
teries (see Fig. 2.4%). According to the German Society of Vascular Surgery and Vas-
cular Medicine, an aneurysm is said to occur when the dilatation exceeds more than
50% of the normal diameter Aneurysms may be classified according to their gross

3Copyright ©2010, A.D.A.M., Inc.
Available at http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=adam&part=
AQ000162.


http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=adam&part=A000162
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=adam&part=A000162
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Figure 2.4.: Abdominal Aortic Aneurysm (AAA)

appearance [24] (see Fig. 2.5%). A fusiform aneurysm affects the entire circumference
of a segment of the vessel, resulting in a diffusely dilated artery. In contrast, a saccu-
lar aneurysm involves only a portion of the circumference, resulting in an outpouch-
ing of the vessel wall. The third shape shown in Fig. 2.5 is a ruptured aneurysm that
has burst and caused bleeding into the surrounding tissues. Aortic aneurysms are
turther classified according to their location within the aorta, thoracic aortic aneurysm
(TAA) or abdominal aortic aneurysm (AAA). As this thesis focuses on AAA, we will
limit the following definitions and etiology to this type of aortic aneurysm.

AAAs result from conditions that cause degradation or abnormal production of
the aortic wall’s structural components, elastin and collagen. The causes may be
broadly categorized as degenerative diseases, inherited or developmental diseases,
and trauma. The most common pathologic condition associated with degenerative
aneurysms is atherosclerosis. Many patients with AAAs have coexisting risk factors
or even atherosclerosis in oder blood vessels. Inflammation and biomechanical wall
stress contribute to the degenerative process that characterize most AAAs.

AAAs occur more frequently in males than in females, and the incidence in-
creases with age. The disease is the tenth leading cause of death in men 65 to 75
years [135]. 12 to 19 percent of first-degree relatives, predominantly men, of a pa-
tient with an AAA will develop an aneurysm [68] indicating also a genetic coher-
ence.

*From The Internet Encyclopedia of Science, Health & Disease.
Available athttp://www.daviddarling.info/encyclopedia/A/aneurysm.html.
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Figure 2.5.: Gross appearances of aneurysms

2.3.2. Diagnosis

Symptomatic AAAs usually involve hypogastrium or lower back pain that is steady
and gnawing and lasts hours to days [68]. Hypotension is another common symp-
tom. However, most AAAs are asymptomatic and are often first detected on an
imaging study ordered for other indications. Doctors may feel a pulsatile abdomi-
nal mass and can usually hear a whooshing sound (bruit) caused by turbulence as
blood rushes past the aneurysm [135]. However, the size of an aneurysm tends to
be overestimated on physical examination and even normal aortas may sometimes
feel enlarged [68].

Different imaging devices can be used to visualize and diagnose AAAs. A more
complete description of each of these techniques is given in section 2.1. Abdomi-
nal US has a sensitivity and specificity approaching 96% for the detection of AAA
and is therefore frequently used to screen for the presence of AAA [135]. CTA of
the abdomen can determine the size and shape of an aneurysm more accurately
than US but exposes the person to radiation. Yet it is widely used by physicians, as
it’s precise enough to allow different measurements for surgery planning. Magnetic
Resonance Angiography (MRA) is also accurate but may not be available as quickly
as US or CTA. Recent studies [118, 75] have suggested a combination of PET and
CT, namely PET-CT, in order to visualize inflammation within the aneurysm wall.
It has been claimed that increased cell activity inside the AAA indicates instabil-
ity of the wall increasing the rupture risk. However, so far, it has not been given
enough evidence to include PET-CT acquisitions into official guidelines for AAA
diagnostic and treatment.
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2.3.3. Treatment

The major risk posed by an abdominal aortic aneurysm is rupture and its high asso-
ciated mortality. Fillinger et al. [43] performed a large trial of patients with ruptured
aneurysms. In their conclusions 25% died before reaching a hospital, another 51%
percent died at the hospital without undergoing surgery, and of the those who had
surgery, the operative mortality was 46%, yielding an overall 30-day survival of just
11%.

There are basically three treatment options for an AAA depending on various
factors like the shape and stadium of the aneurysm and the age and general health
condition of the patient.

Mechanical intervention is currently the only treatment shown to be effective in
preventing AAA rupture and aneurysm-related death; it is reserved for AAA >5.5
cm in diameter for men and >5.0 cm in women [4]. Treatment using open surgical
repair involves opening the body with a large cut (incision) into the abdomen. The
damaged area is separated surgically from the vessel and replaced with a synthetic
tube called (aortic) graft. It is quite a massive intervention that is performed under
general anesthesia involving cardiopulmonary bypass (CPB) via a heart-lung ma-
chine, and takes about 3 to 4 hours. It usually requires the patient to stay for 3 days
in an intensive care unit and remain in hospital for 7 to 10 days. Thus, recovery time
is typically about a week but it can be as high as three months bearing risks due to
anesthesia and the large incision (like infection, etc.). However, it is a good option
for a long-term success as the damaged area is completely removed.

Although surgical repair is the preferred treatment, it is not applicable to the
care of patients with smaller aneurysms or those with medical contraindications
to surgery. Here S-blocker therapy is considered important for reducing the risk of
AAA expansion and rupture [47]. This should be accompanied by an appropriate
risk factor modification such as control of hypercholesterolemia and hypertension
and discontinuation of cigarette smoking. Small aneurysms should be followed up
with periodic surveillance imaging to monitor their size.

A third treatment option is endovascular repair which was developed to reduce
the risks associated with open surgery and to provide a treatment option for pa-
tients who are not deemed to be surgical candidates. As this work is centered
around endovascular aortic repair, we will give a more detailed description of the
procedure in chapter 4.1.






3. Technical Principles

This thesis aims at presenting novel computer assistance techniques for the treat-
ment of AAAs. However, before coming to the details, we first need to introduce
some basic concepts of medical image processing starting with the image itself and
passing on to image segmentation and registration techniques. In the end of this
chapter, we also present the concept of disocclusion that is rather related to com-
puter vision than to medical imaging. These four sections provide the methodologi-
cal basis for the review of state of the art procedures (Part II) and the novel methods
presented in Part III.

3.1. Images

This thesis is concerned with (digital) images and some special kinds of their pro-
cessing. This section introduces our representation of images and presents some of
the notations used in the remainder of this thesis.

When creating an image with an acquisition system, i.e. a simple viewing camera,
light enters the camera lens and hits the image plane. In a typical Charged Coupled
Device (CCD) camera, the physical image plane consists of a rectangular grid of
m x n small black photosensors. These are sensitive to light and convert light energy
in continuously varying electrical signals representing the light intensity. An image
I is defined as a continuous n-dimensional light intensity function / : Q@ — R
(€2 C R7™) that maps a spatial location to a scalar value representing brightness
intensity.

In order to save an image in an electronic system, the continuous electrical signal
has to be discretized both in its spatial location on the image (sampling) as well as in
its value (quantization). This procedure is called digitalization rasterizing an image,
i.e. spatial locations are distributed on a regular grid. The grid points are referred
to as pixels (n = 2) or voxels (n > 3). In general, medical images are of dimension
2,2+, 3,3 + t depending on the imaging modality and acquisition mode (single
image, sequence of frames). For the remainder of this thesis, we will restrict the
possible dimension of images to n = {2, 3} according to the images acquired during
the entire process of EVAR.

The histogram of a digital image with gray-levels in the range [0, L — 1], is the
graphical presentation of a discrete function h(ix) = nj, where iy is the kth gray
level in [0, L — 1] and ny is the number of pixels in the image with intensity ix. The
histogram can be effectively used for image enhancement and for segmentation.

Images can be derived to extract the gradient information of the underlying
intensity-mapping function. Given an image I, we will denote the gradient VI =
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3.2. Medical Image Segmentation

Image segmentation is the grouping of image pixels, with in some way resembling
characteristics, into meaningful and usually connected structures, such as curves
(edges) or regions, according to a given set of rules [111]. It can be formally ex-
plained as the partitioning of the image domain €2 C R" into homogeneous regions
Q1,Q9,...,; C Qsuch that

!
0= U Q; (3.1)
=1

The objective of a segmentation is the recognition of objects and their distinction
from the background.

In the following sections, we will describe three main types of segmentation
methods commonly used for medical applications.

3.2.1. Algorithms on Pixel Level

Pixel based segmentation techniques are the simplest of all segmentation ap-
proaches. For the distinction and definition of different regions, the gray values
in the image are observed and typical values or intervals for each structure are de-
termined.

Thresholding

Thresholding segmentation approaches are based on the investigation of the his-
togram of the image. If the object for detection is clearly separated from the back-
ground, then the histogram of the image has at least two dominant distributions
of intensities and thus two local maxima. Traditionally, one obvious way to extract
the object from the background is to select an intensity threshold value 7', which
separates the two maxima, e.g. a local minimum between them. The segmentation
is then accomplished by scanning the image pixel by pixel and defining each pixel,
depending on its intensity value in comparison to the threshold, as object or back-
ground. Instead of just choosing one intensity value, two thresholds can be selected
defining a range of intensity values. This might be suitable for images showing a
more complex intensity distribution with more than two histogram peaks which is
the case for most medical images.

Although this method is fast and simple, it suffers from several drawbacks. The
thresholds for interesting regions highly depend on the image quality and might
change from an image to another showing the same scene. Also, this technique
assumes that the region to be detected, has a different intensity distribution than
its background, which is not the case in particular for medical images. Eventually,
this method works on pixel intensities only and does not take into account any
connectivity information. Therefore, it is very sensitive to outliers.
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Region Growing

Compared to the thresholding approach described above, this method additionally
uses connectivity information. It starts with a seed point and merge homogeneous
neighbors into the region. The crucial criterion is the homogeneity definition for
which several definitions may be used:

o The neighboring pixel value is inside a previously fixed range of intensity
values.

e The difference between the intensities of a new pixel and its neighbor, which
is part of the region, is lower than some previously fixed threshold.

e The new pixel intensity is inside the intensity distribution of the entire re-
gion to be segmented. The expansion of the region is also dependent on the
neighborhood definition.

A neighborhood can be 4 or 8 pixels around the center pixel in 2D; 6, 18 or 26 voxels
in 3D.

The advantage of this technique is that it uses an intensity criterion to decide if
a pixel belongs to the model and a connectivity criterion to be sure that a possible
new pixel is connected with the seed. However, there is no constraint on the shape
of the region and if no suitable intensity borders are available, the region might
expand to infinity.

Edge Based Segmentation

The aim of an edge based segmentation is to determine the boundaries of interest-
ing objects by detecting image edges.

The first and second derivatives of the image function give information about
locations of edges in an image. The first derivative is zero in areas of constant gray
level values and non-zero in areas where the values are no longer continuous. It
forms a maximum where the image function changes from a low to a high intensity
value (from dark to light) and a minimum at the opposite situation. The second
derivative has a zero crossing at places where the first derivative has its extrema.

Canny edge detector [17] is the current standard edge detection scheme. It is
described as the first order derivative of a Gaussian filter and consists of four pro-
cessing steps. The first step is to filter out the noise in the original image, by ap-
plying a Gaussian filter. Then, the gradient of the smoothed image is calculated to
detect edges in = and y direction respectively. In order to normalize the width of
all edges to be only one pixel, nonmaxima suppression is applied for suppressing
high values of the gradient magnitude. The last step consists of thresholding the
nonmaxima suppressed magnitude image in order to reduce the number of false
edge fragments.
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3.2.2. Active Contours

The main idea of the Active Contours approach is that the boundary between the tar-
geted object and its background is considered as a deformable model. After defin-
ing an initial contour, it is evolved towards an optimal shape and position ideally
detecting the object to be segmented. Classified into different representations for
the contour model, there are basically two main approaches that will be explained
in the following sections.

Explicit Active Contours

Since its introduction in the late 1980s [71], various names, such as snakes, balloons,
and parametric deformable contours or surfaces, have been used in the literature
to refer to Explicit Active Contours or Surfaces. Here, curves and surfaces are repre-
sented explicitly by parameters, i.e. positions of the contour points. In 2D, a possible
representation of curve is C(s) = (z(s), y(s)) moving through the spatial domain
of an image.

During deformation, the points of the contour are moved by applying either an
energy minimizing formulation and a dynamic force formulation [142]. We can for-
mulate the energy function as

E(C(s)) = Eint(C(s)) + Eeat (C(s)) (3.2)
1

1 1
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where C’(s), C”(s) denote the first and second order derivative of the curve. The in-
ternal energy E;,: specifies the tension or the smoothness of the contour. Here, the
tirst-order derivative discourages stretching and makes the model behave like an
elastic string, whereas the second-order derivative discourages bending and makes
the model behave like a rigid rod. The weighting parameters «, 3 can be used to
control the strength of the model tension and rigidity. The external energy E.,; is
defined over the image domain and computed by integrating a potential energy
function P(xz,y) along the curve C(s). A typical potential energy function is de-
signed to lead a deformable contour toward step edges. It is also possible to add
other terms to force the expansion or shrinking of the model. A nearly complete
collection of efficient energy formulations for Explicit Active Contours can be found
in [69].

Although Explicit Active Contours have been applied successfully in a wide range
of applications, they have several limitations [25]. In cases where the deformation
has to cover a large change in size, the contour has to be reparameterized dynam-
ically which increases computation time in particular for 3D applications. Explicit
Active Contours is known to be quite sensitive to the initialization and get stuck in
undesired local minima especially in medical images. Also the extension to other
segmentation criteria such as color, texture, or motion is not straight-forward. Fur-
thermore, the parametric approach has difficulty dealing with topological adapta-
tion such as splitting or merging model parts, a useful feature for the detection of
multiple objects or objects of unknown topology.
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Implicit Active Contours

First introduced in the early 1990’s [20, 91], Implicit Active Contours soon got ahead
of the explicit formulation for many segmentation tasks within the medical field.
Its major advantage is the ability to automatically handle topological changes and
removing the issues of contour parameterization [25]. This is accomplished by em-
ploying curve evolution theory and the level set method for front propagation.

The purpose of curve evolution theory is to use only geometric measures such as
the unit normal and curvature for contour deformation [142]. Let us again consider
a moving curve C(s,t) = (z(s,t),y(s,t)), now with an additional parameter ¢ for
denoting the time step. Denoting its inward unit normal as IV and its curvature as
k, the evolution of the curve along its normal direction can be characterized by the
following partial differential equation:

oC
— =F(rk)N 4
= Fln) 64
with F'(k) determining the speed of the evolution. The basic idea of Implicit Active
Contours is to couple the speed of deformation with the image data, so that the
evolution of the curve stops at object boundaries.

The evolution is implemented using the level set method first brought up by Os-
her and Sethian [104, 123]. The propagation of a contour is achieved by evolving a
time-dependent embedding function ¢(x, y, t), the so-called level set function. Having
the curve C(s,t) as zero level leads to ¢ (C(s,t),t) = 0. Deriving this with respect
to time parameter ¢ gives

o oC
ot + V(ba =0 (3.5)
Inserting the definition of the normal N = % and Equ. 3.4, it can be rewritten as
¢
2 = F(s)VYl 56)

The inclusion of image data is accomplished by the selection of speed function
F(k). A possible solution for objects that have good contrast, is to include image
gradient information [20, 91]:

1

Fir) = 1+ |VG, * 1|

(k + Fp) (3.7)

where G, I denotes the image I convolved with a Gaussian smoothing filter. How-
ever, in particular medical images lack sufficient contrast so that intensive research
has been done on the formulation on suitable speed functions [88, 89, 22, 25, 147].

3.2.3. Active Shape Models

Instead of using a random initialization of the curve as suggested in the previous
sections, Active Shape Models (ASMs) allow the integration of a priori knowledge
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about the shape to be segmented and its gray-level appearance in the image. Con-
sequently, training with many examples is required in order to acquire a shape
model (with its variability) and the gray-level appearance (with its variability).

In its most popular implementation [23], a statistical model of the shape and its
variations is created by a training set of shapes represented by landmark points. It
is given by the principal components of vectors of landmark points. The gray-level
appearance model is limited to the border of the object and consists of the normal-
ized first derivative of profiles centered at each landmark that run perpendicular to
the object contour. The cost (or energy) function to be minimized is the Mahalanobis
distance of these first derivative profiles. The fitting procedure is an alternation of
landmark displacements and model fitting in a multiresolution framework.

3.3. Medical Image Registration

The goal of Image Registration is to accurately relate information of two or more
images [61]. In the case of Medical Image Registration the focus is laid on medical
images, i.e. acquired by the modalities described within section 2.1. Due to the
great variety of registration problems and different algorithms to solve them, there
have been some attempts in the literature to categorize registration algorithms, the
most thorough and promising was given by [90]. According to their classification,
this thesis concerns the problem of multimodal intrasubject registration of the ab-
domen. The modalities involved are CT and interventional C-arm acquiring 2D and
3D image data and thereby defining a registration paradigm for rigid 3D-3D and
projective 2D-3D transformations. Our paradigm is further constrained by an in-
trinsic registration basis relying only on patient generated image content without
the need for any extrinsic markers such as fiducials. We will constrain the general
description and review of registration algorithms of the following sections to our
defined paradigm.

3.3.1. General Formulation

Given two images I and I¥" denoted as moving and fixed image, image registration
describes the problem of estimating the optimal transformation T of I such that
it perfectly aligns with I in terms of a certain energy &:

T:argm%ng(IF,ToIM) (3.8)

In the case of 3D-3D registration, the domains of both images are three-
dimensional (?™ c R3,QF C R?) whereas for 2D-3D registration, the 3D volume
is set to be the moving image (2 C R?) and the 2D image is fixed (2 C R?).

In Equ. (3.8), operation o represents the application of T on image . Practically,
this is realized by interpolation, in particular by two contrary approaches (see Fig.
3.1). During backward warping, the application algorithms cycles through the old
image, applies the transformation to every single pixel, and creates a warped image
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Figure 3.1.: Concept of forward and backward warping

from the resulting positions. In the contrary procedure, forward warping, an empty
target image is created first where the cycle is performed on.

In the following sections, we will explain the details of the registration paradigm
given by Equ. (3.8).

3.3.2. Transformations

The choice of transformation T is defined by the given registration problem and
also directly related to the imaging modalities involved. In general, one can distin-
guish four types of different transformation classes each of which is explained for
the 2D and 3D case in the following subsections.

Rigid Transformation

A rigid transformation

sR t ] (3.9)

Trigid = |: 0 1
is a composition of rotation R, translation t, and an isotropic scaling factor s. In or-
der to specify the transformation in 2D, the angle of rotation (r), the value of trans-
lation in x and y direction (¢, t,) as well as the scaling factor s must be given. The
literature therefore refers to it as 4 degree of freedom (4-DOF) T\;4i4 whereas the 3D
matrix is named as 9-DOF as it includes three values for scaling (s, sy, s.), rotation
angles (1, ry,7.)), and translation (t,,t,, t.) for the three image dimensions.

Affine Transformation

An affine transformation

At ] (3.10)

Taffine = [ 0 1
is a non-singular linear transformation A followed by a translation t. In 2D, the
affine matrix A can be decomposed to

A =R(0)R(~9) ( w0 ) R(¢) (3.11)

52
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to be the concatenation of a rotation (by ¢), a non-isotropic scaling by s; and s»
respectively in the (rotated) x and y directions, a rotation back (by —¢), and finally
another rotation (by 6) [58]. The 2D T ,fine therefore forms a 6-DOF transformation
matrix whereas the 3D case captures 12-DOF.

Projective Transformation

R t
0 1
Y
T Yo~
S5 \\\I
----------------- - fmmeeman
o
X-ray source Volume X-ray target

Figure 3.2.: The concept of perspective projection following the description of [58]

In the sense of medical image registration, projections are mostly employed in
2D-3D registration algorithms to describe the geometric mapping from locations in
3D onto the 2D view. The projection transformation

sR t]

Tprojective =K [ 0o 1 (3.12)

consists of the 6-DOF extrinsic parameters [R|t] for rotation and translation of a 3D
volume and additional 4-DOF intrinsic imaging parameters

K= 0 ay wo (3.13)

of the pinhole projection model [58] with focal length in x- and y-dimensions «, =
%, y = é (52, sy is the respective size of a pixel in the target X-ray) and principal
point (o, yo). The concept of perspective projection is visualized in Fig. 3.2.
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In practical implementations of 2D-3D registration paradigms involving CT vol-
umes and 2D X-ray images, a projective transformation is nowadays realized
through the concept of Digitally Reconstructed Radiographs (DRR). Thereby, a syn-
thetic X-ray image is computed by casting virtual rays through the 3D CT volume
and calculating the X-ray attenuation along each ray. This process is called volume
rendering. DRRs were first introduced for 3D treatment planning in radiation ther-
apy [126], but soon became an interesting input for the realization of 2D-3D reg-
istration algorithms. However, DRRs are computationally expensive to create, and
their required iterative generation typically creates a bottleneck in the execution
of the registration process. For a volume of size N x N x N, most volume ren-
dering techniques, such as ray casting [83], splatting [10, 11], and shear-warp [76],
have O(N?) time complexity. Light-field methods reduce this time complexity by
pre-computing some projection values and then interpolating the latter to generate
DRR [121], but they require large memory to store the pre-projection values. Monte
Carlo volume rendering [84] is a very efficient technique for producing DRRs from
large medical datasets since the involved projection process is independent of the
volume size and only related to the number of samples. However, their conver-
gence rate is slow. Because of the increasing performance of Graphics Processing
Units (GPUs) in the last couple of decades, the GPU has become an attractive target
for DRR generation and image registration algorithms [80, 72, 146].

Deformable Transformation

For many medical applications, rigid transformations are not sufficient to meaning-
fully align two images. In particular soft tissue deforms in arbitrary ways caused
by breathing, organ specific motion, or medical instruments.

Compared to the transformations explained previously, a deformation can not be
represented as a matrix. Instead, one has to describe the motion for every individual
pixel between two images. This is widely realized by a displacement field

u:)—R" (here n = 2,3) (3.14)

defined on the image domain 2 C R™.

Substituting transformation T by displacement field u, Equ. (3.8) can be rewritten
as
= argmin (I, uo 1Y) (3.15)

3.3.3. Energy Function

Intrinsic image registration paradigms employ energy functions £ that include im-
age information only [90]. This image content can be presented as the original inten-
sity gray values (intensity-based registration), or a limited set of anatomical landmark
or feature points (feature-based registration). It is not within the focus of this thesis to
capture the entire variety of different energy functions used for image registration.
Therefore, we restrict the following classification to the most popular measures and
those that will be used in the remainder of this thesis.
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Intensity-based

Intensity-based techniques use the intensity mapping of the images to define a sim-
ilarity measure. Therefore, one image must be transformed together with its inten-
sities in order to create an overlapping region with the other image where corre-
spondency is assumed to exist at every pixel location. The similarity measure then
calculates the quality of fit given this correspondency induced by transformation T.
In the following we will present the most commonly used intensity-based measures
and will explain their mathematical notation on sample images I, J € {R? R3}. The
overlapping region ; N Q; is discretized in N pixels (if Q7,Q; C R?) or voxels (if
Q I, Q5 C Rs).

Difference-based Measures. Measures such as Sum of Absolute Differences

N
SAD(I,.J) Z ;)| (3.16)
and Sum of Squared Differences
1 N
SSD(I,J) = N;um) J(xi)) (3.17)

, calculate the difference of intensity at each location. However, they make the im-
plicit assumption that after registration, the images differ only by Gaussian noise
[61].

Correlation-based Measures. By computing the statistical correlation of inten-
sities, correlation-based measures are independent of linear intensity changes. This
makes the measure very suitable for intra-modality registration. The most famous
amongst these measures is Normalized Cross Correlation (sometimes also referred to
as Correlation Coefficient)

SN (I(xi) — 1) (J(XZ) J)
\/Zz 1 I(x;) D \/Z 71 7)2

where I, J denote the mean intensity values of images I, J. A related measure that
uses image gradient values instead of image intensities is Gradient Correlation. Here,
NCC is calculated between gradients of I, J in each single component respectively.
The final value of this measure is the average of these normalized cross correlations.
The formula for the 2D case (2!, 2 C R?) is given by

dr dJ ar dJj
ge(,J) = <Ncc <d - > +NC c(d 4 >) (3.19)

In the 3D case (/, Q7 C R?), NCC is additionally computed in the third component
of the image gradients leading to

ar dJ dr dJ ar dJj
ge(,J) = <Ncc (d - > +NCC (d ¥ ) +NCC (d = >) (3.20)

Nee(I, )

(3.18)
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Information-theoretic Measures. These measures determine the amount of
shared information in the two images and are particularly suitable for inter-
modality registration. The idea goes back to the famous Shannon-Wiener entropy
developed in communication theory in the 1940s [124]. Transferring the entropy to
images, information included in one image I can be measured by

H(I)=-> P(I=i)logP(I =1). (3.21)

Here, image [ is treated as random variable and P(I = i) gives the probability
of intensity ¢ within image /. One can easily see that the value of Equ.(3.21) will
be zero if there is just one constant intensity in the images. On the other hand,
the maximum entropy is obtained if every intensity is equally likely to occur. A
common application of the entropy measure for registering images I, J is Mutual
Information

MI(I,J)=H(I)+H(J)—H(I,J) (3.22)

using the Joint Entropy of images
H(I,T)==> > P(UI=iJ=j)logP(I=1i,] = j) (3.23)

(]

with P(I = i,J = j) being the probability of pairs of image values occurring to-
gether.

Regularization for Deformation. Displacement fields can represent any defor-
mation, however, not all such deformations are anatomically plausible. Physical
deformations typically obey certain rules, e.g. tissue stiffness, and sharp corners are
not likely to occur. Therefore, an additional penalization term needs to be added to
the intensity-based energy allowing, on the one hand, only plausible deformations
and, on the other hand, decreasing the dimensionality of the optimization space.

E(IF uo M)y =S(IF  uo ™) + aR(u) (3.24)

where S denotes one of the intensity-based similarity measures explained above,
and R a regularization term. The positive scalar a controls the influence of the
regularization terms. The most commonly used terms are diffusion reqularization

Raittusion(W) = Y _ [|[Vuz(x)[]” + ||V, ()| * + || V. (x)| (3.25)
xeN

penalizing harsh local displacements in x and y direction (if  C R?) and z direction
(if Q C R3).

Feature-based

Compared to the intensity-based measures that uses the entire image content to
measure the quality of fit, feature-based methods usually minimize a distance mea-
sure accumulated over only a set of identified features or landmark points. It re-
quires an additional step prior to the registration procedure to extract this infor-
mation. Whereas anatomical landmarks are most commonly selected manually by
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the user itself, image features are extracted automatically. Most commonly, a binary
image is created and either resulting surfaces or the extracted points are matched.
The big drawback is that the registration accuracy is limited to the accuracy of the
extraction step.

The most popular method for matching 3D shapes represented as a set of points,
curves, surfaces, or volumes, is the Iterative Closest Point (ICP) method [7]. Whatever
the original two shape representations, they are first converted to two set of points
M ={m,..., my,, }and D = {di,...,dy, }. In each iteration step, the algorithm
selects the closest points as correspondences and calculates the transformation T
for minimizing the equation

Ny Np

Eicp(T) =D > wy|lm; — (Tdy)]| (3.26)

i=1 j=1

where w;; are the weights for a point match assigned as w;; = 1 if m; is the closest
point to d; and w;; = 0 otherwise. As closeness measure, the Euclidean distance is
used.

Another popular surface matching technique is the head-and-hat algorithm [106]
where two equivalent surfaces are identified in the images. The first is represented
as a stack of discs, and is referred to as the head, and the second surface is repre-
sented as a list of unconnected 3D points. The registration transformation is deter-
mined by iteratively transforming the (rigid) hat surface with respect to the head
surface, until the closest fit of the hat onto the head is found. The measure of close-
ness of fit used is the squared distance between a point on the hat and the nearest
point on the head, in the direction of the centroid of the head.

In particular for matching binary structures, the use of a distance transform has
a direct impact on the performance of the registration algorithm. A distance trans-
form of a binary image labels all pixels in this image with their distance from the
surface of the object. In the Chamfer Matching [14] procedure the distance transform
is computed by means of local distances. More recently, exact Euclidean distance
transforms have been used in place of the chamfer transform [63].

3.3.4. Optimization

An optimization problem can be formulated as
x = argmin F'(x) (3.27)

with costfunction F' : § — R"™. An optimization algorithm therefore aims at find-
ing a parameter vector x (minimizer) such that ¥x € Q : F(x) < F(x). Likewise
Equ. 3.27 can be formulated as a maximization where X (maximizer) has to fulfill
F(x) > F(x)Vx € Q. Q € R" defines the search space of the optimization algorithm.
In medical image registration, F' equals the energy £, whose computation requires
the traversal of possibly quite large images. Since it depends on the actual image
content, this energy is in most cases highly non-linear. Therefore the class of op-
timization problems that can be applied to medical image registration problems
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is unconstrained non-linear optimization. The decision for a certain optimization al-
gorithm affects mostly the computation speed, robustness and capture range of the
registration algorithm. This work does not aim at presenting the whole range of dif-
ferent optimization algorithms and therefore we restrict the following description
to the most popular used for medical image registration. For an almost complete
review of optimization algorithms, we refer to [115].

Best Neighbor Search. This method (also called Hill Climbing) is probably the
simplest optimization scheme. During each iteration, it evaluates a number of
neighbors of the current parameter estimate and adopts the neighbor which yields
the best cost function value, as the central estimate for the successive iteration. A
popular strategy to select the neighbors is to just add and subtract a certain step
size to every parameter separately. With n being the dimension of the search space
of the costfunction, it results in 2n costfunction evaluations per iteration. If no bet-
ter estimate is obtained, either the step size is reduced, or the algorithm terminates.
Of course, this method needs a good initialization value since it is prone to fall into
local minima.

Powell-Brent Direction Search. Starting at a given position in the parameter
space, this algorithm minimizes the costfunction successively along certain direc-
tions [115]. Two problems arise thereby. Finding the best directions within the n-
dimensional search space, and doing efficient line minimization on a new costfunc-
tion with only one parameter.

Powell’s method [114] gives a solution to the first problem. The first set of direc-
tions are the individual unit directions of the search space themselves. After n line
minimizations, a new first direction is established as the direction vector connecting
the last and the current estimate. At the same time the direction of largest decrease
is omitted so that, in the next iteration, line minimization can be performed in n
directions.

The latter problem of realizing efficient line minimization on only one parameter
was solved by Brent’s method [16]. It uses both parabolic interpolation and golden
section search, choosing dynamically in each step which one is more appropriate.

Downhill Simplex Method. A more advanced search strategy is the Downhill Sim-
plex method [99]. In an n-dimensional space, a simplex represents a minimal geo-
metric shape of n + 1 points which certain operations can be applied to in order to
find a global optimum. A starting simplex is defined around the initial parameter
estimate and the costfunction is evaluated at its corners. Depending on the results,
the shape of the simplex is changed according to rules for reflection, expansion,
and contraction in order to shrink, enlarge, or move the search region. If the region
within the simplex falls below a defined threshold, the algorithm assumes to have
found an optimum and returns the corner point of the simplex yielding the smallest
costfunction value.
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The biggest advantage of this method compared to the other search methods
is that it uses the minimal number of evaluations that span the parameter space.
Moreover, since the shape of the simplex is flexible in all dimensions, traveling
through narrow regions can be performed much more efficiently.

Gradient Descent/Ascent Method. If the gradient of costfunction F is available,
a very basic way to find an optimum is to analyze the gradient and to step succes-
sively in its direction:

(3.28)

The learning rate « is a positive constant if we are seeking for a maximum (Gradient
Ascent), and negative otherwise (Gradient Descent). Starting from an initial value for
xo, the update of Equ. 3.28 is iterated until the norm of the gradient becomes too
small. The Steepest Descent/Ascent method, an extension of the previous algorithm,
conducts a line search along the direction of the gradient in order to find an optimal
value for a.

3.3.5. Validation

Validation is a crucial part of the development process of intrinsic medical image
registration algorithms. Besides qualitative visual assessment of the registration re-
sult by an expert, the accuracy of an algorithm should also be qualitatively analyzed
in order to decide whether it is good enough for a particular clinical application, or
to compare it to another algorithm [61]. Therefore a reference solution has to be
created which the solution provided by the proposed algorithm can be compared
to. As another important evaluation step, the robustness of the algorithm has to be
shown. It analyzes the behavior of the method in special situations and measures
how often it converges to the right solution when applied with different input, and
how much disturbance can be introduced until the registration fails.

Reference Solution

For quantitative accuracy analysis, it is crucial to obtain parameters that represent
the correct transformation between the images. This transformation is generally
denoted as Ground Truth T . Such a transformation could be computed by a Gold
Standard technique if it is available for the respective registration problem. The term
refers to a known technique that computes a correct image alignment. This can be
achieved by using invasive markers attached to the patients and running a point-
based registration with known correspondences. Instead of placing invasive mark-
ers, another possibility is to manually determine corresponding anatomical land-
marks.
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Accuracy Measures

The accuracy of a registration algorithm is determined via the registration error and
is usually varying over the image. With T being the calculated transformation and
Q = {q;} being a set of k points distributed over the entire volume extents, several
error measures have been proposed:

mTRE. The mean target registration error [44] determines the 3D error to the ground
truth transformation T';:

mTRE(Q, Tgt, Treg ]{J Z HTreng - goldqu

For 2D-3D registration algorithms, however, it has been proven to be more
suitable to use the mean target registration error in the projection direction [137]
in order to assess the magnitude of mT RE in the projection direction:

mTREpTO](Q, Tgt> Treg> npr()] k Z ||Treng - gtqi * Nproj ”

where n,,.,; is the normal to the projection plane.

mPD. The mean projection distance [137] determines the 2D error in the projection
plane:

mPD(Q, Pgta Pveg k Z HPreng - Pthz’H

This measure is more appropriate for 2D-3D registration evaluation as it di-
rectly includes the projective component of the registration.

mRPD. The mean reprojection distance [95] determines the registration error after
reprojecting each point back into 3D:

mRPD(Q,T g, Treg)

Z ||D(Li(source, Tregqs), Tgrqi)||

where D(L;, Ty1qq;) is the minimum distance between the 3D point at gold
standard position and a line L; through the 3D point at registered position
and the X-ray source.

Robustness

During robustness assessment, the registration algorithm is tested for reproducibil-
ity of correct results under different scenarios introducing disturbances. Usually
this evaluation is performed in randomized studies, also called Monte Carlo simu-
lations. A set of displacements from the Ground Truth transformation is created and
new initial transformations are established which serve as input to the algorithm.
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Figure 3.3.: Visualization of Disocclusion Notation: (a) image domain Q with oc-
cluded region I', (b) new state of I after a few iterations of the inpaint-
ing algorithm.

The displacements can be categorized into different ranges and the registration can
be evaluated by the capture range which measures the biggest displacement from
the Ground Truth where the algorithm is still successful. Usually success of a reg-
istration is given as a fixed threshold of the accuracy error function. The resulting
distribution allows one to draw conclusions on the overall robustness, the number
of outliers, and the performance in the individual transformation parameters. Of-
ten the mean and standard deviation of the individual transformation parameters
are computed for studying the spatial behavior of the algorithm. For such an eval-
uation to be statistically meaningful, a large number of realistic clinical data sets of
different patients has to be included. However, this has been rarely realized in the
literature.

3.4. Disocclusion

In the computer vision community, the term disocclusion refers to the attempt of re-
covering scene information obstructed by visible parts[131]. Let I : @ — R define
an image on a domain 2 C R2. In the following, we denote by I' C Q the occluded
image part and by OI' its boundary (see FIG. 3.3(a)). The aim of disocclusion is to
reconstruct the intensity values I(xr, yr) for all pixel positions (zr,zr) € I' based
on the image information which is available in the remaining part of the image
domain 2\ I".

There have been several different approaches in the literature and Tauber et
al.[131] gives an excellent overview. Two of the most promising approaches, Digital
Image Inpainting [6] and Poisson Image Editing [108] are presented in the next two
subsections.
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3.4.1. Digital Inpainting

By imitating the process of expert inpainting for art restoration, Digital Image In-
painting [6] aims at reverting deterioration or at removing occluding elements from
an image. Given the occluded image region, the solution is to transport image infor-
mation along the isophotes, the direction normal to the image gradients, from Q\ T
into the occluded region I'. Therefore, we compute an image function 7 : I' — R
such that I(zr,yr) = I(xr,yr) for all pixels (zr,yr) € 9T on the boundary. The
value in the interior I' are, however, solution to a different partial differential equa-
tion:

(n(ar,yr), VI(zr,yr)) =0, (3.29)

which is a stationary transport equation. The transport direction n : I' — R2
is thereby estimated based on the image information in a small neighborhood B
around each pixel (zr, yr) in the already inpainted parts of I - see Fig. 3.3(b).

Bornemann and Marz[15] recently published a more efficient implementation of
this inpainting method that is significantly faster while achieving high quality re-
sults at the same time.

3.4.2. Poisson Image Editing

The idea of Poisson Image Editing [108] is to achieve a reconstruction of the occluded
region I via a certain guidance field g : T — R2. Compared to Digital Image Inpainting,
with this guided technique, it is possible to also bridge larger gaps in the image.

mlin/ VT - g||> dz, subject to I|ar = I|ar. (3.30)
r

Given such a guidance-field g, we are seeking for an image function I that is equal to
I on the boundary of I' and whose gradient is close, with respect to the Lo-norm, to
the guidance field g. The solution of (7.6) can be computed by solving the Poisson
equation

AI(J}F,yF) = div(g(a:p,yp)), V($F,yr> erl. (331)

This is the reason for naming this approach Poisson Image Inpainting. The recon-
structed pixel values inside I' can be then obtained by

I(zr,yr) = I(zr, yr). (3.32)
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4. Treatment of Abdominal Aortic
Aneurysms

4.1. Endovascular Aortic Repair (EVAR)

In the last decade, EVAR has gained acceptance as an alternative to open surgical
repair, with reduced risks. It provides substantial clinical benefit for the patient [60]
such as decreased use of the intensive care unit, diminished length of hospital stay,
and early return to normal activities [144]. Results of three European randomized
trials [13, 54, 18] however indicate that the perioperative survival advantage with
EVAR as compared with open repair is limited to the first two postoperative years.
The long-term success rate of EVAR is still to be examined. Concerning ruptured
AAAs, a recent study [50] shows that mortality may be improved with the use of
endovascular repair (33% endovascular versus 41% open). Especially in patients 70
years or older, mortality after endovascular repair was lower than for open surgery
(36% vs 47%).

For some patients, however, EVAR might not be the preferred treatment op-
tion. According to the German Society of Vascular Surgery and Vascular Medicine,
measurements of the landing zones need to be within the following ranges: an
aneurysm neck > 15mm of length, a neck diameter < 34mm, normal aortic wall
without extensive calcification, moderate aortic kinking.

It is important to analyze the procedural steps of EVAR in detail in order to be
able to integrate suitable computer assistance. In the next subsections, we present a
description of its medical and imaging workflow and discuss the challenges physi-
cians have to face.

4.1.1. Workflow

The implantation of an endovascular stent graft inside the aorta is a minimally-
invasive procedure for the treatment of aortic aneurysms and aortic dissections. A
descriptive visualization of the procedure is given in Fig. 4.11. After the insertion
of a pigtail catheter and guide wires, a shaft catheter including a folded stent graft
is placed inside the aneurysm or dissection. Before unfolding the stent graft, the
physician must ensure that branching vessels are not occluded. In this stage, mis-
placements of the stent graft can certainly lead to partial or total cut-offs of blood

From Diseases and Conditions Index, National Heart Lung and Blood Institute, National Insti-
tute of Health, U.S. Department of Health & Human Services. Available at http://www.nhlbi.
nih.gov/health/dci/Diseases/arm/arm_treatments.html.
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Figure 4.1.: Endovascular Aortic Repair (EVAR) in the abdomen

supply of vitally important organs. Another critical complication is presented by
an Endoleak where blood still enters in between the stent graft and the aneurysm
sac. It is evidence of incomplete exclusion of the aneurysm from the circulation and
may be the result of an incomplete seal between the stent graft and the wall of the
blood vessel or fabric defects or porosity [21].

The procedure is partitioned into three clinical phases [21], namely preoperative,
intraoperative, and postoperative phase. Each of these phases will be described in
detail in the following paragraphs.

Preoperative Phase

The insertion of a prosthesis inside the aneurysmatic aorta requires accurate treat-
ment planning. Physicians need to carefully choose the appropriate stent graft from
a variety of different models and producers, each of them being unique in material
and shape.

Whereas knowledge about the diameter of the aneurysm, its relation to the re-
nal arteries and extension in the iliac arteries used to be sufficient for conventional
open treatment of AAAs, with the introduction of EVAR, additional information
have become essential for adequate sizing of the stent graft to prevent endoleakage
and unreliable stent fixation [1]. Important measurements include diameter, length
and angulation of the proximal and distal landing zones, the distance from the low-
est renal artery to the aortic bifurcation and to each iliac bifurcation, the diameter
of the aortic bifurcation, presence of and location of thrombus in the AAA, quality
of landing zones and potential access routes in terms of calcification or atheroma,
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Figure 4.2.: Medical Workflow for AAA Diagnosis and Treatment

and presence of vascular anomalies (multiple renal arteries, early bifurcations, ve-
nous anomalies) [48]. Figure 4.4% shows a sample measurement form that is used
by physicians to select the appropriate stent graft device.

Due to its unbeaten advantages in terms of resolution (see sections 2.1 and 2.3.2),
most clinicians do the measurements in a CTA scan of the patient. Nowadays, an-
giography suites (detailed description in section 2.1.5) are equipped with modified
stationary C-arms that are able to acquire CT-like slice images following the same
main technical principles as CT. Although this new technology aims at improving
the interventional situation by allowing 3D reconstructions during the intervention,
recent studies [38, 101] have examined its feasibility also for preoperative scans.
Although resulting images have lower contrast resolution than conventional CTA
scans and artefacts are more likely to occur, it has been shown that radiologists are
able to do accurate measurements. This could be timesaving in particular for acute
cases, avoiding patient transfer to a CT laboratory.

If strong aortic kinking is present in the aneurysm region, it is very difficult to
do exact length measurements in the CTA scan [119]. An insertion of the stent

2From Gore Medical. Available at http://www.goremedical . com/resources/dam/assets/
ANO444-EN3.pdf.
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Figure 4.3.: Imaging Workflow for EVAR

graft causes a straightening of the aorta and a shift/spanning of the aneurysmatic
mass. However, the extent of the straightening and the shift is not predictable. Some
physicians perform an additional Angiography for more accurate measurements of
the required stent graft length. Under alternating fluoroscopy and angiographic
imaging, a thick catheter is inserted in the femoral artery and pushed through un-
til it reaches the aneurysm. The catheter applies similar mechanical forces to the
aortic wall as the stent graft and length measurements can thereby be done more
accurately.

Intraoperative Phase

In the current clinical workflow, the intraoperative deployment of the stent graft
into the aorta is performed via two-dimensional imaging only. Using either gen-
eral anesthesia or regional anesthesia, one or both femoral arteries are exposed
depending on the type of stent graft that is required. A needle followed by a
guidewire is then placed in the femoral artery, and the guidewire is extended up
the aorta under continuous fluoroscopy imaging. Then, an angiography or DSA se-
quence is acquired in order to provide a roadmap for placing the device. The graft
catheter delivery system is passed up, over the guidewire, and positioned across
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the aneurysm. Acquiring several angiography sequences from different view an-
gles, the graft is deployed immediately below the renal arteries. A balloon within
the catheter delivery system is then positioned across the attachment site and ex-
panded in order to seat the hooks into the wall of the aorta. A completion angiog-
raphy or DSA sequence is then obtained to make certain that the graft is properly
seated and there is no evidence of flow between the graft and the aneurysm.

As conventional planar angiography cannot detect all graft-related anomalies, it
has been suggested to use C-arm cone beam CT instead to ensure clinical success
[9, 8, 38]. Although not evaluated in any clinical studies, medical imaging groups
as well as the community of interventional radiologists try to push forward the
intraoperative use of C-arm cone beam CT for navigation support and accurate
stent positioning [12, 129]

Postoperative Phase

After stent graft insertion and deployment, physicians as well as radiologists need
to repeatedly confirm the success of the treatment. Failures are generally classified
in device-specific and morphologic complications [5]. Therefore, the goals of post-
procedural imaging are to confirm the appropriate placement of the stent graft, to
follow the long-term fate and size of the AAA sac, to detect remote stent graft fail-
ure (structural or functional), and to better characterize any endoleaks [48]. Avail-
able imaging modalities must hence allow the physician to systematically evaluate
several parameters, including maximum aortic diameter, the neck and the length of
the aneurysm, the presence of endoleaks, and stent configuration, during follow-up
[52].

Again, similar to preoperative imaging, CTA is the modality of choice due to its
high contrast resolution and the possibility it offers to correctly measure significant
parameters. If an immediate treatment of occlusive complications is considered, in-
terventionalists usually prefer on table imaging solutions avoiding patient transfer
to a CT laboratory [39]. However, the suggested conventional planar angiography
[48] does not detect all anomalies. Presenting a solution to this problem, recent stud-
ies [9, 8, 39, 38] document the beneficial use of angiography suites and possible on
table C-arm cone beam CT reconstructions for acute cases.

4.1.2. Challenges

The entire interventional catheter navigation is done under 2D angiography imag-
ing where the physician is missing the important 3D information. As the catheter
and stent position is only visualized in 2D, more image acquisitions are needed
during fine positioning of the stent graft before unfolding. This means an increase
in radiation dose and used contrast agent at the same time as branching vessels
need to be made visible in the images.

With the implementation of systems providing interventional C-arm cone beam
CT reconstructions, the image information available for the interventionalist has
been improved. However, such acquisitions produce an intense radiation exposure
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[39] and are too time-consuming for constant application throughout the entire pro-
cedure. Normal size detectors of today’s interventional angiographic imaging sys-
tems generally cover a field of 30 x 40 cm; a region that does not include enough in-
formation for difficult navigation tasks during abdominal aortic interventions [101].

Over the last years, treatment of complicated AAA using endovascular tech-
niques has been approached demanding customized stent grafts with fenestrations
or scallops [92, 56]. These treatment procedures incorporate an even higher risk of
stentgraft-related complications such as occlusion of visceral arteries due to graft
displacement and andoleaks. Disadvantages related to conventional intraoperative
imaging modalities such as fluoroscopy and angiography, include prolonged pro-
cedure duration, poor visualization in some regions of the aorta, and navigational
limitations.

4.2. Computer Assistance for EVAR

As already mentioned within the previous section, a thorough treatment planning
is crucial for a successful outcome of EVAR. Measurements need to be done most
accurately in order to define an appropriate stent graft in terms of model as well as
size and diameter. When it comes to complex aneurysms degraded by severe aor-
tic kinking or incorporating a highly calcified aneurysm thrombus, measurements
need to include the thrombus that is very difficult to segment. Whereas the aortic
lumen is highlighted by injected contrast agent and has strong gradient values to
surrounding structures, the aortic wall and aneurysm thrombus are visually very
hard to detect. More information on this topic as well as our solution to this prob-
lem is described in the Appendix B and C.

Addressing the problem of measuring the correct stent graft parameters, virtual
stenting methods have been introduced for intracranial [82] as well as aortic [45, 37]
stenting procedures in order to provide the physician with a preview of the se-
lected device within a preoperative 3D scan of the patient. Due to the limited in-
teraction possibilities provided to the physicians and radiologists when inspecting
the preoperative patient scan, finding the correct parameters of the desired stent
graft device is very difficult. In particular for patients suffering from kinking in the
abdominal aorta, it is almost impossible to do accurate measurements. However,
these solutions do not offer a visualization of the intraoperative situation com-
pared to the preoperative definition. However, there is no interventional ground
truth data available to validate these solutions for clinical application. In particular
the involved biomechanical model of the stent graft is not extracted from real in-
terventional scenarios but is defined based on approximated geometric models in
their early research development phases. Besides, aortic stent devices are simulated
by simplex meshes assuming the device to have a mesh-like structure [45, 37]. This
is not given for abdominal aortic stent grafts, which are composed of a synthetic
fabric tube, the graft (e.g. from woven polyester), supported by a rigid structure,
and the stent (usually a metal web). In order to extract realistic behavior of abdom-
inal aortic stent grafts, their geometric shapes need to be detected in interventional
image series capturing the intravascular unfolding process.



48 Chapter 4. Treatment of Abdominal Aortic Aneurysms

The focus of this thesis is the presentation of methods for visualization enhance-
ment during the EVAR intervention. The entire interventional catheter navigation is
done under 2D angiography imaging where the physician is missing the important
3D information. As the catheter and stent position is only visualized in 2D, multiple
additional image acquisitions are needed during fine positioning of the stent graft
before unfolding. This means an increase in radiation dose and used contrast agent
at the same time as branching vessels need to be made visible in the images. There
have been several approaches published in the past, to overcome these drawbacks.

Imamura et al. [66] As a first solution, the authors present a system for registra-
tion of preoperative 3D-CTA and intraoperative fluoroscopic images during EVAR
intervention. DRR images are generated by parallel voxel projection of 3D CTA
after extracting an aorta region. By increasing/decreasing CT value in the aorta
region of CTA, DRR with/without contrast media injection are obtained. Within
their experimental setup, the authors investigate characteristics of several match-
ing measures including robust measures, on simulated as well as clinical data. Re-
sults show that in particular robust SAD with M-estimator is a suitable matching
measure. By using a parallel projection for DRR computation instead of the com-
monly employed perspective, it is impossible to estimate position in perpendicular
direction to the projection plane. This is, however, a crucial part of an accurate 2D-
3D registration algorithm and in particular important for the application during
EVAR.

Pujol et al. [116] As the gold-standard fluoroscopic guidance of catheter and
stent graft has several pitfalls in terms of radiation exposure and use of nephro-
toxic radiographic contrast, the authors investigate the application of interventional
transabdominal Ultrasound imaging (US). As this imaging technique can not be
used as a tracking tool to follow the progression of the endoprosthesis, a naviga-
tion system is developed that enables a real-time localization of the endoprosthe-
sis via registration between pre-operative CT scans, intra-operative 2.5D US data,
and the magnetically tracked delivery device of an endoprosthesis. A modified ICP
algorithm computes the transformation between the internal surface of the aorta
segmented from CT images and its position in the ultrasound data. Although pre-
liminary results are promising, research in this direction have not been conducted
any further.

Goksu et al. [61] The authors propose a 3D navigation system for standard flu-
oroscopic guided EVAR. Prior to the intervention, physicians are able to plan the
navigation and stent placement in a patient-specific virtual environment allowing
to segment the abdominal vessel tree in the preoperative CT scan and to position a
virtual C-arm in order to simulate 2D fluoroscopy-like images of the scan. Intraop-
eratively, 2D fluoroscopic views are reproduced from the planned C-arm positions
and registered to the preoperative CT volume by means of a chamfer distance map.
The 3D localization of the endovascular devices is tracked either interactively by
the user or automatically on the 2D sequences by a block matching method. The
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system further realizes a first solution to take into account tissue deformation by
medical instruments and to update the virtual environment with the intraopera-
tive data. Therefore, the vessel centerline is extracted in 2D, backprojected into the
3D environment of the CT scan employing the projection parameters found by the
previous registration procedure. These 3D points are then non-rigidly matched to
the centerline points of the vessel extracted from the preoperative CT volume. This
procedure, however, assumes that the C-arm pose has not changed since the exe-
cution of the 2D-3D registration. In practice, this can not be assured as the C-arm
pose as well as the table position changes constantly during conventional EVAR.
Without any possibility to access the approximate translation parameters of both
the C-arm and the patient table, the proposed method would be too inefficient for
practical use.

Raheem et al. [117] Compared to the previously reviewed publications employ-
ing rigid 2D-3D registration algorithms, Raheem et al. suggest to additionally use
a non-rigid 2D-3D registration of the preoperatively acquired CT and intraopera-
tive fluoroscopic images during the EVAR intervention. Therefore, an initial rigid
registration of both datasets is refined by manually picked landmarks and the thin
plate spline algorithm to deform the CT surface so it more accurately represents
the interventional scene. Experiments show that registration errors can be reduced
significantly compared to a rigid registration only. For practical use, however, the
presented method need to be further automated.

Liao et al. [85] The authors present a deformable 2D-3D registration algorithm
for AAAs that takes less user interaction than the previously described aproach.
The proposed method takes the 3D graph generated from a segmentation of the
CT volume and the 2D distance map calculated from the 2D X-ray image as the in-
put. The similarity measure consists of a difference measure, a length preservation
term and a smoothness regularization term, all of which are defined and efficiently
calculated on the graph. Although experiments on synthetic as well as real clini-
cal images show promising results, a suitable 2D segmentation of the vessel might
not always be easy to achieve, in particular when medical instruments are present
within the anatomy.

Manstad-Hulaas et al. [92] The authors evaluate the feasibility of electro-
magnetic tracking in combination with fluoroscopic guidance for EVAR navigation
support. A custom made stent graft is guided to the proper position with the aid of
sensors attached to the catheter and providing position information for visualiza-
tion within the preoperative CT scan. Results show that the use of electro-magnetic
tracking in combination with fluoroscopic guidance is feasible for EVAR. Deforma-
tion and other anatomy changes in between the preoperative and intraoperative
situation are, however, not taken into account and it is highlighted by the authors
that solutions to this problem can increase the impact of the proposed method.
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Carrell et al. [19] The authors examine the feasibility of an automated rigid 2D-
3D image registration system to simplify the navigational challenges faced in com-
plex endovascular aortic procedures. The method first requires the user to select a
region of interest where the intensity-based rigid registration is based on. DRR im-
ages are computed subsequently during optimization using the internal parameters
of the X-ray device. Visual as well as quantitative analysis of the errors measured in
manually picked landmark points, reveals good results for axial views. However,
the algorithm fails when used in highly angulated aortas because of the degree of
aortic deformation caused by the introducer and endovascular graft.

Although EVAR provides substantial clinical benefit for the patient [60], severe
long-term problems including stent graft migration and aorta deformation have
been reported in clinical research studies [105, 53, 5]. The analysis and quantifica-
tion of stent graft migration have been subject to extensive research work in the
medical imaging community [96, 79, 78], all addressing thoracic stent graft migra-
tion induced by the heart movement and continuous blood pressure in downward
direction. The deformation and implied degeneration of the aorta by the stent graft
is again reason for several long-term complications such as recalcification and en-
doleakage creation. Existing publications concern the analysis of flow changes and
detection of turbulences as indication for locations of high complication risk [86, 62]
rather than the deformation of the aorta induced by the stent graft. We have pre-
sented a method to quantify this deformation by non-rigidly aligning the preoper-
ative and the postoperative aortic shape extracted from the pre and postinterven-
tional patient scans respectively. The details of our procedure are described within
appendix D.



5. Dissimilarity in Interventional Image
Registration

Intensity-based image registration matches two images according to their contents,
e.g. intensities, assuming that all parts of the images are visible and not corrupted.
In interventional images however, important image information might be occluded
by medical instruments such as catheters, grafts, and probes. Also, the unideal ac-
quisition situation further introduces noise into the image acquisition process that
is visible in the resulting images. If not taken into account, such dissimilarities and
occlusions can severely affect the robustness of image registration algorithms.

5.1. Robust Similarity Measures

Most of the intensity-based similarity measures described in Section 3.3.3 are not
robust with respect to outliers, therefore large intensity differences can affect this
error term significantly. When it comes to a realistic interventional setup, robust

measures are preferred due to difficult image quality and dissimilarity occurrences
[107].

Due to its power in separating outlying noise in data, M-estimators have been
widely used in statistics [65, 134]. For estimating a parameter vector V =
[v1,v2,...,v,]T, M-estimators are generalizations of the usual maximum likelihood
estimates with the more general structure

arg m‘;n (H p(x,|V)> (5.1)

where p is a symmetric positive definite function with a unique minimum at zero
and is chosen to increase slower than quadratically. Instead of solving this problem
directly, we can reformulate it as an iterated weighted least-square problem

dz; .
Zqﬁ(mi,V);j =0 forj=1,2,...,n. (5.2)

The derivative (x) = d’jl—(f) is called influence function, which measures the influ-
ence of data point on the value of parameter estimate. There exist several choices
for p and 7 in the literature and the most popular are listed in Fig. 5.1. Several of
these methods have been used in combination with conventional similarity mea-
sures to allow robust image registration. In the following, we will give a review of

these robust measures employing the notation introduced in section 3.3.3.
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(a) Cauchy (b) Geman-McClure

(c) Huber (d) Tukey

Figure 5.1.: Famous M-estimator functions and plots of the corresponding p-
functions

Arya et al. [2] The authors suggest robust registration with their introduced M-
estimator Correlation Coefficient (MCC), a combination of Huber [65] and Tukey [134]
M-estimators (see Fig. 5.1(c) and 5.1(d)) with the N'CC measure:
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Here, k1, k2, c1, co are predefined constants and represent the thresholds k, ¢ of the

Huber and Tukey M-estimators.

Weese et al. [140] Another famous choice for robust measures is the Geman and
McClure [77] function visualized in Fig. 5.1(b). Weese et al. chose to employ a slight
adaptation of this estimator for Pattern Intensity that is defined as

N 0_2
PILD =2, 2 (= site) — (T = D) >
d* = (z1—y1)” + (22 — v2)° (5.6)

for a predefined search radius r and weight o. The scaling value s for the creation
of appropriate difference images must be determined carefully.

Penney et al. [107] Similar to Weese et al., the author combine the Geman and
McClure function (Fig. 5.1(b)) with image gradient information. Their presented
Gradient Difference is defined as

N

Ap
GD(I,J) = - (5.7)
i=1 Ah + (%($7y) - 8%([E,y))
A
+ ) — 5 (5.8)
o) Aw+ (L(2,y) — 8 (2,9)
where Ay, A, are the variances of the gradient images 4, %. Here, the scaling value

s for the creation of appropriate difference images is optimized such that the en-
tropy H of the difference image is minimal.

Imamura et al. [66, 40] Also employing an adapted version of the Geman and
McClure [77] function (Fig. 5.1(b)), the authors present a robust version of SAD

defined as
N

SADrobust(Iy J) = Z

i=1

[I(xi) = J(x)]?
o + |I(x;) — J(xi)[?

(5.9)

where o > 0 is a constant defining the slope of the parabola.
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Lai [77] Lai uses a combination the Cauchy M-estimator visualized in Fig. 5.1(a),
and the SSD similarity measure to form new robust version defined as

N
SSDrobust(Ia J) - Zlog <1 + (I(XZ ;;(XZ))4) (510)
=1

where o > 0 is a constant defining the slope of the parabola.

Nikou et al. [100] Nikou et al. presents the usage of two similarity measures
related to M-estimators, robust least squares and robust inter-image uniformity, for
mono- and multi-modal 2D-3D registration. Thereby, their registration method can
robustly handle dissimilarities occurring from large lesion evolution for multiple
sclerosis patients, anatomy deformation, and different information representation
for multi-modal images.

Gerogiannis et al. [49] Instead of incorporating M-estimators, Gerogiannis et al.
designed a robust statistical similarity measure incorporating a Student’s t-mixture
model. Compared to a Gaussian mixture model, it provides robustness to outliers
by heavier tails in the distribution plot.

5.2. Disocclusion for Image Registration

Instead of employing robust measures for image matching or registration, disoc-
clusion aims at reconstructing the occluded parts of the image retaining its physical
model. If combined with a registration procedure, disocclusion takes into account
information about the shape or location of the occlusion whereas robust measures
restrict outliers by smoothing the plot of the measure. However, one drawback
compared to robust measures is the introduction of user interaction or preprocess-
ing step in order to find the rough outline of the occlusion. In the following, we
review several successful attempts of combining disocclusion with image registra-
tion.

Kaneko et al. [70] Kaneko et al. presents the selective correlation coefficient that
masks out pixels belonging to the occluded region and only calculates the well-
known correlation coefficient measure (see section 3.3.3) on non-occluded pixels.
Compared to the usage of robust similarity measures, the application of binary
masks require the user to at least outline the image occlusion region.

McGuire and Stone [97] The authors introduce fractional masks, an extension
of binary occlusion masks, for use in coarse-to-fine registration algorithm using
NCC (see section 3.3.3) similarity measure. Each coarse pixel has a corresponding
fractional-mask value that gives the fraction of unoccluded fine pixels subsumed by
the coarse pixel. Compared to binary masks, fractional masks tend to have lower
false match rates.
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Periaswamy et al. [109] A general-purpose registration algorithm for medical
images is presented. In order to contend with partial or missing data, the expecta-
tion maximization (EM) algorithm [36] is incorporated. In the E-step, weights w are
computed representing the likelihood for every pixel to belong to the non-occluded
image region. The registration parameters are then estimated in the M-step where
pixels having a lower weight, are given less consideration. Compared to the appli-
cation of a binary or fractional mask, this approach does not require any user input
on the actual position of the occlusion within the image.

Tomazevi¢, Markelj et al. [132, 94] Another solution to the problem of occlu-
sions is given by reconstruction-based registration methods that first reconstructs a
3D image from two or more fluoroscopic or X-ray images acquired from different
viewing angles, and then perform a 3D-3D registration. The authors additionally
introduce a robust similarity measure based on mutual information, namely asym-
metric multifeature mutual information [132], that gives robust results also for poor
quality volumes resulting from a reconstruction of only a few interventional flu-
oroscopy images. Addressing the problem of high computation time, the authors
propose to reconstruct only parts of the interventional scene in a subsequent pub-
lication [94]. By matching the volume gradients of the preoperative image to 3D
gradients coarsely reconstructed from 2D interventional images, it is possible to re-
duce the number of required 2D images to reconstruct from, to only a few. Thereby,
the authors are able to reduce computation time while improving accuracy and ro-
bustness at the same time. Although, it is shown by extensive evaluations that the
reconstruction-based method is able to outperform conventional 2D-3D registra-
tion methods in terms of capture range and success rate, the requirement of several
interventional images acquired from different viewpoints is a limitation for clinical
use during EVAR.
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6. Interventional Image Registration:
Addressing Dissimilarity in Images

An important of goal of computer aided intervention is enhancing the intraoper-
ative visualization with 3D image information and thereby providing navigation
support to the physicians. Although modern angiographic systems allow three di-
mensional reconstructions during EVAR (see section 2.1.5 for more detail), detectors
only cover a small region that does not include enough information for navigation
tasks during abdominal aortic interventions. Thus, there is a need for combining
preoperative 3D image information with 3D intraoperative image data. In an inter-
ventional setup, however, image dissimilarites lead to corrupt image information
and therefore obstruct accuracy of existing registration algorithms.

Based on our publications [33, 93, 32], we propose two novel robust similarity
measures in order to handle image dissimilarities and occlusions for rigid 3D-3D
registration. In our experiments, we match intraoperative C-arm cone-beam CT im-
ages with preoperative CTA scans and compare results of our robust measures to
those of algorithms using non-robust measures. The accuracy and robustness of our
registration framework was further compared to a commercially available method
included in Siemens Workstations that come along with AXIOM Artis angiography
suites.

6.1. Robust Gradient Correlation Measures

When it comes to a realistic interventional setup, robust measures are preferred
due to difficult image quality and dissimilarity occurrences [107]. For our intended
medical application, we use the visible bony structure to align an interventional
reconstruction volume to the preoperative CTA. We will therefore focus on robust
gradient-based similarity measures.

In the following two paragraphs, we combine the two most powerful robust M-
estimators with gradient correlation GC (see section 5.1). For the sake of a clearer
arrangement of the notations in the remainder of this section, let us define

Kh(mvyuz) = <Zi(x7y7 Z) - ji) <Z;;](x7y’z) - Zi) (61)
KU(‘rvyaz) = (Z;(xvy7 Z) - j;) <Z;(‘r7yaz) - jy]> (62)

dI dry\ (dJ dJ
’Cd(xvyvz) = <dz(x’y’z) - dZ> (dz(x’y’ Z) - dZ> . (63)
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6.1.1. Huber Gradient Correlation

Huber[65] describes the M-estimator (see section 5.1) as a parabola in the vicinity
of zero that increases linearly at a given level k. Bringing the influence function of
this M-estimator together with the GC-measure results in the following notation for
our novel similarity measure Huber Gradient Correlation:

\/Zz—l my! (xi)? \/Zz  mif(x4)? \/Zz Ly (xi)?
mH(X') _ Kh<xayaz)7 |’Ch(xayvz)’ < k}IL{
h A K sen (Kp(x,y,2)), otherwise
() = Ko(z,y, 2), Ko(z,y,2)| < kI
Uk sgn (Ky(,y, 2)),  otherwise
mH(x) _ K:d('rayvz)v |/Cd(:n,y,z)| < kf
A ki sgn (Ka(z,y,2)), otherwise

Here, Kp,, Ky, K, are the functions defined in (6.1-6.3) and kf7, k%, k! represent the
threshold & of the Huber M-estimator for each of the gradient dlrectlons x,y, z. We
set these values to

K =a-0,(I)o.(J)
kfza-ay(f)vy(ef)
K =a-0.(I)o.(J))

<

where o0,,0,,0, are the standard deviations of pixel intensities in z-,y-, and z-
direction respectively and « is a predefined constant defining the outlier threshold.
For our experiments on synthetic and real medical images, we empirically found
a = 1.5 to produce the best results.

6.1.2. Tukey Gradient Correlation

In contrast to Huber’s parabolic function, Tukey[134] describes an M-estimator as
a bisquare function that saturates for large values beyond a given level c instead of
increasing linearly. Combining this M-estimator with the GC-measure, we introduce
Tukey Gradient Correlation as
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() = | ) 1= (Ra)T) Kl < K
0, otherwise

As already applied for the definition of HGC, K}, ICyy, Kg are the functions defined
in (6.1-6.3). kI, kI kI represent the threshold c of the Tukey M-estimator for each

h°"™v o
of the gradient directions x, y, z. Here, we set these values to

k‘T — 6 . ’UI(Iflumm) _ O_x(Id'rr)‘
k,g“ — B . ’Uy(lfluoro) _ Uy(]drr)|
k?; — 6 . ’O_Z<Ifluor0) o O_Z(Idrr)‘

where 0, 0, are the standard deviations of pixel intensities in z-,y-, and z-direction
respectively and f is a predefined constant defining the outlier threshold. For our
experiments on synthetic and real medical images, we empirically found 3 = 4.7 to
produce the best results.

6.2. Evaluation

The above described methods were embedded into a registration framework for
matching 3D preoperative CTA scans to interventional C-arm cone beam CT scans
of the same patient. Besides HGC and TGC, we included NCC and GC for a com-
parative analysis of our proposed measures. The optimization of the registration
equation was performed by the Downhill Simplex method.

We also tested the impact of binary maps for eliminating outliers in the opti-
mization space introduced by medical instruments present in the intraoperative
scan. Therefore, we employed the one-click connected component segmentation fil-
ter provided by ITK! that performs a region growing starting from a user indicated
seed point. As lower and upper intensity thresholds (piower; Pupper), We defined

Plower = 5 max(I(x))  Pupper = max(I(x)) (6.6)

All experiments were performed on an Intel Core 2 PC containing 2.66 GHz CPU
and 4096 MB of main memory. CTA images were acquired by either Siemens So-
matom Sensation 64 or Siemens Somatom Definition, interventional images were
taken by Siemens AXIOM Artis dTA angiography suite with dynaCT software. A
total number of 6 datasets were made available by our medical partners and the
respective image dimensions are given in the following table:

1Insight Toolkit, Kitware, www.itk.org


www.itk.org
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Table 6.1.: Dimensions of preoperative and intraoperative images
\ image size (pixels) \ pixel size (mm)
512 x 512 x 300 — 657 | 0.52 x 0.52 x 0.5 — 2.0
256 x 256 x 219 0.86 x 0.86 x 0.86

CTA
C-arm cone beam CT

In the following accuracy evaluation, a ground-truth transformation 7y; for ev-
ery dataset was defined by a medical expert. On the basis of ten points randomly
distributed over the entire interventional volume, we created 12 different starting
positions yielding initial mT RE values from 1 mm to 12 mm. As quantitative mea-
sures of accuracy, we calculated RMS errors in each of the 6 rigid body parameters
tz,ty,tz, e, 1y, 7. and the average final mT' RE for each of the 6 datasets. Table 6.2

Table 6.2.: Accuracy evaluation of 3D-3D registration: RMS errors in rigid body pa-
rameters and final m7 RE values in mm averaged on all 6 datasets.

Translation Rotation \ mTRE
te (mm) [ ¢, (mm) | t. (mm) | r, (rad) | r, (rad) | 7. (rad) |

NCC 73.9 60.4 101.5 1.0 1.7 0.2 99.3
NCChinary mask | 621 50.9 773 0.8 14 0.1 751
agc 0.9 59 9.8 0.03 0.1 0.02 3.9
gcbinary mask 0.9 2.3 1.9 ~ 0.0 0.1 ~ 0.0 1.7
HGC 0.7 2.3 3.1 ~ 0.0 ~ 0.0 ~ 0.0 0.8
HGChinary mask | 07 22 25 ~00 | ~00 | ~00 | 04
TG6C 0.9 2.0 3.5 ~ 0.0 ~ 0.0 ~ 0.0 1.0
TGChimary mask | 05 20 31 ~00 | ~00 | ~00 | 05

shows these values averaged on all datasets. By comparing the numbers, it becomes
obvious that NCC does not yield satisfying results even when a binary map is in-
cluded (mT RE values of 99.3 mm and 75.1 mm). Already by using a gradient-based
measure, results can be improved to a large extent and the mean value for nTRE
decreases to 3.9 mm. Our proposed measures HGC and 7 GC yield similar small
error measures as GC combined with a binary map. The improvement that can be
achieved by also including a binary map for HGC and 7 GC are only marginaland
therefore the additional requirement for user interaction for obtaining such a binary
map can be omitted.

In order to further evaluate the practical impact of our HGC measure which gave
best results for our previous example, we compared its results to a commercial reg-
istration method by Siemens Medical Solutions available on syngo X Workplace
VA 60, 2003/04 which is based on MZ. In the course of a medical study, 14 intra-
and postoperative datasets were registered 10 times with both algorithms yield-
ing 140 registrations for each program. In all data sets five specified landmarks
placed by two radiologists were used to evaluate the registration accuracy by cal-
culating mTRE. A ground truth transformation was calculated by matching the 5
landmarks in the intra- and postoperative volumes.

The mTRE mean + SD for registrations using MZ was 5.05 4.74 mm which
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Table 6.3.: Comparative study of HGC and MT

mT RE for MZ (mm) | mTRE for HGC (mm)
median 3.58 3.68
mean + SD 5.06 £4.74 4.02 +£1.52
min - max 1.7 - 36.8 1.86-94
90-percentile 9.1 5.8

could be reduced to 4.02 1.52 mm by HGC (see Table 6.3). Although the mTRE
median is slightly better for MZ (3.6 mm compared to 3.7 mm), overall mTRE
values for HGC were significantly lower (p ; 0.001).

In summary, our proposed robust similarity measures HGC and 7 GC yield good
results for registering intraoperative C-arm cone beam CT images to preoperative
CTA scans and HGC outperforms MZ for the same data.






7. Disocclusion-based Image
Registration

This chapter is based on our publication [32] where we investigate the impact of
disocclusion concepts to handle occlusion for 2D-3D medical image registration.

We present two disocclusion techniques, Spline Interpolation and Stent Editing,
and integrate these in a novel registration procedure. Compared to robust similar-
ity measures that restrict outliers by smoothing the plot of the measure and do not
incorporate any information about the shape or location of the occlusion, disocclu-
sion aims at reconstructing the image without the occluded region retaining the
physical model of the image.

For evaluation purposes, we have performed extensive experiments on synthetic
as well as patient data. We have evaluated the impact of the novel disocclusion tech-
niques as well as the existing Digital Image Inpainting [6, 15] on registrations using
Gradient Correlation, Huber Gradient Correlation, Tukey Gradient Correlation, and Gradi-
ent Difference [107] measures. Bringing together three disocclusion techniques with
four similarity measures results in 16 evaluation cases including four evaluations of
the similarity measures only, without any prior disocclusion. Using a standardized
evaluation methodology, we perform a total amount of 144 registrations per case in
each experiment.

The remainder of this chapter is organized as follows. After introducing our dis-
occlusion techniques Spline Interpolation and Stent Editing within section 1, we de-
scribe the entire registration framework in section 2. The experimental setup and
its results are presented in section 3.

7.1. Disocclusion Techniques

Compared to robust similarity measures that perform an outlier reduction for reg-
istration algorithms, disocclusion aims at reconstructing the image in the occluded
region while retaining the physical model of the image.

Recapitulating the notation introduced in section 3.4, let I' C Q describe the oc-
cluded image part and OI" its boundary.

In the remainder of this section, we describe two methods for obtaining the in-
tensity values I(xr, yr) for all pixel positions (zr,zr) € I' based on the image in-
formation which is available in the remaining part of the image domain 2 \ I'. In
the experimental setup, we evaluate these disocclusion techniques, which act as
preprocessing step for the interventional 2D-3D registration.
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7.1.1. Spline Interpolation

A very intuitive way of eliminating occluded image regions consists in interpo-
lating occluded pixels (zr,yr) € I|r from all non-occluded pixels (z,y) € I|o\r
employing cubic spline curve interpolation [113]. Thereby, we approximate two B-
spline curves for each image dimension:

Cu(u) = > Nig(u)P; (7.1)
=0

Cy(v) =) Nis(v)P; (7.2)
=0

where N, 3 are the basis functions of degree 3 and P; are the corresponding con-
trol points representing all I(z,y) V(z,y) € I|o\r- The non-periodic knot points
u € {0,0,0,0,u1,...,;up—1,1,1,1,1} and v € {0,0,0,0,v1, ..., 0;m—1,1,1,1,1} of the
splines are calculated in chord length manner:

T . /| R (7.3)
N
Uj_Uj_1+|yj_]Wyj_1‘, j=1....m—1 (7.4)

where N, M are the image dimensions in x and y direction. The interpolated pixel
value of each occluded pixel (zr, yr) is then calculated by

I(zr,yr) = % (ng (%) +C, (%)) . (7.5)

7.1.2. Stent Editing

The core of this method is based on the Poisson Editing technique [108] introduced
in section 3.4.2. The idea is to achieve a reconstruction of the occluded region I via
a certain guidance field g : T' — R2.

m_in/ VI - gH; dz, subjectto I|or = I|ar. (7.6)
I Jr

Given such a guidance-field g, we are seeking for an image function [ that is equal
to I on the boundary of I' and whose gradient is close, with respect to the Ly-norm,
to the guidance field g. The reconstructed pixel values inside I" can be then obtained
by

I(zr,yr) = I(zr, yr). (7.7)

For the success of this method, we need to carefully choose an appropriate guid-
ance field g. We use the following two observations. Firstly, the abdominal aorta is
almost parallel to the spinal column. Secondly, the outline of the catheter and thin
wires of the stent graft are more or less parallel to its centerline. Thus all gradients of
these wires are nearly orthogonal to the upper and lower borders of the vertebrae.
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(a) Original (b) Inpainting (c) Spline Interpolation (d) Stent Editing

(e) Original (f) Inpainting (g) Spline Interpolation (h) Stent Editing

Figure 7.1.: Disocclusion processing: (a-d) real patient scan with synthetic projec-
tion and artificial occlusion, (e-h) real experiment

In order to obtain an approximation of the stent graft’s centerline direction, we can
compute the principal direction v € R? of ) using i.e. principal component analysis
(PCA). If we assume that v and its orthogonal complement v are normalized, we
can decompose VI as follows:

VI(z) = (VI(z),v) - v+ <v1(x), VL> vt (7.8)

where (-, -) denotes the scalar product. The second term on the right hand side of
(7.8) contains now all undesired gradients that belong to the wires of the stent graft.
Consequently, a suitable guidance field is given by

g(z) = (VI(x),v) - v. (7.9)

By this choice of the guidance field we keep as much structural information as
possible while avoiding to create unreasonable intensity information at the same
time.

7.2. Registration Framework

We propose disocclusion-based registration with robust similarity measures to
solve the problem of occlusions. As visualized in Fig. 7.2, our pipeline first initi-
ates a reconstruction of the occluded image part, given an outline of the occluded
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Figure 7.2.: Registration Pipeline

region, and then performs a 2D-3D registration of the reconstructed 2D image and
the 3D preoperative volume employing a gradient-based similarity measure.

For our evaluation described in section 7.3, we analyze three different disocclu-
sion techniques namely the existing Digital Inpainting method as well as our novel
Spline Interpolation and Adapted Stent Editing. We also present an evaluation of dif-
ferent gradient-based similarity measures, the existing Gradient Correlation and Gra-
dient Difference as well as the novel Huber Gradient Correlation and Tukey Gradient
Correlation methods. These procedures are detailed within subsection 6.1.

In our practical implementation of the 2D-3D registration procedure, we realized
the projection PoV through the concept of Digitally Reconstructed Radiographs (DRR)
(see section 3.3.2). For its generation, we use GPU (Graphics Processing Unit) accel-
erated raycasting, implemented in OpenGL [41]. We employ a single render pass
to compute the X-Ray attenuation A,, along each ray [,,.The conversion from CT
houndsfield units to X-Ray attenuation values is performed by a 1D transfer func-
tion [72] which takes care of scaling, truncation, and saturation effects during con-
version. The DRR images are rendered into a 32bit floating point offscreen render
target and afterwards transferred to the CPU for evaluation of the similarity metric.

7.3. Experiments

A set of experiments was carried out in order to investigate the accuracy and ro-
bustness of the proposed disocclusion-based 2D-3D registration described within
section B.1. We also performed a comparative study in order to analyze each of
the proposed similarity measures together with the introduced disocclusion tech-
niques.

Although segmented structures would yield ideal results, it is enough for each of
the three proposed disocclusion techniques to have a rough outline of the occlusion.
In a potential scenario, a manual outline of the occluded region or an indication the
four corner points of a rectangle including the region could be forwarded to the
disocclusion algorithm.

All registrations were carried out on a Windows XP Professional 2002 PC with In-
tel Core 2 CPU, 2.4 GHz, 2 GB RAM combined with 512 MB RAM on a GeForce 8800
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GTS Graphics card. Except the DRR generation, the algorithms were not optimized
for speed. By a number of tests, we found the Downhill Simplex method to give most
suitable results for solving the optimization of the registration equation. The pro-
posed algorithms could be used within interventional procedures. This requires the
transfer of evaluation of similarity onto the GPU, which has been implemented and
presented for several application within the medical image computing community
[148].

Before presenting the results of our experiments in detail, we first give insight in
our evaluation strategy in the following subsection.

7.3.1. Evaluation Strategy

We created a ground-truth projection matrix Py (the creation process will be ex-
plained in the following subsections) that can be decomposed in P = KT = K[R|t]
(see section 3.3.2 for more details). Given a set of 10 volume points ) = {q,} with
i = 1,...,10 randomly distributed within the overall range of the respective CT
volume (including the occluded region) and following the methodology of van de
Kraats et al.[137], we calculate mTRE, mPD,mRPD (see section 3.3.5) for each
experiment.

For all our experiments, a set of 10 volume points ) were randomly selected
within the overall range of the respective CT scan. We adopted the strategy of van
de Kraats et al.[137] to collect an appropriate number of different starting positions:

1. Choosing intervals for the starting position distance, 01, 12, ..., 12-13 mm.

2. For each interval, for each of the six transformation parameters, the range is
determined that will yield an mT RE less than or equal to the interval upper
bound.

3. For each interval, transformations are generated, where the transformation
parameters are chosen randomly from their predetermined range. Subse-
quently, the mTRE of the composite transformation is determined, and if that
mTRE is within the interval it is kept, otherwise the transformation is dis-
carded. This step is repeated until each interval contains 12 starting positions.

Next to the error measurements mT'RE, mPD, mRPD for accuracy inspection,
we also calculate the success rate which indicates the percentage of registrations
yielding a mT'RE of less than 20mm (success threshold), and the capture range
which is 95% of the largest mPD of a successful registration. As success rate and
capture range highly depend on the compactness of error distribution, their values
are influenced by the selected success threshold. Due to this dependency, only the
error measurements are significant accuracy indicators.

7.3.2. Real Volume with Synthetic Projection

For this experiment, a real abdominal CTA scan acquired by a SIEMENS Somatom
Definition scanner, was provided by our partner clinic. We produced a DRR from
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Modality Size Resolution (mm)
synthetic
projection CTA 512x512x398  0,59x0,59 x 1,25
DRR 308 x 982 1,00 x 1,00
real CTA 512x512x398 0,59 x0,59 x 1,25
X-ray 308 x 982 0,15x 0,15

Table 7.1.: Image dimensions for the respective experimental setups

an arbitrary projection and digitally inserted an occlusion such that the bone struc-
ture is partially hidden (FIG. 7.1(a)). The respective image dimensions are given in
TABLE 7.1.

We evaluated the robustness, accuracy, and success of the proposed registration
framework (see FIG. 7.2). Tests were performed using the three disocclusion tech-
niques presented in section 7.1 followed by a 2D-3D image registration using 4 dif-
ferent similarity measures (GC,GD, HGC, T GC). Including the normal case where
no disocclusion technique was applied, this sums up to 16 evaluation cases to be
compared to each other. Image results of the disocclusion procedures can be seen
in FIG. 7.1(a-d). TABLE 7.2 shows error measures mTRE, mPD,mRPD as well as
success rate and capture range for each of the cases. In additional to mean values,
we present the minimum and maximum of all error measures in order to allow the
reader a better analysis of the differences. In order to quantitatively determine the
significance of the results, we also performed the t-test in between each two of the
disocclusion techniques (including none) for each similarity measure separately.
We computed the test three times for each error measure (nTRE, mPD, mRPD)
resulting in three significance values for each similarity measure and each couple of
dissoclusion techniques. The average significance values (p values) are presented
in TABLE 7.3. A p value equal to or less than 0.05 is considered significant and less
than 0.01 is considered very significant. For allowing an analysis of the effect of the
robust similarity measures and disocclusion techniques to each single rigid body
parameter (t,,ty,t,,ry, 7y, r>) introduced in section 3.3.2, TABLE 7.4 shows the re-
spective root mean square errors (RMSE) between ground truth values and final
registration positions.

Regarding all values and measures, GD performs best and TABLE 7.2 shows
that results can even be improved by disocclusion techniques. Whereas the original
measure yields a mean mPD of 7.96 mm which is already optimal in this evalua-
tion study, a prior treatment of the disoccluded region by Spline Interpolation results
in a mean mPD of only 5.93 mm. This improvement is mostly due to the fact that
the RMSE in depth direction (¢,) could be greatly reduced by Spline Interpolation,
from 8.62 mm to 6.9 mm (see TABLE 7.4). However, as indicated by TABLE 7.3,
there is no significant difference detectable (p = 0.86). An advantage of the prior
employment of disocclusion techniques is an increase in success rate (from 94.44%
to 100%) and capture range (from 8.55 mm to 11.58 mm). GC measure performs
slightly worse than GD (minimal mPD of 11.81 mm) but results are still accept-
able. TABLE 7.3 shows significant difference in between no disocclusion and Dig-
ital Inpainting (p = 0.04), and Digital Inpainting and Spline Interpolation (p = 0.03).
Although there is no improvement detectable for the mean values of the error mea-
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Table 7.3.: Significance values (MATLAB t-test)

Gradient Correlation | Inpainting Interpolation Poisson Editing [ |Huber GC | Inpainting Interpolation Poisson Editing
normal 0.04 0.97 0.47 normal 0.00 0.00 0.00
Inpainting 0.03 0.30 Inpainting 0.00 0.00
Interpolation 0.46 Interpolation 0.11
Gradient Difference | Inpainting Interpolation Poisson Editing| [Tukey GC | Inpainting Interpolation Poisson Editing
normal 0.84 0.86 0.69 normal 0.94 0.00 0.00
Inpainting 0.99 0.85 Inpainting 0.00 0.00
Interpolation 0.86 Interpolation 0.44

Table 7.4.: Mean values for estimation errors in rigid body parameters

Gradient Correlation Gradient Difference
Poisson Spline Poisson Spline
normal Inpainting Editing Interpolation| normal Inpainting Editing Interpolation
t; (mm) 6.94 4.69 5.06 6.43 5.32 4.31 4.79 43
t, (mm) 3.61 3.23 2.77 2.56 1.34 3.11 1.25 1.27
t. (mm) 16.52 17.63 22.09 13.65 8.24 10.72 12.38 6.9
Tz (degree) 0.24 0.25 0.2 0.27 0.15 0.21 0.09 0.17
Ty (degree) 0.35 0.35 0.36 0.3 0.23 0.23 0.25 0.26
"'z (degree) 0.27 0.17 0.13 0.16 0.06 0.05 0.1 0.07
Huber GC Tukey GC
Poisson Spline Poisson Spline
normal Inpainting Editing Interpolation| normal Inpainting Editing Interpolation
ty (mm) 4.86 2.66 13.95 12.85 5.0 4.02 11.89 12.65
t, (mm) 5.1 2.88 10.21 15.97 3.89 3.85 12.88 12.93
t. (mm) 18.38 16.7 30.94 24.88 12.89 15.56 2481 26.92
Tz (degree) 0.36 0.19 0.65 0.67 0.4 0.34 0.74 0.85
Ty (degree) 0.49 0.18 111 0.91 0.19 0.28 1.01 0.89
"z (degree) 0.53 0.06 1.35 1.19 0.25 0.08 1.15 1.06

sures, it is obvious that the maximal mT RE values could be reduced from 34.17
mm to 17.12 mm (Digital Inpainting) and to 18.57 mm (Spline Interpolation). This
is also the reason for the big improvement of success rate and capture ranges as
these values are calculated from the mT' RE values. TABLE 7.4 confirms this ob-
servation as there is slight improvement detectable for some of the RMSE. Robust
measures HGC, T GC bring up the rear of this evaluation study. Without any prior
disocclusion, they yield mean mPD values of 34 mm and 14.34 mm and have low
success rates (70.38%,86.81%). These results can only be improved in combination
with Digital Inpainting. With a mean mPD value of 6.58 mm and 99.31 % success,
HGC comes close to results achieved by GC, GD whereas 7 GC still falls a little bit
behind (mean mPD: 11.22 mm). This observation is further backed by the signifi-
cance values (p = 0.00 for HGC; p = 0.94 for TGC) and the rigid body parameter
RMSEs in TABLE 7 4.

7.3.3. Experiments on Patient Data

Additional to the real abdominal CTA scan, two intraoperative fluoroscopy images
of the same patient showing occlusion by medical instruments (FIG. 7.1(e)) were
provided by our partner clinic. The data had been acquired using a fully mounted
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Siemens AXIOM Artis dTA angiography suite with dynaCT software that gives
information about the focus setting of the X-ray machine as well as its position rel-
ative to the patient table. With this information, we are able to calculate the ground
truth projection P ;.

Again, we evaluated the robustness, accuracy, and success of the proposed disoc-
clusion techniques in combination with a 2D-3D registration using the introduced
robust similarity measures. As in the previous experiments, a total amount of 16 dif-
ferent cases were evaluated. The image results of the disocclusion procedures are
visualized in FIG. 7.1(e-1). TABLE 7.5 shows error measures mTRE, mPD, mRPD
represented as mean values and minimum and maximum values of all performed
test runs as well as success rate and capture range for each of the cases. For al-
lowing a quantitative determination of the significance of the results, we also per-
formed the t-test in between each two of the disocclusion techniques (including
none) for each similarity measure separately. The significance values (p values) are
presented in TABLE 7.6. A p value equal to or less than 0.05 is considered significant
and less than 0.01 is considered very significant. As for the synthetic experiments,
we calculated root mean square errors (RMSE) between ground truth values and
final registration positions for each single rigid body parameter (t,,t,,t., 75,7y, 72)
introduced in section 3.3.2 (see TABLE 7.7).

Interestingly, the robust measures HGC,TGC perform best for the real inter-
ventional images. When only regarding the normal without any prior disocclu-
sion technique applied, HGC yield a mean mPD of 31.41 mm with 99.31% suc-
cessful registrations and a relatively high capture range of 10.45 mm. Although
TABLE 7.6 indicates an almost significant difference in results when comparing
the case without disocclusion technique and Spline Interpolation or Stent Editing
(p = 0.07,p = 0.08), there is hardly any improvement visible in TABLE 7.5. Stent
Editing even decreases the success rate from 99.31% to 85.83%. In the case of mea-
sure 7 GC, only Digital Inpainting is able to improve the results yield by the origi-
nal method without any prior disocclusion. The mean mPD value decreased from
50.77 mm to 38.29 mm with 98.61% (original: 97.92%) successful cases and capture
range of 9.5 mm (original: 3.8 mm). Together with p = 0.02 (see TABLE 7.6), this
is a significant improvement. TABLE 7.7 shows that mostly rigid body parameters
contribute to this improvement as measured by the RMSEs. Similar to HGC, al-
though TABLE 7.6 also indicates high significant difference in results for the other
disocclusion techniques (except of Spline Interpolation vs. Stent Editing), there is no
improvement visible in TABLE 7.5 and TABLE 7.7. For GC, TABLE 7.5 shows some
improvement for the mean mPD values (from 67.15 mm to as less as 51.66 mm
with Stent Editing), success rate (from 59.03 % to as much as 96.53 % with Spline
Interpolation) and capture range (from 1.9 mm to as much as 10.45 mm with Digital
Inpainting). This behavior is also indicated by TABLE 7.6 that shows significant dif-
ferences (or near to that) for all disocclusion techniques (p = 0.02,p = 0.09,p = 0.08).
For the calculation of success rate and capture range we chose a success threshold of
20 mm. The sudden increase in success rate an capture range indicates that mostly
mT RE values of more than 20 mm could be decrease to lie below the threshold. As
shown by TABLE 7.7, Stent Editing) could reduce the RMSE for the depth transla-
tion parameter ¢, which is the reason for the lower mean mPD error measure. The



Chapter 7. Disocclusion-based Image Registration

74

Table 7.5.: Evaluation study on patient data for each similarity measure and each disocclusion technique (including the normal case

where no disocclusion was performed)

Gradient Correlation

Gradient Difference

Poisson Spline Poisson Spline
normal Inpainting Editing Interpolation normal Inpainting Editing Interpolation
MTRE mean (mm) 15.02 8.82 9.31 8.77 13.23 9.59 10.37 9.59
MTRE range 0.2-38.87 0.19-22.84 0.19-43.76 0.29-32.21 |1.78-33.54 0.81-21.91 0.57-32.41 0.43-27.43
mPD mean (mm) 67.15 53.5 51.66 51.81 71.58 62.4 70.95 63.85
mPD range 0.69 - 273.16 0.97 - 23755 0.3-188.05 1.4-201.12 |2.83-295.18 1.95-220.78 2.39 - 273.03 2.31-209.7
mRPD mean (mm) 6.78 5.43 5.25 5.26 7.31 6.4 7.19 6.47
mRPD range 0.69 - 273.16 0.97 - 237.55 0.3-188.05 1.4-201.12 [2.83-295.18 1.95 - 220.78 2.39 - 273.03 2.31-209.7
success rate (%) 59.03 95.83 93.06 96.53 60.41 93.75 94.44 96.53
capture range (mm) 1.9 10.45 1.9 7.6 3.8 6.65 5.7 6.65
Huber GC Tukey GC
Poisson Spline Poisson Spline
normal Inpainting Editing Interpolation normal Inpainting Editing Interpolation
MTRE mean (mm) 7.59 7.53 6.81 6.83 7.95 6.93 11.93 12.29
mTRE range 1.25-20.32 0.89-24.170 0.46-22.81 0.43-2224 | 1.91-279 126-22.29 4.67-3542 2.34-29.96
mPD mean (mm) 3141 33.06 30.8 34.43 50.77 38.29 76.75 78.49
mPD range 2.45-135.11 1.51-120.18 0.82-14256 2.44-126.6 [15.09 - 137.815.59 - 140.93 19.99 - 256.2 5.74- 220.13
mRPD mean (mm) 3.18 3.35 3.12 3.49 5.18 3.89 7.89 8.07
mRPD range 2.45-135.11 1.51-120.18 0.82-142.56 2.44-126.6 [15.09-137.815.59 - 140.93 19.99 - 256.2 5.74- 220.13
success rate (%) 99.31 99.31 85.83 99.31 97.92 98.61 91.67 93.06
capture range (mm) 10.45 7.6 10.45 10.45 3.8 9.5 3.8 3.8




7.3 Experiments 75

Table 7.6.: Significance values

Gradient Correlation |Inpainting Interpolation Poisson Editing| |Huber GC |Inpainting Interpolation Poisson Editing

original 0.02 0.09 0.08 normal 0.72 0.07
Inpainting 0.38 0.53 Inpainting 0.16
Interpolation 0.80 Interpolation

Gradient Difference  |[Inpainting Interpolation Poisson Editing| [Tukey GC |Inpainting Interpolation Poisson Editing

original 0.01 0.01 0.05 normal 0.02 0.00
Inpainting 0.88 0.30 Inpainting 0.00
Interpolation 0.25 Interpolation

Table 7.7.: Mean values for estimation errors in rigid body parameters

Gradient Correlation Gradient Difference

Poisson Spline Poisson Spline

normal Inpainting Editing Interpolation| normal Inpainting Editing Interpolation
ty (mm) 12.56 10.52 10.07 9.96 9.6 9.8 10.04 7.87
t, (mm) 6.95 5.36 5.42 5.37 6.08 5.88 6.22 6.77
L (mm) 25.8 239 28.14 24.19 21.08 19.35 21.61 22.35
Tz (degree) 0.49 0.43 0.39 0.48 0.49 0.5 0.47 0.43
Ty (degree) 0.54 0.54 0.68 0.73 0.47 0.58 0.65 0.58
"= (degree) 0.54 0.56 0.57 0.56 0.68 0.65 0.74 0.66

Huber GC Tukey GC

Poisson Spline Poisson Spline

normal Inpainting Editing Interpolation| normal Inpainting Editing Interpolation
t, (mm) 10.31 9.2 9.23 9.2 11.13 9.62 11.23 12.83
t, (mm) 11.01 9.53 7.34 6.78 8.62 51 9.54 9.02
t, (mm) 24.37 24.49 22.11 21.63 21.53 19.83 24.35 22.01
Tz (degree) 0.61 0.59 0.47 0.48 0.64 0.5 0.5 0.5
Ty (degree) 0.17 0.14 0.37 0.35 0.45 0.38 0.93 0.94
"z (degree) 0.13 0.13 0.16 0.19 0.22 0.19 0.4 0.41

other disocclusion techniques could improve RMSEs for the other translation pa-
rameters t,, t,. Although the application of GD measure without prior disocclusion
yield a worse mean mPD value (71.58 mm) than GC (67.15 mm), its success rate as
well as capture range is higher (60.41 % and 3.8 mm in comparison to 59.09 % and
1.9 mm). This is due to the definition of success rate and capture range that are both
calculated from the mT' RE values. As in the case of GC, the registration result im-
proves when one of the three proposed disocclusion techniques is applied before-
hand. This is also confirmed by TABLE 7.6 that shows p values of 0.01 for Digital
Inpainting and Spline Interpolation, and 0.05 for Stent Editing. The largest decrease
in mean mP D values can be seen for Digital Inpainting (62.4 mm). Surprisingly, the
success rate is still higher for Spline Interpolation (96.53 % vs. 93.75 %), although the
mean mT' RE values are exactly the same (9.59 mm). For an explanation, we have
to take into account the range of mT RE values that is larger for Spline Interpolation
meaning that more values below the presented mean (and also below the defined
success threshold of 20 mm) exist.
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(a) Synthetic projection (b) Synthetic projection (c) Real fluoroscopy
with thick occlusion with thin occlusion

Figure 7.3.: Image data for the analysis of HGC and TGC

Table 7.8.: Analysis of behavior of Huber GC and Tukey GC for different occlusion
structures

synthetic (thick structure) synthetic (thin structure & noise) real
MTRE mean mPD mean mRPD mean [MTRE mean mPD mean mRPD mean [MTRE mean mPD mean mRPD mean
.7{'66 6.25 mm 34.0 mm 3.5mm 6.54 mm 39.16 mm 3.11 mm 7.59 mm 31.41 mm 3.18 mm
756' 3.05 mm 14.34 mm 1.5mm 7.07 mm 41.42 mm 4.23 mm 7.95 mm 50.77 mm 5.18 mm

7.3.4. Analysis of #GC and TGC

While performing the above described experiments, we made an interesting obser-
vation. Whereas, without any prior disocclusion technique applied to the interven-
tional image, 7 GC performs better than HGC for the synthetic experiments in terms
of all accuracy and robustness measures, the opposite is the case for the real ex-
periments. In order to analyze the behavior of both measures for different types of
occlusion and dissimilarity, we created a second synthetic projection and inserted a
digital model of a stent graft disturbed by Gaussian noise (see FIG. 7.3(b)).

The structure of TABLE 7.8 corresponds to the arrangement of FIG. 7.3 showing
from left to right a synthetic projection with a thick occluding structure, another
projection with a thin occluding structure disturbed by Gaussian noise and thereby
resembling the real case, and a real interventional fluoroscopy image. Regarding
all error measures together, 7GC results worsen the more realistic the occluding
structure and the image material itself become. The largest change can be observed
for the replacement of a thick occluding structure by the more realistic digital stent
graft object and the addition of noise. The mean m7T RE value increases by 4.02 mm,
the mean mPD value by 27.08 mm, and the mean mRPD by 2.73 mm. As a com-
parison, the change from the synthetic projection with a thin and noisy occluding
structure to the real image results in a change of only 0.88 mm / 9.35 mm / 0.95
mm. The mean mT RE values for HGC also worsen with the change towards more
realistic occluding structures and the image material. However, the changes in val-
ues are not as high as for tgc. For instance, the mean mT RE value decreases by
0.29 mm when replacing the thick occlusion by a thin and noisy structure, and by
1.05 mm when changing to the real image material. This observation indicates that
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for large connected occlusions or dissimilarities in images, a registration with 7GC
yield better results than with HGC. If perforated or unconnected occluding regions
or image dissimilarities are present, HGC performs better than 7GC. This might
be due to the different behavior of Tukey and Huber M-estimators (see Section 5.1).
Whereas Tukey sets every outlier (result that is higher than the predefined threshold
c) to 0, Huber includes the sign of the outlier as well as the outlier threshold . In
case of small and thin occluding regions or image dissimilarities, k£ can be properly
chosen to resemble in some sense the occluded region such that the registration op-
timization is not interrupted by degraded values. For big occlusions, however, it is
not possible to resemble the entire region by just one fixed value. The reason why
Tukey performs well for the digitally inserted thick occlusion because the setting to
0 of outliers act similar as totally neglecting the occluded pixels. It is obvious that it
is better rather not to take into account dissimilar regions than setting these regions
to a fixed value.

Another interesting observation made in TABLE 7.8 is that, although HGC yields
worse mean m1 RE results when applied to real interventional images instead of
synthetic projections, the mean mPD results get significantly better in the real ex-
periments. For an explanation, the reader is referred to Section 3.3.5 where the error
measures are defined. mPD only measures the error of the projected points. If two
points lie on the exact projection line, one farther away from the projection plane,
they yield an mTRE > 0 but mPD = 0. Thereby it is possible that for the above
mentioned case, HGC could bring the points nearer to the projection line, but farther
away from each other in z direction.






8. Model-based Detection and 3D
Recovery of Stent Shape from
Angiographic Images

During the intervention, the catheter and stent position is only visualized in 2D X-
ray views. This makes it highly difficult for physicians to place the stent graft in the
defined position that was used to define the stent graft parameters. In general, more
image acquisitions are needed during this fine positioning. In particular branching
vessels need to be made visible in the images before completely unfolding the stent.
A ”"virtual”’ visualization of the still folded or unfolding stent graft within the CTA
volume would provide the physician a 3D view of the current situation. This mixed
view can help ensuring the correct positioning of the stent in regard to his planned
measurements. Such solutions would decrease both the need for extensive use of
contrast agent and the radiation dose.

Whereas a deformable 2D-3D registration algorithm for matching abdominal
vascularity extracted from preoperative CTA scans to intraoperative angiographic
images is already available [57], a visualization of the stent graft in the 3D scan still
requires a method for stent graft detection in 2D and correct backprojection into 3D.

In this chapter, we present a novel algorithm to match a 3D model of the stent
graft to an intraoperative 2D image showing the device. The method is fully auto-
matic and does therefore not interrupt the medical workflow. By choosing a global-
to-local approach, we are able to abandon any user interaction and still meet the
required robustness. The complexity of our registration scheme is further reduced
by a semi-simultaneous optimization scheme and by including constraints that cor-
respond to the geometry of the stent graft.

8.1. Stent Model

We define the stent segment model to be the curve,
Mi(x) = (ai(x), bi(x), ¢i(x)) (8.1)
consisting of the set of parametric equations

a;(x) = rp,i(x)cos(x) (8.2)
bi(x) = rpi(x)sin(x) (8.3)
ci(x) = Ajsin(pix + ;) (8.4)
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Figure 8.1.: Stent segment model with r* = rb (left) and rt < rb (right)

with amplitude A; specifying the height of the segment, period p; equal to the num-
ber of peaks, and phase shift s; merely shifting the starting point. The radius of the
stent segment model is calculated by

in(p; 1 Sin(p; 1
Pana(x) = <1 - sinlpoc )> oty S 1, (85)

with r! and r? representing the upper and lower radius as visualized in Fig. 8.1.

In our notation, an entire stent graft M = { My, ..., M,} is defined as the set of [
stent segments.

8.2. Automatic Feature Extraction

For an improved performance, we first apply a preprocessing procedure on the
image I (see Fig. 8.4(b)) in order to outline the stent region S and to highlight the
wire structure. Additional to the wires of the stent graft, the guide wire which is
used as navigation support to the physician is also visible in the interventional X-
ray images. In order for our matching algorithm to not get stuck in these outliers,
we need to eliminate these pixels.

Fig. D.3 displays our preprocessing scheme. For obtaining the catheter silhouette
image C (Fig. 8.3(a)), we employ the Frangi filter [46] for scales 5 — 6 followed by a
median filtering for noise removal in order to capture the catheter pixels.

The stent region S (Fig. 8.4(c)) can be extracted similarly. First, we subtract thick
curvilinear structures from thin curvilinear structures (Frangi filter for scale 2) for
only highlighting the stent wires. For further use, let us denote the resulting image
as Iyires (Fig. 8.3(c)). Subsequent employment of a median filter for noise removal
and mean filter for dominant region extraction leads to the desired image region
that contains the stent graft. It is worth mentioning that instead of the Frangi filter,
any filter can be used that highlights curvilinear structures of selected sizes.

In the end, we subtract the catheter pixels C from image Iires and mask the result
with the stent region S:

It = (Iwires — C) - S. (8.6)
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feature Image Iy

|
® (_catheter silouette C
Median filter |_4 Mean filter l—’ —

Median filter

/ Frangi filter (thin lines)

\ Frangi filter (thick lines)

Figure 8.2.: Preprocessing scheme for an automatic computation of the feature im-
age Iy

(@ C b) S (©) Lwires (d) I

Figure 8.3.: Visualization of automatic feature extraction procedure

The resulting feature image is displayed in Fig. 8.3(d). In order to provide a distance
measure for the following registration procedure, we calculate distance map Dy,
on feature image Iy such that each pixel z € Dy, represents the distance to the next
feature point (non-zero pixel in Iy).

8.3. Registration Algorithm

In order to place the model in the 2D image space of the interventional image I a
projection is necessary to map the stent model M to the image coordinate system.
Similar to 2D-3D image registration, the projection transformation P = K[R|t] con-
sists of the 6-DOF extrinsic parameters [R|t] for rotation and translation of the 3D
volume and the 4-DOF intrinsic camera parameter K of the pinhole camera model
[58]. For the following considerations, we assume the camera matrix K to be given
by the interventional angio system.

Using all transformation and model parameters together as

p:{pl""apl}a Pi:{Riati>7’$,Tf>Ai} (87)
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(a) (b) (©

Figure 8.4.: Overview of our proposed solution (high resolution images are in-
cluded in the supplemental material): (a) cut-out of an abdominal aor-
tic stent graft, (b) fluoroscopy image commonly acquired during EVAR,
(c) extraction of image region including the stent graft wires (stent re-
gion §), (d) initial stent graft model M created from xml-file, (e) op-
timized stent graft model overlayed in green on interventional fluo-
roscopy image

the registration problem for the entire stent model can be formalized as

l
p= argrrgnz Z Dy, (Tp,(z)) (8.8)

i=1 zeM;

where Ty, () is a projection of point x of the 3D segment model M; using parame-
ters p; into 2D image space. This formalization equals a simultaneous registration
of all stent segment models introducing a parameter space of dimension [ x 9. Con-
sidering that conventional abdominal aortic stent grafts consist of more than 10 seg-
ments, the cost for optimization increases rapidly. Another drawback is introduced
by many local minima in the costfunction plot, each of them belonging to one stent
segment that is displayed in the image. The costfunction for the registration of the
whole stent model consisting of I stent segments is

l
E(p)=> > I(Tp, (M) (8.9)

=1 M;

where p = {p1,...,pi}.

A sequential fitting of each segment of a conventional aortic stent graft leads to
parameter space of dimension multiple of 9. In order to reduce the complexity in
our registration procedure, we use a semi-simultaneous optimization framework
introduced by Sidorov et al. [127]. Instead of optimizing all parameters for all seg-
ments at once, we optimize the parameters of one segment for a certain number of
iterations and then move to the next randomly chosen segment. By applying this
strategy, we implicitly make use of the tubular appearance of the stent graft and
constrain the pose change in between neighboring segments.



8.3 Registration Algorithm 83

We can smoothen the costfunction plot by the inclusion of prior knowledge about
the stent graft to be implanted: mean diameter, mean amplitude of the stent graft,
and distance d; between consecutive segments (see Fig. 8.4(a)). This information
is default for all samples of a certain model by a certain producer and can be de-
livered by the vendor (i.e. in an xml file). Having this information available and
setting the remaining parameters of each segment to initial values, we can model
the implanted stent graft approximately and divide our registration problem in two
steps. A complete description of our method in pseudo-code is given in Alg. 1.

Global registration

Here, we solve for the overall orientation of all segments in order to be very close
for the local calculations. The global pose of the entire stent graft model is defined
by the global parameters K, Rgiopals tgiobal- The angle Yglobal for rotation around the
camera’s z-axis as well as the translation ¢* global> 4 global AN be estimated from the
stent region S via principal component analysis and center of mass detection. There-
fore, only rotation around the camera’s z- and y-axis and translation in along z-axis

need to be optimized and hence, we define pgiopa; = {¥giobal; Bgiobals t;lobal}.

Accordingly, let now p; = {v;, t;,7l, 77, b A;} define the set of remaining parame-
ters for each single segment i, where v; = [o, §;, %] represents the vector contain-
ing the three rotation angles that form rotation matrix R;. Setting parameter vectors
p: to initial values corresponding to the definitions from the xml file starting with
no rotation and translation, the registration problem can be formalized as

pglObal = arg pIquljllil Z Z DIf {leobalv qlobal7tjlobal}opglobalopz (x>) (8.10)
=1 xzeM;

The optimal Pyiopa leads us to the approximated position of the stent graft in the
interventional image. In the next step, we will refine the shape and position of each
single segment of the stent graft.

Local registration

We aim at finding the correct values for each p;.Similar to Equ. (8.8) for the simul-
taneous registration, we define our costfunction for each segment i (i = 1,...,1) as

E(pi) = Z Diy (T{’Yglf’bal’tglobal’tglobal}of)glnbalopi (@)) - &(pi) - o(Pit1) (8.11)
reEM;
with
[t — ti1| — t2
gf)(pl) = |VZ' — Vi_1’ — ViA + A (812)
b =g =
penalizing the change of translation, rotation and radius in between neighboring
segments. This change is constraint by the graft material fixing the stent wires (Fig.
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8.4(a)) which is not stretchable. Therefore translation, rotation radii as well as the
radii of the curves depend on the predefined distance d; between the segments:

d; d;
2 V1+d;
tZA = % ViA = d; T.A = |7‘t — Tb’
N 1+d, 7 ) )
5+ d; 4

In order to account for small measurement errors, an additional parameter A was
added to the penalization equation (8.12).

Algorithm 1 Stent Extraction

Require: Stent model M = {Mi,..., M;}, Image I
[D1,,C,S] = doPreprocessing(I)
Yglobal < PCA(S)
[tarobat> tiobar) < centerO fMass(S)
foralli e {1,...,n} do
pi < initializeSegment Parameters()
end for
Dylobat < doGlobal Registration(Di,, Ygiobal G1obat Cgtobat> pi)
while not happy do
i <— randomSelect({1,...,1})
if first iteration then
P < Ppi
end if
for 20 iterations do
i < doLocal Registration(Ygobals tjopars Lytobats Polobals P)
end for
P < Di
end while

8.4. Evaluation

Although our method can be applied to interventional X-ray images without know-
ing the corresponding matrix P, a thorough validation is only possible in 3D re-
quiring a correct calibration of the C-arm system. A possible strategy is to acquire
projection images of the stent graft from two or more different views, apply our
proposed method to each of the images, and compare the resulting 3D models.
Therefore it is crucial that either all images are taken simultaneously or no changes
to the stent graft have been made in between the different acquisitions. It is very
difficult to find interventional images that fulfill these requirements as bi-planar
systems are not considered state-of-the-art imaging for endovascular interventions
and physicians only rarely acquire two or more images where the stent graft is in
the exact same opening stage. A second approach is possible if a 3D volume of the
situation (including the stent graft) is available. Then, the resulting 3D stent model
can be compared to a segmentation of the stent. However for interventional cases,
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Figure 8.5.: Synthetic experimental data: (a) 3D digital 4-segment stent model, (b)
sample image showing the model with additive Gaussian noise, (c) de-
tection result in 2D overlayed in green

Table 8.1.: Synthetic experiments: RMS errors for each local parameter averaged

over total number of included segments

R (deg)

t (mm)

T W [V e | E A (mm) | r* (mm) | 7° (mm)
Rj 0.01 0.03 0.02 0.00 0.00 0.04 0.00 0.00 0.00
Ry 0.01 0.03 0.03 0.00 0.00 0.04 0.00 0.00 0.00
R; 0.02 0.04 0.04 0.01 0.00 0.05 0.00 0.04 0.02
Rs 0.02 0.04 0.05 0.01 0.01 0.06 0.01 0.04 0.04

only pre- and (maybe) postoperative patient volumes are available that either con-
tain no stent graft at all (preoperative) or a fully opened stent graft acquired at least
6 months after the intervention (postoperative). Due to these difficulties, we de-
cided to quantitatively validate the accuracy of our proposed algorithm on realistic
synthetic and phantom data and additionally show the impact of our method on
real data.

For creating the synthetic data, we digitally produced binary volumes of size
512 x 512 x 512 showing random stent graft models consisting of 3-6 segments,
namely R3, R4, R5, Rg. By applying realistic deformations to each of the segments
and calculating preselected projections of the volumes, we obtain 2D images of
the stent graft as well as the corresponding ground truth parameter selection.For a
unique parameter selection, we added the global rotations and translations to the
local parameters v;, t;. We estimated the average noise level of 5 interventional flu-
oroscopies showing an unfolded stent graft and added it to the projection images
(mean 0.59 and variance 0.98). The values were found by estimating the average
noise level of 5 interventional fluoroscopies showing an unfolded stent graft. Fig.
8.5 shows a synthetic image including a 4-segment stent graft and its detection re-
sult. The registration accuracy is listed in Table 8.1. As expected, the errors values
are very small and show the overall impact of our method. Obviously, due to error
propagation, values are slightly increasing the more segments are included in the
stent model. The sudden change in error values for stent models with 4 and 5 seg-
ments are due to the fact that we only employed different top and bottom radii for
Rs, Rg.
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Table 8.2.: Details for phantom projection images and the comparison of recovered
3D stent model to real stent graft extracted from CT (DICE and Jaccard
metric [125])

size primary angle (deg) | secondary angle (deg) || DICE | Jaccard
(pixel) (deg) (deg)
A | 478 x 422 18.2 20.1 0.95 0.95
B | 478 x 422 18.2 20.1 0.95 0.95
C | 478 x 422 18.2 20.1 0.95 0.95
D | 478 x 422 18.2 20.1 0.95 0.95

In absence of a publicly available gold standard, we employed the following
strategy to create ground truth data for reliable validation of our method. We cre-
ated our own phantom consisting of the upper part of a swine’s leg and inserted
a half unfolded sample of a stent graft such that it lies parallel to the bone. Sim-
ulating the small catheter that is inserted prior to the stent graft, we integrated a
small wire inside the stent graft sample. 10 Radio-opaque markers were sticked to
the outside and inside of the box in a predefined pattern to facilitate the subse-
quent correspondence finding.In order to prevent deformation changes, we placed
the entire phantom in a paper box and filled all empty space with insulating foam.
After acquiring a 3D CT volume, we took X-ray projection images with a mobile
interventional C-arm from 4 different angles. Details of the image sizes and trans-
formations are given in Table 8.2. In absence of an available fixed angio system, we
had to estimate the projection matrix for each of the 4 projection images by employ-
ing the normalized Direct Linear Transform (DLT) algorithm [58] on the corresponding
marker positions.

Once P matrices were estimated, our algorithm was applied to all 4 projection
images. We compared the recovered 3D models to the real stent extracted from
CT. The 3D segmentation was performed using a combination of manual outlining
and region growing. In order to allow for quantitative evaluation of our results, we
backprojected the resulting digital stent models into CT space and created a binary
volume of the exact same extent and voxel size as the phantom CT volume. Table
8.2 indicates the DICE results for each of the 4 datasets.

For the real experiments, our medical partners kindly provided a set of real in-
terventional fluoroscopy image data (acquired by Siemens AXIOM Artis dTA an-
giography suite) and corresponding preoperative CTA scans. In absence of ground
truth data as the stent graft is not shown within the preoperative volume, we
employed the first validation strategy as explained in the beginning of this sec-
tion. Provided that the C-arm system is correctly calibrated, the amplitude and top
and bottom radii of two corresponding segments acquired from different views
must be equal up to a common scaling factor. As the angiography system used
by our clinical partners is not biplanar, deformation changes need to be taken
care of by the experimental setup. In the lower abdominal part of the human
body, the aorta and iliac arteries are not exposed to breathing or other organ spe-
cific motion and the pulsatile motion originating from the blood pressure is ne-



8.4 Evaluation 87

(d)
Figure 8.6.: Real experiment: (a)-(b) detection results (white) overlayed onto inter-
ventional images acquired from two different views, (c) 3D recovery of

both stent shapes (green,red) after applying a common scale to all green
segments

glectable [73]. The deformation that is induced by the stent graft itself, however,
is very significant [35], but can be eliminated by acquiring both images in the
same opening stage of the stent graft. Visual results are given in Fig. 8.6. For the
combined plot of both models (Fig. 8.6(c)), we applied a common scale of 7.91
to each segment’s amplitude and top and bottom radii of the stent model shown
in red color. The scale value represents the mean ratio of final values for ampli-
tude and top and bottom radii for each of the 8 segments and yields a root mean
square error in model point positions of 2.1 mm. Resulting offsets for the local pa-
rameters (v¥,v¥,vZ t% t¥,t*, A, rt r?) are (—7.1deg, —6.3deg, —5.4deg, ~ 0.0mm, ~
0.0mm, ~ 0.0mm, —0.8mm, 0.2mm, 0.6mm).






9. Conclusion

After having presented the novelties introduced by our work, we would like to
conclude this thesis with a summary and an outlook to future work that emerges
from our contributions.

9.1. Summary

An abdominal aortic aneurysm (AAA) is an enlargement of the abdominal aorta,
resulting from weakened arterial walls. As preventive treatment procedure, the
conventional open surgery has been more and more replaced by endovascular aor-
tic repair (EVAR) due to its minimally invasive nature. In contrast to a complete
opening of the patient’s abdomen, a stent graft is inserted via an introducer system
through one femoral artery into the aneurysmatic aorta excluding the aneurysm
sack from the circulation and reducing the pressure on the aortic wall. Once com-
pletely unfolded, misplacements of the stent graft lead to partial or total cut-offs of
blood supply of vitally important organs and will lead to a life-threatening emer-
gency surgery. Hence, the short and long-term effects of EVAR highly depends on
the accurate positioning of the stent graft [60]. An appropriate visualization and ad-
vanced image guidance could help improving the difficult situation for the physi-
cian as well as increase the cure chance for the patient.

In this thesis, we have presented new approaches to computer-assistance for en-
dovascular abdominal aortic repair. By a fusion of the preoperative high-resolution
3D patient scan and the interventional images, it is possible to bring missing 3D in-
formation about the patient’s vasculature into the intervention room. A subsequent
image-based detection of the stent graft in the interventional image and its simulta-
neous recovery in 3D makes it possible to further visualize the device in its current
position within the preoperative volume.

Our proposed registration algorithms are able to handle difficult image dissim-
ilarities introduced by occluding medical instruments in the images. We have in-
troduced robust similarity measures Huber Gradient Correlation and Tukey Gradient
Correlation and have shown that these are able to improve accuracy and robustness
of registration algorithms for matching an intraoperative C-arm cone beam CT data
to a preoperative CTA volume of the same patient.

Compared to robust similarity measures that perform an outlier reduction for
registration algorithms, disocclusion aims at reconstructing the image in the oc-
cluded region while retaining the physical model of the image. This is realized by
disocclusion-based 2D-3D registration that we have presented in this thesis. Two
novel disocclusion techniques, namely Spline Interpolation and Stent Editing, have
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been introduced and incorporated into a medical registration framework. In order
to be able to perform a comparative study, we also combined the existingDigital
Inpainting disocclusion method as well as four different gradient-based similarity
measures into the same framework. During experiments of the algorithms on syn-
thetic data as well as real clinical images, we detected an ambiguity of our proposed
measures Huber Gradient Correlation and Tukey Gradient Correlation. In a subsequent
analysis, it was discovered that the performance of these measures highly depend
on the shape and structure of the occlusion.

In order to complete our research and make our methods applicable for practical
usage, we have presented a method for detection of the stent graft in intraoperative
2D images. We have thereby shown for the first time that an image-based detec-
tion of the prosthesis and simultaneous visualization within a volume rendering
of the patient scan is possible. The method is fully automatic and does therefore
not interrupt the medical workflow. By an automatic preprocessing and choosing a
global-to-local registration approach, we are able to abandon any user interaction
and still meet the desired robustness. Our method . The complexity of our regis-
tration scheme is reduced by applying constraints that correspond to the geometric
model of the stent graft, and a semi-simultaneous optimization strategy.

9.2. Future Work

In this thesis, we have presented new approaches to computer assistance for EVAR.
Although our methods are self-contained, the results point to several interesting
directions for future work.

9.2.1. Deformable Registration

Although the abdominal aorta is not subject to breathing motion nor to any other
specific organ motion, deformation changes are possible induced by the rigid med-
ical instruments, in particular the stent graft itself. There have been several ap-
proaches suggested for deformable 2D-3D registration of vessels in general [57]
and of the aorta in particular [85, 117]. However, all of them assume to have an-
giographic 2D images available where the aorta is equally contrasted. This requires
additional contrast injections as due to the large extents of the aorta, the contrast
dissolves quickly.

As the abdominal aorta is not subject to breathing motion or any other organ spe-
cific motion and the only deformation that happens interventionally is induced by
rigid medical devices, another option is to additionally use the information given
by the inserted instruments such as the catheter or the stent graft itself. These de-
vices are visible in both angiographic and fluoroscopic images and describe roughly
the outline of the vessel, e.g. its centerline. Once the stent graft is completely un-
folded, the inner vessel wall can be estimated by transforming the stent into a tubu-
lar structure, e.g. a centerline with cross sectional disks representing the radius. In
contrast to existing methods, this approach takes into account only a limited but
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important region within the aorta and deformable registration could therefore be
performed more efficiently.

9.2.2. Image-based Tracking of Stent Graft

The opening of a stent graft inside the abdominal aorta is performed under contin-
uous fluoroscopic guidance resulting in a sequence of images capturing different
stages of the opening procedure. In this thesis, we have presented a method for ac-
curate 2D detection of the stent graft and simultaneous recovery of its shape in 3D
from one single intraoperative 2D image. Having a fluoroscopic sequence available
showing several opening stages of the stent graft, the detection and recovery result
of a previous frame could serve as initialization for the launching of our method in
the next frame. By constraining possible deformation changes in between consecu-
tive frames, efficient image-based tracking of the stent graft could be realized. With
the simultaneous recovery in 3D, the actual position and shape of the stent graft
could be visualized in the preoperative patient scan. This would allow the physi-
cian to directly control the correct positioning of the stent graft such that it cor-
rectly covers the aneurysm while not occluding any branching vessels. Moreover,
the extracted deformation of the device can directly be applied to the preoperative
patient scan allowing an immediate deformable 2D-3D registration of the aorta as
discussed in the previous section 9.2.1.

9.2.3. Realistic Deformation Constraints for Virtual Stenting

The possibility of digitally simulating the insertion of a stent inside a blood vessel
prior to the intervention and thereby being able to do more accurate measurements
and treatment planning, has ever been a strong desire of physicians. Research on
virtual stenting have emerged from recent advances in simulating biomechanical
behavior of organs and anatomy. Existing methods [45, 81, 37] describe the digital
stents by cylindrical simplex meshes [30] that model the deformation by second-
order partial differential including internal and external forces. Additional con-
straints calculated from the geometric and mechanical characteristics of the stent
also contribute to the deformation simulation. Such an approach is valid for bare-
metal intracranial or coronary stents (see appendix A for more detail), however, not
for endovascular stent grafts that consist of two different material and has therefore
different behavior.

Another common issue of all existing approaches is the unavailability of a con-
crete description how stent deformation is constraint by degenerated arterial walls.
Performing our proposed method for 2D detection of a stent graft and simultane-
ous recovery of its shape in 3D on a sequence of interventional images showing a
complete opening of the stent graft (see section 9.2.2) would result in a series of 3D
stent graft models simulating the real deformation in interaction with the anatomy.
Extracting such deformation models from a population of patients would provide
a basis for in-depth analysis of stent graft deformation and its interaction with de-
generated vessel walls. Integrating this knowledge into virtual stenting procedures
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could provide to the physician a more realistic environment for treatment planning
and might eventually broaden the range of aneurysms that can be treated by EVAR.



Appendix






A. Medical Stents

Although many people associate the word ”“stent” to a prosthetic device used in hu-
man medicine, it goes back to the English dentist Charles Stent who invented a ma-
terial to form dental impression compounds in 1856. The plastic surgeon Jan Esser
used the exact same material to craft forms for facial reconstruction and named
it "Stent’s material” after its inventor [120]. It is difficult to follow an exact line
through history, but somehow the expression “stent” ended up being a synonym
for some kind of prosthesis replacing or supporting parts of the body structure [59].

In the next two sections, we outline the different shapes of various medical stents.
We also describe in detail the differences of certain vascular stents and stent grafts
crucial for this thesis.

A.1. Stent Designs

Medical stents are implanted into various anatomical structures and organs. Their
design changes with the requirements a supporting prosthesis must fulfill for cer-
tain anatomical locations. A selection of different stents in shown in Fig. A.2. Airway
stents (see Fig. A.1(a)!) are built of metal or silicone in a variety of sizes with and
without covering providing physicians with many options in managing airway ob-
structions. A ureteral stent (see Fig. A.1(b)?) is a thin, flexible tube threaded into the
ureter to help urine drain from the kidney to the bladder or to an external collec-
tion system. Prostatic stent (see Fig. A.1(c)) are used to keep open the male urethra
and allow the passing of urine in cases of prostatic obstruction and lower urinary
tract symptoms. A duodenal stent is placed to prop open an obstruction in the duo-
denum (first section of the small intestine) which may allow fluid and food to pass
more easily and also to keep the duodenum from becoming obstructed again. An
esophageal stent (see Fig. A.1(d)%) is placed at a point of narrowing or blockage to
open up the esophagus to help the patient swallow or drink.

The most widely known is the vascular stent placed inside a blood vessel to pre-
vent, or counteract, a disease-induced, localized flow constriction. Also here, its de-

'From NYU Medical Center, Department of Cardiothoracic Surgery, Division of Thoracic
Surgery. Available at http://www.med.nyu.edu/cvsurgery/thoracic/patientcare/
technology/airway.html.

2Bander Ureteral Diversion Stent Set by Cook Medical. Available at http://www.cookmedical.
com/uro/dataSheet.do?id=4870.

*Ultraflex™ Esophageal NG Stent System by Boston Scientific. Available at http:
//www.bostonscientific.com/Device.bsci?page=HCP_Overview&navRelId=
1000.1003&method=DevDetailHCP&1id=10005791&pageDisclaimer=Disclaimer.
ProductPage.
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http://www.cookmedical.com/uro/dataSheet.do?id=4870
http://www.cookmedical.com/uro/dataSheet.do?id=4870
http://www.bostonscientific.com/Device.bsci?page=HCP_Overview&navRelId=1000.1003&method=DevDetailHCP&id=10005791&pageDisclaimer=Disclaimer.ProductPage
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(d)

Figure A.1.: Stent Designs: (a) covered metal airway stent, (b) urinary stent, (c) pro-
static or urethric stent, (d) esophageal stent

sign varies depending on the blood vessel this stent is inserted in. A more detailed
analysis on the different designs is given in the following section A.2.

The recent advancements in stent technology have lead to featured devices. Cov-
ered with palladium, a radioactive stent limits excessive cell growth of the inner
membrane of the blood vessel and prevent restenosis. However, because of the con-
stant radiation that is exposed, the use of such stents is not according to radiation
protection laws of most countries. Eliminating this drawback, a drug-eluting stent is
coated with a pharmacologic agent (drug) that is known to interfere with the pro-
cess of restenosis (reblocking). More recently, a new generation of stents has been
introduced. Healing stents are coated with antibodies that attract ingrowth cells of
the vessel wall. That way the stent mesh is being covered more quickly and this
decreases the risk for restenosis.

A.2. Stent vs. Stent Graft

Vascular stents and stent grafts exist in various shapes and configurations depending
on the type of blood vessel and kind of disease. Whereas coronary and carotid stents
are solely made from metal webs or meshes (see Fig. A.2(a)*), (endovascular) stent

*TAXUS®Express*™ Atom™ Paclitaxel-Eluting Coronary Stent System. Available at http://
bostonscientific.mediaroom.com/index.php?s=13&cat=14smode=gallery:53.
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Figure A .2.: Different design and material: (a) stent, (b) stent graft

grafts (see Fig. A.2(b)%) are composed of a synthetic fabric tube (graft) supported
by a rigid structure (stent).

Stent grafts used for EVAR usually consist of two or three parts: Either a main
body and two legs, or a trunk component (including one of the legs already) and a
contra-lateral leg component. The legs are supposed to sit in the iliac arteries, and
are frequently referred to as limbs. Various sizes and configurations are available
from different vendors, and, additionally to the commercial ones, custom-made
stent grafts can be obtained. The components are folded up in order to fit into deliv-
ery catheters, and are capable of expanding to the pre-established diameter when
placed and released in the artery.

5Zenith Flex by Cook Medical. Available at http: //www.cookmedical.com/ai/home.do.
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B. AAA-Thrombus Segmentation

For diagnosis and detection of AAA, CTA! is the standardized imaging modality.
Whereas the aortic lumen is highlighted by injected contrast agent and has strong
gradient values to surrounding structures, the aortic wall and aneurysm throm-
bus are visually very hard to detect without any anatomical expertise (Fig. B.1(a)).
Additional difficulties for segmentation algorithms are introduced by severe calci-
fication occurrence inside the thrombus (Fig. B.1(b)).

For allowing an optimal treatment planning of AAAs, the focus of medical as
well as engineering research goes towards integrating biomechanical models in the
medical workflow. In the current clinical environment, the geometric information
of the abdominal aneurysm model is defined by a manual segmentation performed
by the surgeon himself. However, this is highly time-consuming and requires a lot
of expertise. For these reasons, semi-automatic methods are urgently needed.

In this chapter, we present a hybrid deformable model approach for segmenta-
tion of the thrombus in an abdominal aortic aneurysm. Having a presegmentation
of the aortic lumen available, our method constructs a deformable model on the lu-
men boundaries and drive its deformation towards the thrombus boundaries. The
energy functional that is minimized during deformation, integrates local as well
as global image information and combines it with additional shape constraints. By
the use of cubic B-Spline surfaces as deformation model and distance functions, ex-
isting gaps in the boundary gradient are overcome and segmentation leakage into
adjacent objects is prevented.

In the last decade, several approaches have been published for AAA segmenta-
tion. Subasic et al. [130] divides the segmentation into two tasks. The inner aortic
boundary outlines the blood filled lumen and is segmented by an edge-based geo-
metric deformable model and subsequent morphological postprocessing to obtain
the segmented surface. In order to obtain a surface of the outer aortic boundary
that defines the vessel wall, the authors utilize a-priori knowledge about the aortic
shape to reconstruct low-contrast portions of the aorta including the outer bound-
ary. The slice-wise knowledge-based preprocessing is followed by another run of
the edge-based geometric deformable model and subsequent morphological post-
processing already used for segmenting the inner boundary. The method was tested
on 12 patient datasets showing tubular AAAs of different shapes and sizes. How-
ever, AAAs that cover branching vessels or the aortic bifurcation were not included
in the experiments. For the segmentation of the aortic lumen and the thrombus at
once, Zhuge et al. [147] propose to combine a geometric deformable model with
a support vector machine (SVM) classifier evaluating the likelihood that a given
voxel is part of the aneurysm. The SVM is trained with voxel location, intensity, and

!CTA - Computed Tomography Angiography
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(b)

Figure B.1.: Abdominal Aortic Aneurysm

texture features. Compared to other approaches, the initializing of the defomable
model is completely automatic. In order to ease the restriction of purely gradient-
based approaches to have well defined object boundaries available, Olabarriaga et
al. [102], de Bruijne et al. [29], and Zhuge et al. [147] additionally use a-priori infor-
mation about the intensity texture of aneurysms to drive the model deformation.
Such statistical deformable models indeed give valuable results for AAA segmen-
tation, however, they heavily depend on the quality and quantity of presegmented
training sets.

Our method is inspired by the approach of Huang et al. [64] that deforms a model
in a common variational framework using both boundary and region information.
As a non-parametric kernel-based approximation of the intensity distribution is
used, no prior training of classifiers is required. Initially published for application
to ventricle segmentation, this method gives good results. For the application to
aneurysm thrombus segmentation, we adapted the energy functional to be better
adapted to the shape and intensity characteristics of AAAs. In contrast to the free
form deformation model used by Huang et al., our approach uses B-Spline surfaces
to model the deformation. Thereby, we allow non-uniform distribution of control
points that gives stronger smoothness constraints that are modeled locally. Addi-
tionally, as our data sets are of big size, we reach a better performance with our
deformation model. It needs much less evaluations due to the smaller amount of
control points. In the following section, we describe our method in more mathe-
matical detail.

B.1. Segmentation Algorithm

B.1.1. Deformation Model

In this section, we aim at deforming a model M initialized at the aortic lu-
men boundary, towards the correct boundaries of an abdominal aortic aneurysm.
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Figure B.2.: Simulation of energy functions

Thereby our deformation model

N M
Y = N (WN (V) pi s
> izo ijo M,p(u)/\[j,q(v)wi,j
is described as a conventional NURBS surface [113] with bidirectional control grid
p, nonrational B-spline basis functions NV, and weights w.

The model is deformed by adding a displacement vector f; ; to each control point
pi ;. We express this deformation by M(u,v) o f.

We use the following notation with our deformable model M:
Rnm  is the image region enclosed by the model.

(O\Rm represents the image background.
0Rm  is a narrow band of width § at the model boundary.

B.1.2. Information Representation

Our approach combines local and global information about the object to be seg-
mented.

The local shape image ®;,., contains edge information and enforces the model
to deform towards existing image gradients. Therefore, we first extract the edges E
in the original image I. Then

Procal(x) = d(z, E(I)) (B.2)

is represented by the euclidean distance d from each voxel x to the nearest edge
point of E(I).

The global shape image @401, incorporates information on intensity statistics
and drives the model deformation towards statistic region boundaries. Therefore,
we sample a few intensity values belonging to the aneurysm thrombus and repre-
sent the model texture using a mixture of j Gaussians (Gaussian Mixture Model)
each defined by mean 1; and standard deviation o;. Then, the probability density
function of a voxel x belonging to the aneurysm region R is

p(e|R) = iwj ! exp(—%)ﬂj) (B.3)
= \/%O'j 20']-
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with P(j) presenting the prior probability that pixel  was generated by component
J and where Z]]Vil P(j) = 1. Applying this pdf to all image voxels, a probability
image P is created. After edge extraction, the global shape image reads

Pgioval() = d(z, E(P)) (B.4)

where every voxel represents the euclidean distance d from each voxel x to the
nearest edge point of E(P).

B.1.3. Model Evolution

The deformation of our model M is driven by the minimization of an energy func-
tional that is to be explained in detail in this subsection. The different parts of the
energy functional make use of the precomputed shape images that were described
in the previous subsection.

E = aEjea + 5(Eglobal + bEprop) (BS)

The local energy term encourages the model to go along the “geodesic” path,
which is the smooth shortest path connecting the two open ends of a gap:

Elocal = ﬁ / /(¢local(M(u7 U) © f))QdUdv (B6)

Weighting parameter o controls the influence of this term to the overall deforma-
tion energy. Fig. B.2(a) shows a plot of this energy for different displacements of the
model control points. As one can easily observe, this energy incorporates steep rises
and falls and will converge extremely fast to the minimum if initialized correctly.

The global energy term enforces the model deformation towards the edges of the
probability image and also chooses the geodesic path to overcome possible gaps.

Eglobal = ﬁ / /(¢global(M(uv ’U) © f))szdv (B7)

Weighting parameter 3 controls the influence of this term to the overall deformation
energy. Besides the different shape images, the terms (B.6) and (B.7) are constructed
in a very similar way and the characteristics of their plots are very similar.

The last energy term used is the maximum likelihood intensity data term, written
as

Eprop = —ﬁ /u / logP(I(M(2) o £)|R)dudv (B.8)

It forces the model to deform towards areas of high probability. The plot of this
energy is visualized in Fig. B.2(b). The flat area in the center matches with the ho-
mogeneous region inside the aneurysm.
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Algorithm 1
1: procedure HYBRIDAAASEG(L,S;,t) return S,
2: s + getThrombusSamples(I)
3 pde < calculateGM M (s)
4: I+ fillLumen(I,S;, pdf)
5: P + calculate PropImage(I, pdf)
6
7
8
9

S« Sl
for all chosen scales of I do
downscale(I)

: downscale(P)
10: scale(S)
11: initializeModel(M, S)
12: (Drocal, Pgiobal) — computeShapelmages(1, P)
13: setScale Parameters(a, 3,b, \)
14: f<o0
15: while not converged do
16: £/ f— 22
17: if |E(f") — E(f)] <t then
18: converged
19: end if
20: f«f
21: end while
22: M + Mo f’
23: S « recomputeSegImage(M')
24: end for
25: S, « rescale(S)

26: end procedure

Figure B.3.: Pseudocode for AAA segmentation algorithm

B.1.4. Processing the AAA segmentation

The overall segmentation algorithm Hybrid AAASeg is demonstrated in Fig. B.3. The
algorithm requires as input the volume scan I, a presegmentation of the aortic lu-
men S}, and a value ¢ for the convergence criterion. In order to approximate the
Gaussian Mixture Model for the thrombus intensity distribution, some thrombus
voxels need to be selected manually (getT hrombusSamples(I)).

Before computation of all required shape images, the original image scan needs
to be adapted to contain valid gradient and texture information. The lumen interior
contain high intensity values that do not belong to the intensity distribution of the
thrombus. If we compute the shape images with the original scan, our deformation
model would be attracted to the high gradients introduced by the aortic lumen
boundary. Therefore, we need to fill the lumen voxels with the mean value of the
thrombus intensity distribution (fill Lumen(I, S, pdf)).

For more accurate results, we use a multiresolution gradient-descent optimiza-
tion technique. Therefore, all energy parameters and additional optimization pa-
rameters need to be defined for each of the chosen scales
(setScaleParameters(a, B,b, \)). At the end of each scale optimization, the de-
formed model needs to be transferred into a binary volume S. Eventually, the re-
sulting segmentation volume is rescaled to the original configuration.
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(b)

Figure B.4.: Results: aortic lumen and aneurysm thrombus in (a) 3d and (b) slice
visualization

For each scale iteration, the local and global shape images ¢;cqi; @giobal are com-
puted as explained within section B.1.2 employing a Canny edge extraction algo-
rithm.

Except of the selection of thrombus samples in
getThrombusSamples(I) and the specification of scale parameters in
setScaleParameters(a, 3,b, ), the presented algorithm is fully automatic.

B.2. Evaluation

For evaluation purposes, we tested our proposed segmentation method on
10 preoperative CTA datasets of varying size 200x200x200-400 and voxel size
0.59x0.59x1.00-2.00 mm. The choice of parameters for each scale is given in the fol-
lowing table.

| resolution | @ B b A
1:4 25 2 200 4
1:2 1 2 4 400
1:1 1 1 4 900

Table B.1.: Choice of parameters for selected scales

For 5 images, ground truth segmentation data was available and could be used
for quantitative evaluation measures such as overlap ratio (OR), sensitivity (S,),
and specificity (S,). The mean values of those evaluation measures over all 5
datasets are given in table B.2. As one can clearly see, our proposed algorithm gives
very promising results.

The remaining 5 results were used for qualitative evaluations performed by med-
ical experts. They were all satisfied by the results that were in most cases consid-
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| OR Sn Sp |
109316 0.9354 0.9837 |

Table B.2.: Average evaluation values for comparison with ground truth

ered as optimal. Non-optimal results occurred at bifurcation points where branch-
ing vessels were surrounded by thrombus. Those cases require manual refinement
of the segmentation. According to the medical experts, this minor postprocessing
interaction is still acceptable. They concluded that this implementation is of high
significance for the medical workflow and medical research.






C. SASOMI - An Intuitive GUI for
AAA-Thrombus Segmentation
Refinement

Many clinical applications involve exact segmentation of anatomical structures in
all kind of 3D images. When automatic methods fail to meet the required robust-
ness, user interfaces that allow for refining automatic segmentation results are of
great help for the medical staff.

For diagnosis and detection of AAA, CTA is the standardized imaging modality.
The aortic lumen is highlighted by injected contrast agent and has strong gradient
values to surrounding structures. The aortic wall and aneurysm thrombus, how-
ever, are visually very hard to detect without any anatomical expertise. Additional
difficulties for segmentation algorithms are introduced by severe calcification oc-
currence inside the thrombus.

For allowing an optimal treatment planning of AAAs, the focus of medical as
well as engineering research goes towards integrating biomechanical models in the
medical workflow. In order to give realistic simulation results, the geometry of the
aneurysm and its thrombus need to be extracted as accurate as possible. In the last
decade, several approaches have been published allowing fully- or semi-automatic
AAA segmentation (e.g. [34, 102]). Despite of their promising results, it has been
shown that in clinical practice, these methods fail to provide the required robust-
ness.

Graphical user interfaces for segmentation of anatomical structures have become
extremely popular in clinical practice. Here, a variety of commercial and non-
commercial software is available for general usage! [141] as well as for specific
medical applications [74]. In the case of abdominal aortic aneurysms a CTA scan
consists of up to 1000 slices. Therefore a segmentation tool needs to support some
kind of interpolation in-between the slices as well as post-refinement possibilities,
to improve usability. Furthermore intensity region growing is not applicable as a
semi-automatic approach, since the ROIs are not always surrounded by clear and
closed contours. To the best of our knowledge, there is no such refinement software
available for the segmentation of AAAs.

In this chapter, we present an interactive graphical user interface that provides
for the medical staff an intuitive solution for refining an automatic AAA preseg-
mentation. The software transforms the presegmented volume in a NURBS surface
providing an intuitive way of interacting with already present segmentation.

"Materialise, Mimics, http:/ /www.materialise.com/mimics



108 Chapter C. SASOMI

C.1. General Software Design

[ sasom [BEE
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Figure C.1.: The overall layout of SASOMI software

As displayed in Fig. C.1, the software consists of four different views: Axial,
Sagittal, Coronal and Volume - 3D. While each of the first three gives a slice based
view of the loaded image according to its direction, the Volume view shows a 3D vi-
sualization of the segmentation that can be zoomed and rotated. The segmentation
tree underneath the main view offers possibilities to change color and opacity of all
segmentations. In the following, we describe some of SASOMI’s main features that
also represent its main contributions.

Tracing: In addition to free-hand-drawing of a contour in a 2D slice, SASOMI
supports edge tracing that simplifies following the outline of an edge using edge
detection. While in tracing mode, edge points that are detected in the nearby area of
the mouse pointer are displayed as yellow dots [Fig. 2]. To refine an already present
contour it is possible to start tracing at one point of the contour and finish at second
point. The part in between will then be substituted by the new one. Erasing the last
drawn points can be done by drawing backwards. Thanks to edge detection it is
not necessary to hit these points exactly.

Figure C.2.: Edge tracing
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Slice Interpolation: Since it is quite time-consuming to do segmentations on ev-
ery slice, SASOMI computes a NURBS surface [113] from already segmented slices
which is then used to generate the missing slices in-between. It also closes gaps in
segments that lie within the same slice. Already segmented slices are transformed
into a NURBS curve for a more accurate and smoother visualization. Of course, an
interpolation is not always perfect. Therefore the next two functions can be used to
optimize the result.

Edge Fitting: To refine the interpolation result this function fits the segmented
points to the closest edge found in the image. The calculation of the edge points
itself uses a quadratic 2D facet model on the gradient image. Compared to region
growing one could consider the contour resulting from the interpolation as a seed
which is in most cases already quite close to the actual gradient in the image. Ac-
cordingly a lot less comparisons are needed and the given shape also helps the
algorithm to stay in a certain boundary.

Directional Edge Fitting: A more enhanced version of the popular Edge Fitting
method. Edge points are captured only in the approximate direction of the curve’s
normal [Fig. 3a]. In addition, a search along the new edge is performed and while
points that are not likely to be part of this edge are removed, missing edge points
are included. The result will then be transformed into a NURBS curve [Fig. 3b].
Compared to the standard Edge Fitting method it can return more accurate results
especially in corners.

(b)

Figure C.3.: Edge fitting

Render 3D Model: As displayed in Fig. C.4, SASOMI allows volume visualiza-
tions in three different ways. The slices currently drawn in the Axial view as well
as the calculated NURBS surface are displayed as 3D solid volume and axial 2D
curves. The first one actually shows the segmented slices as they will be used for
export. So even if the volume calculation should be incorrect for some slices, this
shows the current state of the segmentation.
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-

(@) (b)

Figure C.4.: Rendering
C.2. Special Refinement Features

C.3. Evaluation

The SASOMI software was implemented in C++ using a Qt-based User Interface
and OpenGL as graphics engine. We tested its robustness and user friendliness in
a set of different experiments. We asked three engineers and three medical doctors
to evaluate the software in two steps. The first task consisted of loading an abdom-
inal CTA scan of a patient suffering from AAA and segmenting the AAA thrombus
manually with the help of the given interaction tools. Secondly, these presegmen-
tations were mixed and each user was given one segmented volume created by a
different user. They were then asked to use our software to refine this segmenta-
tions. The evaluation results are presented in Fig. D.5. The users had to rank the

Task 1 Task 2
Robustness [Usage [Interaction tools [Time effort |Visualization |[[Robustness |Usage |Interaction tools |Time effort |Visualization
E1l 10 10 9 6 5 10 10 9 6 5
E2 10 9 8 5 5 10 10 10 5 5
E3 10 9 8 6 7 10 7 9 6 7
M1 10 7 9 10 5 10 7 10 10 5
M2 10 9 10 10 6 10 9 10 10 6
M3 10 9 9 9 6 10 9 8 9 6

Figure C.5.: Evaluation

software in each category in numbers 1 (bad) to 10 (excellent).

While the other categories were found to be good to excellent, all users com-
plained about the insufficient volume views. All medical doctors stated that such a
volume view of the segmentation does only make sense within a volume rendering
environment of the surrounding anatomical structure. The engineers criticized the
missing mesh visualization that would make more sense for accessing the geometry
in detail.

To test the improvement of interaction time, gained by using the implemented
functions, we selected several persons with different level of experience consider-
ing the use of graphics software or SASOMI itself. While beginners are users with
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little or no experience, three users in our test are working as graphic- or web de-
signers. Both got a short introduction in the program’s user interface. The persons
called experts are using SASOMI already for several weeks.

User Level Beginner Experienced Expert
User il 2 3 4 5 6 7 8 9
Free Hand 6:22 | 4:52 | 5:12 | 3:56 | 4:13 | 4:28 | 4:09 | 3:58 | 3:26

Edge Detection | 2:48 | 3:02 | 3:48 | 2:26 | 1:59 | 2:08 | 2:09 | 1:57 | 1:49
Edge Detection
+ Interpolation

0:50 | 0:57 | 1:02 | 0:52 | 0:46 | 0:42 | 0:46 | 0:35 | 0:34

Figure C.6.: Interaction time

The task was to segment an object over 20 slices using the different functions the
program provides. It is quite obvious that edge detection already accelerates the
segmentation process. In addition the variance of the results between the different
users is reduced. With interpolation it was enough to process only every fifth slice.
The interpolation time of 0.7 seconds for this scenario is already included in the
results. It should also to be mentioned that even with nurbs surfaces interpolation
does not produce perfect results for every object. Edge fitting can then be used to
reduce the effort of refinement.






D. Quantification of Abdominal Aortic
Deformation after EVAR

Causes for organ deformation in the human body can generally be classified in
three main groups: breathing, organ specific motility (i.e. colon motility), and exter-
nal forces applied by medical instruments. While the first two have been studied
intensively in many publications, the latter is still unknown due to the big variety of
instruments and different biomechanical characteristics of the organs. In this work,
we propose a method for quantifying the deformation of the abdominal aorta due
to a graft prosthesis that is the number one treatment for aneurysms.

Quantification of abdominal aortic deformation is an important requirement for
the evaluation of endovascular stenting procedures and the further refinement of
stent graft design. During endovascular aortic repair (EVAR) treatment, the aortic
shape is subject to severe deformation that is imposed by medical instruments such
as guide wires, catheters, and, the stent graft. This deformation can affect the flow
characteristics and morphology of the aorta which have been shown to be elicitors
for stent graft failures and be reason for reappearance of aneurysms.

We propose a method for extracting and quantifying the specific deformation of
the aorta after EVAR. It segments both preoperative and postoperative aortic struc-
tures with minimal user interaction and automatically extracts the region of interest
around the aneurysm. To this end, the centerlines of both structures are extracted
and reduced to the region of interest around the aorta. After an initial rigid regis-
tration, non-linear registration of the structures provides pure deformation fields
of the aorta. Our method was tested by evaluating 15 datasets of patients that had
been treated by EVAR.

D.1. Methodology

Our method for quantifying the aorta’s deformation due to stent grafts has the
following structure:

1. Rigid registration of preoperative and postoperative scan,
2. Segmentation and preprocessing of preoperative aortic shape,

3. Non-rigid registration.

D.1.1. Rigid registration

As our two CTA volumes contain severe dissimilarity introduced by the high in-
tensities of the stent graft (see Fig. D.1), an appropriate similarity measure needs to
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Figure D.1.: Volume rendering of preoperative and postoperative CTA patient scan

be chosen carefully.

We opted for an approach brought up by [33], where dissimilarities are not eval-
uated by the similarity measure. Let S denote a segmentation of the stent graft de-
rived from the postoperative scan by thresholding. The adapted normalized cross
correlation (A-NCC) measure only evaluates those voxels that are not part of seg-
mentation S.

> eerParM (IF(QU) - IF)(IM(x) - jM)
A—NcoIr, ' = oS . (D.1)

- ¢zg (IF(2) = TP Y e (IM () — TM)2

T¢S

with I and I'M representing the mean values in the overlapping regions of the
fixed and moving image.

The resulting optimal transformation T, that maximizes A-NCC for our pre- and
postoperative scans describes the overall rigid body transformation. For our fol-
lowing explanations, we set I := T, x IM.

D.1.2. Segmentation and preprocessing

As we aim to compute the deformation of the aorta induced by the inserted stent
graft, the datasets need to be focused to a part of the aortic structures that incorpo-
rates only this deformation. We segment the contrasted vessel tree out of the preop-
erative as well as the postoperative volume using the connected threshold segmen-
tation method provided by ITK!. The resulting structures contain many different
deformation fields as branching vessels of the aorta scatter in the entire abdominal
region. A non-rigid registration of the entire abdominal vessel trees would hence
result in a displacement field including several abdominal motions and deforma-
tions, not only these of the aorta. The aorta without its branching vessels, how-
ever, represents a tubular structure that does not provide unique optimal values

!Insight Toolkit, http:/ /www.itk.org
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for the rotational parameter during registration. Therefore, we developed an algo-
rithm that automatically creates a centerline structure for a desired region around
the aneurysm. The user just needs to indicate the position of the aortic bifurcation.

In Fig. D.2, Algorithm 1 describes the overall outline of our preprocessing pro-
cedure. As input, it requires a segmentation S of the abdominal vessel tree and a
point bif for the aortic bifurcation. First, topological thinning is processed onto S
resulting in a centerline structure C for the entire abdominal vessel tree. Then, the
root seed of the aortic centerline is calculated by Algorithm 2. Here, the biggest con-
nected component of segmented pixels in the first slice of the segmentation image
is computed by counting neighboring pixels of values other than 0. The centerline
voxel nearest to the center of mass of the biggest component (assumed to be the
aortic lumen) is then taken as seed point. In order to further narrow the informa-
tion down to the region of interest around the aorta, the centerline structure C'is
processed by an adapted wave front propagation algorithm shown in Algorithm 3.
It adapts the wave propagation approach of [143] by stepping down the aortic cen-
terline from a given seed point seed in region growing manner until the indicated
bifurcation bif is reached. At all other bifurcations, our algorithm automatically
finds the path belonging to the aorta by comparing the different angles between
the connecting parts. The aortic path usually continues in the direction that forms
the smallest angle with the previous direction. The branching paths are included
into the aortic centerline data only up to the next bifurcation respectively. Thereby,
we ensure a fully three-dimensional tree structure 7" which can be used to cover a
full transformation including rotation. Finally, we compute a Danielsson distance
map [28] D on the reduced centerline data.

D.1.3. Non-rigid registration

We aim at extracting the deformation that a stent graft imposes to the preoperative
aorta, by applying a non-rigid registration procedure to the pre- and postopera-
tive three-dimensional structures. The non-rigid registration problem for the entire
abdominal region, however, is highly ill-posed due to several different and inde-
pendent deformations and motions that are present in these scans. Instead of a dis-
placement field computed from original data, we perform the alignment on single
segmented structures that are likely to contain the aortic deformation only. In our
case, due to the aneurysm sack present in the preoperative aortic structure, a dis-
placement field computed on the pre- and postoperative segmentation data would
include a shrinking deformation whereas in reality, an inserted stent graft models
the aortic wall. The preprocessing steps presented in section D.1.2, narrow down
the scatter of the abdominal vessel tree to one centerline including the aorta and
small parts of all branching vessels.

In order to define the energy £ for centerlines, correspondences of pre- and post-
operative centerline points are required. Except of the bifurcation points, it is highly
costly to establish correspondences for the other points on the centerlines. We avoid
the necessity of correspondences by computing distance maps D', DM on the re-
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duced centerline images and computing the sum of absolute differences

EMDMF uoDM) = Z D (z) — u+DY(z)] (D.2)
as dissimilarity measure.

D.1.4. Quantification of deformation

With initial rigid registration (section D.1.1) and final non-rigid-registration (sec-
tion D.1.3), we have obtained the linear and non-linear part of the overall trans-
formation of the abdominal aorta. However, according to [149], deformation fields
that are computed by a local nonlinear registration algorithm, still contain a linear
transformation Tiocai = Tlinear © Thontinear- In order to obtain a pure non-linear de-
formation field, the authors suggest to minimize the norm of the displacement field
u of the nonlinear component T, 1ineqr With respect to the linear transformation

Tlinear .

min € (Tiinear) = min - Z | Xi —T5;0 o (Y 1P (D.3)

where X defines a control point grid of size n over T gopa; (L M Jand Y = X +u
presents the deformed control point grid. As we are only interested in the deforma-
tion of the aortic shape, the optimizer needs only to evaluate those displacement
positions that belong to the aorta. Once the optimal linear transformation Ty;ycqr iS
computed, we obtain the corresponding minimal displacement field by

Wminimal (X) T !

linear

(Y)-X (D.4)

For computational deformation quantification, the mean, maximal, and minimal
distance of k selected deformation points can directly be accessed via the displace-
ment field w,;nimai:

meanD (k =7 Z | u; | (D.5)
mazD(k,u) = max | ;|| (D.6)
minD(k,u) = @?k | ;|| (D.7)

D.2. Evaluation

Experiments have been conducted on 15 patient datasets each consisting of one
preoperative and one postoperative CT Angiography (CTA) scan. All images were
acquired by a Siemens Somatom Sensation 64 scanner at our partner clinic. The
reconstructed image resolution is 0.54 x 0.54 x 1.00 mm.

The preprocessing and remodeling were evaluated visually by comparing the
reduced centerline structures. Fig. D.3 shows image results of each preprocessing
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step. In Fig. D.4(a) and D.4(b), reduced centerline structures of the pre- and postop-
erative scans are displayed. For obtaining correct deformation results, it is crucial
that both trees have the same amount of bifurcations.

As we deal with real medical images, there is no ground truth data available
that could be used for the assessment of the registration accuracy. Therefore, we
reconstruct centerlines out of the deformed distance maps and evaluate these to the
preoperative and postoperative lines. Next to a visual evaluation of the registration
error, we choose to use the euclidean distance between the centerlines before and
after non-rigid registration.

Fig. D.5(a) shows the evaluation results. For each of the 15 datasets the initial
distance and final distance each presented by their maximal and mean value. Ad-
ditionally, the initial and final values for the mean p, variance o2, and standard
deviation o over all datasets are given. Our method results in reduced values (final
distance) for the distance in between the respective shapes. This states that the de-
formed centerline fits better to the entire shape of the postoperative centerline after
non-rigid registration.

The visual assessment of registration accuracy was performed by three experts
from our partner medical centers. Two interventional radiologists and one vascu-
lar surgeon were asked to evaluate four different visualizations of the non-rigid
registration results (see Fig. D.6(a) - D.6(d)) and compare these to visualizations
given by existing rigid registration frameworks [33]. While the vascular surgeon
had no experience with interventional registration systems, the interventional radi-
ologists had been working with mounted interventional angiography suites before
and were, therefore, familiar with rigid registration frameworks. All experts agreed
on the importance of visualizing the deformation of the aorta during endovascu-
lar interventions and found our visualizations as highly beneficial especially for
the difficult task of placing the stent graft very accurately inside the aneurysm. It
turned out that, for assessing the registration accuracy, all experts investigated the
position of all branching and bifurcation points rather than the position of all cen-
terline points. They argued that the positioning of the stent graft is oriented toward
the branching vessels and aortic bifurcation in order to make sure that they are not
occluded by the graft. All experts were very satisfied with the accuracy in these
important points. In contrast to the vascular surgeon to whom the branching ves-
sels were of no importance, the interventional radiologists were also interested in
the accuracy of especially the renal arteries as these are often included within the
stent graft as side branches. However, as our approach highly concentrates on the
aortic trunk and only takes small parts of branching vessels into account for rota-
tional orientation purposes, branching vessels might not be accurately aligned (see
Fig. D.4(d)). All physicians found visualizations as shown in Fig. D.6(d) as highly
necessary. It displays an already deformed aortic shape within the original preoper-
ative scan. This evaluation is very important for improvements of stent graft design
because it highlights the impact of mechanic forces of the stent graft onto the aortic
wall.
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Algorithm 1
procedure PREPROCESSING(S, bi f)

C' + topolThinning(S) > centerline creation by topological thinning
seed < findSeed(C, firstSlice(S)) > calculation of seed point for reduction of centerline
T «+ adaptedW aveProp(C, seed, bif) > reduction of centerline from seed point to bifurcation
D < euclidDistance Map(T') > euclidean distance map of reduced centerline

end procedure

Algorithm 1 Algorithm 2
1: procedure FINDSEED(C,s) return seed 1: procedure ADAPTEDWAVEPROP(C,s) return
2 max < 0 T
3: for all (z,y) € s do 2: min < 180
4 if s(x,y) = 1 then 3: prev < 0
5 R <+ regionGrowing(s, s(z,y)) 4: nlist < neighbours(s, C)
6: if maz < size(R) then 5: s—=>T
7: mazx < size(R) 6: prev < s
8 center < centerO fMass(R) 7: s < nlist(0)
9 end if 8: while s # bif do
10: end if 9: s—=T
11: end for 10: nlist < neighbour(s,C)
12: queue < center 11: direction < s — prev
13: while notfound do 12: for all n € nlist A n # prev do
14: ¢« queue 13: if angle(direction,n—s) < min then
15: nlist <— neighbours(c, s) 14: min = angle(direction,n — s)
16: for all n € nlist do 15: prev < s
17: if C(n) # 1 then 16: s n
18: queue <— n 17: end if
19: else 18: end for
20: seed <—n 19: for all n € nlist A\n # s do
21: found 20: t<n
22: stop 21: blist < neighbours(t, C')
23: end if 22: while size(blist) # 3 do
24: end for 23: for all b € blist A b # prev do
25: end while 24: b—T
26: end procedure 25: t<b
26: end for
27: blist < neighbours(t,C)
28: end while
29: end for
30: end while

31: end procedure

Figure D.2.: Preprocessing and remodeling: Algorithm 1 shows general outline, Al-
gorithm 2 and 3 describe the single steps in detail.
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(@ (0) (d)

Figure D.3.: Results of preprocessing and remodeling: (a) initial segmentation of
contrasted abdominal vessel tree, (b) complete centerline structure de-
rived by topological thinning, (c) reduced centerline structure concen-
trating on important region around the aneurysm, (d) final distance
map.

(a) (b)

Figure D.4.: Comparison of reduced centerline structures: (a) preoperative tree, (b)
postoperative tree. Registration results: (c) final displacement quivver;
(d) deformed preoperative shape (red/dark) overlayed on postopera-
tive shape (blue/light)

(b)

(©
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initial distance || final distance bifurcation distance
max | mean || max | mean | bifl | bif2 | bif3 | bif4
Dataset 1| 11,56 3,46 5,22 1,14 6,91 - 6,90 | 5,45
Dataset 2 || 14,13 5,41 4,35 1,41 4,97 3,29 7,08 | 12,90
Dataset 3|| 29,68 5,27 6,77 1,50 2,89 | 399 | 439 | 11,61
Dataset 4 1546 | 4,17 | 2,15 1,32 545 | 469 | 367 | 545
Dataset 5| 16,96 5,41 4,73 1,14 10,23 [ 9,92 7,37 | 338
Dataset 6| 10,35 4,46 3,42 1,31 1,02 | 2,33 45 | 12,84
Dataset 7| 11,21 4,27 4,11 1,60 1245 | 11,31 | 11,13 | 5,92
Dataset 8| 12,26 4,17 3,10 1,32 3,06 | 548 | 432 | 20,32
Dataset 9 17,44 4,46 3,56 1,24 15,78| 12,95 11,52| 3,05

Dataset 10 19,91 | 341 |[ 405 | 1,41 141] 1000 964 417
Dataset 11| 26,00 5,27 7,41 1,50 13,77| 10,14| 10,58| 2,43]
Dataset 12| 15,60 3,17 2,09 1,22 500 755 6,32 888
Dataset 13| 9,55 3,46 4,45 1,14 301 499 4,12| 13,83]
Dataset 14| 16,22 | 511 | 4,07 | 1,51 1,45 45| 3,77] 9,28
Dataset 15| 13,08 5,27 3,10 1,50 3,78 6,32 4,51 10,74
i 15,96 4,45 4,17 1,35 6,93 6,97 | 6,65 | 8,68
c 5,66 0,81 1,47 0,15 4,99 3,34 | 2,83 | 5,06
o2 32,01 0,66 2,17 0,02 24,92 | 11,17 | 8,03 | 25,61

(a) (b)

Figure D.5.: Evaluation results: (a) Accuracy of non-rigid-registration algorithm; (b)
Quantification of aortic deformation.

(d)

Figure D.6.: Visual evaluation: (a) deformed preoperative shape overlayed over the
original; (b) deformed preoperative shape visualized inside postopera-
tive scan; (c) deformed preoperative centerline integrated within post-
operative scan; (d) deformed preoperative shape visualized within pre-
operative scan.
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bbrevations

Medical Terms

AAA
CPB
CT
CTA
DICOM
DSA
EVAR
FDG
HU
MRI
MRA
PACS

Abdominal Aortic Aneurysm
Cardiopulmonary Bypass

Computed Tomography

Computed Tomography Angiography

Digital Imaging and Communications in Medicine
Digitally Substracted Angiography
Endovascular Aortic Repair
I8B-Fluorodesoxyglucose

Hounsfield Unit

Magnetic Resonance Imaging

Magnetic Resonance Angiography

Picture Archiving and Communications System

PC-MRA Phase Contrast Magnetic Resonance Angiography

PET
TOF
us

Positron Emission Tomography
Time Of Flight
Ultrasonography

Technical Terms

2D
3D
4D
ASM
CCD
CPU
DOF
DRR
GLSL
GPU
IGS
RLE

2-dimensional (spatial)
3-dimensional (spatial)
4-dimensional (3 spatial and 1 time dimension)
Active Shape Model

Charged Coupled Device

Central Processing Unit

Degree Of Freedom

Digitally Reconstructed Radiograph
OpenGL Shading Language
Graphics Processing Unit

Image Guided Surgery

Runlength Encoding
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