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Abstract—We consider the communication over a set of parallel
multiple-input single-output (MISO) broadcast channels with sep-
arate linear precoding on each of them. In this setup, we study
the problem of fulfilling per-user quality of service constraints, ex-
pressed in terms of rates, using minimal transmit power. By means
of a dual decomposition approach and a branch-and-bound algo-
rithm solving the arising nonconvex subproblems, we find the so
far unknown globally optimal solution for the case of linear pre-
coding with time sharing. Although prohibitively complex for im-
plementation in a practical system, the new power minimization
method is highly interesting from a theoretical point of view as it
can be used to quantify the performance gap between the outcome
of heuristic algorithms and the theoretical limitations of the system
with linear transceivers. We also extend the approach such that
zero-forcing constraints can be handled.

Index Terms—Linear transceivers, multiple-input single-output
(MISO), multi-user multi-carrier systems, parallel broadcast
channels, power minimization, quality of service.

I. INTRODUCTION

I N the last few years, different approaches have been pub-
lished to minimize the sum transmit power in a multi-user

communication system while serving each user at a certain
requested rate (e.g., [1]–[12]). Many of them are heuristic algo-
rithms [4]–[12], which aim at a low computational complexity
and accept in exchange that a sum transmit power higher than
the global optimum is attained. On the other hand, to evaluate
the performance of the heuristic approaches, algorithms com-
puting the globally optimal solution are indispensable. For the
problem of power minimization in parallel vector broadcast
channels, which we consider in this paper, the globally op-
timal solution is achieved by means of nonlinear dirty paper
coding (DPC) and can be computed using one of the algorithms
in [1]–[3].
Many practical algorithms for power minimization that are

applicable to parallel vector broadcast channels make the as-
sumption of linear transceivers (e.g., [7]–[12]) as well as the
assumption that precoding is performed separately on each of
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the parallel subchannels, i.e., no transmit symbol may be spread
across several subchannels (e.g., [8]–[12]). These restrictions
can be interpreted as additional constraints to the power mini-
mization problem. In these cases, it is not obvious which part of
the performance gap between the suboptimal and the globally
optimal solution is inherent to the new constraints and which
part results from the incapability of the algorithm to find the
globally optimal solution of the problem with the new con-
straints. Thus, there is a strong interest in also finding the glob-
ally optimal solution of the power minimization problem with
separate linear precoding on each subchannel. The same is true
for the case where zero-forcing constraints are introduced, as
done, e.g., in [8]–[12]. The globally optimal solution for both
cases will be computed in this paper. Even though the computa-
tion of the globally optimal solutions is exponentially complex
in the number of users and therefore not applicable for real-time
implementation, it is of high theoretical interest. For instance,
the results from this paper are necessary for the proof of the
suboptimality of separate precoding on each of the parallel sub-
channels provided in our work [13], whichmight have an impact
on practical design.
The considered system model, which will be introduced in

detail in Section II, complies to any practical multi-user system
with a multi-antenna base station that uses a set of orthogonal
subchannels to serve a set of single-antenna user terminals.
The most straightforward application of the considered system
model is a multi-carrier system that does not exhibit intercarrier
interference, but the concept is not limited to multi-carrier
systems. For instance, with slight modifications (introduction
of weighting factors), the subchannels can also model time
intervals in a fading channel environment (e.g., [2]).
As stated above, we will assume that linear precoding is per-

formed separately on each of the orthogonal subchannels. In
[14], such a separate precoding was called carrier-noncooper-
ative transmission. The advantage is a significant reduction of
the problem dimension and, consequently, a significant simpli-
fication of the optimization procedure. On the other hand, car-
rier-noncooperative transmission has been shown to be subop-
timal in many settings (e.g., [14] and [15]). For the problem of
power minimization in parallel vector broadcast channels, car-
rier-noncooperative transmission has been proven to be optimal
for the case where nonlinear precoding is allowed [2], but it
is suboptimal for linear transceivers [13]. Nevertheless, such a
separate precoding will be assumed throughout this paper since,
as explained above, this enables us to find a lower bound on the
sum power achievable by any algorithm based on this assump-
tion.

1053-587X/$31.00 © 2012 IEEE



HELLINGS et al.: MINIMAL TRANSMIT POWER IN PARALLEL VECTOR BROADCAST CHANNELS 1891

Apart from the restriction to linear, carrier-noncooperative
precoding, we do not impose any further limitations. In partic-
ular, we allow time sharing between different transmit strate-
gies. This enables us to apply a dual approach (cf. Section III),
even though the corresponding problem without time sharing
exhibits a duality gap. This dual approach consists of solving
an inner problem, which we study in Section IV, and an outer
problem, which is solved in Section V. Finally, the solution of
the primal problem has to be found, which can be done with the
primal recovery method presented in Section V-B. At the end
of the paper, we present numerical results that compare linear
precoding with the globally optimal nonlinear strategy, and we
show that the results can be used to bound the global optimum
of related system assumptions not covered by this paper, such as
linear transceivers without time sharing and linear transceivers
with carrier cooperation.
Notation: In this paper, vectors are typeset in boldface lower-

case letters and matrices in boldface uppercase letters. We write
for the zero matrix or vector, for the identity matrix of size
, for the all-ones vector, and for the th element of the
vector . We use to denote the transpose of a vector or ma-
trix and for the conjugate transpose. The notation is used
for the absolute value of a scalar as well as for the cardinality
of a set. The order relation has to be understood ele-
ment-wise, and is the closed positive orthant of the ,
i.e., . We use the shorthand notation

for .

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a downlink system where the base station is
equipped with antennas while the receivers are equipped
with a single antenna each. The broadcast channel between the
transmitting base station and the receivers is assumed to consist
of orthogonal subchannels, e.g., carriers.
The frequency flat vector channel between the base station

and user on subchannel is denoted by .
These channels are assumed to be known and to satisfy the reg-
ularity condition [16]

(1)
where is a matrix whose rows are the channel
vectors of all users with . The additive circularly
symmetric complex Gaussian noise is
assumed to be independent across users and across subchannels
and independent of the transmitted data.
Throughout the paper, we will assume that no transmit

symbol may be spread across various subchannels. Thus, the
transmitted data can be written as the symbols
of user on subchannel , and the received signal of user on
subchannel is given by

(2)

where is the transmit power of user on subchannel

, and is the corresponding unit norm beamformer.

The optimizations in this paper will be performed in the dual
uplink channel [17], where the received signal is

(3)

with the dual uplink channels , the noise
covariance matrix , and the uplink powers .
On each subchannel of the dual uplink channel, the same rates

as in the original downlink channel are achievable with
[17]. The advantage of the dual up-

link formulation is that the rates on subchannel can be ex-
pressed as functions of the uplink transmit power vector

without a dependence on filter vectors:

(4)

with

(5)

Finally, the total rate of user is given by .
We focus on finding the minimal total transmit power

necessary to fulfill given per-user rate requirements
. In terms of an optimization problem,

this can be written as

and (6)

with . This formu-
lation represents time sharing between different operation
points on each carrier , which means
that a transmit strategy on carrier does not have to consist
of a certain power allocation, but it can consist of such al-
locations, where the th allocation is applied during a fraction
of of the total time. The factors have to sum up to

, and the total power as well as the total
per-user rates are the weighted averages of the respective quan-
tities in the various strategies. In principle, we allow to be
arbitrary, but due to the Carathéodory theorem [18, Theorem
2.1.6], no more than operation points are necessary
on each carrier to achieve the same optimum as with any higher
.
Note that the problem (6) with time sharing always has a so-

lution since arbitrary rate requirements are feasible even with
linear precoding if time sharing is allowed [15].1 The reasoning
of [15] can also be extended to the case with zero-forcing con-
straints. Having found the optimal solution of (6), the uplink

1Without time sharing, this is only true for nonlinear precoding [19].
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receive filters can be optimized for each user and for each oper-
ation point separately, and afterwards, the results can be trans-
formed back to the downlink by applying the results from [17]
on each subchannel for each operation point.
For later use, we define the single-user rate vector

with

(7)

and the single-user power vector

with

(8)

As the interference is neglected in (7), it always holds that
.

III. DUAL DECOMPOSITION APPROACH

As a vehicle to solve the optimization problem (6), we intro-
duce the modified problem

(9)

which is a reformulation of (6) without time sharing, and we
apply a dual decomposition approach (e.g., [18]) to problem
(9). Therefore, the whole procedure of optimizing the dual func-
tion does not explicitly rely on time sharing. However, in gen-
eral, it is not possible to find a primarily feasible solution of
problem (9) achieving a sum power equal to the optimum of the
dual problem since (9) exhibits a duality gap. Instead, as will be
shown in SectionV-B, we can find a feasible solution of problem
(6) achieving this value of the sum transmit power. The reason
for this is that the nonconvex rate constraints are convexified
due to the possibility of time sharing in problem (6), so that the
duality gap is closed. A formal proof for this statement could be
given by verifying that (6) satisfies the so-called time-sharing
condition introduced in [20], which implies that the duality gap
vanishes.
The dual decomposition approach derived in the following

can also be found in [2], where systems with nonlinear pre-
coding were considered. We dualize the rate constraints of
problem (9) so that the dual function reads as

(10)

where is the vector of dual vari-
ables, and the Lagrangian function is given by

(11)

with defined as

(12)

Thus, in order to evaluate the dual function , we have to
solve

(13)

separately on each subchannel . Due to the decomposition into
per-subchannel problems, it is possible to solve the problem
for systems with a high number of subchannels by solving the
per-subchannel problems in a parallelized manner. Solution
methods for the inner problem will be presented in the fol-
lowing section.
Finally, the dual problem

(14)

has to be solved in an outer loop in order to find the optimal dual
variables , and in each iteration, the inner problem has to be
solved in order to evaluate the dual function. A method to solve
the outer problem will be discussed in Section V.

IV. SOLUTION TO THE INNER PROBLEM

This section is devoted to finding the globally optimal solu-
tion of the inner problem (13) on subchannel . If nonlinear
precoding is allowed, this problem is equivalent to a convex
problem [2], which can be solved efficiently. However, if the
system is constrained to use linear precoding, the inner problem
is nonconvex due to the nonconcavity of the underlying rate
equations. Nevertheless, as shown below, the globally optimal
solution can be found by means of monotonic optimization.

A. Linear Precoding Without Zero-Forcing Constraints

In order to reveal monotonicity properties of the inner
problem, we introduce a rate space formulation, i.e., we use
the rates as optimization variables instead of the powers.
Let denote the set
of rate vectors achievable on subchannel with finite sum
power.2 As is claimed in Lemma 1 (cf. Appendix A), the
inverse function of the rate function

exists and can be evaluated by means
of any globally optimal power minimization algorithm for
vector broadcast channels with linear precoding (e.g., the one
proposed in [21]). We define

if
otherwise

(15)

where can be checked with the feasibility test pro-
posed in [16] and [22]. With this definition, we get the following
rate space formulation of the inner problem (13) on subchannel
:

(16)

2Even though we allow time sharing in this paper, the inner problem is solved
without time sharing, and the possibility of time sharing is included in the primal
recovery in Section V-B. Therefore, in the inner problem, not all rate vectors are
achievable, and is a strict subset of in general.
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Proposition 1: The rate space formulation (16) is a differ-
ence-of-monotonic (DM) problem, i.e., its cost function is the
difference of monotonic functions.

Proof of Proposition 1: The first summand is obviously
nondecreasing in since . If the rate vector is
achievable with the sum power , all rate vectors

are also achievable with this sum power since they
are elements of the rate region with sum power .
Thus, . As can be easily verified,
this inequality also holds if is not achievable with finite
transmit power. Consequently, is nondecreasing
in .
A possible way to find the globally optimal solution of a DM

problem is the branch-and-bound (BB) method [23],3 which
successively bounds the optimal value from above by cutting the

into boxes . We define
a set of boxes and initialize it with , ,
where the vector has to fulfill with being the
unknown optimizer of (16). A method to find such a vector
is proposed in Appendix B. By construction, the box fulfills
the nonnegativity constraint of (16) and surely contains the op-
timal solution.
Due to the monotonicity of the two summands, the following

upper bound holds inside any box :

(17)
On the other hand, a lower bound to the maximal value of the
objective function inside the box is obtained by evaluating
the function for an arbitrary . For the sake of small
computational complexity, we choose

(18)

so that we do not have to evaluate twice.
In order to gradually refine the bounds, in each iteration, the

box

(19)

is cut along its longest edge, i.e., is
cut along direction

(20)

For cutting the box, the subdivision rule

(21)

(22)

is used, where is the th canonical unit vector, which has a
one as the th entry and zeros elsewhere, and the new box
is added to . After the branch step, new bounds for and

3The branch-reduce-and-bound (BRB) algorithm for DM from [23] is more
general than the simplified algorithm used in this paper as it also allows for DM
constraints while we only have a DM cost function.

have to be computed. Reusing the value al-
ready computed earlier, the function has to be evaluated
only once per iteration, which is the most costly part of the al-
gorithm if an efficient way to store the set and to search inside
it is chosen.
Note that all upper bounds from (17) are utopian bounds (i.e.,

they are better than the actual optimum) while all lower bounds
from (18) correspond to achievable values by construction.
Thus, in each iteration, the best solution currently known [the
current best value (CBV)] is given by the highest lower bound.
The algorithm is stopped when the gap between the highest
upper bound and the current best value has decreased below a
certain desired error tolerance . To reduce complexity and
memory consumption, boxes can be dropped whenever their
upper bound exceeds the current best value by no more than the
desired accuracy. The method is summarized in Algorithm 1.
In line (10), is the lower bound (18) for the box ,
which has already been computed earlier during the execution
of the algorithm. A visualization is given in Fig. 1, where a
possible set of boxes after the fourth iteration in a two user
system is shown.

Algorithm 1: Branch-and-Bound Method (Inner Problem)

Require:
(1) for do
(2) , where with from Appendix B

(3) compute and from (17), (18)

(4) ,

(5) while do
(6)

(7) cut into and using (20)–(22)

(8) compute , , , from (17), (18)

(9)

(10) if then

(11) lower corner of

(12) end if
(13)

(14) end while

(15)

(16) end for

(17) return

Apart from the conditions that the subdivision rule is a bi-
sectional rectangular subdivision (e.g., [24]) and that the upper
bound becomes tight when a box converges to a singleton,
which are both fulfilled in our case, the convergence proof
of the branch-and-bound method given in [23] requires that
the two parts of the objective function are continuous. In the
problem at hand, is only continuous at rate vec-
tors (cf. Lemma 1 in Appendix A). However, as
the upper bound takes the value whenever
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Fig. 1. Schematic of the branch-and-bound method.

is evaluated at a point , so that the corresponding
boxes are no longer considered as the algorithm proceeds,
convergence is ensured nevertheless.
Unfortunately, [25, Theorem 4] implies that the worst-case

complexity for finding an -optimal solution with the branch-

and-bound algorithm is , where and are con-
stants that depend on properties of the objective function. How-
ever, due to the nonconvex nature of the problem, no globally
optimal solution with lower complexity is known. Moreover,
the complexity does not grow extraordinarily in the other system
variables. Due to the decomposition in per-subchannel problems
(13), the overall complexity of the inner problem is linear in the
number of subchannels . An influence of the number of base
station antennas can only be found within the solver evalu-
ating the function , whose complexity is polynomial in .
Remark 1: Using a more sophisticated bound than the canon-

ical bound for DM problems (17), which is not very tight in
general [23], the speed of convergence could possibly be in-
creased. However, this would not change the exponential com-
plexity order of the algorithm.
Remark 2: As the objective of (13) is the difference of sum

power and weighted sum rate, it would also be possible to reuse
an existing globally optimal algorithm for the weighted sum
rate maximization problem with given sum transmit power, e.g.,
based on a polyblock approach [26] as proposed in [27] and [28],
and to optimize the sum power in an outer iteration. However,
this approach also has exponential complexity and did not seem
to have any advantages with regard to execution time in our nu-
merical simulations.

B. Linear Precoding With Zero-Forcing Constraints

In the following, we will discuss the case where zero-forcing
constraints are imposed. By not dualizing these new constraints,
they become constraints of the inner problem (13), which is con-
sequently turned into a combinatorial problem.
In the zero-forcing case, a set of users with

has to be selected to be served on subchannel ,
where is the number of base station antennas and is the
number of users. We define the joint channel matrix of the active
users , whose columns are the uplink channel

vectors of the users . For a given subset of active
users , the channel coefficients of the resulting inter-
ference-free scalar channels are explicitly given by (e.g., [29])

if

otherwise

(23)

where is used to denote the diagonal element corresponding
to user . Thus, the optimal powers can be found by solving

(24)

The explicit solution is given by

(25)

and the solution to the overall problem can be found
by comparing the resulting value of the objective for all

possible sets of scheduled users.4 Clearly,
the complexity grows extraordinarily in , but unlike in the
case without zero-forcing, an exact solution can be obtained
with a finite number of operations.

V. SOLUTION TO THE DUAL PROBLEM

As pointwise minimum of a family of affine functions, the
dual function (10) is concave in its variables , so that the dual
problem (14) is a convex problem [18]. Instead of the ellipsoid
method, which was applied in [2] to solve the dual problem, we
use a so-called multiple cuts [30] version of the cutting plane
method [18], [31]. There are several reasons for this: First of
all, the algorithm impresses with its simplicity and its fast con-
vergence, and it provides an easy way to perform the primal
recovery. Secondly, it allows us to exploit the structure of the
dual decomposition approach to speed up the solution of the
outer problem. Finally, it can be easily extended to deal with in-
accurate evaluations of the dual function.

A. Outer Approximation

We choose the following reformulation of the dual problem,
which relies on the decomposability of the Lagrangian function:

(26)

where the powers are the optimizers of (13) for a given

. Due to the optimality of , the constraints on are equiv-
alent to

(27)

4If needed, the case of nonlinear DPC zero-forcing [29] could be solved in a
similar manner: the effective channel coefficients would be obtained from
the QR decomposition of the joint channel matrix, and the encoding order would
have to be optimized by comparing the possible encoding orders of each
subset of users.
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We introduce vectors , which are con-

stants, so that the powers and rates are
constants as well. Then, we relax problem (26) to

(28)

Note that the constraints in (28) are linear constraints, so
that (28) is a linear program, which can be efficiently solved.
The solution gives an upper bound to the optimum of (26).
Just like in the standard cutting plane algorithm, the optimizer

of the relaxed problem (28) violates the original con-
straint set (27) as long as the algorithm has not yet converged.
A refined outer approximation can then be obtained by setting

and increasing by one. Repeating this procedure
iteratively, the optima of the approximated problems form a de-
creasing sequence that converges to the global optimum. The
procedure can be interpreted in a graphical manner as an outer
approximation by tangent hyperplanes in the points , which
cut the into halfspaces. As new hyperplanes are added
in each iteration, this multicut version refines the outer approx-
imation faster than the standard cutting plane algorithm.

B. Primal Recovery

As in [18], the primal recovery can be performed by means
of the dual problem of (28), which reads

(29)

where the variables are the dual variables associated with
the inequality constraints of problem (28). Note that most algo-
rithms for solving linear programs (e.g., the simplex method and
primal-dual interior-point methods [18]) return a primal-dual
optimal pair, i.e., when solving the linear program (28), not
only the optimizer , but also the optimal dual variables

are obtained. Thus, no additional effort is needed
to solve problem (29).
It remains to be shown that the sequence of primal solutions

obtained from (29) converges to the globally optimal solution
of (6) as the cutting plane algorithm proceeds. Comparing (29)
to (6), it becomes clear that the optimal solution of (29)
yields a feasible strategy for (6) with and

time-sharing weights . Since linear programs do
not exhibit a duality gap [18], the minimum of (29) is equal to
the maximum of (28), which converges to the optimal value of
the dual problem (14). Consequently, the optimum of (14) is
an achievable value of (6). On the other hand, the optimum of
the dual problem (14) is a lower bound for the optimum of the

primal problem (6) [18]. Therefore, both optima are equal, and
the duality gap is zero as claimed in Section III.

C. Convergence Criterion and Accuracy

From solving the inner problem in each iteration of the cut-
ting plane method, we know the values of . The differ-
ence between the latest upper bound and the current best value

can be used to test for convergence, i.e.,
the algorithm terminates when

(30)

where is the error tolerance corresponding to the desired
accuracy. However, the accuracy of the final solution does not
only depend on , but also on the error tolerance of the
solver of the inner problem. Therefore, we study the effect of
an inaccurately solved inner problem on the solution of the dual
problem.
Let be an approximated optimizer of (13) for a given
, which is used to add a new constraint to the approximated

constraint set in (28). As long as the rates are
computed exactly using (4), the new hyperplane is still a valid
outer approximation of (27), but potentially no tangent to the
exact feasible set. Thus, it might happen that all new constraints
are inactive in an iteration. Whenever this is the case, the error
tolerance can be decreased in order to obtain a tighter ap-
proximation in the next iteration.
However, inaccurate evaluation of the dual function might

lead to approximated values that are higher than the ac-
tual optimum, leading to a premature termination of the algo-
rithm. Therefore, when successively increasing the accuracy,
we exclude all indices that have not been processed with the
hitherto lowest from the maximization in (30). When this
modified condition (30) is fulfilled, we either decrease or,
if has already reached a certain final error tolerance, we let
the algorithm terminate.
As solving the inner problem with high accuracy yields a sig-

nificant increase in complexity, such a successive reduction of
the error tolerance makes sense, especially since the inner solver
turned out to converge very slowly for dual variables that
are far from being optimal. As the proposed method is robust
against high initial error tolerances, the initial can be mag-
nitudes higher than the final one.

D. Initialization

For problem (28) to be bounded in the first iterations of the
cutting plane algorithm, we add the initial constraints

(31)

where is a sum power on subchannel which is sufficient
to achieve some arbitrarily chosen rates with
. With these constraints, the problem is bounded since

(32)
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To find sufficient transmit powers , we use time sharing
between single-user points, i.e., data for user is transmitted in
an interference-free manner with times the average data rate
during a fraction of of the total time. Then, the powers
are the averages

(33)

with defined in (8). Note that this initialization also fulfills
possible zero-forcing constraints.

VI. DISCUSSION AND NUMERICAL RESULTS

For parallel vector broadcast channels with separate linear
precoding on each subchannel, we have presented globally
optimal solutions of two different scenarios: with and without
zero-forcing constraints (ZF). In addition to these two solutions
employing time sharing (TS), we also present numerical results
for the optimal zero-forcing solution without time sharing,
which can be obtained by an exhaustive search. Furthermore,
we include the globally optimal solution employing DPC,
which is the ultimate minimum of the sum transmit power
in parallel vector broadcast channels with per-user rate con-
straints.
The simulations of Fig. 2 ( 2 transmit antennas,

4 users, and {2,3,4,5} subchannels) have been performed
with i.i.d. circularly symmetric complex Gaussian channel
coefficients with zero mean and unit variance and per-user rate
requirements that are the absolute values of i.i.d. real Gaussian
random variables with zero mean and unit variance. The noise
power has been fixed to . The resulting
powers are averaged over 1000 realizations of the involved
random variables by means of the geometric mean (equivalent
to the arithmetic mean in the decibel domain). Independent of
the number of subchannels, linear precoding with time sharing
has the lowest sum power while linear zero-forcing without
time sharing has the highest. This was to be expected since
adding a new constraint can never decrease the minimal value
of the transmit power. In the example with two subchannels,
the number of degrees of freedom (product of the number
of transmit antennas and the number of subchannels ) is
equal to the number of users, resulting in a very high transmit
power, especially for linear zero-forcing without time sharing,
which is the strategy with the most restrictions. For ,
the number of degrees of freedom as well as the available
bandwidth is higher, resulting in lower sum transmit powers for
all strategies and in a smaller gap between the linear techniques
and the optimal DPC.
In Fig. 3 ( 2 transmit antennas, 4 users, and 2

subchannels), we have kept the channels, but we have replaced
the random rate requirements by for half of the users
and by for the rest. Here, the transmit power increases
with the rate requirements, and the curves seem to converge
to linear asymptotes for high data rates. In fact, this was to be
expected since the diagram can be qualitatively interpreted as
the reflection of a classical rate-over-SNR diagram across its
diagonal.
Note that the low number of subchannels used in the numer-

ical simulations is not necessary for the algorithm to converge

Fig. 2. Transmit power for different numbers of subchannels.

Fig. 3. Transmit power for different per-user rate requirements.

in reasonable time since the complexity of the approach is expo-
nential only in the number of users. However, when increasing
the number of subchannels while keeping the number of users
constant, the system has a high number of available degrees of
freedom so that the power gap between the strategies presented
in the plots is less pronounced. Therefore, we do not include
plots for higher numbers of subchannels.
A case of practical interest which is not covered by the

algorithm in this paper is the case of parallel vector broadcast
channels with linear precoding where neither zero-forcing is
assumed nor time sharing is applied. To find the minimum
transmit power for a given set of per-user rate constraints in
such a system, a nonconvex optimization problem in much
more variables than problem (13) would have to be solved [32]
because a dual decomposition approach is no longer possible.
However, using the results of this paper, the optimal value of
this problem can be bounded. While any feasible solution of
the problem, e.g., the globally optimal solution of the stricter
problem with additional zero-forcing constraints (Lin. ZF in
the plots), can be used as upper bound to the optimal transmit
power, a lower bound is given by the globally optimal solution
of the relaxed problem with time sharing (Lin. TS). Whenever
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an algorithm for linear precoding without zero-forcing per-
forms close to this lower bound in a certain channel model,
it is clear that it also performs close to the globally optimal
linear solution without time sharing. In Fig. 2, it can be seen
that the two bounds get closer to each other for an increasing
number of subchannels. This is in compliance with the fact that
the duality gap of the problem without time sharing vanishes
with increasing numbers of subchannels (cf. [20]), yielding a
global optimum closer to the optimal time-sharing solution. In
a similar way, using the curves Lin. TS and Optimum (DPC),
we can bound the globally optimal solution for systems with
linear transceivers that allow using time sharing as well as
spreading transmit symbols across subchannels.

APPENDIX A
INVERSE OF THE RATE FUNCTION

Lemma 1: The inverse function
of exists and is continuous at all

. Evaluating for some is
equivalent to solving the optimization problem

(34)

Proof of Lemma 1: According to [7], the global optimizer
of (34) is the unique fixed point of a certain fixed point iteration,
and this fixed point exists for all . By construction,
all rate constraints of (34) are active in the unique fixed point,
i.e., there is a unique power allocation
achieving . This allocation can be obtained
by finding the global optimum of (34) by any means.
When restricted to a compact domain

with for a given
, is a continuous, bijective function de-

fined on a compact domain, which implies that its inverse func-
tion is continuous (e.g., [33, Theorem 17.14]). Thus, is
continuous at any .

APPENDIX B
UPPER BOUND TO THE OPTIMAL RATE VECTOR

As zero is an achievable value of problem (16), all
with

(35)

cannot be optimal. With the single-user rates defined in (7), we
have

(36)

Thus, a sufficient condition for (35) is

(37)

with . Due to the strict concavity of
, there exists a value such that (37)

holds for all . The smallest possible value of
fulfills and can be found, e.g.,

by means of a fixed point iteration. Therefore, it suffices to
consider the vectors with

, i.e., we choose . If the
weights are small, we find , and the optimizer of
(16) is .
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