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Abstract

In this thesis, two aspects of control theory, namely controllability and optimal control,

are applied to quantum systems. The presented results are based on group theoretical

techniques and numerical studies. By Lie-algebraic analysis, the controllability proper-

ties of systems with an arbitrary topology are described and related to the symmetries

existing in these systems. We find that symmetry precludes full controllability. Our

work investigates well-known control systems and gives rules for the design of new

systems. Furthermore, theoretical and numerical concepts are instrumental to studying

quantum channels: Their capacities are optimised using gradient flows on the unitary

group in order to find counterexamples to a long-established additivity conjecture. The

last part of this thesis presents and benchmarks a modular optimal control algorithm

known as GRAPE. Numerical tests show how the interplay of its modules can be op-

timised for higher performance, and how the algorithm performs in comparison to a

Krotov-type optimal control algorithm. It is found that GRAPE performs particularly

well when aiming for high qualities.
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Zusammenfassung

In der vorliegenden Arbeit werden zwei Aspekte der Kontrolltheorie, Kontrollierbarkeit

und Optimale Kontrolle, auf Quantensysteme angewandt. Die gefundenen Resultate

basieren dabei auf gruppentheoretischen Methoden und numerischen Untersuchun-

gen. Mit Hilfe Lie-algebraischer Analysen werden die Kontrollierbarkeitseigenschaften

von Spinsystemen beliebiger Topologie beschrieben und in Beziehung gesetzt zu in den

Systemen vorhandenen Symmetrien. Es stellt sich heraus, dass volle Kontrollierbarkeit

nicht erreicht werden kann, wenn eine Symmetrie im System vorhanden ist. Die Arbeit

analysiert bekannte Kontrollsysteme und stellt Regeln für den Entwurf neuer Systeme

auf. Desweiteren kommen theoretische und numerische Konzepte auch bei der Betra-

chtung von Quantenkanälen zum Einsatz: Hier werden Kanalkapazitäten durch Gra-

dientenflüsse auf der unitären Gruppe optimiert, um Gegenbeispiele für eine bekannte

Additivitätsvermutung zu finden. Im letzten Teil der Arbeit wird ein modularer Algo-

rithmus zur optimalen Steuerung von Quantensystemen vorgestellt, der als GRAPE-

Algorithmus bekannt ist. Seine Module werden analysiert und mit Hilfe numerischer

Tests optimiert, so dass ein umfassender Benchmark entsteht. Ein Leistungsvergleich

mit einem anderen, auf Krotov zurückgehenden Algorithmus schließt die Arbeit ab.

In den meisten Tests kann GRAPE dabei hohe Qualitäten schneller erreichen als der

Krotov-basierte Algorithmus.
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CHAPTER 1

Introduction

Science is what we understand well

enough to explain to a computer. Art

is everything else we do.

Donald E. Knuth

1.1 Motivation and overview

Death, the weather, tax refunds - there are things that no one can control. Control

theory is about everything else. It is a field of research that has arisen from control

engineering and is nowadays a subfield of applied mathematics [1]. Its main concerns

are dynamical systems that are influenced by external variables. This general setup

makes it a truly interdisciplinary field with applications in many different areas, such as

engineering, finance, economics, and physics. Typical questions one wishes to answer

by control theory are: Is the system stable? How can the system be steered to show a

desired behaviour? What are the possible outputs of the system?

These questions also appear naturally in quantum information science, where one stud-

ies the processing of information using quantum mechanical systems [2]. In fact, the

ability to control the state and the dynamics of complex quantum systems is one of the

main goals in this field. In the last two decades, quantum information theory has at-

tracted growing interest and has become an area of lively research, connecting physics,

mathematics, and computer science. Its scope ranges from fundamental questions

about quantum mechanics to technological applications like quantum cryptography [3]

and quantum computation. A model for the latter was proposed by Feynman [4] al-

most thirty years ago: His idea of using a quantum computer for simulating other

quantum systems or for solving complex problems has sparked a tremendous research

effort to realise a universal large-scale quantum computer. Alongside the experimental

1



CHAPTER 1: INTRODUCTION

research, algorithms have been developed that exploit the power of quantum comput-

ers to solve problems that are hard to solve on a classical computer. The first prominent

example of such a quantum algorithm was the Deutsch algorithm [5, 6], which showed

the superiority of quantum computers for a certain problem but was of little practical

use. In contrast, Shor’s algorithm [7] to factorise large numbers in polynomial time is

of huge practical relevance for classical cryptography.

For the purpose of large-scale quantum computation, coherently controlled systems

are needed. The number of these systems that can profit from optimal control has risen

in the past few years [8, 9, 10, 11, 12, 13, 14]. Optimal control theory (OCT) generally

deals with methods for finding control variables that minimise or maximise a given

performance index [15, 16]. This requires the formulation of the control objective in

mathematical terms, usually in the form of a cost functional. In many cases, constraints

have to be included into the problem, typically as equalities or inequalities, such that

the resulting problem can be described as: find the values of the control variables that

optimise the objective while respecting the constraints. As outlined by to Sussmann

and Willems [17], OCT originated from the calculus of variations, in particular in curve

minimisation problems that were studied by Johann Bernoulli and others at the end of

the 17th century. Modern OCT is the result of a long process that culminated in the

work of Pontryagin [18] and Bellman [19] who established conditions for optimality

in the 1950s. Pushed by ongoing technological advancements, physicists have become

more and more interested in the coherent control of quantum systems, in particular for

quantum information processing. As these systems are sensitive to noise, an important

question of quantum control is how to implement a given operation on the system in a

minimal amount of time.

In general, an optimal control task can be treated either analytically or numerically. In

practice, only a small number of problems can be solved analytically, usually small-

dimensional problems or special cases; see [20, 21] for two examples. The majority of

problems require numerical solutions (see, e.g., [22, 23, 24]), for which it is often advan-

tageous to apply methods from numerical optimisation [25], a field that has developed

efficient techniques for dealing with a variety of optimisation problems: continuous or

discrete, global or local, constrained or unconstrained, stochastic or deterministic. In

this thesis, only deterministic, local and discrete optimisation tasks (with or without

constraints) will be presented.

2



CHAPTER 1: INTRODUCTION

1.2 Organisation of this thesis

Chapter 2 introduces the concepts and definitions of group theory that will serve as

the foundation for the research in the following chapters. A focus is on Lie groups and

their correponding algebras which will play the central role in identifying controllabil-

ity properties of spin systems in Chapter 3. Here, we study the connection between

controllability and symmetry in spin systems of arbitrary topology and with different

types of control schemes. After presenting the framework of quantum dynamical con-

trol systems, closed quantum systems are characterised in terms of their dynamical

Lie algebras. Two examples underpin how inner and outer symmetries impose restric-

tions on the ability to control systems. The chapter concludes with an investigation of

sufficient and necessary conditions for full controllability.

Chapter 4 describes a numerical search for quantum channels that violate a well-known

additivity conjecture. The idea of a quantum channel is presented, together with a

definition of a channel’s capacity. This capacity had been conjectured to be additive or

multiplicative, respectively, with implications for classical information theory, until the

famous counterexample by Werner and Holevo appeared. Based on their findings, we

look for other counterexamples using a gradient-flow on the unitary group to optimise

capacities of extremal random unitary channels. In doing so, we focus on channels

with similar properties as the Werner-Holevo example. The last part of this chapter is

devoted to a summary of the results by Hastings and others who could implicitly show

that the additivity conjecture does not hold in the general case.

In Chapter 5 we introduce the optimal control framework and its application to quan-

tum systems, and benchmark an optimal control algorithm known as GRAPE which

updates all control variables in a concurrent manner. We specify the algorithmic scheme

by analysing the most important components; different procedures for computing the

gradient and the update step are presented. Furthermore, we draw a comparison to a

Krotov-type sequential-update algorithm and discuss possible hybrid algorithms. Nu-

merical studies with a set of models reveal performance differences between different

algorithms and algorithmic components, respectively, and allow for a decision about

the best combination of approaches for a given task.

3
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CHAPTER 2

An introduction to some definitions

and concepts of group theory

...and you will find someday that,

after all, it isn’t as horrible.

Richard Feynman

2.1 Introduction

This chapter summarises some central concepts of group theory by introducing the

definitions and methods needed for the following chapters. A thorough account of

group theory can be found in References [26, 27, 28, 29].

2.2 Definitions

Given a set G = {G1, G2, . . . , Gn} of cardinality n, and an operation ◦ between the

elements Gk, Gl of this set:

◦ : G×G −→ G.

The operation is called a multiplication, and Gk ◦ Gl is often abbreviated as GkGl . The

algebraic structure (G, ◦) is called a group if, ∀Gk, Gl ∈ G,

1. Gk ◦ Gl ∈ G,

2. the operation is associative: Gk ◦ (Gl ◦ Gm) = (Gk ◦ Gl) ◦ Gm ,

3. there exists exactly one identity element E for which E ◦ Gk = Gk ◦ E = Gk, and

4. there exists exactly one inverse element G−1
k to each element Gk: GkG−1

k = E.

5
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OF GROUP THEORY

When only the last condition is not fulfilled, (G, ◦) is called a semi-group. A group is

finite, if n is finite; For a group to be continuous it is required that there are infinitely

many group elements.

In general, the multiplication of two group elements is non-commutative. Groups with

commuting elements, i.e.,

Gk ◦ Gl = Gl ◦ Gk ∀Gk, Gl ∈ G,

are called Abelian groups.

A homomorphism between two groups G and G′ is a map that assigns an element G′
k ∈

G′ to every element Gk ∈ G. Products of G are mapped to products of G′:

Gk → G′
k,

Gl → G′
l ,

Gk ◦ Gl → G′
k ◦ G′

l .

This map may not be invertible; if it is, one calls it an isomorphism.

Two elements Gk and Gl are conjugate to each other if there exists a T ∈ G for which

Gl = TGkT−1. One writes Gk ∼ Gl . This relation is

• reflexive: Gk ∼ Gk,

• symmetric: Gk ∼ Gl ⇒ Gl ∼ Gk,

• and transitive: Gl ∼ Gk ∧ Gk ∼ Gm ⇒ Gl ∼ Gm.

The relation thus divides the group into equivalence classes of conjugate elements.

If the conditions 1-4 are fulfilled for a subset H of G, H is called a subgroup of G. A

normal subgroup N is invariant under conjugation with members of the group G. The

centre of a group is a subgroup Z whose elements commute with all elements of the

group:

Z ◦ G = G ◦ Z ∀Z ∈ Z, ∀G ∈ G.

Given two groups G1 and G2, the direct product of these groups is the ordered pair

G := G1 ×G2 = {(G1, G2) |Gk ∈ Gk, k = 1, 2},

with the operation

6
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OF GROUP THEORY

G� G′ = (G1, G2)� (G′
1, G′

2) = (G1 ◦ G′
1, G2 ◦ G′

2).

A simple group is a nontrivial group that has only two normal subgroups: the trivial

group and the group itself.

2.3 Matrix representation

A representation R of a group G assigns to every element Gk ∈ G a linear map in an

N-dimensional vector space V = R N or V = C N , i.e., a matrix R(Gk) ∈ Mat N(C),

such that the group multiplication corresponds to the matrix multiplication:

R(Gk ◦ Gl) = R(Gk)R(Gl).

We denote the entry in the k-th row and l-th column of the matrix R(·) as R(·)kl . We re-

quire that R(E) = 1lN and R(G−1
k ) = R(Gk)−1. The last requirement makes all matrices

non-singular.

If two matrices belong to the same conjugacy class, their traces are equal since the trace

is an invariant under a similarity transformation with a matrix S:

tr(R(G)) = tr(S−1R(G)S),

where S may be any non-singular matrix.

The outer product between two abstract groups G1 and G2 corresponds to the matrix

tensor product R(G1) ⊗ R(G2). The two group representations R(G1) and R(G2) act

on the vector spaces V1 and V2, which become V = V1 ⊗ V2 after applying the tensor

product.

2.4 Lie groups and algebras

2.4.1 General

An example for the continuous groups metioned above are Lie groups [30]. These

groups are differentiable manifolds, i.e., group multiplication and inversion are infinitely

differentiable with respect to the coordinates in RN [31]. They can be thought of as

continuous transformations in vector spaces. Hence, many physical problems can be

described in terms of Lie groups.

7
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OF GROUP THEORY

The groups presented in the following are linear, or matrix groups, i.e., groups of linear

maps. Common examples for matrix groups are

1. GL(N), the full linear group of all non-singular matrices,

2. SL(N), the subgroup to GL(N) with {G ∈ GL(N) |det(G) = +1},

3. U(N), the subgroup to GL(N) with {G ∈ GL(N) |G† = G−1},

4. SU(N), the subgroup to U(N) with {G ∈ U(N) |det(G) = +1},

5. O(N), the subgroup to GL(N) with {G ∈ GL(N) |Gt = G−1}, and

6. SO(N), the subgroup to O(N) with {G ∈ O(N) |det(G) = +1}.

The subgroups of the GL(N) can be regarded as invariant groups of geometrical enti-

ties [30]. For instance, all elements of the group U(N) when applied to a vector v ∈ C N

leave the length of v invariant. The elements of U(N) are thus length-preserving. An-

other example is the group SL(N) whose elements are volume-preserving: The de-

terminant1 of any matrix M is invariant under the multiplication with an element of

SL(N).

Every element U of a Lie group can be represented as U = eϕx, where ϕ is the rotation

angle and x the generator of the group element. x can be looked upon as a generalised

’rotation axis’. The exponential map can be defined by the Taylor series

eβx :=
∞

∑
k=0

1
k!

(βx)k.

The set of all generators {xk} forms a tangent space at the neutral element 1l and is

called a Lie algebra su(N) , see Figure 2.4.1 and References [30, 31]. This set represents

a linear vector space with the scalar product tr(a†b) for a, b ∈ span(xk). For composed

systems, we find

tr
(
(a⊗ b)†(c⊗ d)

)
= tr(a†c)tr(b†d).

This vector space is closed under commutation, i.e., if a and b are elements of the Lie

algebra, so is [a, b]. Furthermore, we have

[a, b] = −[b, a] and (2.4.1)

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0, (2.4.2)

1det(M) for M ∈ R3×3 represents the volume spanned by the three column vectors of M.
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OF GROUP THEORY

Figure 2.4.1: Geometric picture of the Lie group SU(2), represented by the surface of the blue
sphere, and its corresponding Lie algebra su(2), represented by the orange plane.
The algebra and the group are connected by the exponential map. Note that both
sets are actually 3-dimensional so consider a sphere and a plane embedded in a
4-dimensional space.

where c is again an element of the Lie algebra. The last equation is called Jacobi identity.

As a Lie algebra is a linear vector space, it allows for the study of structural properties

more easily than on the level of the Lie group. By the surjectivity of the exponential

map for compact Lie groups, all properties of the algebra correspond to properties of

the group (see Reference [30], pp. 213). This means that results obtained on the level

of the algebra can be translated to the group level. We will use this correspondence in

Chapter 3 when we investigate controllability of spin systems.

Corresponding to their Lie group names, they are denoted as 1. gl(N), 2. sl(N), 3.

u(N), 4. su(N), 5. o(N), and 6. so(N), and contain 1. arbitrary, 2. traceless, 3. skew-

Hermitian (x = −x†), 4. traceless skew-Hermitian, 5. skew-symmetric (x = −xt), and

6. traceless skew-symmetric matrices.

There exists an isomorphism f between two Lie algebras a and b if all elements of a can

be mapped bijectively to all elements of b,

f
(
(a)n

)
= (b)n ∀ (a)n ∈ a and ∀ (b)n ∈ b,

and if the same can be done for all commutators:

f
(
[(a)n, (a)m]

)
= [(b)n, (b)m].

As an example, consider the case of su(2), in which the commutator can be identified

9
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with the vector product of R3:
(
su(2), [·, ·]

) iso'
(
R3,×

)
.

Lie algebras can be distiguished from each other by their structure constants. Let {xk}
be the basis of an algebra. The scalar values cλ

µν with

[xµ, xν] = cλ
µνxλ

are called Lie structure constants [31]. They obey the Equations 2.4.1 and 2.4.2.

Assume I is a subspace of the Lie algebra g: I ⊆ g. If I satisfies [g, I] ⊆ I, then I is

called an ideal of g. A non-Abelian Lie algebra, whose only ideals are 0 and itself, is

called simple. A direct sum of simple Lie algebras is called a semisimple Lie algebra. A

simple Lie group is a connected non-Abelian Lie group without any connected nontrivial

normal subgroups.

2.4.2 Pauli operator basis

The Pauli matrices

σx :=

[
0 1

1 0

]
σy :=

[
0 −i

i 0

]
σz =

[
1 0

0 −1

]
(2.4.3)

form an orthogonal basis for the Lie algebra su(2). One easily verifies that a scalar

product exists with tr(σ†
µσν) = 2δµν, where µ, ν ∈ {x, y, z}, and that the commutation

relation

[σµ, σν] = 2iεµνξσξ

holds, where εµνξ is the anti-symmetric tensor2 on three indices and µ, ν, ξ ∈ {x, y, z}.

The Pauli matrices are thus a representation of the generators of su(2). In quantum

mechanics, the Pauli matrices represent observables describing the spin angular mo-

mentum of spin- 1
2 particles.

A generalisation to Lie algebras su(N) and therefore to quantum systems with n spin- 1
2

particles, where N = 2n and n ∈ N, can be obtained in the following way: Taking the

tensor product, the unit matrix 1l, and a suitable normalisation, a basis of u(N) can be

formed by

{σ
(1)
x , σ

(1)
y , σ

(1)
z , 1l} ⊗ {σ

(2)
x , σ

(2)
y , σ

(2)
z , 1l} ⊗ · · · ⊗ {σ

(n)
x , σ

(n)
y , σ

(n)
z , 1l}.

Here, σ
(n)
µ is the Pauli matrix σµ acting on spin n. By removing the element 1lN , this set

2εµνξ = 0, except for εxyz = εyzx = εzxy = 1, and εzyx = εyxz = εxzy = −1

10
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becomes a basis of su(N).

2.4.3 Lie subgroups

Lie groups can have subgroups which can be discrete or continuous. Two examples for

subgroups of SU(N) will be discussed here.

2.4.3.1 A discrete subgroup of U(N)

A trivial example of a discrete subgroup of SU(N) is its centre Z. It can be represented

by multiples of the identity 1l:

Z(SU(N)) = {U = eiφ1lN |det(u) = +1}.

The number of elements in Z is N and the allowed rotation angles are φ = 2πik/N

with k = 0, 1, . . . , N − 1.

2.4.3.2 A continuous subgroup of U(N)

The group of all local operations on n spin- 1
2 particles,

L = SU(2)⊗ . . . .⊗ SU(2) = SU(2)⊗n,

forms a continuous subgroup of SU(N). Another example is the group

{U = e−iϕH |H ∈ span{x1, yz, zz}}.

Here, span{x1, yz, zz} = {λ1x1 + λ2yz + λ3zz | λi ∈ R} is the set of linear combina-

tions of the elements x1, yz, and zz. The three Pauli terms obey the same commutator

relations than the two-dimensional representation of su(2); they are hence isomorphic

to it.

11
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CHAPTER 3

Controllability and symmetry in

spin systems

The ’control of nature’ is a phrase

conceived in arrogance, born of the

Neanderthal age of biology and the

convenience of man.

Rachel Carson

3.1 Introduction

3.1.1 Overview

For universal quantum computation on a given physical system, the Hamiltonians

have to combine such that any unitary target operation can be performed, irrespec-

tive of the initial state of the quantum system. This means the system has to be fully

controllable, as has been pointed out in different contexts [32, 33]. Often, the physical

system comes in designs with a certain symmetry pattern reflecting the experimental

setup. For instance, this is the case in quantum lattices, in quantum networks, or in spin

chains serving as quantum wires [34] for distributed quantum computation [35]. Sym-

metric patterns, however, may have crucial shortcomings since symmetry may prevent

full controllability. On the other hand, avoiding symmetry-restricted controllability

need not be complicated from an experimental point of view: in Ising spin chains, it

soon emerged that polymers (ABC)n made of three different qubit units A, B, C are

fully controllable [36]. Later, irregular ABAAA . . . systems of just two qubit types A, B

[37] and even (A)n − B chains turned out to be fully controllable as well. In these

systems, qubits are meant to be locally controlled by operations that act jointly on all

13



CHAPTER 3: CONTROLLABILITY AND SYMMETRY IN SPIN SYSTEMS

qubits labelled with the same letter and independently from controls on qubits with

a different letter. In particular, quantum systems coupled by Heisenberg-XXX type

interactions turned out to be fully controllable when the local controls are limited to a

small subset of qubits, as with time these actions can then be ’swapped’ to neighbour-

ing spins [38, 39, 40, 41, 42, 34, 43].

Such a gradual case-by-case development asks for a more systematic investigation on

the quantum side, given the methods of Lie theory to assess controllability in classical

systems [44, 45, 38]. Thus, we address both issues with and without symmetry restric-

tions in qubit systems, where the coupling topology is generalised to any connected

graph [46, 47], going beyond linear chains [48] or ’infective’ graphs [49].

On a more general scale, it is important to be able to separate questions of existence

(e.g.: Is the system fully controllable? Can it be used for universal Hamiltonian simulation?)

from questions of actual implementation (How does one have to steer a given experimen-

tal setup to implement a target task with highest precision?). Otherwise, the structure of

constructive proofs of existence may translate into highly suboptimal experimental

schemes. Hence, here we exploit Lie theoretical methods for a unified framework

addressing controllability in a first step, while resorting to quantum control [50] in a

second step for actual implementation optimised for the given experimental setup.

3.1.2 Organisation and main results

This chapter starts out by introducing quantum dynamical control systems in Sec-

tion 3.2. Next, we show how symmetries are often easy to see in the coupling graph; as

soon as these symmetries have a representation within the dynamical group in ques-

tion, they preclude full controllabilty, see Sections 3.3 and 3.4. By explicitly identify-

ing the dynamical system algebras in cases of symmetry-constrained controllability,

the exact reachable sets take the form of subgroup orbits under the dynamical group

generated by the system algebra. This is an important step towards exploring task con-

trollability by describing which tasks are feasible on which type of quantum system

(Section 3.5). Systems with inner and outer symmetries, including explicit examples,

are discussed in Section 3.6.

In turn, the absence of any symmetry is only a necessary condition for full controlla-

bility. Since sufficient conditions in the most general case are tedious to come by, we

give practical guidelines for quantum system design in common types of Ising and

Heisenberg coupling in Section 3.7. Depending on the coupling type, we will make

precise the three design rules sufficient to ensure full controllability in non-symmetric

14
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(and non-antisymmetric) qubit systems with a connected coupling toplogy:

1. in Ising-ZZ coupled systems each qubit has to belong to a type that is jointly con-

trollable locally,

2. in Heisenberg-XXX (XXZ, XYZ) coupled qubit systems at least one qubit has to

be fully controllable locally,

3. in Heisenberg-XX (XY) coupled qubit systems at least one adjacent qubit pair has

to be fully controllable (by an su(4)).

We also briefly sketch how to control systems efficiently (Section 3.8), and how to ex-

tend notions of controllability for systems with relaxation.

3.2 Quantum dynamical control systems

In the following, we address Markovian dynamics of quantum systems, the free evolu-

tion of which is governed by a system Hamiltonian H0 and, in the case of open systems,

by an additional relaxation term Γ. Whenever we talk about controllability, we mean

full operator controllability, thus neglecting more specialised notions like pure-state con-

trollability [51].

In contrast to the system Hamiltonian which can never be ’switched off’, the interplay

between the quantum system and the experimenter is included by ’switchable’ con-

trol Hamiltonians Hm. They express external manipulations in terms of the quantum

system itself, where each control Hamiltonian can be steered in time by control am-

plitudes um(t). With these definitions, the usual equations of motion for controlled

quantum dynamics can be brought into a common form, as will be shown next.

As a starting point, consider the Schrödinger equations

|ψ̇(t)〉 = −i
(

H0 +
M

∑
m=1

um(t)Hm
)
|ψ(t)〉 (3.2.1)

U̇(t) = −i
(

H0 +
M

∑
m=1

um(t)Hm
)

U(t),

where the second equation can be regarded as the operator equation to the first one.

It governs the evolution of a unitary map of an entire basis set of vectors representing

pure states. Using the short-hand notations Htot := H0 + ∑M
m=1 um(t)Hm and adH(·) :=

[H, (·)] in the master equation

ρ̇ = −i[Htot, ρ(t)]− Γ(ρ(t)) ≡ −(i adHtot +Γ)ρ(t) (3.2.2)
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Ḟ(t) = −(i adHtot + Γ) ◦ F(t), (3.2.3)

the second one can again be regarded as the lifted operator equation to the first one:

while ρ ∈ her(N), F denotes a quantum map in GL(N2) as a linear image over all basis

states of the Liouville space representing the open system.

All these equations of motion have the form of a standard bilinear control system (Σ)

known in classical system and control theory. It reads

Ẋ(t) =
(

A +
M

∑
m=1

um(t)Bm
)

X(t), (3.2.4)

with ‘state’ X(t) ∈ C N , drift A ∈ Mat N(C), controls Bm ∈ Mat N(C), and control

amplitudes um ∈ R. For simplicity, consider for the moment its linear counterpart with

v ∈ C N

Ẋ(t) = AX(t) + Bv, (3.2.5)

which is known to be fully controllable if it obeys the rank condition (see, e.g., [52])

rank [B, AB, A2B, . . . , AN−1B] = N. (3.2.6)

Now lifting the bilinear control system (Σ) to group manifolds [53, 54] by X(t) ∈
GL(N, C) under the action of some compact connected Lie group K with Lie algebra k

(while keeping A, Bm ∈ Mat N(C )), the condition for full controllability turns into its

analogue known as the Lie algebra rank condition [44, 45, 54]

〈A, Bm |m = 1, 2, . . . , M〉Lie = k. (3.2.7)

In this expression, 〈·〉Lie denotes the Lie closure obtained by repeatedly taking mutual

commutator brackets.

In order to comply with the terminology in Lie theory, we keep the term Lie dimension

for the real dimension of a Lie algebra, while the rank of a Lie algebra is the dimension

of its maximal Cartan subalgebra. For instance, su(N) has dimension N2 − 1 and rank

N − 1.
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3.3 Full controllability and symmetry-restricted controllability

in closed quantum systems

In the dynamics of closed quantum systems, the system Hamiltonian H0 is the only

drift term, whereas the Hm are again the control Hamiltonians. To fix notations, in

systems of n qubits we define N := 2n, so these Hamiltonians i Hν ∈ su(N) each

generate a one-parameter unitary group of time evolution {Uν(t) := e−itHν | t ∈ R +} ⊂
SU(N).

Transferring the classical result [45] to the quantum domain [55], the bilinear system

of Equation 3.2.1 is fully operator controllable if and only if the drift and controls are a

generating set of su(N):

〈iH0, iHm |m = 1, 2, . . . , M〉Lie = k = su(N). (3.3.1)

In fully controllable systems, to every initial state ρ0 the reachable set is the entire unitary

orbit

OU(ρ0) := {Uρ0U† | U ∈ SU(N)}.

With density operators being Hermitian, this means any final state ρ(t) can be reached

from any initial state ρ0 as long as both of them share the same spectrum of eigenvalues.

In contrast, in systems with restricted controllability the Hamiltonians generate a proper

subalgebra of the full unitary algebra:

〈iH0, iHm |m = 1, 2, . . . , M〉Lie = k ( su(N). (3.3.2)

3.3.1 Algorithm for computing the Lie closure

Suppose we have an n-qubit bilinear control system characterised by the drift and con-

trol Hamiltonians {H0; H1, . . . , HM}. Then the Algorithm 3.1 tabulated above construc-

tively determines a basis of the associated dynamical Lie algebra [56]. Our implementa-

tion codes the tensor product basis of Pauli matrices as quaternions simply represented

by the Clifford algebra C`2(R) of quarternary numbers {0, 1, 2, 3} plus the Clifford mul-

tiplication rules. This allows the calculation of Lie brackets without any matrix oper-

ations. For identifying linearly independent generators, the time consuming step in

each iteration is the rank determination by QR decomposition of a sparse coefficient

matrix K ∈ Mat 4n collecting all the expansion coefficients to the Ki of Algorithm 3.1

columnwise as vec (Ki) [57]. Our results were cross-checked with GAP 4.4.10 [58].
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Algorithm 3.1 Determine the Lie closure for an n-qubit system with a given set of drift
(or system) and control Hamiltonians. The algorithm is of complexity O(256n) for n
qubits (N2 rank-revealing QR decompositions with N = 2n).
Start with the inital basis Bν := {H0; H1, . . . , HM}.
WHILE M + 1 < dim su(2n)

Perform all Lie brackets Ki = [Hj, Hk] of all elements of the current basis.
FOR each new Ki

Check linear independence from span Bν.
Extend basis by independent new Ki: Bν+1 := {Ki, Hi}.

ENDFOR
IF no new Ki found

Terminate.
ENDIF

ENDWHILE

3.3.2 Notation: coupling graphs and interactions

Here, we represent the physical system to the bilinear control system of Equations 3.2.1

and 3.2.4 by a graph G(V, E) see, e.g., Figure 3.3.1. The vertices V of this graph rep-

resent the qubits and edges E denote non-vanishing pairwise couplings of Ising or

Heisenberg nature. The qubits are taken to be jointly affected by local operations that

act typewise on all qubits with the same letter and independently from those with a

different letter. Sometimes, every qubit type is fully controllable; in other instances,

some types are not controlled at all.

More precisely, for µ ∈ {x, y, z} let

σ
(k)
µ := 1l⊗(k−1)

2 ⊗ σµ ⊗ 1l⊗(n−k)
2 (3.3.3)

denote the embedded Pauli matrix σµ on the kth qubit of an n-qubit system. Then the

couplings extend over the edges of the graph (k, `) ∈ G(V, E) and sum all pairwise

terms

Jk` (α · σ
(k)
x σ

(`)
x + β · σ

(k)
y σ

(`)
y + γ · σ

(k)
z σ

(`)
z ). (3.3.4)

In the Heisenberg-XXX type, α = β = γ 6= 0, whereas in the XXZ type α = β 6= γ, and

in the XYZ type α 6= β 6= γ 6= α. In contrast, in the Heisenberg-XX type γ = 0 6= α = β,

while in the XY type α 6= β. Finally, in an Ising-ZZ interaction γ 6= 0 = α = β.

For a fixed direction µ ∈ {x, y, z}, the local terms are summed over all vertices of the

same type in the graph to give the generators Fµ := 1
2 ∑k σ

(k)
µ of typewise joint local

actions.
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Figure 3.3.1: General coupling topology represented by a connected graph. The vertices denote
the spin- 1

2 qubits, while the edges represent pairwise couplings of Heisenberg or
Ising type. Qubits of the same colour and letter are taken to be affected by joint
local unitary operations as in Table 3.1 (or none: see Table 3.2), while qubits of
different kind can be controlled independently. For a system to show an outer
symmetry brought about by permutations within subsets of qubits of the same
type, both the graph as well as the system plus all control Hamiltonians have to
remain invariant. In contrast, a system has an outer anti-symmetry, if the edges
connected to the nodes of the same type change sign under such a permutation.

3.3.3 Characterisation by symmetry and antisymmetry

In the following, we will characterise systems of restricted controllability in terms of

symmetries. In the present setting, a Hamiltonian quantum system is said to have a

symmetry expressed by the skew-Hermitian operator s ∈ su(N), if

[s, Hν] = 0 for all ν ∈ {0; 1, 2, . . . , M}. (3.3.5)

More precisely, we use the term outer symmetry if s generates a SWAP operation per-

muting a subset of qubits of the same type (cp. Figure 3.3.1) such that the coupling

graph and all Hamiltonians {Hν} are left invariant.

Moreover, the coupling Hamiltonian is said to have an outer anti-symmetry if there is a

permutation Π of a subset of vertices Vπ ⊆ V of the same type such that Π leaves the

graph invariant, while some of the couplings connected to one of the vertices permuted

change their respective signs simultaneously:

Π G(V, E) = G(V, E)

Jk` = −JΠ(k`) for some k ∈ Vπ xor ` ∈ Vπ.

For illustration, a simple example (discussed in detail later) can be found in Figure 3.6.2

(a), where an anti-symmetry arises if J′ = −J.

In contrast, an inner symmetry relates to elements s not generating a SWAP operation
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in the symmetric group of all permutations of qubits in the system; rather than rely-

ing on the coupling graph, they are due to the internal structure of drift and control

Hamiltonians.

In either case of symmetry, a symmetry operator is an element of the centraliser (or

synonymously the commutant)

{Hν}′ :=
{

s ∈ su(N) | [s, Hν] = 0 ∀ν ∈ {d; 1, 2, . . . , M}
}

. (3.3.6)

Recall that the centraliser or commutant of a given subset m ⊆ g with respect to a Lie

algebra g consists of all elements in g that commute with all elements in m. By Jacobi’s

identity [
[a, b], c

]
+
[
[b, c], a

]
+
[
[c, a], b

]
= 0,

one gets two properties of the centraliser that are relevant in this context:

1. An element s that commutes with the Hamiltonians {iHν} also commutes with

their Lie closure k. For the dynamical Lie algebra k we have

k′ := {s ∈ su(N) | [s, k] = 0 ∀k ∈ k} (3.3.7)

and {iHν}′ = k′. Thus, in practice it is convenient to just evaluate the centraliser

for a (minimal) generating set {iHν} of k.

2. For a fixed k ∈ k, an analogous argument gives

[s1, k] = 0 and [s2, k] = 0 =⇒
[
[s1, s2], k

]
= 0, (3.3.8)

so the centraliser k′ forms itself a Lie subalgebra to su(N) consisting of all sym-

metry operators.

Note that anti-symmetry cannot immediately be detected by evaluating the centraliser

as there is no infinitesimal generator in the connected component that would bring

about a sign inversion of the coupling term while leaving the local controls invariant.

To capture anti-symmetry, we define as the augmented centraliser k′‖ the centraliser aris-

ing after substitution of all coupling constants (but not their anisotropy parameters

defined in Equation 3.3.4 for Heisenberg couplings) by their respective moduli

(Jk`, α, β, γ) 7→ (|Jk`|, α, β, γ).

Then, an anti-symmetry in (parts of) the coupling Hamiltonian reveals itself if the orig-

inal centraliser k′ is a proper subset of the augmented centraliser k′‖, so k′ ( k′‖. In a
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Algorithm 3.2 Determine the centraliser to a given set of drift and control Hamiltoni-
ans {iH0; H1, . . . , HM}. The complexity of the algorithm is O(64n) for n qubits, as 4n

equations with real coefficients have to be solved by an LU decomposition.
FOR each Hamiltonian Hν ∈ {H0; H1, . . . , HM}

determine all solutions to the homogeneous linear eqn.

Sν := {s ∈ su(N)|(1l⊗ Hν − Ht
ν ⊗ 1l) vec (s) = 0}

ENDFOR
Obtain the centraliser by intersecting all sets of solutions k′ =

⋂
ν Sν.

slight abuse of language, we say a dynamical system has ’no symmetry and no anti-

symmetry’, if the centraliser is trivial both before and after the above substitution.

Computationally, the centraliser as well as the augmented one are ’exponentially’ easier

to come by as is evident by comparing the complexityO(256n) of Algorithm 3.1 for the

Lie closure with the complexity O(64n) of Algorithm 3.2 for the centraliser tabulated

above. The mere decision whether the centraliser is trivial (without specifying k′) is of

complexity O(2n).

Within the centraliser k′ one may choose a maximally Abelian subalgebra a of mu-

tually commuting symmetry operators which allows for a block-diagonal represen-

tation in the eigenspaces associated to the eigenvalues (λ1, λ2, . . . , λ`) to {a1, a2, . . .

, a`} = a. A convenient set of symmetry operators representing the outer symme-

tries are the ones generating SWAP transpositions of qubits: they correspond to the

S2 symmetry and come with the eigenvalues +1 (gerade) and −1 (ungerade). A block-

diagonal representation results if all the SWAP transpositions that can be performed

independently are taken as one entry each in the `-tuple (λ1, λ2, . . . , λ`), while all those

that have to be performed jointly are multiplied together to make one single entry in

the tuple. This procedure is illustrated below in Examples 1 and 2.

Observe that in our notation a block-diagonal representation of a Lie algebra k =

su(N1) ⊕ su(N2) generates a group K = SU(N1) ⊕ SU(N2) in the sense of a block-

diagonal Clebsch-Gordan decomposition (or cartesian product SU(N1)× SU(N2)).
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(a) (b)

Figure 3.4.1: (a) Example 1 with Ising qubit chain of joint S2 symmetry. (b) The drift and control
Hamiltonians of Example 1 take block-diagonal form corresponding to the Ag and
Au representation of the S2-symmetry group.

3.4 Introductory examples with symmetry-restricted controlla-

bility

3.4.1 Example 1: joint S2 symmetry

First, consider Ising n-qubit chains with odd numbers of qubits such as the one in

Figure 3.4.1(a), which has an Ising coupling graph L5. It shows a mirror or inversion

symmetry S2 (a.k.a. Ci) that leaves the coupling graph and thus all Hamiltonians of

drifts and controls {H0, H1, . . . , HM} invariant under the joint permutation of qubits

A ↔ A′ together with B ↔ B′ in the system of Figure 3.4.1(a) with C in the mirror axis.

The joint permutation operator can conveniently be represented as

Π(L5) =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


A,A′

⊗


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


B,B′

⊗ 1lC (3.4.1)

in a Hilbert space HA ⊗HA′ ⊗HB ⊗HB′ ⊗HC ordered by qubits A, A′, B, B′, C. Fig-

ure 3.4.1(b) illustrates how in the S2-symmetry-adapted eigenbasis of Π(L5), all Hamil-

tonians take the same block-diagonal form with two blocks of parities: gerade (eigen-

value +1) and ungerade (eigenvalue −1). There are no further independent constants

of motion s in the centraliser to the dynamical system algebra k′1 besides the generator

of Π(L5). Each block represents a fully controllable logical subsystem with one block

being of size 20 × 20 and one block of size 12 × 12. Note that all the symmetrised

Hamiltonians are traceless within each of the two blocks. Thus, the Lie closure gives

the Clebsch-Gordan (CG) decomposed dynamical system Lie algebra

k1 = su(20)⊕ su(12) generating K1 = SU(20)⊕ SU(12)
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(a) (b)

Figure 3.4.2: (a) Example 2 with coupling topology allowing for individually independent per-
mutation symmetries ΠAA′ and ΠBB′ , which together reproduce the S2-symmetry
of Example 1. (b) The drift and control Hamiltonians of Example 2 take a block-
diagonal form corresponding to the gg, uu, gu and ug parities of the individual
permutations ΠAA′ and ΠBB′ .

with Lie dimension 542 = 399 + 143.

Example 1 will be generalised to S2-symmetric Ising qubit chains of arbitrary length in

Section 3.6.1 below.

3.4.2 Example 2: individual permutation symmetry

By introducing further Ising couplings between qubits A and B′ and qubits A′ and B,

the L5 system of Example 1 can be turned into the one represented by a non-planar

graph in Figure 3.4.2(a): note that now the qubit pairs A, A′ and B, B′ can be per-

muted individually. Thus, the block-diagonal representation consists of four blocks

corresponding to the parities gg, uu and gu, ug with the respective sizes 18× 18, 2× 2

and twice 6 × 6, see Figure 3.4.2. The indistinguishable pair AA′ (and BB′) can be

looked upon as a pseudo spin-1 and pseudo spin-0 system, because symmetrisation

allows for adding their spin angular momenta in the usual Clebsch-Gordan way. The

Lie dimension of each pair is 4, instead of 15 in a fully controllable spin pair; the Lie

dimension of the total system is 364 = 323 + 35 + 6, i.e., the sum of all blockwise Lie di-

mensions - with two exceptions: (i) the second 6× 6 block is not of full dimension since

it does not contain any coupling terms; instead, it only collects elements from two in-

dependent su(2) subalgebras which arise from the AA′ pair and the C spin thus giving

a Lie dimension of 6; (ii) the 2× 2 block does not contribute since it reduplicates one

of the independent su(2) algebras already occuring in the second 6× 6 block, which

becomes obvious as the matrix elements in both blocks only occur jointly. Finally, since

in all Hamiltonian components all the blocks are independently traceless, we have a

CG-decomposed dynamical algebra

k2 = su(18)⊕ su (2)⊕ su(6)⊕
(
su(2)j=1 ⊕̂ su(2)

)
, (3.4.2)
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generating a dynamical group

K2 = SU(18)⊕ SU (2)⊕ SU(6)⊕
(
SU(2)j=1 ⊗ SU(2)

)
, (3.4.3)

where the index j = 1 denotes the spin-1 representation of su(2) ⊂ su(3) and the

bracket connects the su(2) of spin C occuring in two copies (see above).

3.5 Task controllability

A set of non-trivial symmetry operators precludes full controllability. With symmetry

restrictions in the system, the dynamical Lie algebra k is a proper subalgebra of su(N):

〈exp k〉 =: K ( SU(N)

The reachable sets take the form of subgroup orbits

OK(ρ0) := {Kρ0K−1|K ∈ K}.

Thus, symmetry analysis allows for the specification of the dynamical Lie algebra and

for giving selection rules that govern state transfer: An initial quantum state repre-

sented by the density operator ρ0 can be transferred into a target state ρT by a dynami-

cal system with Lie algebra k with full fidelity if and only if

ρT ∈ OK(ρ0).

Note that the situation is easy whenever the states both share the same symmetry as

the dynamical system algebra, i.e.,

[ρ0, k′] = [ρT, k′] = 0.

Then, ρ0 and ρT allow for the same symmetry-adapted block-diagonal decomposition

as the system algebra k, and if for a dynamical group

K = SU(N1)⊕ SU(N2)⊕ · · · ⊕ SU(Nν)

with N1 + N2 + · · ·+ Nν = N also the eigenvalues of ρ0 and ρT coincide in each of the

ν blocks, then ρT ∈ OK(ρ0). This is a sufficient condition, not a necessary one.

For illustration, consider the representation of ρ0 and ρT in the symmetry-adapted basis

of k in the easy example of K ∈ [SU(N1)⊕ SU(N2)] with N1 + N2 = N, where (with
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A, Ã and C, C̃ all being Hermitian)

ρ0 :=

[
A B

B† C

]
k

ρT :=

[
Ã B̃

B̃† C̃

]
k

K :=

[
U 0

0 V

]
k

.

Then, Kρ0K† = ρT holds if and only if simultaneously

UAU† = Ã and VCV† = C̃ and UBV† = B̃.

Thus, it is necessary that in the diagonal blocks (here A, Ã and C, C̃) the eigenvalues

coincide blockwise, while in the off-diagonal blocks (here B, B̃) the singular values co-

incide.

Apart from giving selection rules for state transfers, analysing the dynamical Lie alge-

bra allows for deciding if a specific task is feasible in systems of reduced controllabil-

ity. A Hamiltonian quantum system characterised by {iHν} is called task controllable

with respect to a target unitary gate UG if there is at least one Hamiltonian HG on

some branch of the ’logarithm’ of UG so that UG = eiφ · e−iHG (with arbitrary phase

φ) and iHG ∈ k = 〈iHν〉Lie [59]. Whether the Hamiltonian iHG can be generated by

a system with dynamical Lie algebra k, can be tested by simply evaluating a matrix

rank: arrange all the matrices {k1, k2, . . . , kr} spanning k as column vectors collected

in a matrix K :=
[

vec (k1), vec (k2), . . . , vec (kr)
]
. Then iHG can be generated in k if

rank (K) = rank
[
K, vec (iHG), vec (1l)

]
.

3.6 Discussion of inner and outer symmetries

Here, we further study dynamical Lie algebras of systems with outer and inner symme-

tries. Recall that outer symmetries permute equivalent qubits in the coupling graph,

while inner symmetries reflect constants of motion that are due to the Hamiltonians

themselves rather than due to permuting among qubits.

This section is structured as follows. In 3.6.1, we discuss Ising-ZZ coupled systems

with local control on all qubits as examples, where outer symmetries are the only per-

tinent ones. In 3.6.2, the focus is on Heisenberg-XXX coupled systems with local con-

trol on just a single qubit as examples of inner symmetries. In 3.6.3, we investigate

qubit chains with minimalistic local controls on one or two qubits at the controlled end

(called head part henceforth) and Heisenberg-XY type couplings throughout the uncon-

trolled part. These systems are of interest as breaking their inner symmetries explains

controls that are necessary for an exponential growth of the reachable state space.
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−
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3.6.1 Systems with outer symmetry

Outer symmetries directly relate to permutations of vertices in the network’s repre-

sentation by a coupling graph. Thus, they are easy to see just as in the introductory

examples of Figures 3.4.1 and 3.4.2. Here, we extend them to a larger set of instances

given in Table 3.1. For linear chains, the only applicable symmetry is the joint Ci mir-

ror operation permuting the first and the second half of the chain in the sense of the

symmetric group S2. This gives rise to a block-diagonal irreducible represention of

the dynamical algebra with just two blocks: they are associated to the +1 and the −1

eigenspace of the permutation, or the gerade and ungerade subspace of Ci (see above).

This explains instances (a) through (f) plus (m) of Table 3.1. Closing chains to cycles

does not change the situation except for allowing for unimportant phase factors as in

(i) compared to (j). Note that in the four-membered ring (h) the isotropic Heisenberg

coupling reduces the Lie dimension, whereas in the five-membered cycle of (j) it does

not. When a loop is introduced as in case (l), the mirror symmetry is broken and the

system becomes fully controllable. Case (k) has been treated separately in all detail as

Example 2 above.

3.6.1.1 Arbitrary n-qubit chains with reflection symmetry

For an Ising n-qubit chain Ln with central mirror symmetry S2, the findings of the

introductory Example 1 generalise, thus providing a common formula that covers the

results in Table 3.1(a), (e), (f), (i), and (m). Let p := bn/2c define the number of qubit

pairs. Then the joint permutation j ↔ (n − j + 1) for all qubits j = 1, . . . , p may be

represented in the basis of Equation 3.4.1 as

Π(Ln) =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


⊗p

⊗ 1l1+(n mod 2), (3.6.1)

where the last factor is the number 1 for n even and the unit operator 1l2 on the central

qubit for n odd. The generator of Π(Ln), up to a phase φ so that eiφΠ(Ln) ∈ SU(N), is

the only non-trivial element in the centraliser k′(Ln) of the dynamical Lie algebra k(Ln)

to an n-qubit chain with mirror symmetry. Thus, in the S2-symmetry adapted bases the

dimensions dg and du of the respective gerade and ungerade subspaces are determined

as follows: each two-qubit SWAP in Equation 3.6.1 contributes the eigenvalues +1 (3-

fold degenerate) and −1 (non-degenerate). For a product of p pairs, the respective

27



CHAPTER 3: CONTROLLABILITY AND SYMMETRY IN SPIN SYSTEMS

dimensions dg and du of the gerade and ungerade subspaces collect alternating terms

of a binomial distribution

dg(n) := 2(n mod 2)
bp/2c

∑
k=0

(
p

2k

)
3 p−2k (3.6.2)

du(n) := 2(n mod 2)
bp/2c−1

∑
k=0

(
p

2k + 1

)
3 p−2k−1. (3.6.3)

The binomial distribution inherently ensures dg + du = 2n by the row sum in Pascal’s

triangle.

We may generalise Example 1 to

Proposition 1. In general Ising- or Heisenberg-coupled n-qubit chains Ln with central reflec-

tion symmetry S2 and hence pairwise locally controllable qubits, the dynamical Lie algebras

are

k(Ln) =


su(dg(n))⊕ su(du(n)) for nodd

s
[
u(dg(n))⊕ u(du(n))

]
for neven

with dg(n) and du(n) as in Equations 3.6.2 and 3.6.3.

Proof. First, we prove the dimension formulae of Equations 3.6.2 and 3.6.3: Symmetry-

adapted bases of the SWAP operator of Equation 3.6.1 show block-diagonal form with

a core of size 3× 3 and 1× 1:
· · ·
· 3g ·
· · ·

1u



⊗p

⊗ 1l1+n(mod2). (3.6.4)

For the dimensions, the pth tensor power yields a binomial distribution (1u + 3g)p =

∑
p
ν=0 (p

ν)
(
1ν

u · 3p−ν
g
)
. The formulae then follow by summing the terms ν = 2k of parity

gerade for dg and the terms ν = 2k + 1 of parity ungerade for du.

Second, we prove the two cases observing that Equation 3.6.4 implies the recursions

dg(n + 2) = 3 · dg(n) + du(n)

du(n + 2) = 3 · du(n) + dg(n),

as does the above binomial distribution.

(1) For n odd, the induction n 7→ n + 2 may be based on the A − B − A system of
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Table 3.1(e) with the dynamical system algebra

k(L3) = su(6)⊕ su(2) ≡ su(dg(n))⊕ su(du(n)).

In the new eigenbasis of Π(Ln+2), the coupling term connecting the new qubit pair

(Ω, Ω′) to the terminal qubit pair (A, A′) of the old chain Ln reads as

(
(z1)Ω,Ω′ ⊗ (z1)A,A′ + (1z)Ω,Ω′ ⊗ (1z)A,A′

)
⊗ 1l⊗(n−2)

2

and can be chosen diagonal. It has non-vanishing elements in both new blocks, the

one of dimension dg(n + 2) as well as du(n + 2). Note that 3 Pauli-basis elements that

formerly were among dg(n) (respectively du(n)) now have elements in both dg(n + 2)

an du(n + 2) and form a subalgebra su(2) among themselves. They can be coupled

to the new 3 Pauli-basis elements on (Ω, Ω′). Hence, to each element that formerly

was among dg(n) there are 3 new ones in dg(n + 2) that arise from coupling to (Ω, Ω′)

via the dg(n + 2) part of the coupling term plus local actions on the dg(n + 2) part

of (Ω, Ω′). The ones formerly in dg(n) and now in du(n + 2) correspond to the un-

transformed elements. They add to the new ones in du(n + 2), which analogously

arise via coupling: they are 3 times as many as in the former du(n) part thus giving

du(n + 2) = 3 · du(n) + dg(n). The ones formerly in du(n) and now in dg(n + 2) count

again as untransformed to make a total of dg(n + 2) = 3 · dg(n)+ du(n), so the recursion

formulae are exactly matched.

(2) For n even, the induction n 7→ n + 2 is based on the A − B − B − A system of

Table 3.1(f) with the dynamical system algebra

k(L4) = s
(
u(10)⊕ u(6)

)
≡ s
[
u(dg(n))⊕ u(du(n))

]
,

where the same arguments apply. The additional phase degree of freedom compared

to (1) is due to the coupling between the innermost qubit pair, hence arising only in

chains with even n.

In view of engineering quantum systems, we will close the subsequent paragraphs by

a summarising guideline. They will be made more rigorous below. The first one is:

Design Rule 1. For an Ising-ZZ coupled n-qubit system to be fully controllable, it suffices

that

1. each qubit belongs to a type that is jointly operator controllable locally (as in Figure 3.3.1),

2. the coupling topology forms a connected graph, and
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3. drift and control Hamiltonians share no outer symmetries or anti-symmetries and k′ is

trivial.

3.6.2 Systems with inner symmetry

In contradiction to permutation-type outer symmetries, inner symmetries are not im-

mediately obvious from the coupling topology and its representation as a graph. They

rather arise as Hamiltonian symmetries due to a lack of control combined with par-

ticular coupling types, thus reflecting constants of motion. For instance, if a qubit’s

polarisation is conserved, one is faced with what is called a passive qubit. Note this

terminology is in line with well-established definitions in magnetic resonance spec-

troscopy [60]. In Figure 3.6.1 and Table 3.2, any system that is not fully controllable

shows passive qubits pi attached via Ising couplings, except the special case (j). Every

individual passive qubit pi comes with a symmetry operator σ
(pi)
z in the centraliser. In

the instances of Table 3.2(a’), (b), (c), (f), and (g), there is just one single such passive

qubit and therefore the block-diagonal irreducible representation of the dynamic Lie al-

gebra is made of two equivalent blocks associated with the +1 and the −1 eigenspace

of σ
(pi)
z . If several qubits are passive, then the block-diagonal irreducible representation

is structured by the eigenvalues λpi = ±1 of the independent σ
(pi)
z operators sorted as

tuples (λp1, λp2, . . . , λpr). With the number of such tuples being 2r for r passive qubits,

the irreducible representation takes block-diagonal form with 2r components. In the

instance (i) of Figure 3.6.1 and Table 3.2, there are five such passive qubits and hence

25 = 32 blocks of 4× 4 size. Due to the further Ising couplings, cases (a’) and (i) differ

by one degree of freedom arising from non-traceless blocks reflecting an unimportant

phase factor.

In contrast, the case of collective controls on isotropically Heisenberg-coupled qubits is

an extreme example, with the drift Hamiltonian commuting with the control Hamilto-

nians being shown as instance (j) in Figure 3.6.1 and Table 3.2: here, the collective local

controls are trivially invariant under permutation of qubits. Since the isotropic Heisen-

berg coupling Hamiltonian Hxxx is the generator of the SWAP operation, the coupling

Hamiltonian as a drift term commutes with the collective controls thus leaving a dy-

namic algebra k of Lie dimension four: it is generated by the three local joint qubit

rotations along the x, y, z axes plus the isotropic coupling term which introduces an

immaterial phase. An equivalent example with two indistinguishable qubits already

occured in Table 3.1(b). More precisely, the irreducible representation of the dynamic

Lie algebra of the six-qubit system in Table 3.2(j) is merely a block-diagonal decompo-

sition of su(2), where the drift term introduces an immaterial phase.
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Figure 3.6.1: Coupled qubit systems with subsets of uncontrolled qubits that are interacting
via a connected coupling topology of Heisenberg and Ising type. Their dynami-
cal Lie algebras are listed in Table 3.2. Note that the graphs of (e), (h), (k) and (l)
are all ’non-infective’ [49], yet the systems are fully controllable. Under collective
controls, Ising interactions in non-symmetric systems (k) and (l) give full control-
lability, while isotropic Heisenberg interactions (j) do not. Full controllability in (j)
requires non-isotropic XXZ-type couplings.
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Figure 3.6.2: Qubit chains with minimalistic controls in the two-qubit head and an uncontrolled
remainder with Heisenberg-XX and −XY type coupling drifts as discussed in
Table 3.7.1 referring to recent literature [43, 61, 62].

For full controllability in Ising-coupled systems, the symmetry may be broken either

by unequal coupling constants (instance (k) in Figure 3.6.1 and Table 3.2 or by a non-

symmetric coupling topology, as in instance (l). Finally, note that (j) can be made fully

controllable if the isotropic Heisenberg interaction is replaced by a non-isotropic one

like XXZ. Otherwise, HXXX ∈ k′ since it commutes with all joint controls.

Design Rule 2. For a generic1 Heisenberg-XXX (XXZ, XYZ) coupled n-qubit system to be

fully controllable, it suffices that

1. one single qubit is fully controllable locally,

2. the coupling topology forms a connected graph, and

3. drift and control Hamiltonians share no outer symmetries or anti-symmetries and k′ is

trivial.

These conditions are less restrictive than requiring a coupling topology with an ’infect-

ing graph’ [49].

3.6.3 Qubit chains with minimalistic controls

Here, we compare XX-coupled qubit chains with different types and degrees of control.

For this purpose, in Table 3.3, a variety of setups with different parameters δi and Bi in

Hd := 1
2

n−1

∑
k=2

(1 + δ)XkXk+1 + (1− δ)YkYk+1 +
n

∑
i=2

Bi Zi

are collected. These systems are similar to the ones recently studied in [61, 62], but we

confine ourselves to pure qubit systems and do not aim for simulating fermionic or

bosonic systems on such qubit systems.

Recall from Equation 3.3.3 the σ
(i)
z as the embedded Pauli matrix. Then the symme-

try operators k′ to the respective dynamic Lie algebras k in Table 3.3(a) through (f) all

1Heisenberg-XYZ type coupling interaction is called generic if in the tuple (α, β, γ) associated to the

coupling term Jk` (α · σ
(k)
x σ

(`)
x + β · σ

(k)
y σ

(`)
y + γ · σ

(k)
z σ

(`)
z ) there are no pairs just differing in sign, since we

have not analysed particular instances like β = −α = ±γ etc.
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0 )

1
0

25
1,5,10,10,5,1

1,25,25,25,25,1
s (u(5)⊕

u(1) )
no

(d)
Z

1
(plus

X
Y

1
in

H
0 )

1
0.3

45
16,16

45,45
so(10)

yes

(e)
X

X
12

1
0

11
1,5,10,10,5,1

1,11,11,11,11,1
s (o(5)⊕

u(1) )
no

(f)
X

Y
12

1
0.3

45
16,16

45,45
so(10)

yes

(g)
Z

1 ,X
1 ,X

X
12 ,Z

Z
([)
12

0
0

1023
([)

32
1023

([)
su(2

5)
yes

(g’)
Z

1 ,X
1 ,X

X
X

([)
12

0
0

1023
([)

32
1023

([)
su(2

5)
yes

(h)
Z

1 ,X
1 ,X

Y
12 ,Z

Z
([)
12

1
0.3

1023
([)

32
1023

([)
su(2

5)
yes

(h’)
Z

1 ,X
1 ,X

Y
Z

([)
12

1
0.3

1023
([)

32
1023

([)
su(2

5)
yes

([)
W

ithoutthe
controls

Z
Z

12
(separate

or
in

X
X

X
12 )the

Lie
dim

ensions
reduce

to
55

in
either

ofthe
cases

(g,g’)and
(h,h’).
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comprise the operator

Pz :=
n

∏
i=1

σ
(i)
z

whose eigenvalues±1 already contribute a separation into two block-diagonal compo-

nents. Moreover, instances (a), (c), and (e) are characterised by the additional symmetry

operator (here with n = 5)

Fz := 1
2

n

∑
i=1

σ
(i)
z ,

whose eigenvalues are conserved quantities. The block-diagonal irreducible represen-

tations of the dynamic system algebras consist of six blocks associated to these eigen-

values p ∈ 1
2{5, 3, 1,−1,−3,−5}.

Relaxing the Heisenberg-XX coupling to XY (hereby setting δ = 0.3) breaks this sym-

metry. So instead of Fz, in the instances (b), (d), (f) one is just left with the symmetry op-

erator Pz, whose eigenvalues ±1 lead to an irreducible representation with two blocks

of equal size.

In order to discuss cases (a) and (b) explicitly, consider the analogous three-qubit sys-

tem, which in the case of XX couplings (δ = 0) takes block-diagonal form of sizes

1, 3, 3, 1, whereas under XY (δ 6= 0) coupling the block sizes are 4, 4. In the eigenbases

of Fz, one finds (with the short-hands cδ, dδ = δc, δd) two useful equivalent representa-

tions

c · Hc + d · Hd =



0 0 −icδ idδ 0 0 0 0

0 0 d 0 0 0 0 0

−icδ −d 0 c 0 0 0 0

idδ 0 −c 0 0 0 0 0

0 0 0 0 0 c 0 idδ

0 0 0 0 −c 0 d −icδ

0 0 0 0 0 −d 0 0

0 0 0 0 idδ −icδ 0 0


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'



0 0 0 0 −idδ icδ 0 0

0 0 d 0 0 0 0 0

0 −d 0 c 0 0 0 icδ

0 0 −c 0 0 0 0 −idδ

−idδ 0 0 0 0 c 0 0

icδ 0 0 0 −c 0 −d 0

0 0 0 0 0 −d 0 0

0 0 icδ −idδ 0 0 0 0


.

Thus, for δ = 0 one gets two block-diagonal copies of a joint algebra so(3). For δ 6= 0 the

matrix representations remain skew-symmetric in the real parts, while their imaginary

parts are symmetric. In the latter representation, the real part and the imaginary part

constitute a k-p decomposition of the non-compact real form so∗(4) to so(4) (see, e.g.,

[63] p. 343) with Lie dimension 6, thus duplicating the Lie dimension of so(3) upon

departing from δ = 0 to δ 6= 0. In the analogous case of five qubits, see Table 3.3(b), the

decomposition is no longer as elementary as before, but for δ = 0 one finds again two

block-diagonal copies of a joint so(5). For δ 6= 0, the block-diagonal part consists of the

zero-quantum interactions of the type

HZQ := σ
(j)
x ⊗ σ

(k)
x + σ

(j)
y ⊗ σ

(k)
y

whereas the terms outside the block-diagonal correspond to double-quantum interac-

tions of the type

HDQ := σ
(j)
x ⊗ σ

(k)
x − σ

(j)
y ⊗ σ

(k)
y .

In total, one obtains again a duplication of the degrees of freedom to arrive at a dynamic

Lie algebra isomorphic to so(5) ⊕̂ so(5) with overall Lie dimension 20.

In conclusion, the findings of this section can be summarised by the following practical

guideline:

Design Rule 3. For a Heisenberg-XX (XY) coupled n-qubit system to be fully controllable, it

suffices that

1. one adjacent qubit pair is fully controllable as su(4),

2. the coupling topology forms a connected graph, and

3. drift and control Hamiltonians share no outer symmetries or anti-symmetries and k′ is

trivial.

The design rules 1 through 3 are made more rigorous in the following paragraph.
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3.7 Absence of symmetry versus full controllability

Ultimately, the question is: under which conditions does the absence of any symmetry

imply full controllability? In the special case of pure-state controllability, this interrela-

tion was analysed in [47]. In the generalised context of full operator controllability, the

issue was raised in [64], among others, following the lines of [65], however, without a

full answer. Here, we focus on quantum systems where the drift Hamiltonian is com-

prised of Ising- or Heisenberg-type couplings in a topology that can take the form of

any connected graph. We note the following.

3.7.1 Absence of symmetry implies (semi-)simplicity

Lemma 1. Let k ⊆ su(N) be a matrix Lie subalgebra to the compact simple Lie algebra of

special unitaries su(N). If the centraliser k′ of k in su(N) is trivial, then

(1) k is given in an irreducible representation;

(2) k is simple or semi-simple.

Proof. (1) The unitary representation of the corresponding matrix Lie group K ⊆ SU(N)

ensures full reducibility invoking the Schur-Weyl theorem. As there is no invariant

subspace k′ other than the trivial ones, the representations of K and k are irreducible.

(2) Since k is by construction a Lie subalgebra to the compact Lie algebra su(N), k is

compact itself. By compactness it has a decomposition into its centre and a semi-simple

part k = zk ⊕ ss (see, e.g., [66] Corollary IV.4.25). As the centre zk = k′ ∩ k is trivial and k

is traceless, k itself can only be semi-simple or simple.

3.7.2 Conditions for simplicity

Lemma 2. Let the Lie closure k of a set of drift and control Hamiltonians {iHν} be a compact

Lie algebra with trivial centraliser k′ in su(N). If the coupling topology to the drift term H0

takes the form of a connected graph extending over the entire system, then k is a simple Lie

subalgebra of su(N).

Proof. For an n-qubit drift Hamiltonian with a coupling topology of a graph that is

connected, there exists no representation by a single Kronecker sum. (Rather, it is a

linear combination of Kronecker sums). As every semi-simple Lie algebra allows for

a representation as a single Kronecker sum, the dynamic Lie algebra k can only be

simple.
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Figure 3.7.1: At branching points in the coupling graphs, the (anti-)symmetry between qubits
jointly controlled by local operations (coloured nodes) can be broken (a) by dif-
ferent coupling constants |J| 6= |J′| or (b) by different topological continuation as
described in the text.

3.7.2.1 Easiest example

Consider an Ising-coupled two-qubit system with individual local controllability, so

the Lie closure to {iHν} \ iH0 is su(2) ⊕̂ su(2), which is semi-simple (and isomorphic

to so(4)) and has just a trivial centraliser. Upon including the Ising coupling, the Lie

closure of the full {iHν} turns into su(4), which is simple.

Therefore, in systems with local controllability a lack of symmetry gives a trivial cen-

traliser, which in turn implies irreducibility. Together with compactness it entails (at

least) semi-simplicity, while a connected topology of (appropriate) couplings on top

finally ensures simplicity.

3.7.3 Sufficient conditions for full controllability

Moreover, the premise of a connected coupling topology together with the conditions

specified as Design Rules 1 to 3 even imply full controllability, as summarised in the

previous section. To see this, some principal implications have to be established as

lemmas.

As a basis, we use the following well-known result:

Proposition 2. For a spin- 1
2 network to be fully controllable, it suffices that every qubit is fully

controllable locally and the coupling topology takes the form of a connected graph, while the

coupling may be of Ising-type [46] or Heisenberg-type [47].

Now, systems with partially collective local controls can be shown to be fully control-

lable, if the partial symmetry between local controls is broken by the coupling topology.

Lemma 3. As illustrated in the setting of Figure 3.7.1, the symmetry between qubits controlled

jointly by local operations can be broken

(1) by different coupling constants |J| 6= |J′| or
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(2) by a different coupling-topological continuation.

Proof. We prove the lemma in three scenarios: (A) for Ising coupled systems with par-

tially joint local controls, (B) for Heisenberg-XXX coupled systems with partially un-

controlled qubits, and (C) for Heisenberg-XX coupled systems also with partially un-

controlled qubits.

A: Ising coupling

(1) We consider the branching point of Figure 3.7.1(a) as an A− B− A′ Ising chain.

We define the coupling Hzz := J(zz1)+ J′(1zz) and the A-controls HAx := u(x11)+

u′(11x) on the Hilbert space HA ⊗HB ⊗HA′ . Then the single commutator with

iHzz

adiHzz(iHAx) ≡ [iHzz, iHAx]

= −i{uJ(yz1) + u′ J′(1zy)}

is linearly independent of the triple commutator

ad3
iHzz

(iHAx) = i{uJ3(yz1) + u′ J′3(1zy)}

unless u
u′

J
J′ = u

u′ (
J
J′ )

3, i.e. ( J
J′ )

2 = 1. Likewise, HAx := u(x11) + u′(11x) is linearly

independent of

ad2
iHzz

(iHAx) = −i{uJ2(x11) + u′ J′2(11x)}

unless again ( J
J′ )

2 = 1: such an (anti-)symmetry is, however, excluded by the

premise of trivial centralisers k′ and k′‖. Once the local controls become indepen-

dent, Proposition 2 applies. Hence, in view of the Lie dimensions being the rank

of the Lie closure seen as a vector space, the symmetry between A and A′ can not

only be broken by independently switchable controls u, u′, but also by different

coupling constants |J| 6= |J′| to give

dim 〈iHzz, iHAx〉Lie = 6

instead of 3 in case |J| = |J′|. In the same manner, one may consider the extended

system with independent x and y controls jointly on A, A′. Including indepen-

dent x and y controls on B, one finds a fully controllable three-qubit system in

case |J| 6= |J′|
dim 〈iHzz, iHAx, iHAy, iHBx, iHBy〉Lie = 63.

39



CHAPTER 3: CONTROLLABILITY AND SYMMETRY IN SPIN SYSTEMS

As long as no qubit is without some local control, the same arguments hold for

other coupling types of Heisenberg type, where it extends to (Jk`, αxx, βyy, γzz) in

order to avoid anti-symmetry.

(2) Next, take the setting of Figure 3.7.1 (b) as an A− B− A′ − A′′ Ising chain. Now,

with the uniform coupling term Hzz := J
{

zz11 + 1zz1 + 11zz
}

and the joint A-

controls HAx := u
(
x111 + 11x1 + 111x

)
, one finds

ad2
iHzz

(iHAx) = −iuJ2{(x111) + 2(11x1) + 2(1zxz) + (111x)},

which, when compared to HAx, shows that the local controls on qubits A and

A′ are linearly independent. Then, include the B-control HBx := v(1x11) and

compare the expression

adiHzz ◦ ad2
iHBx

◦ adiHzz(iHAx) = iuv2 J2{(x111) + (11x1) + (1zxz)}

to the one above to see how the local controls on qubits A and A′′ become linearly

independent, too. Thus, we have reduced the problem to satisfy the precondi-

tions for Proposition 2 which finally makes the entire system fully controllable:

dim 〈iHzz, iHAx, iHAy, iHBx, iHBy〉Lie = 255.

B: Heisenberg-XXX coupling

1. We take the branching point of Figure 3.7.1(a) as an O− A−O′ Heisenberg-XXX

chain with

Hxxx := J(xx1 + yy1 + zz1) + J′(1xx + 1yy + 1zz),

where the O qubits are uncontrolled, while the A qubit has full local control via

HAx = u(1x1) and HAy = v(1y1). Then, the double commutator with iHxxx

contains the local terms

ad2
iHxxx

(iHAx) = −2iu{(J2 + J′2)(1x1)− J2(x11)− J′2(11x)},

which are linearly independent of HAx and also introduce independent local con-

trols on O and O′ when combined with

ad4
iHxxx

(iHAx) = + 2iu{(4J4 + 10J2 J′2 + 4J′4)(1x1)

− (4J4 + 5J2 J′2)(x11)− (4J′4 + 5J2 J′2)(11x)},
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(a)

J

J'

J

J

(b)

J

Figure 3.7.2: At branching points in the coupling graphs, also the symmetry between uncon-
trolled qubits (white nodes) can be broken (a) by different coupling constants
|J| 6= |J′| or (b) by a different topological continuation as described in the text..

unless |J| = |J′|, which is excluded by the premise of trivial centralisers k′ and k′‖.

Once all the local controls are independent, Proposition 2 applies and the system

is fully controllable.

2. Take Figure 3.7.1(b) as an O− A−O′ −O′′ Heisenberg-XXX chain with

Hxxx := J(xx11 + yy11 + zz11 + 1xx1 + 1yy1 + 1zz1 + 11xx + 11yy + 11zz),

where the O qubits are again uncontrolled, while the A qubit has full local control

via HAx = u(1x11) and HAy = v(1y11). Then, one arrives at

ad2
iHxxx

(iHAx) = −2iuJ2{2(1x11)− (x111)− (11x1)},

to give joint local controls on O and O′ independent of HAx. Again, the controls

on O and O′ can then be made independent when combined with

ad4
iHxxx

(iHAx) = +iuJ4{40(1x11)− 18(x111)− 28(11x1) + 6(111x)},

and finally the control on O′′ becomes also independent via ad6
iHxxx

(iHAx) to in-

voke Proposition 2 for full controllability.

C: Heisenberg-XX coupling

1. Consider the topology of Figure 3.7.2(a), where the shaded nodes A− B represent

a fully controllable su(4) subsystem XX-coupled to the uncontrolled qubits O, O′

(white nodes) via HXX := J(1xx1 + 1yy1) + J′(1x1x + 1y1y). Then, by

ad2
i(1x11) ◦ ad2

i(xx11+yy11) ◦ ad2
iHXX

(
i(zz11)

)
= −4 i {J2(1zz1) + J′2(1z1z)}

one can supply the Ising terms on B−O and B−O′ independently for |J| 6= |J′|
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to link the problem to the case B(1) solved above. We find

adi J2(1zz1)+i J′2(1z1z) ◦ adiHXX

(
iHBx)

)
= iu {J3(11x1) + J′3(111x)}

to establish the preconditions for Proposition 2.

2. Likewise, in the system of Figure 3.7.2(b) with the couplings

HXX := J(1xx11 + 1yy11) + J(1x1x1 + 1y1y1) + J(111xx + 111yy),

one obtains the supplementary Ising terms

F1
(
i(zz111)

)
= 2 i J2{(1zz11) + (1z1z1)}

by

F1 := adi(yy111) ◦ adi(1y111) ◦ adi(z1111) ◦ adi(1x111) ◦ adi(xx111+yy111) ◦ ad2
iHXX

,

and moreover, setting

F2 := adi(1y111) ◦ adi(1z111) ◦ adi(1x111) ◦ ad2
iHXX

,

also the more remote Ising terms

F2 ◦ F1
(
i(zz111)

)
= 4 i J4{(1z11z)− (1zz11)− 2(1z1z1)},

and via F3 := ad2
iHXX

finally

F3 ◦ F2 ◦ F1
(
i(zz111)

)
= 8 i J6{(111zz)− 3(11zz1) + (1zz11) + (11z1z)+

+ 5(1z1z1)− 5(1z11z)}

Once they are all made linearly independent, the problem is reduced to the case

B(2) treated above.

Theorem 1. Let k = 〈iH0, iH1, . . . , iHM〉Lie ⊆ su(N) be simple with the centraliser k′ and

the augmented centraliser k′‖ both trivial. Let H0 be of a connected coupling topology in each of

the coupling types invoked below. Then, any one of the following additional conditions ensures

full controllability:
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(1) the system is coupled by Ising-ZZ interactions and each qubit belongs to a type that is

jointly operator controllable locally;

(2) the system is coupled by generic Heisenberg-XXX (or XXZ, XYZ) interactions and

there is at least one qubit that is fully controllable locally;

(3) the system is coupled by generic Heisenberg-XX (or XY) interactions and there is at least

one adjacent qubit pair that is fully controllable in the sense of a su(4).

Proof. The three conditions are proven separately:

(1) The instance of a locally controllable system coupled via a connected graph of

Ising-ZZ interactions was proven to be fully controllable in [46, 47]. The situa-

tion does not change for typewise joint local controls, because any permutation

symmetry among these joint local controls must be broken by the coupling term

to fulfill the premise of a trivial centraliser k′. Hence, Lemma 3 applies to give the

assertion.

(2) The Heisenberg-XXX couplings swap a single fully controllable qubit through

the connected coupling network. The local controls are independent as long as

no symmetries are introduced so that Lemma 3 applies.

(3) By the same token, the Heisenberg-XX couplings perform a successive iSWAP

of a fully controllable qubit pair through the coupling network. The ZZ parts

missing after the iSWAP can be corrected for in a second step, since the qubit pair

shifted is fully controllable by premise.

3.7.4 Necessary conditions for full controllability

Having given engineering rules sufficient for full controllability, one would like to

proceed a step further: what are the the necessary conditions to fill the gap between

lack of symmetry and full controllability in systems of n-qubit systems coupled in a

connected topology of Ising- or Heisenberg-type interactions? A full treatment will

be given in [67], where, based on complete lists of irreducible simple subalgebras of

su(N), convenient algorithmic schemes will be devised boiling down to solving sys-

tems of homogeneous linear equations to identify k as su(N), thus filtering it from all

other potential candidates.
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3.8 Efficient controllability

So far, we have exploited the power of Lie theory for addressing controllability as an

abstract decision problem. For the experimenter, however, systems have to be con-

trolled efficiently. Since there are simple rules of thumb for designing efficient quantum

systems, we add them as a final complementary guideline without going into further

detail here.

Design Rule 4. Fully controllable quantum systems can be made efficient by ensuring that

1. the coupling graph has a small diameter d,

2. the couplings are large compared to the fastest relaxation-rate constant, or more precisely,

the smallest coupling J∗ necessary to maintain connectedness of the coupling graph ful-

fills 1
d |J∗min| � T−1

R (with TR as the relaxation-rate constant),

3. the drift Hamiltonian H0 has well separated eigenvalues,

4. the number of separately addressable qubits is not orders of magnitude lower than the

total number of qubits.

3.9 Conclusions

In this chapter, we treated controllability in a unified Lie-algebraic framework incorpo-

rating constraints by symmetry for closed systems. In particular, the dynamic system

Lie algebra allows for the specification of the reachability sets of closed systems ex-

plicitly. Our results show that avoiding symmetries can be advantageous wherever

they are not explicitly desired, e.g., in order to exploit them for decoherence-protected

subspaces or in code spaces for error correction.

In quantum systems with symmetry, the feasible tasks in quantum simulation or quan-

tum gate synthesis can be made precise, thus giving valuable guidelines for quantum

system design matched to solve a given problem. We provided design rules that ensure

full controllability in systems with Ising-ZZ, Heisenberg-XX (XY) and Heisenberg-

XXX (XXZ, XYZ) type couplings with limited local access.
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Numerical studies on the additivity

of quantum channel capacities

Success is often achieved by those

who don’t know that failure is

inevitable.

Coco Chanel

4.1 Introduction

Can entanglement increase the amount of classical information sent over a quantum

channel? This question is strongly related to another one: Is the capacity of a quantum

channel additive? Based on a known counterexample by Holevo and Werner [68], we

investigate quantum channels for their additivity properties by optimising their capac-

ity measure using gradient flow techniques. Of particular interest are random extremal

channels with unitary matrices as their Kraus operators.

Section 4.2 defines quantum channels and gives some examples of standard channels

including their representation on the Bloch sphere. The additivity conjecture for the

capacities of these channels is presented in Section 4.3, followed by the famous coun-

terexample by Werner and Holevo in Section 4.4. The chapter concludes with a descrip-

tion of our numerical studies and their findings. We briefly outline further analytical

work that succeeded our studies and disproved the additivity conjecture for channels

in very large dimensions.

We thank Michael Wolf for initiating this project and for his collaboration in the course

of this project.
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CHANNEL CAPACITIES

4.2 Quantum channels

4.2.1 Definition

In quantum information theory, a quantum channel is a device for transmitting an

input state to an output state. This makes it the basic object of study in this field.

Physically, a quantum channel often describes decoherence as introducing noise into

a system by entanglement with the environment; mathematically, a quantum channel

is defined to be a completely positive trace-preserving (CPTP) map between matrix

algebras [69].

Let Mn denote the algebra of complex n× n matrices. A linear map Φ : Mn → Mm is

called completely positive (CP) if Φ× 1lk : Mn ⊗ Mk → Mm ⊗ Mk is positivity preserving

for every k ≥ 1, where 1lk is the identity map on Mk. Any map Φ is CP if and only if it

can be written in the Kraus representation:

Φ(X) :=
L

∑
i=1

Ki X K†
i .

Here, X ∈ Mn, and the m× n matrices K1, . . . , KL are called Kraus operators of Φ. The

minimum number of Kraus operators is called the Kraus rank. The Kraus representation

is not unique, but if K1, . . . , KL and K̃1, . . . , K̃L̃ are two different Kraus representations

for the same map with L ≤ L̃, then there exists a L× L̃ matrix A = (aij) such that

Ki =
L̃

∑
j=1

aijK̃j, AA† = 1lL.

Regarding a CP map as an operator acting on quantum states, we note the following:

If ρ is a quantum state, i.e., a positive semidefinite operator with trace one, then Φ(ρ)

must also be a quantum state. The CP condition ensures that φ(ρ) ≥ 0, but since the

probabilities must be preserved, the map is also required to be trace-preserving (TP).

For a map that is CP and TP, the Kraus operators must satisfy

L

∑
i

K†
i Ki = 1ln.

If L = 1, the matrix K1 is thus unitary and the channel is called pure. Time evolution is

an example of a pure quantum channel.

For a detailed physical interpretation of quantum channels, see Chapter 8.2 in [2].
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4.2.2 The Bloch sphere representation

For a single qubit, a quantum channel can be visualised by its action on the Bloch

sphere. Since the Bloch representation of a single qubit state is

ρ =
1l2 + rσ

2
=

1
2

[
1 + rz rx − iry

rx + iry 1− rz

]
,

where r is a real vector with the three components rx, ry, rz, any quantum channel can

be regarded as the affine map

r Φ−→ r′ = Mr + c.

Here, M is a 3× 3 real matrix and c is a constant vector. As explained in Chapter 8.3.2

of [2], this equation describes a deformation of the Bloch sphere.

4.2.3 Examples

We briefly introduce some important quantum channels on a single qubit:

The bit flip channel flips the qubit state from |0〉 to |1〉 with probability w. The Kraus

operators for this channel are

K1 =
√

w 1l2 =
√

w

[
1 0

0 1

]
and K2 =

√
1− w σx =

√
1− w

[
0 1

1 0

]
.

The action of this channel on the Bloch sphere is illustrated in Figure 4.2.1.
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Figure 4.2.1: Bloch sphere representation of the bit flip channel with w = 0.3. The left sphere
represents all pure states, the sphere on the right represents the same set of states
after the channel acted on them. Note that the y-z plane is uniformly contracted
by 1− 2w.
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Analogously, the phase flip channel changes the phase of the qubit with probability w:

K1 =
√

w 1l2 =
√

w

[
1 0

0 1

]
and K2 =

√
1− w σz =

√
1− w

[
1 0

0 −1

]
.

Figure 4.2.2 shows how this channel affects the Bloch sphere.
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Figure 4.2.2: The action of the phase flip channel on the Bloch sphere, for w = 0.3. The x-y
plane is uniformly contracted by 1− 2w.

The depolarising channel describes a noisy quantum process: The state of a qubit is de-

polarised, i.e., replaced with a completely mixed state 1l2/2 with probability w. The

channel can be represented as

Φ(ρ) = (1− w)ρ +
w
3

(σxρσx + σyρσy + σzρσz),

which shows that the state ρ is left unchanged with probability 1− w, and the opera-

tors σx, σy, and σz are applied each with probability w/3. The Kraus operators for the

depolarising channel are

K1 =
√

1− 3w/4 1l2 =
√

1− 3w/4

[
1 0

0 1

]
,

K2 =
√

w σx/2 =
√

1− w

[
0 1

2
1
2 0

]
,

K3 =
√

w σy/2 =
√

1− w

[
0 − i

2
i
2 0

]
,

K4 =
√

w σz/2 =
√

1− w

[
1
2 0

0 − 1
2

]
.

A Bloch sphere representation of the depolarising channel is depicted in Figure 4.2.3.
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Figure 4.2.3: Bloch sphere representation of the depolarising channel with w = 0.5. The channel
contracts the entire sphere in a uniform way, depending on w.

4.3 The additivity conjecture

In general, the capacity of a channel is the maximal transmission rate for one use of

the channel. This allows one to define different capacities depending on the condi-

tions under which the channel is used. For quantum channels transmitting classical

information, a useful representation of the capacity is the highest purity of the channel

output. One may then ask: is this quantity additive in the sense that taking two copies

of the channel doubles its capacity? With regard to entanglement, additivity means

that preparing two pairs of entangled particles gives twice the entanglement of one

pair.

The output purity may be additive or multiplicative, depending on the purity measure

of choice. Since both terms describe the same behaviour, we will use the common

expression ’additivity conjecture’ while studying the multiplicativity properties of an

output purity defined as follows:

νp(Φ) := sup
ρ
||Φ(ρ)||p.

Here,

||ρ||p = (tr |ρ|p)1/p (4.3.1)

is the standard p-norm. νp is then multiplicative if

νp(Φ1 ⊗Φ2) = νp(Φ1)νp(Φ2) (4.3.2)
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for arbitrary Φ1 and Φ2 and for 1 < p < ∞. The tensor product of two channels acting

on a bipartite state ρ12 is defined as

(Φ1 ⊗Φ2)(ρ12) :=
L1

∑
i=1

L2

∑
j=1

(K(1)
i ⊗ K(2)

j )ρ12(K(1)
i ⊗ K(2)

j )†. (4.3.3)

Of particular interest is the limit p → 1 which describes the additivity of classical chan-

nel capacities. A proof of additivity for this case would mean that we cannot transmit

more classical information over multiple quantum channels if we use entangled states.

4.4 The Werner-Holevo channel as a counterexample

In [68], Werner and Holevo disproved the conjecture from Equation 4.3.2 for p > 4.79.

As a counterexample, they used the following channel on d× d input matrices:

ΦWH(ρ) :=
1

d− 1
(
tr(ρ)1ld − ρt) (4.4.1)

=
1

2(d− 1) ∑
i,j

(
|i〉 〈j| − |j〉 〈i|

)
ρ
(
|i〉 〈j| − |j〉 〈i|

)†

Terms for the output purity of a single instance and for multiple copies of this channel

can be derived analytically such that by simple numerics it could be shown in [68] that

the additivity conjecture does not hold for p > p0 = 4.7823.

As one would expect, small variations of this channel, i.e.,

Φ̃WH(ρ) = (1− ε)ΦWH(ρ) + ε ΦX(ρ), (4.4.2)

where ΦX can be an arbitrary quantum channel and ε ∈ R is small, are likely to also

violate additivity. We studied this violation using for ΦX the channels described in

Section 4.2.3 and for a ’random unitary’ channel whose Kraus operators are randomly

chosen unitary matrices and whose Kraus rank was d.

As can easily be checked, the output purity of the Werner-Holevo channel is unitarily

invariant, i.e., νp
(
ΦWH(ρ)

)
= νp

(
ΦWH(UρU†)

)
, where U is a unitary matrix. Fur-

thermore, the channel has a flat spectrum of real eigenvalues (1,± 1
2 ) and a determinant

close to zero for d > 2. In the Bloch sphere picture, the channel leaves the y-components

invariant while changing the signs of the x- and z-components.
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4.5 Optimising the output purity using gradient flows

4.5.1 Statement of the problem

Can we find other channels that violate Equation 4.3.2? This question can be turned

into an optimisation problem by setting ρ = Uρ0U†, where ρ0 is a fixed initial state,

and then find the maximum output purity for two copies of a candidate channel using

a gradient flow on the unitary orbit of the initial state:

νp(Φ⊗2) = sup
ρ12

||Φ⊗2(ρ12)||p

= sup
ψ12∈Cd2

||Φ⊗2(|ψ12〉 〈ψ12|)||p

= sup
U12∈U(d2)

||Φ⊗2(U12 |ψ0
12〉 〈ψ0

12|U†
12)||p .

Since the p-norm is a convex function which has its maximum at the extremal states,

it suffices to consider pure states as inputs for this combined channel. Using Equa-

tion 4.3.1, we immediately see that essentially the term

Fp(Φ⊗Φ, U12) := tr
{(

(Φ⊗Φ)(U12 |ψ0
12〉 〈ψ0

12|U†
12)
)p} (4.5.1)

needs to be maximised. In order to violate the additivity conjecture, the term

max Fp(Φ⊗Φ, U12)−max F2
p(Φ, U1)

must be positive, where F(Φ, U1) represents the output purity for a single instance of

the channel Φ (with U1 ∈ U(d)). Candidates for additivity-violating channels should

be chosen from different classes of quantum channels (see below).

4.5.2 Description of the numerical procedure

We used the following iterative scheme to find other counterexamples to the additivity

conjecture.

1. Set |ψ0〉 = (1, 0, . . . , 0) ∈ C.

2. Generate a random unitary matrix U(0)
1 ∈ U(d) from a distribution according to

the Haar measure. Set U(0)
12 = U(0)

1 ⊗U(0)
1 .

3. Select as a channel either a known quantum channel or a random channel.

51



CHAPTER 4: NUMERICAL STUDIES ON THE ADDITIVITY OF QUANTUM

CHANNEL CAPACITIES

4. Set k = 0.

5. Using Equations 4.3.3 and 4.5.1, compute the quality function Fp(Φ, U(k)
1 ) for a

single instance of the chosen channel, and Fp(Φ⊗2, U(k)
12 ) for two copies. Stop if

Fp(Φ⊗2, U(k)
12 )− F2

p(Φ, U(k)
1 ) is positive.

6. Compute the gradient of F with respect to U according to

∇U Fp := p
L

∑
i=1

[ρ, K†
i Φp−1(ρ)Ki]. (4.5.2)

Here, we define ρ as ρ = U(k)
1 |ψ0〉 〈ψ0| (U(k)

1 )† for the single channel and as ρ =

U(k)
12 |ψ0ψ0〉 〈ψ0ψ0| (U(k)

12 )† for the combined channel. The Ki are the respective

Kraus operators. In order to derive this gradient, we used a Fréchet derivative,

including the chain rule

∂

∂X
H(G(X)) =

d
dY

H(Y) · ∂

∂X
G(X),

where Y = G(X), and the trace derivative

∂

∂X
tr{XAX−1C} = {AX−1C− X−1CXAX−1}.

Note that this gradient is valid only for integer values of p (see below).

7. Update U1 and U12 according to

U(k+1)
1 = expm{−γ∇U F1(Φ, U(k)

1 )} · U(k)
1 ,

U(k+1)
12 = expm{−γ∇U F(Φ⊗2, U(k)

12 )} · U(k)
12 ,

where γ is a stepsize parameter.

8. Set k → k + 1 and go to step 5.

With a suitably chosen stepsize, this algorithm yields the maximal output purity for

any channel given in its Kraus operator representation. We used a simple stepsize

adjustment procedure that performed well in our setup: If the quality function F in-

creased during the last iteration, γ is increased by 10% in the current iteration. If F

previously decreased, the last best choice for U is taken and γ is halved for the cur-

rent iteration. The optimisation was stopped when the stepsize was smaller than the

threshold value 10−8 or when the gradient norm was below 10−6.
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One question naturally arises: What is the best dimension d to look for new coun-

terexamples? Based on the existing Werner-Holevo example and following [70], we

studied the range 2 ≤ d ≤ 6. For the exponent p, we chose a range of 2 ≤ p ≤ 30.

Only integer values could be used here as the matrix derivative yielding the gradient

in Equation 4.5.2 is an open research problem for non-integer values. Depending on

the channel, we found that a range of 2 ≤ p ≤ 1000 was numerically feasible, but we

focused on relatively small values of p due to the significance of p → 1 (see Section 4.3).

The exact values of d and p for every channel are listed in Table 4.1.

As a starting point, we tested the Werner-Holevo channel and two hybrid versions

according to Equation 4.4.2 where ΦX was either a random unitary channel or a depo-

larising channel.

Next, we optimised the other channels listed in Table 4.1, including some standard

channels and extremal random unitary channels, which we focused on. Extremal chan-

nels are extreme points in the convex set of quantum channels. A channel with Kraus

operators {Ki} is called extremal if the set of matrices {K†
i Kj} is linearly indepen-

dent [71]. Their Kraus operators can be constructed as

[Ki]µν = 〈µi|(U|ν1〉),

with U being a (random) unitary matrix and i, µ, ν = 1, 2, . . . , d. In our optimisations,

we mainly used this type of channel to search for additivity violations since the stan-

dard channels are known to be additive [72, 73] and, at the time of this project, the

Werner-Holevo channel was the only known counterexample.

Taking the extremal unitary channels, we pre-optimised them for a high initial depolar-

isation, thus mimicking this feature of the Werner-Holevo channel, before we started

the gradient-based optimisation of the output purity. The pre-optimisation used the

Matlab function fminsearch to find a set of d unitary Kraus operators yielding a chan-

nel with a minimal initial value of νp(Φ) with respect to a mutually unbiased basis.

This channel then served as a starting point for the actual optimisation.

In total, we tested a few thousand channels (see Table 4.1 for details) using Matlab

R2007a under Linux.

4.5.3 Results and further developments

Using the algorithm and the setup described in the previous section, we first verified

the additivity violation of the Werner-Holevo channel and the hybrids derived from

it. As mentioned before, the Werner-Holevo channel is invariant under unitary conju-
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Channel d p Optimisable? Violation found?

bit flip 2, 4, 6 2 - 20 yes no
phase flip 2, 4, 6 2 - 20 yes no
depolarising 2, 4, 6 2 - 20 yes no
amp. damping 2, 4, 6 2 - 20 yes no
phase damping 2, 4, 6 2 - 20 yes no
Casimir (see [74]) 4 2 - 20 yes no
random unitary1 3 - 6 5 - 30 yes no
Werner-Holevo 3 - 6 5 - 30 no2 yes
W-H/random hybrid 3 - 6 5 - 10 yes yes3

W-H/depol hybrid 4 5 - 20 yes yes3

1 incl. extremal channels 2 unitarily invariant 3 depends on w
Table 4.1: Additivity properties of the set of quantum channels that were used as test cases for

the algorithm described in the previous section. Only the Werner-Holevo channel
itself and small variations of it showed additivity violations for the dimensions and
exponents that were studied.

gation of its input and thus can not be optimised. For hybrid versions, however, we

could numerically increase the output purity and detect additivity violations for small

ε < ε0. Figure 4.5.1 shows an example of violations for 20 hybrid channels (Werner-

Holevo mixed with extremal random unitary channels) for d = 3 and p = 5. The

exact values of ε0 vary with the dimension and with the exponent. These results imply

that the Werner-Holevo channel does not represent a singularity in the ’search space’

of quantum channels; we rather observe a smooth transition to channels that do not

violate additivity. Table 4.1 shows the parameters and results for the Werner-Holevo

channel and two examples of hybrids (mixing with the depolarising channel and with

a random unitary channel). We note that if additivity is violated for p = p0 in these

cases, then the violation occurs for all p > p0 if d is constant. When a channel shows

an additivity violation and we then increase the dimension d, p must also be increased

to preserve the violation.

Our search for new counterexamples in the class of (extremal) random unitary chan-

nels did not succeed. This means, we were not able to find any additivity-violating

channel in this class for 3 ≤ d ≤ 6 and 5 ≤ p ≤ 30. As an example, some optimisations

of this class of channels are depicted in Figure 4.5.2 for d = 4 and p = 5. The 1000s of

tested channels represent only a small portion of the search space of all possible chan-

nels, in particular because we restricted the optimisation to the given values of d and

p to ensure numerical feasibility. Our search strategy of pre-optimising the channels

to mimic properties of the Werner-Holevo channel (e.g., high initial depolarisation and

small determinant) did not solve this fundamental problem.

In 2008, two publications [75, 76] disproved the additivity conjecture. Hayden and
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Figure 4.5.1: Additivity violations of 20 hybrid channels composed of Werner-Holevo and ex-
tremal random unitary (XRU) channels according to Equation 4.4.2. Optimisations
were carried out using for d = 3 and p = 5. The strength of the violation depends
on the weighting factor ε. No violations are found for ε > 0.1 in this case.
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Figure 4.5.2: 20 optimisations of an extremal random unitary (XRU) channel with d = 4 and
p = 5. The orange lines represent the value of F(Φ, U1) of a single XRU channel,
the blue lines represent the corresponding values of F(Φ⊗2), U12 for two copies of
the same channel. No additivity violations are found.
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Winter [75] presented nonconstructive counterexamples for 1 ≤ p ≤ ∞, explicitly ex-

cluding the case p = 1. In their proof, they rely on unitary channels in high dimensions

(d → ∞) for which they show the existence of additivity-violating channels without

giving explicit examples. Unfortunately, the techniques developed in our work can-

not be used to derive constructive counterexamples since the dimensions are beyond

numerical tractability. The authors of [75, 76] stress that their findings do not have im-

plications on the additivity of the minimal von Neumann entropy. Based on this work,

Hastings [76] derived more general results for arbitrary p, using finite-dimensional

random unitary channels of the form

Φ(ρ) =
L

∑
i=1

qiUiρU†
i ,

where qi ≥ 1, ∑ qi = 1, U ∈ U(d), and 1 � L � d. Again, we see that these coun-

terexamples are channels in very high dimensions, unlike the ones we took as test cases

for our optimisations. As Hayden and Winter, Hastings provided non-constructive ex-

amples, proving only the existence of such channels. His findings also hold for the

additivity of the minimal von Neumann entropy and have thus a fundamental signifi-

cance for quantum information theory.
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CHAPTER 5

Benchmarking a concurrent-update

optimal-control algorithm

Data is zeroes and ones. Software is

zeroes and ones and hard work.

Greg Wilson

5.1 Introduction

5.1.1 Overview

In this chapter, the idea of optimal control is introduced and applied to quantum sys-

tems. An optimal-control algorithm is presented that searches for pulse sequences to

steer finite-dimensional quantum systems in an optimal way. It is known as the Gradi-

ent Ascent Pulse Engineering (GRAPE) algorithm [50]. This terminology, however, will

not be used in the following as changes to the original proposal have introduced the

usage of second-order information, whereas the term gradient ascent is sometimes used

as a synonym for steepest ascent which is a first-order method. We use concurrent-update

algorithm instead.

GRAPE has arisen from optimisation techniques in nuclear magnetic resonance (NMR)

spectroscopy. Here, radio frequency pulses steer nuclear spin states of molecular or

atomic ensembles. NMR spectroscopy is ideally suited for applying optimised pulses

since it offers advanced technology for shaping RF pulses and provides relatively long

coherence times. The principles behind GRAPE, however, are independent of the phys-

ical system to be optimised.

The algorithm maximises a given quality function subject to the equation of motion of
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the quantum system. To achieve this goal, the algorithm optimises the available control

fields based on the first- and second-order derivative of the quality function. Typically,

one chooses to optimise the vector of pulse amplitudes but an optimisation can also be

done on the duration of a pulse or on the phase between pulses. Concurrent update

means that all pulses in the sequence are changed in every iteration of the algorithm,

unlike in sequential-update schemes [77, 78, 79].

The optimisation can be regarded as a gradient flow on the unitary group of Hamilto-

nian quantum dynamics. In the following, only closed quantum systems will be con-

sidered, but the algorithm works for open quantum systems with dissipative dynamics

as well ([50, 80]).

5.1.2 Organisation

This chapter is organised as follows. Section 5.2 introduces the optimal control frame-

work, which is applied to a quantum setting in Section 5.3. The concurrent-update

algorithm is presented in detail in Section 5.4. The various options for computing gra-

dients are discussed in Section 5.5. Another crucial module of the algorithm is the

update method; Section 5.6 describes three of these methods. Another type of algo-

rithm, a sequential-update scheme with a possible extension to a hybrid algorithm, is

briefly presented in Sections 5.7 and 5.8. The chapter closes with numerical studies

comparing the configurations discussed before.

5.2 The optimal control framework

The objective of optimal control is the optimisation of a dynamic system by finding

controls that achieve a given optimality criterion. This dynamic system is typically

described by a time-dependent state vector x(t) that is manipulated by controls u(t)

over the time interval [0, T]. The optimality criterion is described by a scalar objective

functional Φ of the form

Φ = Ψ
(

x(T)
)

+
� T

0
L
(

x(t), u(t)
)

dt. (5.2.1)

In this equation, Ψ depends only on the state at the final time T, whereas the integral

term represents a running cost. The control problem is to maximise Φ subject to the

equation of motion of the system, i.e.,

max
u

Φ(x, u), subject to ẋ(t) = f
(

x(t), u(t)
)

(5.2.2)
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Here, x(0) = x0 and u(t) is restricted to the set of permissible controls. Note that, in

many cases, this problem has multiple solutions. A time-optimal solution maximises

Φ for a minimum value of T.

5.2.1 Pontryagin’s maximum principle

Pontryagin’s maximum principle provides a necessary condition for maximising the

quality function 5.2.1. It can be derived by introducing a Lagrange multiplier vector

λ(t) into the problem. Assuming only real vectors, we define

h = λt f + L,

with λt denoting the transpose of λ. If the variation of h vanishes, we have found a

necessary but not sufficient condition for global optimality. Therefore, in general only

local extrema can be expected. A sufficient condition for the variation in h to be zero is

provided by the following criteria:

∂h
∂u

= 0,

h(T) = 0,

dλ

dt
= −∂h

∂x
,

dx
dt
≡ f =

∂h
∂λt .

In general, these equations require numerical solutions as no analytic solutions can be

found. Only in special cases (see e.g. [21]), analytic approaches exist.

For a more detailed introduction into optimal control, see the original work by Pon-

tryagin et al. [18] and the book by Kirk [16].

5.3 Optimal control for quantum systems

Following Section 3.2, a closed quantum system is defined by its drift Hamiltonian H0

and the control Hamiltonians Hm corresponding to the real-valued control amplitudes

um:

Htot(t) := H0 +
M

∑
m=1

um(t)Hm (5.3.1)

The system can be driven externally by changing um. One obtains a bilinear control
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system whose dynamics are governed by the Schrödinger equation:

|ψ̇(t)〉 = −iHtot(t) |ψ(t)〉 . (5.3.2)

If one chooses to neglect the unobservable global phase or treat dissipative systems,

the density operator representation of Equation (5.3.2) can be taken:

ρ̇(t) = −i[Htot(t), ρ(t)]. (5.3.3)

This equation is also known as the Liouville-von Neumann equation. With U(t) :=

exp {−itHtot(t)} and |ψ(t)〉 = U(t) |ψ(0)〉, Equation (5.3.2) can be lifted to the operator

level and thus becomes independent of the initial and final states |ψ(0)〉 and |ψ(T)〉 :

U̇(t) = −iHtot(t)U(t) (5.3.4)

The control problem for synthesising a target operator, or quantum gate, UG can now

be described as

max
u

Φ(u), subject to U̇(t) = −iHtot(t)U(t) (5.3.5)

Remember from Equation 5.2.1 that, in the general case, the quality function Φ contains

a term for the quality at the final time T and a term representing the running cost. An

example of the latter is the power the system consumes during the propagation from

the inital to the target state. The final quality reflects the distance between the achieved

final state |ψ(T)〉 and the target state |ψ〉G, or the achieved unitary operation U(T) and

the desired gate UG. In the following, the quality term will only consist of the final

quality and we will focus on state-independent optimisations of a target operator UG.

Note that in this setting, any optimisation algorithm will generally find only local ex-

trema. Using a large set of initial conditions is one way to increase the chances of

finding global extrema instead of local ones. Another, more sophisticated method for

achieving this goal is tabu search [81, 82]. It combines a technique for leaving local ex-

trema with a list of already visited points in the search space. In tests performed with

tabu search, however, we did not find better results than by simply choosing many

initial conditions, which is our method of choice in the following studies.

60



CHAPTER 5: BENCHMARKING A CONCURRENT-UPDATE

OPTIMAL-CONTROL ALGORITHM

5.3.1 The quality function

There are two ways for expressing the geometrical distance between the two unitary

operators UG and U(T). The first one takes the global phase between the two operators

into account and yields the quality term

Φ1 := Re tr{U†
GU(T)}/N, (5.3.6)

which is normalised to 1. Φ1 achieves the maximum of 1 if and only if U(T) = UG,

which follows from

||U(T)−UG||22 = 2N − 2 Re tr{U†
GU(T)} (5.3.7)

and the property of the Hilbert-Schmidt norm ||x|| = 0 ⇔ x = 0. In this case, we

optimise over the special unitary group SU(N), where N is the matrix dimension.

For practical applications the global phase can be neglected. For this purpose we define

a quality function that is insensitive to any global phase factors:

Φ2 := |tr{U†
GU(T)}|2/N2. (5.3.8)

This function is maximised if

U(T) = e−iθUG (5.3.9)

for any θ ∈ [0, 2π]. This yields an optimisation over the projective special unitary

group PSU(N):

PSU(N) iso=
SU(N)

ZN

iso=
U(N)
U(1)

. (5.3.10)

Expressions for quality functions in the case of state-to-state optimisations for pure and

mixed states can be found in [50].

5.4 Algorithmic scheme

Here, we present an iterative scheme for performing the maximisation of Equation 5.3.5

by concurrently updating the control vector u. The following steps describe this algo-

rithm. A pseudocode representation of this scheme is given in Algorithm 5.1. Note that

we write Φ instead of Φ1 or Φ2 when the exact form of the quality function is irrelevant.

0. Initial Setup Fix a final time T and a digitisation K such that T is divided into K time
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steps tk with ∆tk = tk − tk−1 = T/K. During each step k, the control term Hm and

the corresponding control amplitude um(tk) are constant. Choose a random initial

value u(0)
m (tk) for all k and m.

1. Compute Hamiltonians Compute the total Hamiltonian

Htot(tk) = H0 + ∑
m

um(tk)Hm ∀ tk. (5.4.1)

2. Exponentiate Obtain the propagators Uk by computing the exponentials

Uk = e−i∆tk Htot(tk) ∀ k. (5.4.2)

3. Propagate Forward Set U0 = 1l and calculate the forward propagation

Uk:0 := Uk ·Uk−1 · · · · ·U1 ·U0 ∀ k. (5.4.3)

4. Propagate Backward Similarly, set UK+1 = U†
G and calculate the backward propa-

gation

λK+1:k+1 := UK+1 ·UK · · · · ·Uk+2 ·Uk+1 ∀ k. (5.4.4)

5. Evaluate Quality Evaluate the quality function according to Equation 5.3.6 or Equa-

tion 5.3.8,

Φ(r) = Re tr{U†
GU(T)}/N = Re tr{λK+1:k+1Uk:0}/N

or Φ(r) = |tr{U†
GU(T)}|2/N2 = |tr{λK+1:k+1Uk:0}|2/N2,

where r is the index of the current iteration.

6. Get Gradient Compute the gradient vector∇Φ =
(

∂Φ(U1:0)
∂u1(t1)

, . . . , ∂Φ(Uk:0)
∂um(tk)

, . . . , ∂Φ(UK:0)
∂uM(tK)

)
for all tk and um using one of the formulae derived in Section 5.5. We introduce

the shorthand notation ∇k,mΦ = ∂Φ
∂um(tk)

.

7. Update Controls Update the control vector by one of the methods described in sec-

tion 5.6.

8. Check Stopping Criteria Iterate steps 1 through 7 until Φ(r) > 1− ε. The goal tol-

erance ε is introduced because we cannot expect a numerical method to reach a

final fidelity of exactly 1. In practice, several other stopping criteria are applied,

e.g., an upper limit for the number of iterations, a lower limit for the norm of the

gradient or the step, and a lower limit for the change of Φ from iteration r to r + 1.
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Figure 5.4.1: A simplified example of a concurrent-update algorithm. The vector of piecewise-
constant control amplitudes um (blue bars) in iteration r is updated using the gra-
dient information (red arrows) to give the new pulse sequence in iteration r + 1.

Algorithm 5.1 Pseudocode for the concurrent-update algorithm
Divide final time T into K time steps tk.
Choose a (random) pulse sequence.
REPEAT

FOR each tk

Compute total Hamiltonian.
Compute propagator.
Compute forward propagation.
Compute backward propagation.
Compute gradient.

ENDFOR
Evaluate quality function Φ.
Update pulse sequence.

UNTIL Φ ≥ 1− ε

Figure 5.4.1 shows a schematic representation of the concurrent-update algorithm

applied to the m-th control vector. The gradient information in iteration r is used to

compute the amplitudes in all time slots tk for the next iteration r + 1.

5.5 Gradient computation

5.5.1 The gradient formula with respect to the control amplitudes

The derivative of the quality function Φ1 with respect to um(tk) is

∇k,mΦ1 = Re∇k,mtr{λK+1:k+1Uk:0}/N
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= Re tr{∇k,m(λK+1:k+1Uk:0)}/N

= Re tr{λK+1:k+1(∇k,mUk:0)}/N

= Re tr{λK+1:k+1(∇k,mUk)Uk−1:0}/N

= Re tr{λK+1:k+1(∇k,me−i∆tk Htot(tk))Uk−1:0}/N. (5.5.1)

Since the control Hamiltonians do not commute with the total Hamiltonian in the gen-

eral case, calculating the derivative of the exponential is nontrivial. Four methods will

be presented to obtain this derivative: an approximation of the gradient term to first

order in ∆tk (the standard approximation), the well-known finite-difference method,

an approximation using a series expansion, and an exact method based on the eigen-

decompostion of the total Hamiltonian. All of these methods have different numerical

demands.

5.5.1.1 The standard gradient approximation

The general approach for computing the derivative of the exponential of a matrix func-

tion f (x) is

∂

∂x
e f (x) =

� 1

0
es f (x) ∂ f

∂x
e(1−s) f (x)ds. (5.5.2)

This follows from Equation I.8 in Reference [83] together with the usual definition of a

derivative. From this we arrive at

∂Uk

∂um(tk)
= −i

( � ∆tk

0
Uk(τ)HmUk(−τ)dτ

)
Uk, (5.5.3)

with

Uk(τ) = exp{−iτHtot(tk)}.

For a small enough ∆tk the unitary terms in the integral of Equation (5.5.3) can be

expanded to first order in τ. We obtain

� ∆tk

0
Uk(τ)HmUk(−τ) ≈

� ∆tk

0

(
1− iτHtot(tk)

)
Hm

(
1 + iτHtot(tk)

)
dτ

≈
� ∆tk

0
Hm − iτ[Htot(tk), Hm]dτ. (5.5.4)
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This approximation requires

∆tk � ||Htot(tk)||−1
2 ∀ k (5.5.5)

in order to be valid. By computing the integral and dropping the ∆t2 term we get

� ∆tk

0
Uk(τ)HmUk(τ) ≈ ∆tHm. (5.5.6)

Thus, a first order approximation of the derivative of Uk with respect to um(tk) is

∂Uk

∂um(tk)
≈ −i∆tk HmUk, (5.5.7)

which yields the gradient expression for the quality function Φ1:

∇k,mΦ1 = −Re tr{λK+1:k+1i∆tk HmUk:0}/N. (5.5.8)

Similarly, we have the following approximate gradient term for the quality function Φ2:

∇k,mΦ2 = −2Re tr{λK+1:k+1i∆tk HmUk:0}tr{Uk:0λK+1:k+1}/N2. (5.5.9)

5.5.1.2 Computing the exponential derivative by an eigendecomposition

We can use the following lemma by Aizu [84] to exactly compute the derivative of the

exponential term in Equation (5.5.1):

Lemma 4. The derivative of the exponential of a sum of two non-commuting operators A and

xB with respect to x at x = 0 is given by

〈ξµ|
d

dx
eA+xB|ξν〉

∣∣∣∣∣
x=0

=

〈ξµ|B|ξν〉 eξµ if ξµ = ξν

〈ξµ|B|ξν〉 eξµ−eξν

ξµ−ξν
else

(5.5.10)

where the vectors |ξµ〉 denote the eigenvectors of the operator A and the coeffcicients ξµ denote

the eigenvalues of that operator: A |ξµ〉 = ξµ |ξµ〉.

A proof of this lemma is given in Appendix B.

Inserting this into Equation (5.5.1) yields the gradient
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∇k,mΦ1 = Re tr{λ̃K+1:k+1Dk,mŨk−1:0}/N, (5.5.11)

where the elements of Dk,m are computed according to Equation (5.5.10) (with A =

−i∆tHtot(tk) and B = −i∆tk Hm) and the operators λK+1:k+1 and Uk−1:0 are transformed

into the eigenbasis ξµ.

Similarly, for the quality function Φ2 we have the following exact gradient expression:

∇k,mΦ2 = 2Re tr{λ′K+1:k+1Dk,mU′
k−1:0}tr{(U′

k:0)
†(λ′K+1:k+1)

†}/N2. (5.5.12)

This method of computing the gradient comes with an extra advantage: The evaluation

of the matrix exponential becomes trivial since only the diagonal matrix of eigenvalues

needs to be exponentiated.

Note that the method as described here cannot be applied when optimising an open

system. The Liouvillian operatorL = iH + Γ does not satisfyL†L = LL† in the generic

case, so a derivation of the right-hand side of Equation 5.5.10 becomes nontrivial as the

eigenvectors to different eigenvalues are not necessarily orthogonal to each other (see

Appendix B).

5.5.1.3 Computing the exponential derivative by a finite-difference method

The derivative of a general function f at a point x is defined by the limit

∂

∂x
f = lim

ε→0

f (x + ε)− f (x)
ε

. (5.5.13)

When ε is a fixed non-zero value, the fraction on the right-hand side is an approxima-

tion of the derivative of f . In our case, Equation (5.5.13) becomes

∇k,mΦ1 =
Re tr{λK+1:l+1Pk,mUk−1:0}/N −Φ1

ε
, (5.5.14)

with

Pk,m = exp{−i∆tk(Htot(tk) + εHm)}. (5.5.15)

For Φ2 we find

∇k,mΦ2 =
|tr{λK+1:k+1Pk,mUk−1:0}|2/N2 −Φ2

ε
. (5.5.16)

Numerically, this derivative can be regarded as exact to machine precision when ε is

sufficiently small. In practice, however, ε cannot be made arbitrarily small without
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Figure 5.5.1: Accuracy of the finite-difference gradient method as a function of the parameter
ε. The relative discrepancy is defined as abs(∇ex −∇ f d)/abs(∇ex), where ∇ex is
the exact gradient and ∇ f d is the finite-difference gradient. The gradients were
calculated under the 32 bit Linux version of Matlab R2010a.

facing numerical instabilities. Typically, one finds the best results when choosing ε to

be on the order of 10−7. Figure 5.5.1 compares finite-difference gradients with exact

gradients computed according to the previous subsection.

5.5.1.4 Computing the exponential derivative by a Hausdorff series

The derivative of the exponential can also be expressed as a Hausdorff series,

∂

∂x
exp{A + xB}|x=0 = exp{A}

(
B +

[B, A]
2

+
[[B, A], A]

6
+ . . .

)
, (5.5.17)

that can be computed to machine precision. While this procedure can be cumbersome

in the general case, it is particularly efficient when computing with large sparse matri-

ces, when a small number of terms is sufficient to yield a high accuracy. See Reference

[85] for details.

5.5.2 The gradient formula with respect to time

Apart from optimising over the piecewise constant control amplitudes, one can choose

the durations of the k timeslices ∆tk = tk − tk−1 as control parameters [86]. In this case,

the derivative of exp{−i∆tk Htot(tk)} can be calculated trivially since the derivative of

the exponent commutes with the derivative of the exponential function, i.e.,

[−iHtot(tk), exp{−i∆tk Htot(tk)}] = 0. (5.5.18)
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With the shorthand notation ∇k = ∂
∂∆tk

, we then obtain

∇kΦ1 = −Re tr{λK+1:k+1(iHtot(tk)Uk:0)}/N (5.5.19)

and

∇kΦ2 = −tr{λK+1:k+1(iHtot(tk)Uk:0)}tr{Uk:0λ†
K+1:k+1}/N2 + c.c.

= −2Re tr{λK+1:k+1(iHtot(tk)Uk:0)}tr{Uk:0λ†
K+1:k+1}/N2. (5.5.20)

5.5.3 The gradient formula with respect to phase

In a typical NMR control setting, one can find pulses for controlling the x- and

y-magnetisation of each spin [87, 88]. The amplitude ux is related to uy by a phase θ

and an overall pulse amplitude u0, as shown in Figure 5.5.2:

ux(θ) = u0 cos(θ) (5.5.21)

uy(θ) = u0 sin(θ) (5.5.22)

When u0 is fixed, the controls ux and uy are functions of the phase alone. For an

Figure 5.5.2: Phase relation between an x- and a y-pulse in a typical NMR setting. The overall
pulse amplitude is u0.

optimisation over all M · K phases θm(tk) the gradient can be derived by starting from

the general Equation (5.5.1) and setting

Htot(tk) = H0 +
M

∑
m=1

ux

(
θm(tk)

)
Hx,m + uy

(
θm(tk)

)
Hy,m (5.5.23)

= H0 +
M

∑
m=1

um,0(tk) cos
(

θm(tk)
)

Hx,m + um,0(tk) sin
(

θm(tk)
)

Hy,m (5.5.24)

Along the lines of Equation (5.5.11) it follows that

∇k,mΦ1 = Re tr{λ̃K+1:k+1D′
k,mŨk−1:0}/N,
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where the elements of D′
k,m are computed according to Equation (5.5.10) with

A = −i∆tk Htot(tk)

and

B = −i∆tk um,0(tk)
{
− sin

(
θm(tk)

)
Hx,m + cos

(
θm(tk)

)
Hy,m

}
.

For Φ2, we find the gradient

∇k,mΦ2 = 2 Re tr{λ′K+1:k+1D̃k,mU′
k−1:0}tr{(U′

k:0)
†(λ′K+1:k+1)

†}/N2. (5.5.25)

5.6 Update methods

There exist many methods for updating the control vector in an iterative optimisation

scheme. The following three methods have been shown to be of particular importance

for optimal control algorithms. In principle, they can be divided into first- and second-

order approaches, depending on their use of gradient and possibly Hessian informa-

tion.

5.6.1 Steepest ascent

Steepest ascent is a first-order method for computing the control vector for the next

iteration. Only the gradient information is used to determine the new vector. In the

case of our pulse optimisation, the control amplitudes in the next iteration are

u(r+1)
m (tk) = u(r)

m (tk) + γ(r)∇k,mΦ. (5.6.1)

Here, γ(r) is a stepsize parameter that can be found using a line search. Thus, it typ-

ically changes from one iteration to the next. For small enough γ(r), Φ(r+1) > Φ(r) is

guaranteed. Equation (5.6.1) illustrates the resemblance to Euler’s method for solving

ordinary differential equations.

Steepest ascent shows a slow convergence in many practical cases, especially when

the function has elongated valleys, i.e., when the problem is poorly scaled. One then

observes zig-zag or hemstitching patterns near the optimum [89].
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5.6.2 Newton and quasi-Newton methods

This method uses second-order information by taking the Hessian matrix into account

when computing the new set of control parameters for the next iteration. The update

rule is

u(r+1)(tk) = u(r)(tk) + γ(r)(Hess−1∇Φ)k, (5.6.2)

where γ(r) is again a stepsize parameter. Here, to simplify notation and without loss

of generality, we consider the case M = 1, i.e., only one control Hamiltonian. Using

the Hessian information improves the convergence behaviour near the optimum but

increases the computational demands as computing this matrix is costly. This draw-

back of Newton methods can be overcome by employing an approximation procedure

for the Hessian, in which case one speaks of a quasi-Newton method. The most popular

of these methods is BFGS, which will be discussed in the following.

5.6.2.1 Approximating the Hessian with BFGS and l-BFGS

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is a quasi-Newton approach

that merely needs first-order information to approximate the Hessian matrix B. B is

updated at every iteration r according to

Br+1 = Br +
yryt

r
yt

r∆xr
− Br∆xr∆xt

rBr

∆xt
rBr∆xr

,

where yr = ∇ f (xr+1)−∇ f (xr)

and ∆xr = xr+1 − xr.

The limited-memory variant of BFGS (l-BFGS) is particularly well suited for optimisa-

tion problems with a large number of dimensions, as the Hessian never actually needs

to be computed or stored. Instead, a history of the last j updates of x and ∇ f (x) is

remembered. Typically, the method performs well even when this history is short, e.g.,

on the order of 10 iterations. This knowledge about previous runs is used to do opera-

tions implicitly that would require the Hessian or its inverse. In many cases, H0 = 1l is

chosen as a starting point such that the first step is equivalent to a gradient ascent.

For an extensive analysis of the BFGS and the l-BFGS method, see [25].
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5.6.3 Conjugate gradients

Combining the strengths of the first- and second-order methods described above is the

main idea behind the conjugate-gradient method [90]. Far away from the optimum,

this algorithm behaves like a first-order method. When approaching the optimum, its

behaviour changes to that of a second-order method, although the Hessian is never

computed.

Two steps characterise this algorithm:

1. At the current point, a sequence of conjugate (or orthogonal) directions d1, . . . dK·M

is created.

2. The optimum in each direction is determined. It is the starting point for the search

in the next direction:

u(r+1)
m (tk) = u(r)

m (tk)− αidi, (5.6.3)

with αi = arg min Φ(u(r)
m (tk) − αidi) being a scalar that is to be determined by

a one-dimensional search. Supposing that {di} forms an orthogonal basis, we

obtain

u(N+1)
m (tk) = u(1)

m (tk)−
M·K
∑
i=1

αidi. (5.6.4)

It can be shown [15] that u(N+1)
m (tk) will be the optimum if Φ is quadratic, and it

will be a good approximation to the optimum if Φ is not quadratic.

5.6.4 Line search

The three methods presented above share the need of finding the optimal value of a

parameter (γ or α) along a given direction. This procedure is called a line search. Many

approaches for implementing this line search exist, but a full study of these is beyond

the scope of this work. In the numerical studies described in Section 5.9, we relied on

toolbox functions provided by the software packages we used. Their default settings

were assumed to combine line search strategies and update methods in an optimal way.

5.7 Comparison with a sequential-update algorithm

A sequential-update algorithm following the works of Krotov [79, 77, 78] can be used

as an alternative to a concurrent-update algorithm. In practice, this algorithm comes

in many flavours that are usually referred to as “Krotov methods”. The common and
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characteristic property of all these methods is that only one time slot is updated per

iteration. In the following, we will describe a method developed by Schirmer et al. [24].

Algorithm 5.2 shows the pseudocode for the sequential-update algorithm by Schirmer.

Algorithm 5.2 Pseudocode for the sequential-update algorithm
Divide final time T into K time steps tk.
Choose a (random) pulse sequence.
REPEAT

FOR each tk

Compute forward propagation Uk−1:0 := Uk−1 . . . U0.
Compute backward propagation from λK+1:k+1 := UK+1 . . . Uk+1 .
Compute gradient.
Update controls at tk.
Compute updated total Hamiltonian Htot(tk).
Compute updated propagator Uk.

ENDFOR
Evaluate quality function φ.

UNTIL φ ≥ 1− ε

One immediately verifies that, per iteration, only two matrix multiplications are needed

for the forward and backward propagation. Since Uk:0 = Uk · Uk−1:0 and λK+1:k =

λK+1:k+1 · Uk, the existing product of matrices from the last iteration can be used for

computing the propagation terms in the current iteration. In this implementation, the

control vector at tk is updated only once before the algorithm proceeds to the next time

slot. Other implementations, however, perform several updates, depending on the gra-

dient norm or the change of the quality function.

In comparison with the concurrent-update case, the small numerical cost per iteration

comes at the price of a higher number of iterations needed to reach the goal quality.

Furthermore, the gradient needed for the exponential in time slot k requires an update

in time slot k − 1. Thus, an extra matrix exponential occurs in the sequential-update

algorithm, in addition to the eigendecomposition needed for the gradient (when using

an exact gradient). The concurrent-update algorithm merely needs the eigendecompo-

sition which provides the matrix exponential at no extra cost (see Section 5.5.1.2).

The gradient can be computed according to the procedures described in Section 5.5.

Finding the best way to update the control vector, however, is currently an open prob-

lem. Among the three principal methods from Section 5.6, a BFGS-based method is

the least favourable. As each iteration updates another set of controls, the Hessian

in the current iteration cannot be approximated using previous Hessian information.
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While BFGS is well-matched with the concurrent-update algorithm, a fast second-order

method for the sequential algorithm is yet to be found.

For our numerical studies (see below), we thus used a gradient-ascent update scheme

that was the fastest method available for this implementation of a Krotov-type algo-

rithm1. Its performance depends crucially on the step-size parameter γ(r). Although

choosing a small constant γ(r) ensures convergence (to a critical point of the quality

function) this is usually a very bad choice. Conventional step-size control algorithms

also appear to be inefficient, as they require revaluation of the objective function for

each trial step size. Even in the sequential-update scenario, this requires the evaluation

of a matrix exponential and a Hadamard product. For this reason, we based our step

size control on a simple heuristic. Assuming we can locally approximate the quality

function Φ by a quadratic function in the step-size parameter γ(r) along the gradient

direction,

Φ(γ(r)) = γ(r)(2− γ(r)),

the linear approximation is 2γ(r) and the error term is (γ(r))2. Our step-size control is

based on trying to ensure that the actual gain in the fidelity is about 50% of the expected

gain (being 2γ(r))}, which is attained at the maximum of this simple model. Thus, we

start with an initial guess for the step size γ(r) and evaluate Φ(γ(r)). If the increase

∆Φ = Φ(γ(r)) − Φ(0) is less than 2
3 of the expected gain, then the step size was too

large and we decrease γ(r) by a small factor (0.99 for the following runs). If the actual

gain ∆Φ is greater than 4
3 of the expected gain, then the step size was too small and

we increase γ(r) by a small factor (e.g., 1.01). Rather than applying this change for the

current time step, which would require reevaluating the fidelity, we apply it only in the

next time step, i.e.,

γ(r+1) =

0.99 · γ(r) if ∆Φ < 4
3 γ(r)

1.01 · γ(r) if ∆Φ > 8
3 γ(r)

. (5.7.1)

For the sequential-update algorithm with many time steps, avoiding the computational

overhead of multiple fidelity evaluations is usually preferable compared to the small

gain that could be achieved by adjusting the step size γ(r) at the current time step. Start-

ing with γ(r=0) = 1 as a default value, we found that γ(r) usually quickly converges to

an optimal (problem-specific) value and only varies very little after this initial adjust-

ment period.

1This description is a replication of a paragraph written by Sophie Schirmer from the University of
Cambridge for an upcoming collaborative publication.
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5.8 Hybrid algorithms

The concurrent- and the sequential-update algorithm represent the two extremes of a

set of possible algorithms. In between those ends, hybrid schemes allow for optimising

subsets of timeslots. Many kinds of hybrids can be defined by how these subsets are

chosen and possibly changed between iterations. In order to reduce the number of ex-

pensive matrix operations, a smart management of the propagation terms is required,

which creates more overhead than in the simple cases of concurrent- and sequential-

update algorithms. The major drawback, though, is the lack of a suitable method for

the update-step. The range of possible hybrid algorithms is likely to require a range of

update methods, each adapted to the respective algorithm. As this is an open research

problem, hybrid algorithms will not be discussed in the remainder of this work.

5.9 Numerical studies

5.9.1 Test environment

For the numerical studies presented in this chapter, the following test configuration

was used, if not stated otherwise.

All optimisations were carried out under the Linux version of Matlab R2009b in 64 bit

single-thread mode. The CPU was one core of an AMD Opteron Dual Core @2.6 GHz

that could access 8 GB of main memory. This machine represented one node of a high-

performance computing cluster at the Leibniz-Rechenzentrum München.

The concurrent-update algorithm was implemented using the optimisation toolbox in

Matlab. For this purpose, the initial maximisation problem from Section 5.3 was trans-

formed into a minimisation problem by changing the signs of the quality and gradient

functions. As a consequence, steepest ascent will be steepest descent in the following.

The fminunc function allowed for the realisation of a BFGS update module with a cu-

bic line search procedure for unconstrained problems. We will only consider problems

without constraints unless we explicitly give constraints, e.g. upper and lower bounds

on the control vector. For these examples, the toolbox function fmincon was used. It is

based on the interior-point algorithm described in Appendix D.

When comparing running times of optimisation algorithms, we were interested in a

program’s total running time from start to completion. For this purpose, we chose to

record the wall time instead of the CPU time. The former includes the time spent on

communication and on saving and loading data. The Matlab commands tic and toc
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were used to measure wall time.

We set the goal quality to 10−4 and the tolerances for the change in the control, function,

or gradient vectors to 10−8. For all test problems, the operation times were sufficiently

long to ensure the problems were solvable with full quality. We did not aim for time-

optimal solutions, for which we expect a similar behaviour.

For statistically significant results, we repeated every measurement for 20 random ini-

tial control vectors that had a mean value of 0 and a standard deviation of 1.

5.9.2 Toy models used for numerical optimisations

The following three toy models were used as test problems for all numerical optimi-

sations. The goal was to cover a variety of systems in terms of dimension, coupling

topology, coupling type, and spin quantum number. All systems were fully control-

lable in the sense of Chapter 3.

Two types of optimisations were performed with these systems: unitary gate synthesis

and state-to-state transfers. Both can be treated in the same formalism following equa-

tions 5.4.3 and 5.4.4. For state-to-state transfers, one simply substitutes U0 and UG by

column vectors. As only closed quantum systems were studied in this work, all states

were pure states. 2 The initial states were random pure states; the final states were the

product of the input state and the target gate for the respective model.

5.9.2.1 Model 1: a spin chain

The first model is a chain of three Heisenberg-coupled spins which are individually

controllable by x- and y-controls. The set of Hamiltonians is thus:

H0 = ∑
µ=x,y,z

Jµ
12σ

(1)
µ σ

(2)
µ + Jµ

23σ
(2)
µ σ

(3)
µ

H1,2 =
1
2

σ
(1)
x,y

H3,4 =
1
2

σ
(2)
x,y

H5,6 =
1
2

σ
(3)
x,y .

Here, σi
µ denotes the Pauli matrix σµ (\mu=x,y,z) at spin i, and Jµ

ij denotes the µ-th

2The formalism works for mixed states in essentially the same way, by using the superoperator formal-
ism (see Appendix A) to turn density matrices into vectors. This squares the dimension of all matrices but
allows for computing matrix-vector products instead of the numerically more demanding matrix-matrix
products.
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coupling term between spins i and j. In agreement with the nomenclature in Chapter 3,

this type of spin chain is referred to as an ABC chain. All coupling constants are set to

1. The target gate is a 3-spin quantum Fourier transformation (QFT). For state-to-state

transfer optimisations, the initial state is a random state vector and the target state is

the target gate applied to this initial state.

5.9.2.2 Model 2: a maximally coupled spin network for cluster state preparation

As an example of a fully-coupled spin- 1
2 model, we studied a system of four locally

addressable spins interacting via the Ising-ZZ coupling:

H0 =
J
2

3

∑
i=1

4

∑
j=i+1

σi
zσ

j
z

H1,2 =
1
2

σ1
x,y

H3,4 =
1
2

σ2
x,y

H5,6 =
1
2

σ3
x,y

H7,8 =
1
2

σ4
x,y

This system can be used to prepare a cluster state by applying the quantum gate UCS =

exp(−iπ/2Hcs) to the state |ψ0〉 = ((|0〉+ |1〉)/
√

2)⊗4. Here, the effective Hamiltonian

HCS =
J
2
(σ1

z σ2
z + σ2

z σ3
z + σ3

z σ4
z + σ4

z σ1
z )

represents a C4 graph. Again, the coupling constant J is set to 1. UCS is used as the

target gate. For optimisations of state-to-state transfers, |ψ0〉 is used as the initial state

and the cluster state as the target.

5.9.2.3 Model 3: a driven 7-level system

Optimisations were also carried out on a test system with the following drift and con-

trol Hamiltonians:

H0 = J2
z

H1 = Jz

H2 = Jx.
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The Ji are the total angular momentum operators corresponding to the quantum num-

ber j = 3. We choose a random unitary 7 × 7 matrix as the target gate for unitary

optimisations, and random initial and target states for state-to-state optimisations.

5.9.3 Comparison of gradient methods

5.9.3.1 Parameter set

In this subsection, the four gradient methods presented in Section 5.5.1 are compared

with respect to their relative speed and to the final quality they were able to achieve in

optimisations.

We present the setup and results for model 1. We chose the final time T = 5 sec when

optimising for a unitary gate, and T = 0.4 sec when optimising a state-to-state trans-

fer. These were not the smallest times for this problem, but they were of the same

order of magnitude and sufficiently small to make the optimisations nontrivial. In or-

der to test the dependence of the standard approximation on the relation between ∆tk

and ||Htot(tk)||2 according to Equation (5.5.5), we chose different values for the num-

ber of time slots and amplitudes of the initial pulse sequence. These parameters and

the corresponding values of the product P := mean
(

∆tk · ||Htot(tk)||2
)

are listed in

Table 5.1, where we denote the standard deviation of the initial pulse sequence by s,

s := std(uini(tk)).

Unitary optimisation: values of P = mean
(

∆tk · ||Htot(tk)||2
)

. (T = 5 s)

s \ K 50 100 150 200 500

0.1 0.2067 0.1034 0.0689 0.0517 0.0207

10 1.9201 0.9661 0.6465 0.4840 0.1932

State-to-state optimisation: values of P = mean
(

∆t · ||Htot(tk)||2
)

. (T = 0.4 s)

s \ K 20 40 50 70 80 100

10 0.3846 0.1929 0.1533 0.1105 0.0960 0.0769

100 3.7279 1.8882 1.5044 1.0768 0.9411 0.7509

Table 5.1: Values of P for the different numbers of time slots K and initial amplitudes which are
represented by the standard deviation of the initial pulse sequence (denoted by s).
The top table shows the values for the unitary optimisations, the bottom one shows
the values for the optimisations of state-to-state transfers.
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We then performed three types of measurements:

1. In optimisations of model 1, we measured the quality as a function of the wall

time for all four gradient methods, see Figure 5.9.1.

2. We measured the final quality reached using the standard approximation as a

function of P (Figure 5.9.2).

3. For the standard approximation, the difference between the approximated and

the exact gradient vector was studied as a function of P. Since the gradients of

only the first iteration needed to be compared, no actual optimisations were per-

formed. We therefore chose a broader range of values of P than given in Table 5.1

(see Figure 5.9.3), and studied models 2 (T = 14 sec) and 3 (T = 1 sec) in addition

to model 1.

The first two measurements answer questions with a direct practical importance, whereas

the last measurement is the most straight-forward way to assess the (theoretical) qual-

ity of the standard approximation.

For the finite-difference method, we set ε = 10−7. The Hausdorff series was cut off

when the norm of the next term was below 10−13. The current quality q and the elapsed

time were recorded at each iteration of an optimisation.

5.9.3.2 Results

Figure 5.9.1 shows the deviation from the maximum quality, Φ = 1, as a function of

the wall time for each gradient method and for a sample set of values of the product P

in the case of unitary optimisations (state-to-state transfer optimisations yield similar

results). The thick lines represent the average of all runs with one method.

One observes that the standard approximation (pink lines) is competitive to the exact

gradient method (blue lines) in terms of speed if it reaches or comes close to the goal

quality, i.e., if the approximation is valid. This is the case when the digitisation is high,

see Figure 5.9.1 (c) and (d). In cases (a) and (b), the standard approximation breaks

down and cannot achieve qualities much higher than 0.99. In the same cases, the timing

differences between the exact gradients on one hand and the finite-difference method

and the Hausdorff series on the other hand are higher than in cases (c) and (d), where

all four methods perform similarly fast. It is noted that the finite-difference method

and the Hausdorff series reach the goal quality in all cases.

In Figure 5.9.2 we depict the mean final deviation from Φ = 1 achieved by the exact

gradient method (dashed blue lines) and by the standard approximation (orange and
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Figure 5.9.1: Doubly logarithmic plot showing the performance of the four gradient methods
discussed in Section 5.5 for the optimisation of a unitary gate in model 1. The thick
lines represent average values. The exact gradient method (blue line) performes
best in all cases. For the small digitisation in cases (a) and (b), we observe a signif-
icant breakdown of the standard approximation (pink). Furthermore, the finite-
difference gradient method (green) and the Hausdorff series (orange) are slower
than the exact procedure. When a high digitisation is used in cases (c) and (d),
the standard approximation achieves higher goal qualities, and all approximative
methods perform as fast as the exact method.
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Figure 5.9.2: Doubly logarithmic plot showing the mean final deviations from Φ = 1 as a func-
tion of P for model 1. The exact gradient method (blue) converged to the goal qual-
ity in almost all cases, whereas the standard approximation (orange and green) did
so only when P was small. Note that the breakdown of the standard approxima-
tion depends on the type of optimisations (s2s denotes a state-to-state transfer, uni
denotes a unitary optimisation), but P is best chosen to be at least one order of
magnitude smaller then 1.

green lines), depending on the value of P. A unitary and a state-to-state optimisation of

model 1 are shown. Note that in these examples the optimisation changed the standard

deviation of the pulse sequence only to a small extent, i.e., Pinitial ≈ Pf inal . It can be seen

that the approximation breaks down with increasing P in all cases. The breakdown

points vary among unitary and state-to-state optimisations, but P needs to be at least

one order of magnitude smaller than 1 to ensure the goal quality is reached when using

the standard approximation. The exact method yields qualities that match the goal in

all runs.

The same measurements as decribed above were performed for models 2 and 3. They

yield similar outcomes, with one exception: the differences in running times between

the gradient methods can be more pronounced for large K, with the exact gradients

being ahead of all other methods; see Appendix C for results for model 2.

The accuracy of the standard approximation can also be assessed in a more direct way:

by measuring the difference between the approximated and the exact gradient vector

as a function of P. Thus, with grad := ∇k,mΦ, we compute the vector |gradapprox −
gradexact|/|gradexact| (for 20 repetitions) and take its mean value. Figure 5.9.3 shows the

measured values as a function of P, where for P, again, the mean over all time slots tk

was taken. As mentioned before, we took models 1-3 into account for this comparison,

and studied a broader range of values for P.

It becomes clear that one needs to go to P < 10−2 in order to make sure the error in the
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Figure 5.9.3: Relative difference between the exact gradient and the approximate gradient for
different values of P in optimisations of models 1 (blue), 2 (orange), and 3 (green).
The logarithmic y-axis shows the mean values of the difference |gradapprox −
gradexact|/|gradexact|, the logarithmic x-axis shows the mean values of P.

standard approximation is below 10%. As Figure 5.9.3 illustrates, the error depends

on the model and can differ by an order of magnitude for the same P. For all models,

however, a decrease of P by one order of magnitude results in an error reduction by

also one order of magnitude. If P ≈ 1, the error of the standard approximation is

typically around 100%.

Note that the accuracies of the finite-difference method and the Hausdorff method are

independent of P. They depend only on the stepsize ε (see Figure 5.5.1) and the cut-off

term, respectively.

5.9.3.3 Discussion

The exact gradient procedure involves an eigendecomposition with a numerical com-

plexity of O(N3). The two main advantages of this diagonalisation are (i) a perfectly

accurate gradient and (ii) the lack of any extra matrix exponentials as we need to expo-

nentiate scalars only, see Equation (5.5.10).

The finite-difference method also has an extra numerical cost of O(N3), in this case for

the matrix exponential, but it provides a gradient that is less accurate, depending on

the choice of the stepsize ε. This explains why it performs slightly worse than the exact

method, although reaching the goal quality in all tests, see Figure 5.9.1 . Its advantage

is the ability to provide a gradient when no other approximation or exact method is

known.

When the standard approximation fails, as is the case in Figure 5.9.1(a) and (b), either
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the digitisation is chosen too small or the norm of the total Hamiltonian is too large.

The gradient vector then points into a wrong direction of the search space such that

eventually no minimum can be found. From Figure 5.9.2, there seems to be no fixed

value at which the approximation breaks down. It rather depends on the the type of

optimisation and the model to be optimised. As a rule of thumb, a value of P < 0.1 is

required for the approximation to hold. When the approximation is valid, this gradient

method performs as fast as the exact method. The gradient quality certainly has a

strong influence on the outcome of an optimisation, but it does not solely determine

the success of an optimisation, as a comparison of Figures 5.9.2 and 5.9.3 shows: even

a value of P that yields a gradient error of the order of 10% can give satisfactory results

in an optimisation.

The Hausdorff series can be computed without any eigendecompositions or matrix ex-

ponentials, as it relies merely on matrix multiplications. These have the same complex-

ity O(N3), but in numerically small systems like our example, matrix multiplications

are faster in practice. Still, the number of series terms needed for a decent accuracy

is too high to be competitive with the exact or finite-difference gradient methods. In

this regard, the Hausdorff series seems to be tailored to larger spin systems with sparse

matrix operations where one can expect a performance boost [91, 92, 85].

5.9.4 Comparison of update methods

5.9.4.1 Parameters

Here, we present optimisations on models 1 and 3. The operation time for model 1

was set to T = 10 sec, the digitisation to K = 100. For model 3, we chose T = 15

sec and K = 150. We allowed a maximum of 5, 000 iterations. The exact method from

Section 5.5.1.2 was used for computing the gradients.

As the Matlab toolbox function fminunc does not allow the direct application of a sim-

ple conjugate-gradient method, we instead used the Matlab package minFunc by Mark

Schmidt [93]. The options sd, cg, and lbfgs were chosen for the respective update meth-

ods. The steepest-descent method used a line search strategy that was based on an

Armijo backtracking with cubic interpolation from new function and gradient values.

The other two methods were combined with a bracketing strategy with cubic interpo-

lation and extrapolation with function and gradient values. These were the software’s

default settings and thus assumed to be optimal choices.
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Figure 5.9.4: Comparison of three update methods for model 1 (a) and for model 3 (b). The
quasi-Newton update method (blue lines) outperformed the conjugate-gradient
method (orange) by reaching the goal quality in less than half of the wall time, on
average. The steepest-descent method (green) was either an order of magnitude
slower, see case (a), or it clearly failed to yield high qualities, see case (b).

5.9.4.2 Results

Figure 5.9.4 shows the deviation from the maximum quality, Φ = 1, as a function of the

wall time for each update method. Figure 5.9.4 (a) illustrates the results for model 1,

Figure 5.9.4 the results for model 3. The thick lines represent the average of all runs with

one method. The quasi-Newton method and the conjugate-gradient method succeeded

to reach the goal quality for both cases, whereas the steepest-descent method failed in

case (b). When it converged in case (a), it was an order of magnitude slower than

the conjugate gradient method. The fastest convergence was achieved by the quasi-

Newton method.

5.9.4.3 Discussion

In summary, using second-order information with the l-BFGS approach outperformed

the purely gradient-based methods. Despite its additional cost of computing an ap-

proximation of the Hessian, l-BFGS converged substantially faster than the other two

methods. The first-order steepest descent method was the least favourable of the three

methods due to its bad convergence behaviour. Using conjugate gradients could speed

up the optimisations significantly, yet was still inferior to the quasi-Newton approach.
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5.9.4.4 Other systems and optimisations of state-to-state transfers

In optimisations for model 2, we obtained the same qualitative results as for model 3.

Another set of tests was carried out in which a state-to-state transfer with pure states

was optimised. The results were similar to those for optimisations for unitary gates,

with l-BFGS being the strongest method, but the performance differences to the other

methods were less pronounced.

5.9.5 Comparison of sequential- and concurrent-update algorithms

5.9.5.1 Specification of test problems

Comparing two algorithms requires a more detailed analysis than comparing two mod-

ules of an algorithm, as we did in the previous sections. Therefore, we extended our

set of test problems: we studied the 23 systems listed in Table 5.2 as test problems

for our optimisation algorithms. This test suite included spin chains, a system of com-

pletely coupled trapped ions, an NV-centre system, and two driven spin-j systems with

j = 3, 6. We tried to cover many systems of practical importance with a range of cou-

pling topologies and control schemes. We used large sets of parameters like system

size, final time, number of time slots, and target gates. While it was impossible to in-

clude all types of control problems, we believe our subset of problems is comprehensive

for the purpose of this comparison of algorithms.

Spin chains: Problems 1-12 are Ising-ZZ spin chains of various length n = 1, . . . ,5, in

which the spins were addressable by individual x- and y-controls. The Hamiltonians

for these systems take the following form:

H0 = J
2

n−1

∑
i=1

σi
zσi+1

z

H1,2 = 1
2 σ1

x,y

H3,4 =
1
2

σ2
x,y

...

where J = 1. In the notation of Chapter 3, these are ABC . . . spin chains.

Only in problem 1, we consider linear crosstalk (e.g., via off-resonant excitation), lead-
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Table 5.2: Test problems for comparing a sequential- and a concurrent-update scheme.

Problem Quantum System Matrix K T Target
Dimensions [1/J] Gate

1 AB Ising-ZZ chain 4 30 2 CNOT

2 AB Ising-ZZ chain 4 40 2 CNOT

3 AB Ising-ZZ chain 4 128 3 CNOT

4 AB Ising-ZZ chain 4 64 4 CNOT

5 ABC Ising-ZZ chain 8 120 6 QFT

6 ABC Ising-ZZ chain 8 140 7 QFT

7 ABCD Ising-ZZ chain 16 128 10 QFT

8 ABCD Ising-ZZ chain 16 128 12 QFT

9 ABCD Ising-ZZ chain 16 64 20 QFT

10 ABCDE Ising-ZZ chain 32 300 15 QFT

11 ABCDE Ising-ZZ chain 32 300 20 QFT

12 ABCDE Ising-ZZ chain 32 64 25 QFT

13 C4 Graph-ZZ 16 128 7 UCS

14 C4 Graph-ZZ 16 128 12 UCS

15 NV-center 4 40 2 CNOT

16 NV-center 4 64 5 CNOT

17 AAAAA Ising-ZZ chain 32 1000 125 QFT

18 AAAAA Ising-ZZ chain 32 1000 150 QFT

19 ABCDE Heisenberg chain 32 300 30 QFT

20 A00 Heisenberg-XXX chain 8 64 15 rand U

21 AB00 Heisenberg-XXX chain 16 128 40 rand U

22 driven spin-6 system 13 100 15 rand U

23 driven spin-3 system 7 50 5 rand U
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ing to the control Hamiltonians

H1,2 = α1,2σ1
x + α2,1σ2

x

H3,4 = β2,1σ1
y + β1,2σ2

y

where αc and βc are crosstalk coefficients. We chose α1 = β2 = 1 and α2 = β1 = 0.1.

Test problems 17 and 18 represent five-qubit Ising chains. A local Stark shift term is

added to the drift Hamiltonian H0. The control consists of simultaneous x- and y-

rotations on all spins:

H0 =
J
2

5

∑
i=1

σi
zσi

z+1 − (i + 2)σi
z

H1 =
1
2

5

∑
i=1

σi
x

H2 =
1
2

5

∑
i=1

σi
x,

Problem 19 is a Heisenberg-XXX coupled chain of 5 spins with a global always-on fields

inducing simultaneous x-rotations on all spins:

H0 = J
2

4

∑
i=1

(σi
xσi+1

x + σi
yσi+1

y + σi
zσi+1

z − 10σi
x).

Control is provided by local Stark shift terms

Hi = σi
z (i = 1, . . . , 5).

In problems 20 and 21, the spins are coupled by the Heisenberg-XXX interaction and

the chains are subject to x- and y-controls on only one end (one or two spins, respec-

tively):

H0 = J
2

n−1

∑
i=1

σi
xσi+1

x + σi
yσi+1

y + σi
zσi+1

z

H1,2 = 1
2 σ1

x,y

(H3,4 =
1
2

σ1
x,y)

Here, J = 1 and n = 3, 4. Restricting the controls in this way makes the systems harder

to control and thus raises the bar for the optimisation.
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Completely coupled spin network for cluster state preparation: The effective Hamil-

tonian of test problems 13 and 14,

HCS = J
2 (σ1

z σ2
z + σ2

z σ3
z + σ3

z σ4
z + σ4

z σ4
z ),

represents a C4 graph of Ising-ZZ coupled qubits which can be used for cluster state

preparation according to [94]. The underlying physical system is a completely Ising-

coupled set of 4 ions that each represented a locally addressable qubit:

H0 =
J
2

3

∑
i=1

4

∑
j=i+1

σi
zσ

j
z

H1,2 =
1
2

σ1
x,y

H3,4 =
1
2

σ2
x,y

H5,6 =
1
2

σ3
x,y

H7,8 =
1
2

σ4
x,y

Again, the coupling constant J was set to 1. The following unitary is chosen as a target

gate, which applied to the state |ψ1〉 = ((|0〉+ |1〉)/
√

2)⊗4 generats a cluster state:

UG = exp(−i
π

2
HCS).

NV-centres in diamond: In test problems 15 and 16, we optimise for a CNOT gate on

two strongly coupled nuclear spins at an nitrogen-vacancy (NV) center in diamond, as

described in [95]. In the eigenbasis of the coupled system, after a transformation into

the rotating frame, the Hamiltonians are of the form:

H0 = diag(E1, E2, E3, E4) + ωc diag(1, 0, 0,−1)

H1 = 1
2 (µ12σx

12 + µ13σx
13 + µ24σx

24 + µ34σx
3,4)

H2 = 1
2 (µ12σ

y
12 + µ13σ

y
13 + µ24σ

y
24 + µ34σ

y
34)

Here, E1 . . . E4 are the energy levels, ωc is the carrier frequency of the driving field and

µα,β is the relative dipole moment of the transition between levels α and β. We choose

the following values for our optimisations: {E1, E2, E3, E4} = 2π{−134.825,−4.725,

4.275, 135.275}MHz, ωc = 2π× 135 MHz, {µ12, µ13, µ24, µ34} = {1, 1/3.5, 1/1.4, 1/1.8}.
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General driven multi-level systems: As a candidate for a non spin-1/2 system, in

test problems 22 and 23 we consider a Hamiltonian of the form

H0 = J2
z

H1 = Jz

H2 = Jx,

where the Ji are total angular momentum operators. The J2
z term represents the drift

Hamiltonian, the other two terms function as controls. We chose j = 6 for problem 22

and j = 3 for problem 23.

5.9.5.2 Numerical Details

As Table 5.2 shows, we optimised each test system for one of four quantum gates: a

controlled-NOT (CNOT), a quantum Fourier transformation, a random unitary, or a

unitary for cluster state preparation. The random unitary gate was found to be nu-

merically more demanding than the other gates. The final times T were always chosen

sufficiently long to ensure the respective problem was solvable with full fidelity. Hence,

the times should not be mistaken as underlying time-optimal solutions. The maximum

number of loops was set to 3, 000 for the concurrent update scheme and to 300, 000

for the sequential update. The other numerical parameters were set as described in

Section 5.9.1.

We recorded the achieved quality as a function of the running time and the number of

the three matrix operations with the highest numerical demands, i.e., with a complexity

of O(N3): matrix multiplications, matrix eigendecompositions, and matrix exponen-

tials. The last operation occured only in our implementation of the sequential-update

algorithm, as described in Section 5.7.

In the following, we focus on results obtained with unconstrained optimisations whose

initial control vectors had a mean value of 0 and a standard deviation of 1 (small am-

plitudes). These results can be found in Table E.1 in Appendix E and will be discussed

below. Optimisations were also carried out using an initial control vector with a mean

of value of 0 and a standard deviation of 10 (higher amplitudes), see Table E.2. Fur-

thermore, we optimised the test suite with a constrained algorithm, using small ampli-

tudes. These results are listed in Table E.3.
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Figure 5.9.5: Doubly logarithmic plots showing the deviation from q = 1 as a function of the
wall time for the concurrent- (blue) and the sequential-update algorithm (orange).
Here, we present the results of only 8 out of 23 problems. The other plots can be
found in Figures E.0.1 and E.0.2 in Appendix E.
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5.9.5.3 Results

Based on the data presented in Table E.1 (see Appendix E) and Figure 5.9.5, we note

the following results:

First, in most of the problems, sequential- and concurrent-update algorithms reach sim-

ilar final qualities. Out of the total of 23 test problems, the target quality of 10−4 is met

in all cases with the exception of problems 5, 7, 10, 12, and 13. Only in problem 23, the

sequential-update algorithm yields average final errors up to two orders of magnitude

higher than the concurrent-update algorithm.

Second, the average running times differ substantially in many problems, with the

concurrent-update algorithm being ahead. Only in problems 3, 4, 15, and 16 the fi-

nal wall times are similar. Note that in all but the very easy problems 3, 4, and 16,

the sequential algorithm needs a larger number of matrix multiplications and eigende-

compositions. In particular, the sequential update scheme requires additional matrix

exponentials in the forward propagation, which do not occur in concurrent-update.
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concurrent
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handover

Figure 5.9.6: Example of a handover (green) from a sequential- (orange) to a concurrent-update
(blue) algorithm. Based on the (unconstrained) optimisations of Problem 21 (see
Figure 5.9.5, bottom left panel), the sequential-update algorithm is run up to a han-
dover quality of 0.935, where the resulting pulse sequence is then used as the input
to the concurrent-update algorithm for an optimisation up to the target quality of
0.9999.

In many problems (3, 5, 6, 8, 9, 11, 12, 14, 18, 19, 21, and 22), we observe a crossing

point in the time course of the quality of the two algorithms. The sequential-update

algorithm is overtaken by the concurrent-update scheme between a quality of 0.9 and

0.99 (see, e.g., Problem 21 in Figure 5.9.5). Therefore, dynamically changing from a

sequential- to a concurrent-update scheme at a medium quality can be advantageous.
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Figure 5.9.7: Doubly logarithmic plots showing the deviation from q = 1 as a function of the
wall time for constrained and unconstrained concurrent-update (blue and green)
and sequential-update (orange and pink) optimisations on model 3. The same
initial conditions were used for the constrained and unconstrained runs. As ex-
pected, the sequential-update algorithm shows very similar wall times, whereas
the concurrent-update algorithm is slowed down significantly when constraints
are applied.

This is exemplified in the optimisation shown in Figure 5.9.6: here, the sequential

method is typically faster at the beginning of the optimisation, whereas the concurrent

method overtakes at higher qualities near the end of the optimisation.

Moreover, with regard to dispersion of the final wall times required to achieve the

target quality, the situation is fairly balanced: e.g., in problems 5 and 21 the sequential-

update algorithm shows a larger relative standard deviation, while in problems 17 and

19 it is the concurrent-update algorithm.

We emphasise that the running times may strongly depend on the choice of initial con-

ditions. Increasing mean value and standard deviation of the initial random control-

amplitude vectors typically translates into longer wall times. This effect is more pro-

nounced for the sequential- than for the concurrent-update algorithm. As a conse-

quence, the performance differences between the two algorithms may increase and

crossing or handover points may change. Results for higher initial pulse amplitudes

with a higher standard deviation can be found in Table E.2 in Appendix E.

Finally, as shown in Figure 5.9.7, the performance of the concurrent-update algorithm

also differs between constrained and unconstrained optimisation, i.e., between the

standard Matlab subroutines fmincon and fminunc (see Matlab documentation). In

contrast, the sequential-update algorithm uses the same set of routines for both types

of optimisations, where a basic cut-off method for respecting the constraints has almost

91



CHAPTER 5: BENCHMARKING A CONCURRENT-UPDATE

OPTIMAL-CONTROL ALGORITHM

no effect on the timings, as also illustrated by Figure 5.9.7.

5.9.5.4 Discussion

As expected from second-order versus first-order methods, at higher qualities (here

typically 90− 99%), the concurrent-update algorithm with BFGS overtakes the sequen-

tial-update algorithm using steepest descent. Therefore, changing from a sequential- to

a concurrent-update algorithm at a medium quality can be advantageous. For reach-

ing a quality of 1− 10−4 in unitary gate synthesis, the concurrent-update algorithm is

faster, in a number of instances even by more than one order of magnitude on average.

Yet, at lower qualities, the computational speeds are similar and the sequential-update

algorithm typically has a (small) advantage.

5.10 Conclusions

This chapter introduced a concurrent-update optimal control algorithm and presented

(1) a set of benchmarks for components of this algorithm and (2) a comparison with a

Krotov-type sequential-update algorithm.

For computing gradients (with respect to the control amplitudes), exact methods using

the eigendecomposition in most cases proved superior to gradient approximations by

finite differences, series expansions, or the standard method presented in [50]. If no

exact gradient formula can be derived, however, finite-difference gradients provide a

fast and easy-to-implement solution. The standard gradient approximation works well

if Equation 5.5.5 is fulfilled - an issue that needs to be taken care of, as we saw in

Section 5.9.3.

For computing the control vector update, the second-order BFGS method outperformed

the first-order steepest ascent and the conjugate gradient methods. While using ex-

tra computational resources for approximating the Hessian, BFGS updated the control

vector in a way that made it more efficient than the other two update methods.

In the last part of the chapter, we compared the performance of a gradient-based algo-

rithm updating the time slots in the control vector in a sequential manner (Krotov-type)

with an algorithm that featured a concurrent-update scheme. When it comes to imple-

menting second-order update schemes, the different construction of the sequential- and

concurrent-update algorithms translates into different performance: The concurrent-

update algorithm matches particularly well with (quasi-)Newton methods, in particu-

lar a standard BFGS implementation. Currently, however, there seems to be no stan-
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dard Newton-type second-order routine that would match with the sequential-update

algorithm in a computationally fast and efficient way; finding such a routine is rather

an open research problem. We employed efficient implementations, i.e., first-order gra-

dient ascent for sequential update and a second-order concurrent update. As expected

from second-order versus first-order methods, concurrent update overtakes sequential

update at higher qualities (here typically 90− 99%). For reaching a quality in unitary

gate synthesis of 1− 10−4, the concurrent-update algorithm is faster, in a number of in-

stances even by more than one order of magnitude, on average. Yet at lower qualities,

the computational speeds are similar and the sequential-update algorithm typically has

a (small) advantage.
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CHAPTER 6

Conclusions and outlook

This thesis presents control-theoretical studies of dynamical quantum systems that

can be used for quantum computation or simulation, and as quantum information re-

sources, e.g., as quantum channels. In order to have useful applications in these fields,

the systems must be either fully controllable or task-controllable, depending on the

requirements of the desired application. For universal quantum computation, full con-

trollability is required, whereas task controllability plays a crucial role in systems that

are tailored to a specific task and therefore cannot or need not be made fully control-

lable.

Investigating controllability properties alone does not solve the problem of controlling

a quantum system efficiently in practice, i.e., with experimental constraints. Solutions

for this aspect are provided by another branch of control theory, namely optimal con-

trol. Here, the experimenter uses a numerical procedure based on Pontryagin’s maxi-

mum principle to obtain control pulses steering the system in an optimal way. The op-

timisation generally takes into account experimental parameters and constraits while

finding time-optimal or relaxation-optimal solutions. In our case, this procedure is an

iterative scheme known as the GRAPE algorithm.

Chapter 3 introduces quantum dynamical control systems and investigates their sym-

metry restraints to establish sufficient conditions for full and task controllability. Based

on a unified Lie-algebraic framework, the interplay of drift and control Hamiltonians

is analysed for closed qubit systems with an arbitrary coupling graph. In particular,

for a given system, the dynamical system Lie algebra explicitly yields the reachable set

which defines the feasible tasks on that system. We find that symmetries eliminate full

controllability and thus can be harmful when designing a quantum system. For any

non-symmetric qubit system, we provide three design rules that ensure full control-

lability for couplings of the following types: Ising-ZZ, Heisenberg-XXX, Heisenberg-
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XXZ, Heisenberg-XYZ, Heisenberg-XX, and Heisenberg-XY. Reference [96] translates

the restrictions on controllability into restrictions on observability. The classical duality

of these two concepts does not hold 1:1 in the quantum domain. Of further interest are

conditions that fill the gap between lack of symmetry and full controllability in qubit

systems. These issues are addressed in [67].

Another application of Lie-algebraic methods is presented in Chapter 4: a gradient

flow on the unitary group provides a numerical method to optimise channel capaci-

ties. These capacities have long been assumed to be additive, with one counterexam-

ple given by Werner and Holevo [68]. Our goal is to find more counterexamples by

testing a large set of channels for their additivity properties. While we successfully

optimise capacities of standard and random unitary channels, this search is found to

be unsuccessful eventually, mainly because the search space of possible channels is too

large for a numerical method. The tested channels are of relatively small dimensions

(2 < d < 6), in particular compared to the succeeding disproofs of the additivity con-

jecture in [75] and [76] where high-dimensional unitary channels were studied. The

conjecture is now disproven, but the Werner-Holevo channel remains the only explicit

counterexample, especially in small dimensions. Further research may focus on finding

concrete examples of this type.

Chapter 5 discusses and benchmarks an iterative optimal control algorithm with a con-

current control-update scheme. After introducing the optimal control framework, the

algorithm is presented in a modular form. Different methods for computing gradients

and for updating the control vector are described and compared numerically using

a set of test systems. It is shown that the performance of the algorithm depends on

the interplay of all its modules, which must be kept in mind when one wants to ex-

change a module. In our tests, the best performance is achieved by an exact gradient

routine combined with a second-order update scheme based on BFGS. In particular,

the BFGS method is found to be superior to a simple steepest ascent method and to

conjugate gradients. Using exact gradients, if possible, is generally advantageous to

relying on approximated gradients. When no exact gradient formula is known, finite-

difference gradients provide a useful and fast alternative. In comparison to an estab-

lished Krotov-type sequential-update algorithm, the concurrent-update algorithm is

faster in reaching high qualities of 1− 10−4, partly because there is no known second-

order method for the sequential-update algorithm that is matched to it as well as BFGS

is to the concurrent-update algorithm. As sequential and concurrent updates repre-

sent two extrema of a spectrum, one can think of hybrid versions that update a subset

of available time slots. A modular structure allows an easy combination of different

approaches, as would be needed for hybrids. Further development can include an ad-
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vanced optimisation of (higher-order) update strategies, in particular for a sequential-

update scheme, and concepts for parallelising optimal control algorithms for their use

on high performance clusters.
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APPENDIX A

The superoperator formalism 101

Here, we would like to outline the basic notions of the superoperator formalism; a full

treatment of the can be found in [57].

A superoperator is a linear operator that acts on a vector space of linear operators. A

superoperator can be represented as a matrix if the operator it is acting on are repre-

sented as vectors. This can be done in the following way.

Consider a ’vec’ operation that maps a matrix ∈ MatN(C) onto a vector v ∈ CN2
:

MatN(C) → CN2
. This vector can be computed by stacking up the columns of M on

top of each other:

M →


vec M1

...

vec MN

 .

Here, vec Mk again denotes the k-th column vector of M. Another notation for vec M is

|M〉. As an example, consider the conjugation of X ∈ MatN(C) with M ∈ GL(N), i.e.,

MXM−1. Using the vec operation, this conjugation can be rewritten as

MXM−1 →
(
(M−1)t ⊗ M

)
vec(X).

Shorter variations of this expression are AdMvec(X) or ˆ̂M |X〉. In contrast, the expres-

sion adM(·) denotes the commutator with M, see Section 3.2. In the superoperator

formalism, the computation of traces of matrices X and Y becomes a computation of

an inner product:

tr(X†Y) → 〈X|Y〉 =
(
vec(X†)

)t(vec(Y)
)
.
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Proof of Lemma 4

The following proof is based on [97].

Proof. Let A and B be Hermitian matrices. Let {|ξα〉} be the set of orthonormal eigen-

vectors to the eigenvalues {ξα} of A. Then, the following equalities hold:

〈ξµ|
d

dx
eA+xB|ξν〉

∣∣∣∣∣
x=0

= 〈ξµ|
d

dx

∞

∑
n=0

1
n!

(A + xB)n|ξν〉
∣∣∣∣∣

x=0

= 〈ξµ|
∞

∑
n=0

1
n!

n

∑
q=1

(A + xB)q−1B(A + xB)n−q|ξν〉
∣∣∣∣∣

x=0

= 〈ξµ|
∞

∑
n=0

1
n!

n

∑
q=1

Aq−1BAn−q|ξν〉

=
∞

∑
n=0

1
n!

n

∑
q=1

ξ
q−1
µ 〈ξµ|B|ξν〉 ξν

n−q . (B.0.1)

If ξµ = ξν, one can immediately see that

〈ξµ|
d

dx
eA+xB|ξν〉

∣∣∣∣∣
x=0

= 〈ξµ|B|ξν〉 eξµ . (B.0.2)

If ξµ 6= ξν, we obtain:

〈ξµ|
d

dx
eA+xB|ξν〉

∣∣∣∣∣
x=0

= 〈ξµ|B|ξν〉
∞

∑
n=0

1
n!

n

∑
q=1

ξ
q−1
µ ξ

n−q
ν

= 〈ξµ|B|ξν〉
∞

∑
n=0

1
n!

ξn−1
ν

n

∑
q=1

( ξµ

ξν

)q−1
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= 〈ξµ|B|ξν〉
∞

∑
n=0

1
n!

ξn−1
ν

(ξµ/ξν)n − 1
(ξµ/ξν)− 1

= 〈ξµ|B|ξν〉
∞

∑
n=0

1
n!

ξn
µ − ξn

ν

ξµ − ξν

= 〈ξµ|B|ξν|〉
eξµ − eξν

ξµ − ξν
.

An analogous result is found for the skew-Hermitian matrices iA and iB. This covers

the case discussed in Section 5.5.1.2, where A := −i∆tk Htot(tk) and B := −i∆tk Hm.

Note that the proof requires the eigenvectors for different eigenvalues to be orthogonal.

Thus, it only holds for (skew-)Hermitian matrices describing closed quantum systems.

A generalisation to open quantum systems cannot be made in a simple way.
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Comparison of gradient methods

In addition to the results shown for model 1 in Section 5.9.3, here the results for the

optimisation of model 2 will be presented. We chose final times of T = 14 sec (unitary

optimisation) and T = 1 sec (state-to-state optimisation). Again, we did not aim for

minimal times. The target was a cluster state or the unitary gate generating this cluster

state.

Table C.1 lists the values of P = mean
(

∆t · ||Htot(tk)||2
)

used for these tests.

Unitary optimisation: values of P = mean
(

∆t · ||Htot||2
)

, (T = 14 s).

s \ K 50 80 100 200

0.1 0.8419 0.5262 0.4209 0.2105

10 6.9670 4.4204 3.5081 1.7592

State-to-state optimisation: values of P = mean
(

∆t · ||Htot||2
)

, (T = 1 s)

s \ K 20 50 80 120

1 0.1855 0.0741 0.0463 0.0309

20 2.4876 1.0009 0.6257 0.4190

Table C.1: Model 2: Values of P for the different numbers of time slots K and initial ampli-
tudes which are represented by the standard deviation of the initial pulse sequence
(denoted by s). The top table shows the values for the unitary optimisations, the
bottom one shows the values for the optimisations of state-to-state transfers.

The results obtained for model 2 are similar to those for model 1, see Figures C.0.1

and C.0.2. The exact gradient method (blue lines) performs best in all cases (a)-(d). The
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standard approximation (pink lines) breaks down and fails to reach the goal quality

qgoal in cases (a) and (b). In the other cases, most runs using the standard approximation

succed in achieving qgoal . The speed of this method is then comparable to the speed of

the exact gradient method.

In comparison to these two methods, the finite-difference method (green) and the Haus-

dorff series (orange) are slower while achieving qgoal in all cases.
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Figure C.0.1: Performance of the four gradient methods discussed in subsection 5.5.1 for the
optimisation of a unitary gate for model 2. The exact gradient method (blue line)
performs best in all cases. We observe the breakdown of the standard approxi-
mation (pink) for cases (a) and (b). For the higher digitisation of M = 128, the
finite-difference gradient method (green) and the Hausdorff series (orange) per-
form significantly slower than the other two methods. The thick lines represent
average values. Note that the plot is doubly logarithmic.

In Fig. , we observe the breakdown of the standard approximation (green and orange

lines) for values of P that are of the order of 10−1, with small differences between uni-

tary optimisations and state-to-state optimisations. The exact gradient method (dashed

blue lines) yields excellent mean final qualities for all values of P.
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Figure C.0.2: Doubly logarithmic plot showing the mean final qualities achieved by the exact
gradient method (dashed blue lines) and the standard approximation on model
2. The green line represents optimisations of state-to-state transfers (cluster state
generation), the orange line represents optimisations for the unitary gate that rep-
resents a cluster state generation. The breakdown of the standard approximation
for high values of P is observed.
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The interior-point algorithm

The interior-point method used for the constrained optimisation problem in Sec. 5.9

was developed [98, 99] to solve large-scale constrained minimisation problems of the

form

min
x

f (x)

subject to h(x) = 0,

and g(x) ≤ 0, (D.0.1)

where f : Rn → R, h : Rn → Rn, and g : Rn → Rm are smooth functions. It is interior

in the sense that it starts searching with a feasible point, i.e., a point that satisfies the

constraints, as opposed to exterior methods which start with points outside the feasible

area of the search space. The general idea of this interior-point approach is to solve a

sequence of approximate subproblems that are parametrised by a parameter µ > 0.

These subproblems are of the form

min
x,s

f (x)− µ
m

∑
i=1

ln si

subject to h(x) = 0, (D.0.2)

and g(x) + s = 0 (D.0.3)

The added logarithmic term is called a barrier function with the barrier parameter µ that

has typically a large initial value. The barrier function is, in a sense, the opposite of a

penalty function for exterior methods. The slack variables si are assumed to be positive,

and their number equals the number of inequality constraints g. When µ converges

to zero, the sequence of solutions of (D.0.2) should converge to the minimum of the

original problem (D.0.1). Hence, we have to solve a sequence of equality-constrained
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problems, which is easier than solving the inequality-constrained problem (D.0.1). As

described in [98], the subproblems are solved by a combination of sequential linear

programming and trust-region techniques. At each iteration, the algorithm uses either

a direct step (also called Newton step) or, if the direct step cannot be taken, a conjugate

gradient step. One particular advantage is that second-order information can be used

directly. Thus, the algorithm is well suited to be combined with the Broyden-Fletcher-

Goldfarb-Shanno method for efficiently computing an approximation of the Hessian

matrix.
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Additional numerical results

In this appendix, we present additional numerical data that was collected for the com-

parison of the sequential- and concurrent-update algorithms, as described in Sec. 5.9.5.

Figs. E.0.1 and E.0.2 depict the achieved quality as a function of the running time for all

problems mentioned in Sec. 5.9.5, except those problems already included in Fig. 5.9.5

in that section.

The Tabs. E.1, E.2, and E.3 list minimal, maximal, and mean values of quantities that

were measured during the optimisations using the sequential- and the concurrent-

update algorithms. In particular, the wall times, the achieved qualities, and the number

of expensive matrix operations can found in these tables.
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Figure E.0.1: Doubly logarithmic plots showing the deviation from q = 1 as a function of the
wall time for the concurrent- (blue) and the sequential-update algorithm (orange).
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Figure E.0.2: Doubly logarithmic plots showing the deviation from q = 1 as a function of the
wall time for the concurrent- (blue) and the sequential-update algorithm (orange).
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Table E.1: Overview on test results obtained from 20 unconstrained optimisations (fminunc in
Matlab) for each problem listed in Tab. 5.2 using the sequential or the concurrent-
update algorithm. Small initial pulse amplitudes ((mean(uini) = 0, std(uini) = 1))
were used. Mean values are in bold face. Note that the concurrent algorithm needs
no extra matrix exponentials (see text).

Problem Algorithm Final Quality Wall Time [min] #Eigendecs/1000 #Matrix Mults/1000 #Matrix Exps/1000
(mean/min/max) (mean/min/max) (mean/min/max) (mean/min/max) (mean/min/max)

1 conc. 0.9999/0.9999/1.0000 0.02/0.01/0.03 2.02/1.35/2.94 38/25/56 —none—
seq. 0.9999/0.9999/0.9999 0.19/0.13/0.34 6.29/4.36/11.68 88/61/163 6.29/4.36/11.68

2 conc. 0.9999/0.9999/1.0000 0.05/0.03/0.08 2.68/1.76/4.44 50/33/84 —
seq. 0.9999/0.9999/0.9999 0.16/0.11/0.27 5.43/3.80/9.04 76/53/126 5.43/3.80/9.04

3 conc. 0.9999/0.9999/1.0000 0.05/0.04/0.08 4.61/3.46/7.04 85/63/132 —
seq. 0.9999/0.9999/0.9999 0.07/0.05/0.12 2.29/1.56/4.12 32/22/57 2.29/1.56/4.12

4 conc. 0.9999/0.9999/1.0000 0.02/0.01/0.02 1.70/1.28/2.43 31/23/45 —
seq. 0.9999/0.9999/0.9999 0.05/0.03/0.11 1.72/1.08/3.84 24/15/54 1.72/1.08/3.84

5 conc. 0.9978/0.9973/0.9990 7.19/5.84/7.86 362/310/367 9774/8364/9917 —
seq. 0.9973/0.9918/0.9986 34/22/58 1976/1320/3292 35542/23729/59209 1976/1320/3292

6 conc. 0.9999/0.9999/0.9999 0.85/0.34/2.21 35/17/76 954/450/2050 —
seq. 0.9999/0.9999/0.9999 5.14/1.14/18.72 310/68/1143 5574/1216/20554 310/68/1143

7 conc. 0.9970/0.9886/0.9999 9.42/2.32/18.48 229/63/391 8028/2210/13679 —
seq. 0.9945/0.9825/0.9999 242/50/491 3975/1242/7753 87385/27313/170455 3975/1242/7753

8 conc. 0.9999/0.9999/0.9999 2.90/0.83/10.39 72/21/275 2530/735/9627 —
seq. 0.9999/0.9999/0.9999 16.11/2.36/65.72 500/89/2223 11002/1953/48876 500/89/2223

9 conc. 0.9999/0.9999/0.9999 0.61/0.33/0.92 20/11/30 685/381/1052 —
seq. 0.9999/0.9999/0.9999 4.83/1.91/7.81 161/63/259 3536/1375/5696 161/63/259

10 conc. 0.9982/0.9740/0.9999 376/12/918 435/82/917 18694/3510/39442 —
seq. 0.9959/0.9661/0.9999 2591/244/8458 13123/1312/40136 341107/34116/1043279 13123/1312/40136

11 conc. 0.9999/0.9991/0.9999 148/11/1236 189/71/919 8114/3045/39519 —
seq. 0.9998/0.9988/0.9999 786/72/4817 4041/427/17767 105031/11097/461821 4041/427/17767

12 conc. 0.9996/0.9974/0.9999 62.22/4.48/286.60 89/22/192 3818/942/8276 —
seq. 0.9994/0.9956/0.9999 284/56/1842 987/245/4563 25637/6360/118491 987/245/4563

13 conc. 0.9999/0.9999/0.9999 1.45/0.70/2.62 35/19/60 1235/677/2089 —
seq. 0.9999/0.9999/0.9999 6.47/1.76/16.06 219/59/547 4813/1292/12033 219/59/547

14 conc. 0.9989/0.9936/0.9999 5.20/1.52/14.89 138/41/390 4833/1434/13634 —
seq. 0.9759/0.9373/0.9999 129.00/6.39/439.92 4174/215/15103 91773/4719/332029 4174/215/15103

15 conc. 0.9999/0.9999/1.0000 0.01/0.00/0.01 0.90/0.64/1.24 9.57/6.67/13.30 —
seq. 0.9999/0.9999/1.0000 0.02/0.01/0.04 1.76/0.72/3.28 17.53/7.16/32.64 1.76/0.72/3.28

16 conc. 0.9999/0.9999/1.0000 0.01/0.00/0.01 0.80/0.70/1.28 8.19/7.13/13.48 —
seq. 0.9999/0.9999/1.0000 0.01/0.01/0.02 0.67/0.51/1.54 6.64/5.10/15.31 0.67/0.51/1.54

17 conc. 0.9999/0.9999/0.9999 160/27/357 684/616/773 7516/6767/8495 —
seq. 0.9999/0.9999/0.9999 2582/1411/4638 16577/11490/27082 165733/114877/270766 16577/11490/27082

18 conc. 0.9999/0.9999/0.9999 88/13/220 394/286/620 4330/3137/6811 —
seq. 0.9999/0.9999/0.9999 492/247/1520 2954/2434/3985 29535/24335/39842 2954/2434/3985

19 conc. 0.9999/0.9999/0.9999 45.85/8.49/213.95 170/103/264 3896/2354/6060 —
seq. 0.9999/0.9999/0.9999 128/76/217 1124/809/1490 17978/12945/23822 1124/809/1490

20 conc. 0.9999/0.9999/0.9999 0.06/0.04/0.08 6.92/4.80/9.47 76/52/104 —
seq. 0.9999/0.9999/0.9999 0.45/0.21/1.02 26/15/43 258/148/431 26/15/43

21 conc. 0.9999/0.9999/0.9999 0.18/0.16/0.20 8.56/7.81/9.60 161/146/180 —
seq. 0.9999/0.9999/0.9999 1.26/0.82/2.76 39/29/57 551/410/804 39/29/57

22 conc. 0.9999/0.9999/0.9999 0.96/0.47/2.02 68/42/105 750/459/1154 —
seq. 0.9998/0.9994/0.9999 407/112/732 21692/6473/30000 216483/64599/299399 21692/6473/30000

23 conc. 0.9999/0.9999/0.9999 0.60/0.24/1.64 53/25/141 588/279/1559 —
seq. 0.9951/0.9797/0.9995 39.03/9.39/111.74 2992/744/7163 29796/7408/71343 2992/744/7163
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Table E.2: Overview on test results obtained from 20 unconstrained optimisations (fminunc in
Matlab) for each problem listed in Tab. 5.2 using sequential or concurrent-update.
Higher initial pulse amplitudes (mean(uini) = 0, std(uini) = 10) than in Tab. E.1 were
used. Mean values are in bold face. Note that the concurrent algorithm needs no
extra matrix exponentials (see text).

Problem Algorithm Final Quality Wall Time [min] #Eigendecs/1000 #Matrix Mults/1000 #Matrix Exps/1000
(mean/min/max) (mean/min/max) (mean/min/max) (mean/min/max) (mean/min/max)

1 conc. 0.9999/0.9999/0.9999 0.04/0.02/0.06 4.25/2.61/6.60 80/49/125 —none—
seq. 0.9999/0.9998/0.9999 1.54/0.43/3.78 118/33/289 1645/459/4023 118/33/289

2 conc. 0.9999/0.9999/0.9999 0.05/0.02/0.08 5.39/2.76/8.56 102/52/162 —
seq. 0.9999/0.9999/0.9999 1.38/0.42/3.28 109/33/261 1520/464/3635 109/33/261

3 conc. 0.9999/0.9999/1.0000 0.07/0.05/0.10 6.06/4.35/8.45 113/80/158 —
seq. 0.9999/0.9999/0.9999 0.22/0.12/0.49 17.29/9.73/38.53 242/136/539 17.29/9.73/38.53

4 conc. 0.9999/0.9999/1.0000 0.02/0.01/0.03 2.50/1.60/3.39 46/29/63 —
seq. 0.9999/0.9999/0.9999 0.18/0.05/0.54 13.79/4.22/42.18 193/59/589 13.79/4.22/42.18

5 conc. 0.9976/0.9959/0.9986 6.97/6.24/7.32 364/362/370 9839/9784/9995 —
seq. 0.9969/0.9952/0.9983 73/51/105 4246/2954/6021 76349/53121/108271 4246/2954/6021

6 conc. 0.9999/0.9999/0.9999 2.23/1.36/3.82 105/60/180 2842/1623/4860 —
seq. 0.9999/0.9999/0.9999 16/11/32 935/614/1866 16823/11049/33567 935/614/1866

7 conc. 0.9893/0.9366/0.9999 15/14/16 386/385/387 13499/13469/13563 —
seq. 0.9928/0.9444/0.9993 325/129/730 8053/4190/16630 177047/92125/365595 8053/4190/16630

8 conc. 0.9998/0.9984/0.9999 9.86/4.27/15.02 257/110/386 9000/3832/13495 —
seq. 0.9990/0.9851/0.9999 158/43/645 3511/1400/13269 77189/30788/291716 3511/1400/13269

9 conc. 0.9999/0.9999/0.9999 2.81/1.80/4.62 87/57/142 3056/2007/4982 —
seq. 0.9996/0.9995/0.9998 41/22/104 1057/693/2033 23223/15223/44653 1057/693/2033

10 conc. 0.9978/0.9834/0.9999 638/91/1566 798/402/944 34315/17276/40590 —
seq. 0.9995/0.9974/0.9999 3213/529/8282 16045/6914/33844 417076/179721/879708 16045/6914/33844

11 conc. 0.9999/0.9998/0.9999 449/37/1165 613/335/906 26342/14386/38939 —
seq. 0.9999/0.9998/0.9999 1557/863/2935 8408/4895/14865 218564/127232/386383 8408/4895/14865

12 conc. 0.9984/0.9948/0.9999 197/16/416 196/192/202 8426/8273/8678 —
seq. 0.9974/0.9911/0.9990 883/255/2060 4320/1994/9522 112192/51780/247266 4320/1994/9522

13 conc. 0.9999/0.9999/0.9999 1.48/1.09/1.94 40/33/48 1405/1152/1676 —
seq. 0.9999/0.9999/0.9999 5.25/3.90/6.50 166/126/207 3654/2772/4550 166/126/207

14 conc. 0.9999/0.9999/0.9999 2.65/1.74/4.43 64/47/107 2247/1636/3729 —
seq. 0.9999/0.9999/0.9999 16.31/9.63/31.65 520/310/1040 11427/6804/22872 520/310/1040

15 conc. 0.9999/0.9999/1.0000 0.00/0.00/0.01 0.55/0.40/0.76 5.70/4.02/8.00 —
seq. 0.9999/0.9999/1.0000 0.01/0.01/0.02 0.75/0.52/1.60 7.44/5.17/15.92 0.75/0.52/1.60

16 conc. 0.9999/0.9999/1.0000 0.00/0.00/0.01 0.76/0.58/1.22 7.73/5.71/12.77 —
seq. 0.9999/0.9999/1.0000 0.01/0.01/0.02 0.58/0.45/1.15 5.77/4.47/11.48 0.58/0.45/1.15

17 conc. 0.9999/0.9999/0.9999 162/28/320 616/536/750 6768/5887/8242 —
seq. 0.9999/0.9999/0.9999 1346/763/2603 9238/7502/13230 92361/75005/132274 9238/7502/13230

18 conc. 0.9999/0.9999/0.9999 118/24/309 522/400/652 5736/4391/7163 —
seq. 0.9999/0.9999/0.9999 897/428/1152 6788/5799/8207 67863/57978/82054 6788/5799/8207

19 conc. 0.9999/0.9999/0.9999 41.77/5.48/120.52 65/58/71 1481/1332/1636 —
seq. 0.9999/0.9999/0.9999 59/32/89 460/398/547 7354/6362/8747 460/398/547

20 conc. 0.9998/0.9991/0.9999 1.91/0.51/6.98 139/47/202 1529/517/2225 —
seq. 0.9980/0.9879/0.9996 64/29/103 3508/2098/6647 34972/20910/66265 3508/2098/6647

21 conc. 0.9999/0.9999/0.9999 1.50/1.18/2.07 70/53/96 1328/1005/1818 —
seq. 0.9998/0.9998/0.9999 118/84/164 4269/2860/5791 59697/39992/80980 4269/2860/5791

22 conc. 0.9999/0.9999/0.9999 0.58/0.32/0.90 51/29/74 563/317/820 —
seq. 0.9995/0.9982/0.9998 81/35/137 4128/1981/6114 41194/19771/61017 4128/1981/6114

23 conc. 0.9999/0.9999/0.9999 0.06/0.05/0.07 7.58/6.20/9.85 83/68/108 —
seq. 0.9999/0.9999/0.9999 1.20/0.59/2.24 93/46/171 925/458/1702 93/46/171
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Table E.3: Overview on test results obtained from 20 constrained optimisations (fmincon in Mat-
lab) for each problem listed in Tab. 5.2 using the sequential or the concurrent-update
algorithm. Small initial pulse amplitudes (mean(uini) = 0, std(uini) = 1) were used.
Mean values are in bold face. Note that the concurrent algorithm needs no extra
matrix exponentials (see text).

Problem Algorithm Final Quality Wall Time [min] #Eigendecs/1000 #Matrix Mults/1000 #Matrix Exps/1000
(mean/min/max) (mean/min/max) (mean/min/max) (mean/min/max) (mean/min/max)

1 conc. 0.9999/0.9999/1.0000 0.11/0.02/0.26 1.43/1.23/1.68 27/23/31 —none—
seq. 0.9999/0.9999/0.9999 0.10/0.04/0.22 6.17/2.70/10.92 86/38/152 6.17/2.70/10.92

2 conc. 0.9999/0.9999/0.9999 0.05/0.03/0.10 2.10/1.64/2.52 39/31/47 —
seq. 0.9999/0.9999/0.9999 0.08/0.05/0.09 5.74/4.04/6.96 80/56/97 5.74/4.04/6.96

3 conc. 0.9999/0.9999/1.0000 0.09/0.08/0.13 4.49/3.71/5.50 83/68/102 —
seq. 0.9999/0.9999/0.9999 0.08/0.03/0.15 5.13/2.05/8.06 72/29/113 5.13/2.05/8.06

4 conc. 0.9999/0.9999/1.0000 0.03/0.02/0.04 1.60/1.34/1.98 29/24/37 —
seq. 0.9999/0.9999/0.9999 0.03/0.01/0.04 1.89/1.02/2.75 26/14/38 1.89/1.02/2.75

5 conc. 0.9877/0.9322/0.9990 44/24/67 364/361/368 9828/9759/9947 —
seq. 0.9973/0.9918/0.9986 34/22/61 1976/1320/3292 35542/23729/59209 1976/1320/3292

6 conc. 0.9999/0.9999/0.9999 1.87/0.73/3.61 24/18/40 650/473/1074 —
seq. 0.9999/0.9999/0.9999 5.34/1.15/19.60 310/68/1143 5574/1216/20554 310/68/1143

7 conc. 0.9958/0.9808/0.9999 29.82/5.74/69.99 244/69/390 8552/2411/13634 —
seq. 0.9945/0.9825/0.9999 123/39/244 3978/1242/7749 87443/27313/170360 3978/1242/7749

8 conc. 0.9999/0.9999/0.9999 5.39/2.08/20.83 49/29/198 1697/995/6925 —
seq. 0.9999/0.9999/0.9999 15.19/2.66/67.58 500/89/2223 11002/1953/48876 500/89/2223

9 conc. 0.9999/0.9999/0.9999 1.21/0.69/1.68 14.94/8.19/21.06 521/285/735 —
seq. 0.9999/0.9999/0.9999 4.90/1.91/7.99 161/63/259 3536/1375/5696 161/63/259

10 conc. 0.9999/0.9997/0.9999 313/21/1753 402/94/904 17284/4052/38874 —
seq. 0.9999/0.9999/0.9999 1059/122/5497 4508/1312/23582 117178/34116/612977 4508/1312/23582

11 conc. 0.9999/0.9999/0.9999 153.76/7.80/1104.29 144/68/566 6182/2890/24346 —
seq. 0.9998/0.9988/0.9999 1141/86/9848 6990/427/74922 181706/11097/1947465 6990/427/74922

12 conc. 0.9999/0.9992/0.9999 76.27/5.76/948.99 70/22/194 3017/936/8331 —
seq. 0.9997/0.9970/0.9999 1108/39/5566 5054/245/19200 131246/6360/498598 5054/245/19200

13 conc. 0.9844/0.9102/0.9999 13.91/2.49/75.62 120/27/398 4189/950/13926 —
seq. 0.9759/0.9373/0.9999 128.25/6.64/454.86 4174/215/15103 91773/4719/332029 4174/215/15103

14 conc. 0.9973/0.9867/0.9999 7.47/2.06/14.20 49/29/80 1720/1000/2801 —
seq. 0.9999/0.9999/0.9999 6.58/1.77/16.61 219/59/547 4813/1292/12033 219/59/547

15 conc. 0.9999/0.9999/1.0000 0.05/0.02/0.10 0.71/0.52/0.92 7.49/5.35/9.77 —
seq. 0.9999/0.9999/1.0000 0.02/0.01/0.04 1.76/0.72/3.28 17.53/7.16/32.64 1.76/0.72/3.28

16 conc. 0.9999/0.9999/1.0000 0.04/0.01/0.07 0.96/0.77/1.34 9.99/7.83/14.19 —
seq. 0.9999/0.9999/1.0000 0.01/0.01/0.02 0.67/0.51/1.54 6.64/5.10/15.31 0.67/0.51/1.54

17 conc. 0.9999/0.9999/0.9999 531/58/1443 1224/1032/1551 13454/11344/17054 —
seq. 0.9999/0.9999/0.9999 2284/1054/3898 16774/11490/27294 167710/114877/272885 16774/11490/27294

18 conc. 0.9999/0.9999/0.9999 157/26/754 574/530/655 6300/5821/7196 —
seq. 0.9999/0.9999/0.9999 386/175/690 2953/2434/3985 29524/24335/39842 2953/2434/3985

19 conc. 0.9999/0.9999/0.9999 105/16/335 166/141/186 3807/3244/4273 —
seq. 0.9999/0.9999/0.9999 143/64/328 1130/996/1465 18064/15925/23433 1130/996/1465

20 conc. 0.9999/0.9999/0.9999 0.53/0.12/1.14 5.15/4.16/6.91 56/45/76 —
seq. 0.9999/0.9999/0.9999 0.45/0.23/0.77 30/16/51 302/160/511 30/16/51

21 conc. 0.9999/0.9999/0.9999 0.49/0.36/0.89 9.53/9.09/10.37 179/171/195 —
seq. 0.9999/0.9999/0.9999 1.39/0.79/3.80 39/29/57 551/410/804 39/29/57

22 conc. 0.9999/0.9999/0.9999 5.34/2.39/8.03 131/93/193 1444/1026/2128 —
seq. 0.9991/0.9983/0.9995 108/59/386 4702/3317/6780 46924/33106/67669 4702/3317/6780

23 conc. 0.9999/0.9999/0.9999 2.26/0.42/9.57 38/13/83 420/148/913 —
seq. 0.9951/0.9797/0.9995 37.38/9.40/97.52 2991/744/7163 29786/7408/71343 2991/744/7163
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