
TUM SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

On the Architecture-Aware Synthesis of Pauli
Polynomials

David Winderl

TUM SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

On the Architecture-Aware Synthesis of Pauli
Polynomials

...

Author: David Winderl
Supervisor: Prof. Mendl Christian
Advisor: Huang Qunsheng
Submission Date: June 26, 2024

I confirm that this master’s thesis in informatics is my own work and I have documented all
sources and material used.

Munich, June 26, 2024 David Winderl

Acknowledgments

At first I want to thank Keefe (Qunsheng Huang) for the amazing supervision combined with
the trustful and lighthearted yet dedicated collaboration from Tokyo to Munich including the
one or other ”three A.M.” message, if necessary.
Also, I want to thank Arianne Meijer van de Griend, Richie Yeung and Stefano Gogioso for
the collaboration in the PauliOpt Libary and the often long, yet entertaining and from my
point of view fruitful discussions. Special thanks to Arianne for pushing me into the right
directions at the one or other point.
One special shoutout to Simon Borowski for having to bear my self conversations and
providing the apropriate ”yes” at points, where we both knew we had no clue of what we
where talking about.
And at last I want to thank Arianne Meijer van de Griend, Richie Yeung, Stefano Gogioso,
Simon Borowski and Andreas Dachsberger for hopefully finding all of the typos and the
amazing feedback I have received for this work. Thank you guys!

Abstract

The synthesis of quantum circuits from so-called Pauli-Polynomials in the ZX Calculus
facilitates quantum circuit optimization. In this work, we will develop three algorithms that
can perform this task in an architecture-aware fashion. On top of that, we will develop an
architecture-aware synthesis method for synthesizing Clifford-Tableaus. Our results show
an increase in the Reduction of CNOT-Gates for larger circuits for both Clifford circuits and
circuits described by Pauli-Polynomials, which outlines the capabilities of architecture-aware
synthesis in the circuit optimization realm.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Preliminaries 2
2.1 Fidelity . 2
2.2 Parity Maps . 2
2.3 Clifford Tableaus and the stabilizer Formalism 6
2.4 The ZX Calculus . 10

2.4.1 Resemblance of Quantum Circuits and the ZX Calculus 11
2.5 The VQE Framework . 12
2.6 Z- and Pauli-polynomials . 14

2.6.1 Propagation of Cliffords . 14
2.6.2 Commutation of Pauli-polynomials . 16
2.6.3 Diagonalisation of Pauli-polynomials . 18
2.6.4 Architecture Aware Decomposition of Pauli-polynomials 19
2.6.5 Architecture Aware Synthesis of Z-Polynomials 19

3 Related Work 22

4 Architecture Aware Clifford Synthesis 24
4.1 Sanitization of interactions . 24
4.2 Removal of interactions . 26
4.3 Sanitization of Signs . 27
4.4 Heuristic Choice of the Pivot . 27
4.5 The complete elimination process . 29
4.6 Algorithmic Extension: Allowing Permutations 29
4.7 Example Execution for one Row . 34
4.8 Runtime Analysis . 36

5 Architecture Aware Pauli Polynomial Synthesis 37
5.1 Synth divide and conquer . 37

5.1.1 Optimization of the Pauli-polynomial . 37
5.1.2 Regrouping of the Pauli-polynomial . 38
5.1.3 Splitting of the Pauli-polynomial . 40

v

Contents

5.1.4 Runtime Analysis . 42
5.2 Architecture-Aware Synthesis of the Unitary Coupled Cluster Ansatz 42

5.2.1 Regrouping of the individual gadgets . 43
5.2.2 Diagonalisation of each commuting region 43
5.2.3 Synthesis of the Z-Polynomial . 43
5.2.4 Overall Process . 43
5.2.5 Runtime Analysis . 44

5.3 Pauli Steiner Gray Synthesis . 45
5.3.1 Identity recursion step . 45
5.3.2 Pauli Recursion Step . 46
5.3.3 Runtime Analysis . 48

6 Experiments 51
6.1 Clifford Experiments . 51

6.1.1 Evaluation of the Gate Count . 51
6.1.2 Evaluation on Real hardware . 53

6.2 Pauli Polynomial Experiments . 54
6.2.1 Analytical Overview . 55
6.2.2 Trotterization Error . 55
6.2.3 Optimization Capabilities . 56
6.2.4 Synthesis of Molecules . 59

7 Conclusion 62

List of Figures 63

List of Tables 65

Bibliography 66

vi

1 Introduction

The field of quantum computing is currently in the noisy intermediate-scale quantum (NISQ)
era. This era is distinguished by the presence of qubits that are affected by noise and
present limited coherence times, a measure of the time until the information held by a
quantum state decays and useful information is lost [43]. Furthermore, the NISQ-era and
possibly quantum computation beyond is characterized by restricted connectivity in quantum
computing architecture, meaning that not all qubits can interact directly. The restricted
architecture necessitates certain conditions on the interactions permitted within quantum
circuits designed to perform computations by manipulating qubit states. These factors have
led to a profound emphasis on the depth and gate-reduction of quantum circuits to make
them compatible with existing NISQ devices [38, 45, 31]. However, the restricted connectivity
of these devices often imposes an additional routing step in the optimization process to ensure
that the placement of interactions within the quantum circuit aligns with the constraints
of the given architecture. Examples of this include transpilation and synthesis tools like
tket [45] or BQSKit [56]. Conventional optimization algorithms typically handle this situation
through an iterative process incorporating such a routing step. However, recent research
suggests that a more integrated approach could yield superior results. Over the past years,
it has been demonstrated that combining the routing step directly with circuit optimization
leads to more efficient outcomes [48]. In response to these findings, this work focuses on
optimizing a more abstract structure within quantum circuits, specifically Pauli-Polynomials,
taking into account the inherent constraints of the quantum architecture. We developed three
algorithms to achieve this optimization process, termed the architecture-aware synthesis of
Pauli-Polynomials. We compared them against state-of-the-art circuit compiling strategies
and showing improvements in reducing the CNOT count of larger Pauli-Polynomials.

1

2 Preliminaries

We will discuss relevant concepts in this thesis throughout the following chapter. Overall, we
will start by defining fidelity, then introduce the concept of Parity Maps and Clifford Tableaus.
Afterwards, we will introduce the ZX-Calculus, a graphical language for describing linear
operations. In the end, we will discuss the VQE-Framework, and derive Pauli-Polynomials
from it.

2.1 Fidelity

Fidelity is a central notion in quantum information theory that serves as a metric determining
the similarity of two quantum states or quantum operations [40]. Unlike classical systems,
where information can be perfectly copied and transmitted, quantum mechanics introduces
inherent uncertainties due to the principles of superposition and entanglement. As a result,
the traditional notion of similarity based on exact matching needs to be revised in the quantum
realm.
In quantum formalism, we can define fidelity, denoted by F(σ, ρ) = Tr

[√√
ρσ
√

ρ
]2, measures

the degree of overlap or agreement between two quantum states, represented by density
matrices ρ and σ [40]. It quantitatively assesses how faithfully a quantum state ρ can be
transformed into another state σ or vice versa. The fidelity takes values between 0 and 1, with
F(σ, ρ) = 1 indicating perfect similarity, and F(σ, ρ) = 0 representing complete dissimilarity.
In our context, we will utilize fidelity to represent the closeness of our synthesized operators.
Here it is worth noting the helldinger-fidelity F(Q, P) = (∑i QiPi)

2, which we can use in terms
of shots, which is the output format of quantum devices.

2.2 Parity Maps

Parity Maps are defined as n× n symplectic matrices over GF(2) 1. We can utilize Parity
Maps to simulate pure CNOT circuits. Assume that we start at a symplectic matrix in GF(2),
which we set to identity if no operations had been applied to the quantum circuit. We can
now create the Parity Map describing our CNOT-Circuit, by incrementally applying CNOTs
to the initial parity map. Generally speaking, we have two options to compose an operation
onto a parity map: We can append or prepend a CNOT. Following Patel et al. [41] we can
observe, that the application of a CNOT on a quantum circuit is described by a addition
modulo two of the control and the target qubit onto the target qubit:

1The Galois field describes the finite Field of two element operations

2

2 Preliminaries

q0 q0

q1 q1⊕q0

q2 q2

We hence conclude that one can store the application of one CNOT into our parity map by a
row addition modulo two:

...
...

i

j

P = ...
...

i

j

P′ =⇒ P
P′j=Pi⊕Pj−−−−−→ P′

In the case of prepending, the row addition modulo two will be flipped into a column addition
modulo two [41]. We can, hence, express the vectorized version of the appending operation
as follows:

...
...

i

j

P = ...
...

i

j

P′ =⇒ P
P′:,j=P:,i⊕P:,i−−−−−−→ P′

Given our CNOT-Circuit as parity maps in GF(2), we can simulate the effect of our circuit on a
state by performing a matrix multiplication. Compare this with the state-vector simulation of
the 2n × 2n- Unitary, and the exponential speedup of this method becomes clear. Nevertheless,
it must be noted that parity maps only form a specific subset of quantum circuits.

Synthesis of Parity Maps

The structure of Parity maps as matrices in GF(2) allows the notion that it can be retrans-
formed to identity by performing Gaussian elimination. We can record the individual row
operations, forming a pure CNOT circuit. Patel et al. [41], has formulated this concept
prooving an upperbound of O(q2

log(q)). See Figure 2.1 for an outline of the process. Patels et
al.’s work congruently showed a further interesting extension by Kissinger and van de Griend
[30], and Nash et al. [39]. Their main contribution was to provide an architecture-aware
synthesis algorithm of Parity maps. In the following, we will outline the key concepts of the
approach by Kissinger and van de Griend [30].

3

2 Preliminaries

1. Start with the non reduced Parity Map
0 1 1 0
0 1 0 0
1 1 1 0
1 0 1 1


2. Cancel the elements in the first column, record the operations

1 0 0 0
0 1 0 0
0 1 1 0
0 0 1 1


3. Cancel the elements in the second column, record the operations


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1


4. Cancel the elements in the third column, record the operations


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


5. Note that we are done by this process and do not need to transpose

Figure 2.1: Example process of synthesizing a Parity Map using gaussian elimination.

4

2 Preliminaries

In standard Gaussian elimination, we would simplify a column by adding a row for every
nonzero element. After simplifying each column, we would transpose the Parity map and
continue with the next column. We can extend this process towards a device topology. In
order to do this extension, we have to compute the Steiner tree on the device’s architecture
graph [33, 30]. We can find a tree traversal by computing a depth-first search from a nonzero
node and reversing it. Along this traversal, we check if the parent is not one. In this case,
we will add a CNOT to the circuit from child to parent and compute the corresponding row
addition, which will ”fill” the parent. Otherwise, we will do nothing. As a last step, we will
move in a reversed traversal from the pivot element as root canceling all child nodes. See
Figure 2.2 for an example process. One can note that this way, all CNOTs have been placed
along the edges of our connectivity graph and need no further routing step. Overall this
process of Gaussian elimination has been quite competitive in the synthesis of CNOT circuits
simply because it does not require further routing and provides an asymptotically upper
bound on the CNOTs placed on the quantum circuit. This process, initially formulated by
Kissinger and van de Griend [30] as a recursive process, named recursive-steiner-gauss, will be
referred to as steiner-gauss in the following. At last, we want to point the reader towards the
perm-row-col extension of this process [49, 53]. Here the authors used the fact that a global
permutation can be applied to the measurements to optimize the process further.

1. Mark all non zero entries in column zero

q0 q1 q2 q3


0 1 1 0
0 1 0 0
1 1 1 0
1 0 1 1


2. ”Fill” the steiner tree (it is necessary to additionally place a CNOT at q1 marked as red)

q0 q1 q2 q3


1 1 0 0
1 0 1 0
1 1 1 0
1 0 1 1


3. ”Empty” the steiner tree

q0 q1 q2 q3


1 1 0 0
0 1 1 0
0 1 0 0
0 1 0 1



Figure 2.2: Example process of reducing one column using the steiner-gauss process.

5

2 Preliminaries

2.3 Clifford Tableaus and the stabilizer Formalism

Given the three Pauli matrices and the identity matrix:

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

The n-qubit Pauli group, Gn, is generated by tensor products of these four operators on n
qubits [40]. Note, that we will denote such a tensor product (e.g: X ⊗ Y ⊗ Z⊗ Y ⊗ I) as a
string listing each operator, as is common notation in literature: XYZYI. With this definition,
we can describe the Clifford group as the group that maps the Pauli group to itself [1], such
that:

∀P ∈ GP C†PC ∈ GP

This definition implies that all elements of the n-qubit Clifford Group are essentially a
mapping between different states of the pauli group. Their set of operators can hence be
reasoned as finite. Generally speaking, we can create any Clifford gate by using the Gates
{H, S, CX}:

H =
1√
2

(
1 1
1 −1

)
S =

(
1 0
0 ei π

2

)
CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.1)

Since the Clifford group is finite, it cannot describe universal quantum operations. Neverthe-
less, one can achieve universality by enhancing the Clifford Group with the T-Gate, which
yields the group: Clifford+T. Following the stabilizer formalism [1], one of the most important
and foundational ideas of quantum error correction, we can obtain a representation that is
similar to the Parity Maps for pure CNOT-Circuits. Specifically, we will refer to this as a
Clifford Tableau.

Stabilizer and Destabilizer Generators

In common literature [40, 1, 24], a unitary operator U stabilizes a state |ψ⟩ if it is an eigenstate
of U with an eigenvalue of exactly one. This was utilized in Gottesman et al.’s seminal work
to efficiently simulate quantum circuits composed of Clifford gates by representing quantum
states via the elements of the Pauli group that stabilize the state of interest. [24] More formally,
we can define stabilizer states as the eigenstates of a vector |ψ⟩ that does not change the sign
of the prefactor. For example, the state |0⟩ is stabilized by Z since Z |0⟩ = |0⟩. Stabilizers of
Pauli products (referred to as stabilizers hereafter) are of particular interest as they form a
basis for stabilizer states.
Furthermore, if two unitaries stabilize a state, then the product of these unitaries also stabilizes
the state. In other words, a set of stabilizer states forms a group with a generator. We associate
a destabilizer as the inverse of the particular generators of the stabilizer group. An n-qubit
Pauli product generally has n stabilizer generators and n destabilizer generators.

6

2 Preliminaries

Clifford Tableaus

We already have seen that, by definition, a Clifford operation can be uniquely characterized
by how it transforms a Pauli basis 2. We also have seen that an n-qubit state is stabilized by
n-stabilizers. Hence the idea arises to store the transformation of a Clifford operation of the n-
stabilizers by a so-called Clifford Tableau [1, 24]. A Clifford tableau is represented as a 2n× 2n
matrix over the Galois field GF(2). In this matrix, the first n columns (xr1, xr2, ..., xri, ..., xrn)
describe conjugation by a Pauli X gate on the i-th qubit (the destabilizer rows). The latter n
columns (zr1, zr2, ..., zri, ..., zrn) describe the conjugation by a Pauli-Z gate on the i-th qubit (the
stabilizer rows). The sign change of the qubit i is denoted in an additional column, r. Thus,
we can deconstruct each stabilizer/destabilizer row by computing the following:

f (k) = (−1)rk ·
n

∏
i=1

Zzki
i Xxki

i

Here, Zi represents Pauli Z applied to the i-th qubit, analogously Xi for the Pauli X gate.
From this formula, we can see the requirement of the sign change arising from the description
of Y = iZX in the Tableau formalism. By default, the stabilizer and destabilizer generators of
the state |0 . . . 0⟩ are used, for which the Clifford tableau will conveniently form an identity
matrix. We can then append and prepend Clifford Gates by decomposing them into H, S,
and CNOT gates. For the deviation of the appending and prepending operations for H, S,
and CNOT gates, we refer the reader towards Gidney [22]. We want to provide the intuition
here that, similar to Parity Maps, one will look at the effect of an H, S, or CNOT Gate on the
stabilizer and destabilizer states. Oberserve Figure 2.3 for the appending and Figure 2.4 for
the prepending operations. Note that we have omitted the sign vector in those visualisations.
More formally, we can follow Aaronson and Gottesman [1]:
Appending of a H-Gate at qubit a:

∀i ∈ rows.

xia = zia

zia = xia

ri = ri ⊕ xiazia

(2.2)

Appending of a S-Gate at qubit a:

∀i ∈ rows.

zia = xia ⊕ zia

ri = ri ⊕ xiazia

(2.3)

2We will refer to elements of the pauli group as Pauli basis in the following.

7

2 Preliminaries

⊕

ztzc

⊕

xtxc

(a) Append: CNOTc,t

swap

zixi

(b) Append: Hi

zi

⊕

xi

(c) Append: Si

Figure 2.3: Appending operations for the Clifford Gates H, S and CNOT on a Tableau.

⊕ c

t

⊕
c + n
t + n

(a) Prepend: CNOTc,t

sw
ap

i

i + n

(b) Prepend: Hi

⊕ i

i + n

(c) Prepend: Si

Figure 2.4: Prepedning operations for the Clifford Gates H, S and CNOT on a Tableau.

Appending of a CNOT-Gate at control a and target b:

∀i ∈ rows.

xib = xib ⊕ xia

zia = zib ⊕ zia

ri = ri ⊕ xiazia(xia ⊕ zia ⊕ 1)

(2.4)

Representation in Z/X-Basis

Working with the 2n× 2n symplectic matrix describing a Clifford tableau might be tedious at
some point. We hence coaligned our representation with libraries like stim [22], providing a
view on the tableau in X- and Z-Basis. Intuitively the X-Basis describes the behavior of all
de-stabilizers of the tableau, the Z-Basis of all stabilizers. We can start by noting that a tableau
can be described as a block matrix consisting of the XX, XZ, ZX, and ZZ block as follows:[

XX XZ

ZX ZZ

]

8

2 Preliminaries

We can then define two matrices, X and Z, by computing X = XX + 2XZ and Z = ZX + 2ZZ.
One can note, that if the tableau is identity X and Z, will look the following:

X: Z:1 0 0
0 1 0
0 0 1

 2 0 0
0 2 0
0 0 2


An arbitrary tableau can be hence presented as follows:

0 0 1 0 0 1
1 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 1 0


⇝

X: Z:0 0 3
1 1 0
1 0 0

 0 0 2
0 2 0
2 2 0



By the equations and from the example, we can note that if an element of either the Z- or
X-Basis is three, we are provided with a change of a Pauli Y; for a two, we can note a change to
a Z, and for one a change to an X. We can hence read of the transformation of the Pauli-basis
from this representation.

On the Synthesis of Clifford Tableaus

We can note, that similar to parity maps clifford tableaus consist of invertible symplectic
matrices, which motivates gaussian elimination for gate synthesis. Here Aaronson and
Gottesman [1], have provided the canonical form theorem, essentially stating, that any Clifford
Tableau can be resynthesized using the following sequence of gates: H-C-P-C-P-C-H-P-C-P-C,
providing the Collocary that any Tableau can be syntheisized with O(q2

log q) many gates. This
theorem has been improved by the heuristic of Bravyi and Maslov [8], which was able to
improve the two qubit count up to 64%, compared to Aaronson and Gottesman [1].

The resemblance of Clifford Tableaus and Parity Maps

By examining Clifford Tabelaus and Parity maps in more detail, much resemblance regarding
the functionality and purpose can be found. First, symplectic matrices fully describe both in
GF(2). Both can effectively simulate the behavior of subtypes of quantum circuits, and we
can append and prepend operations to both forms. Hence it might be highly sensible to test
approaches that have been quite successful on parity maps on Clifford tableaus. Therefore
we want to point the reader towards section 2.2. Note that conceptually we can synthesize a
parity map onto a quantum circuit in an architecture-aware fashion by routing the CNOTs
according to our Steiner tree estimation. Since in clifford circuits, most single qubit cliffords
only change one specific element of a pauli string, sanitizing each row in the Z- and X-Basis
could be a sensible application for the re-synthesis of a tableau.

9

2 Preliminaries

2.4 The ZX Calculus

The ZX Calculus is a rigorous graphical language first defined by Coecke and Duncan [12]
as an extension towards categorical quantum mechanics [2]. Generally speaking it describes
linear maps Cn −→ Cn in a penrose-like notation. In recent years it has various applications in
different fields of quantum computing such as circuit optimization [13, 16, 21, 48, 14], lattice
surgery [15] or the design of quantum error correction codes [10, 11]. A list of publications is
maintained at: https://zxcalculus.com/publications.html. We will use the introductory work,
of van de Wetering [50] for a brief definition. As mentioned earlier, the ZX Calculus follows a
penrose-like notation of so called X or Z Spiders. Those Spiders are defined as follows:

m ... α
... n = eiα |1⟩⊗m ⟨1|⊗n + |0⟩⊗m ⟨0|⊗n

m ... β
... n = eiβ |−⟩⊗m ⟨−|⊗n + |+⟩⊗m ⟨+|⊗n (2.5)

Note that by setting the phase argument α or β to zero, we can obtain empty spiders:

m ...
... n = |1⟩⊗m ⟨1|⊗n + |0⟩⊗m ⟨0|⊗n

m ...
... n = |−⟩⊗m ⟨−|⊗n + |+⟩⊗m ⟨+|⊗n (2.6)

As one can see the different spiders are connected by so called wires, here exists one special
ase the H-Wire, describing a Hadamard gate in the ZX-Calculus:

= |+⟩ ⟨0|+ |−⟩ ⟨1| =
1√
2

(
1 1
1 −1

)
(2.7)

The main prupose of the ZX Calculus is now to provide a set of rewrite rules, which preserve
the operators described by the combination of X and Z spiders. See Equations (2.8) to (2.15),
for an outline of rules. Note that those rules have been adjusted to fit the notation used by
Cowtan et al. [13], and certain types of spiders are defined by their quantum gate counterparts.
We want to refer the interested reader to van de Wetering [50] at this point since a detailed
discussion of the ZX Calculus with all of its caveats and rules is out of the scope for this
thesis.

10

https://zxcalculus.com/publications.html

2 Preliminaries

= (2.8) π α
... = −α

... (2.9)

π
... =

π

π

... (2.10) = (2.11)

n ... α β
... m... = n ... α+β

... m (2.12) n ... α β
... m... = n ... α+β

... m (2.13)

α = α (2.14) β = β (2.15)

2.4.1 Resemblance of Quantum Circuits and the ZX Calculus

The basis of digital quantum computing are so called quantum circuits, defining a unitary
map between an input state and an output state, which we can then measure. We can hence
describe every quantum circuit by a ZX Diagram, a simple yet naive process is to convert
the circuit towards a circuit with the gate set in {Rx, Rz, H, S, S†, V, V†, CX, CY, CZ} and then
transform it into the ZX-Calculus using the following rules 3:

Rz(α) ∼= α Rx(α) ∼= α H ∼=

V ∼= ⊕ V† ∼= ⊖ X ∼= π

S ∼= ⊕ S† ∼= ⊖ Z ∼= π

∼=
Y

∼=
Z

∼=

To make this process more clear, we can, for example, describe the GHZ-State by the following
quantum circuit:

|0⟩

|0⟩ H

|0⟩

3Note that we have adapted the rules from Cowtan et al. [14]

11

2 Preliminaries

Rewriting this to a ZX Circuit will yield the following diagram:

We can then apply rewrite rules sequentially to obtain the GHZ-State:

= = = = =

While the process of synthesizing ZX Diagrams from quantum circuits is quite intuitive, the
opposite is not directly true. de Beaudrap et al. [17] has shown that in general synthesizing a
ZX Diagram towards a quantum circuit is #P-Hard. Hence while the ZX Calculus provides a
more intuitive reasoning about unitaries, it needs to be treated with caution when it comes to
the point of re-synthesis of such diagrams.

2.5 The VQE Framework

The variational quantum eigensolver (VQE) [42] describes a hybrid classical and quantum
technique that aims to optimize an upper bound for the lowest expectation value of a physical
system (for instance, a molecule or nucleus). Specifically, given a Hamiltonian H, describing
the physical system and a parametrized trial wave function |ψ(⃗t)⟩ (ansatz), the ground state
of the physical system is bound by:

E0 ≤ min
t⃗

⟨ψ(⃗t)|H |ψ(⃗t)⟩
⟨ψ(⃗t)|ψ(⃗t)⟩

We hence want to optimize t⃗ to obtain the ground state of our physical system. We will focus
on the chemically-inspired unitary-coupled-cluster ansatz based on single and double excita-
tions (UCCSD). We can hence define T, the excitation operator in the second quantization, as
follows:

T =
2

∑
i=1

Ti (2.16)

T1 = ∑
i,a

ti
aa†

a aa (2.17)

T2 = ∑
i,j,a,b

tij
aba†

a a†
b aaab (2.18)

Here ap and a†
p describe the annihilation and creation operators for the orbital index by p.

The expansion coefficients ti
a and tij

ab will be abstracted into a vector t⃗, which will describe the
parameters we want to optimize. A detailed deviation of UCCSD is out of the scope of this
thesis; we will hence refer the reader towards [47, 26, 44, 6]. For our purposes, it suffices to
note that we will describe our ansatz as:

|Ψ(⃗t)⟩ = U(⃗t) |ψ0⟩ = exp
(

T(⃗t)− T† (⃗t)
)
|ψ0⟩ (2.19)

12

2 Preliminaries

With |ψ0⟩, describes the fixed reference state, for which a common choice is the Hartree Fock
wavefunction [47]. Since T is a linear combination of fermionic creation and annihilation
operators (denoted as τ⃗ in the following to confirm the notation of [14]), we can rewrite the
operator as:

U(⃗t) = exp
(

T(⃗t)− T† (⃗t)
)
= exp

(
∑

j
tj (⃗τj − τ⃗†

j)

)
(2.20)

To convert this ansatz towards a quantum circuit, we can firstly rewrite the unitary into a
series of unitaries we can apply to our quantum circuit using trotterization[46]:

U(⃗t) ≈ Uρ (⃗t) =

[
∏

j
exp

(
tj

ρ
(⃗τj − τ⃗†

j)

)]ρ

(2.21)

Here ρ describes the degree of trotterization, which is mostly set to ρ = 1 in the NISQ-era
due to limited device capabilities. At last, it is required to map the operators toward a
digital quantum device. Herefore, as a first step, encoding strategies such as Jordon-Wigner
(JW), Bravyi-Kitaev (BK), or Parity (P) are used [54]. Libraries such as OpenFermion [37] or
pennylane [7], provide this natively, providing us with the prefactors α and Pauli strings Pi of
a so-called pauli gadget:

τ⃗j − τ⃗†
j = iα ∑

i=0
Pi Pi ∈ {X, Y, Z, I} (2.22)

We can now implement such a pauli-gadegt, by using Rz, CX, H, V and V† Gates. Take, for
instance, the following circuit, descrcibing the Pauli-gadget: exp

(
i α

2 XYZ
)
:

H H

V V†

Rz(α)

(2.23)

At last, it is worth noting Cowtan et al. [14]’s assumption on the trotterization error. Cowtan
et al. [14], notes that according to Low et al. [35], the trotter-error of Equation 2.21 is
asymptotically bound by:

||δρ|| = O
(

1
ρ
(∑

j
||tj(τj − τ†

j)||)2

)
(2.24)

Given a well-conditioned reference state, one can assume that low amplitudes will parametrize
the ansatz. In other words, we can assume that ∀j.tj ≪ 1. Hence the error introduced by
trotterization will be small compared to the error of, for instance, two-qubit gates on the
physical device we will execute our calculation. Therefore Cowtan et al. [14] assume that we
can arbirarly reorder all pauli-terms after trotterization, something we will refer to as n-to-n

13

2 Preliminaries

commutation in the following. On this topic of grouping terms, Gui et al. [27] have provided
a further interesting ansatz of term grouping different Pauli gadgets, which minimizes trotter
and physical device errors.

2.6 Z- and Pauli-polynomials

In section 2.5, we have seen how a Pauli-gadget can be applied on a quantum circuit. Neverthe-
less, working with quantum circuits consisting of Pauli-gadgets may be tedious to define and
can even hinder optimization [13]. We can hence define a Pauli-gadget in the ZX-Calculus as in
Figure 2.5. The first part of the equation shows the notation of a Pauli-gadget, the second its
diagonalization, and the third its decomposition in the ZX-Calculus. We can observe that the
decomposition corresponds towards Equation 2.23. With legs, we will refer to the connections
on the qubits colored in either red (for X), green (for Z), or red-green (for Y). We can chain
multiple such Pauli-gadgets together, which will yield a Pauli-polynomial. Pauli-polynomials
can be categorized into different classes depending on their types of legs. If we encounter
only Z legs, we will refer to the Pauli-polynomial as Z-Polynomial (other authors refer to
Z-Polynomials as phase polynomials as van de Griend and Duncan [48]). If we encounter Z
and X legs, we will refer to the Pauli-polynomial as ZX-Polynomial. One can acknowledge

α

=

α

⊕ ⊖ = ⊕ ⊖
+α

Figure 2.5: Pauli gadget representation of e−iαXYZI per notation in [13] (left) and in ZX-calculus
(right)

that the formalism of describing totterized Hamiltonians as Pauli-polynomials is highly
expressive by looking at Figure 2.6. Here we have provided a representation of the two-qubit
parity encoding of the H2 molecule with sto3g basis. One can observe the corresponding
Pauli-polynomial in the upper part of the figure. The quantum circuit is defined below.
Additionally, this structure allows us to propagate Clifford operations, conduct statements of
commutativity and diagonalize Pauli-polynomials, as we will see in the following.

2.6.1 Propagation of Cliffords

From section 2.3, we can note that a Clifford gate is defined by how it changes a Pauli basis.
Following Gogioso and Yeung [23], we can extend this concept towards Pauli-gadgets. In the

14

2 Preliminaries

α0 α1 α2 α3

Rz(α1) Rz(α2) H Rz(α3) H

Rz(α0) H H

Figure 2.6: Representation of the trotterization of exp(−i⃗α(IZ + ZI + ZZ + XX)). Once with
a Pauli-polynomial and once with a quantum circuuit

following, we will assume an n-qubit Clifford gate, which acts without loss of generality on
the n-first legs of the Pauli-polynomial. Recall that the operator representation of our Pauli-
polynomial is defined as exp(−i θ

2 P), where P =
⊗n

i=0 Pi and Pi ∈ {X, Y, Z, I}n. Applying
now a Clifford-Gate to the Pauli-polynomial, we can note that it commutes under matrix
exponentiation:

C(exp(−i
θ

2
P))C† =

C

(
∞

∑
k=0

1
k!
(−i

θ

2
P)k

)
C† =

∞

∑
k=0

1
k!

C(−i
θ

2
P)kC† =

exp
(
−i

θ

2
C(P)C†

)
From this calculation, we can conclude that the Clifford gate will affect the pauli string
similarly as it would map between two Pauli states. Additionally such a mapping may
introduce a either positive or negative sign, which gets absorbed into the phase θ. Hence we
can conclude the rewrite rules in Figure 2.7 for single qubit gates and Figure 2.8 for two-qubit
gates. In contrast to other authors [13, 14, 55, 23], we have included CY and CZ gates here
among the CX Propagation rules to outline the general possibility of propagating Cliffords.
At last, we want to point the reader towards Grier and Schaeffer [25]. They have performed
a detailed analysis of the Clifford Group, introducing the concept of X-, Y- or Z-preserving
Cliffords. We can call a Clifford Gate Z-preserving if it maps Z-basis states to themselves.
For instance, the H-Gate is Y-Preserving while the V-Gate is X-Preserving. We confirm both
observations by looking at Figure 2.7a and Figure 2.7b respectively. In this context, the
CZ-Gate is interesting since it is Z-Preserving. We can see that all possible combinations of
ZI, IZ, and ZZ are mapped to themselves.

15

2 Preliminaries

α

=

α

α

=

α

α

=

−α

(a) Propagation Rules for the H-Gate.

α

⊕ =

α

⊕
α

⊕ =

α

⊕
α

⊕ =

−α

⊕

(b) Propagation Rules for the V-Gate.

α

⊕ =

α

⊕
α

⊕ =

−α

⊕
α

⊕ =

α

⊕

(c) Propagation Rules for the S-Gate.

Figure 2.7: Single Qubit clifford Propagation trough a Pauli-polynomial

2.6.2 Commutation of Pauli-polynomials

From Yeung [55], we find that two pauli gadgets commute if and only if they share an equal
amount of non equal legs. To make this clear, observe that the following pauli gadegts to not
commute, since they share three unequal legs:

α0 α1

̸=

α1 α0

(2.25)

We see, that here they do not commute, so we cannot swap the two gadgets. Nevertheless
for the following two gadegts it is possible to swap since they share two legs with differing
rotation axis:

α0 α1

=

α1 α0

(2.26)

A detailed proof of this concept is out of the scope of this thesis, we herefore refer the reader
to Yeung [55].

16

2 Preliminaries

α

=

α α

=

α α

=

α

α

=

α α

=

α α

=

α

α

=

α α

=

−α α

=

α

(a) Propagation Rules for the CX-Gate.

α

=

α α

=

α α

=

α

α

=

α α

=

α α

=

α

α

=

α α

=

−α α

=

α

(b) Propagation Rules for the CY-Gate.

α

=

α α

=

α α

=

α

α

=

α α

=

α α

=

α

α

=

α α

=

−α α

=

α

(c) Propagation Rules for the CZ-Gate.

Figure 2.8: Two Qubit Clifford Propagation of the CX-, CY- and CZ-Gate.

17

2 Preliminaries

2.6.3 Diagonalisation of Pauli-polynomials

We have already seen that two Pauli-polynomials can commute if they share an even number
of non-equal legs. We call a region of Pauli-polynomials, where each gadget commutes with
the others, a mutually commuting region. We can diagonalize such a region, meaning that
we convert the Pauli-polynomial into a clifford region, a Z-polynomial and the same clifford
region conjugated Cowtan et al. [14] outlines such a process by defining so-called compatible
pairs. Generally speaking, a compatible pair is a pair of qubits (i, j), for which the following
relation holds:

∃A, B ∈ {X, Y, Z}s.t. ∀l ∈ {1 . . . m}, σil ∈ {I, A} ⇐⇒ σjl ∈ {I, B} (2.27)

Here σim describes the leg of the gadget m at qubit i of the Pauli-polynomial, and m are the
number of gadgets in the Pauli-polynomial. Given such a compatible pair, we can always
diagonalize one of its qubits. For example, assume the following slightly simplified example
from Cowtan et al. [14]:

α0 α1 α2 α3 α4

Oberserve, that according to Equation 2.27, we can determine the compatible pair: (Y, Y).
This pair indicates that we must propagate a V-Gate at qubit zero and one. We can conclude
this by looking at Figure 2.7b. Note that any Y-leg will be transformed into a Z-leg while the
X-legs will be preserved. We can observe our Pauli-polynomial after propagation as follows:

−α0 α1 α2 α3 α4

⊕ ⊖
⊕ ⊖

At last, we will propagate a CX-Gate through the Pauli-polynomial, effectively diagonalizing
qubit one:

−α0 α1 α2 −α3 α4

⊕ ⊖
⊕ ⊖

With this knowledge, we can iteratively diagonalize any mutual commuting region by
iteratively performing the following three-step procedure:

• Check for single-qubit gates, if there is one row with legs only in one of {X, Y, Z}, we
can apply the corresponding clifford according to Figure 2.7. Remove the corresponding
qubits from our list

• Check for compatible pairs; if they are present, apply the corresponding Clifford and
the not, which will diagonalize the target row. Remove the corresponding qubits from
our list.

• If neither the single nor the two-qubit process has succeeded. Decompose the Pauli
Gadget with the fewest legs, corresponding to I I I . . . Z. Remove the corresponding
qubits.

18

2 Preliminaries

2.6.4 Architecture Aware Decomposition of Pauli-polynomials

We want to point out to the reader that the decomposition in Figure 2.5 must not necessarily
be a ladder of CNOTs. Cowtan et al. [13], has, for instance, found different decompositions
of CNOTs, which fueled a more effective synthesis of cliffords. We want to point the reader
towards the decomposition of Gogioso and Yeung [23]. They computed a minimal spanning
tree for every Pauli gadget in their ZX-Polynomial, which allowed an estimation of the cost of
implementing the corresponding gadget on a specific hardware. We can easily extend this
concept towards Pauli-polynomials, so for instance, the pauli gadget in Figure 2.5 will look
decomposed on a line architecture as in Figure 2.9.

α

=

+α

⊕ ⊖

(a) Decomposed Pauli-polynomial

q0 q1

q2 q3

(b) Connectivity Graph

Figure 2.9: Decomposition of the Pauli Gadget: e−iαXYZI for a square architecture. We marked
the minimal spanning tree in red in the connectivity graph aside.

2.6.5 Architecture Aware Synthesis of Z-Polynomials

At last, we want to discuss a variant of the gray-synth algorithm initially found by Amy
et al. [4]. Here van de Griend and Duncan [48] has found an architecture-aware synthesis
process, which we will refer to as steiner-gray-synth. Their algorithm has a recursive structure
consisting of two steps: At once, the base recursion and second, the one recursion step, which
we will elaborate on in the following. We will outline the algorithm’s functionality by an
example, using the Z Polynomial and connectivity graph in Figure 2.10. Note that this is not
a complete example since we execute each step once to outline the functionality. We refer the
reader to van de Griend and Duncan [48] for further details and examples.
We start off by defining the Z-Polynomial, a remaining Parity Map, and the circuit as global
variables, such that they are acessbile by the base and one recursion.

Base recursion Step

The core concept of the base recursion step is to subdivide the Z-Polynomial into two parts,
such that one is as large as possible. We are provided in the function arguments with the
remaining columns describing the Z-Polynomial (in our case, this would be: α0, α1, α2, α3 and
α4) and the remaining qubits (in our case: q0, q1, q2 and q3). Therefore, we pick a noncutting
vertex such that we have either the most zeros or ones in one of the partitions. We refer to a

19

2 Preliminaries

α0 α1 α2 α3 α4

(a) Z-Polynomial

q0 q1

q2 q3

(b) Connectivity graph of the quantum device

Figure 2.10: Z Polynomial and connectivity graph for outlining the process of steiner-gray-
synth

noncutting vertex as a vertex that will not disconnect the connectivity graph among removal.
More formally:

i = arg max
q∈Non Cutting

max
x∈GF(2)

{c ∈ Cols∧ Pr,c = x} (2.28)

Note that here Pr,c ∈ GF(2) notes if a leg is present at the current gadget (gadget in column c)
at the row r. The set, Non Cutting, describes the noncutting vertices in the connectivity graph
and Cols the columns (gadgets) we are looking at in the current base recursion step. In our
example, we would pick q0 at the first recursion step since it maximizes Equation 2.28 among
all other graph nodes. We, therefore, split the Z-Polynomial using q0, which will provide us
with the following subsets:

α0 α1 α3 α4 α2

For the gadget α2, we would run the base recursion decomposing it into a Rz rotation since it
has only one leg. The more interesting part is the recursion with the gadgets: α0, α1, α3 and
α4. We will utilize all the currently present qubits as we proceed to the one recursion step.
For the base recursion, we will remove q0.

One recursion step

The goal of the one recursion step is to remove as many legs from row q0 as possible. Note,
therefore Figure 2.8a; we observe that if our Pauli-gadget contains only Z-legs, we will either

20

2 Preliminaries

introduce or remove one leg among propagation of a CNOT. We will hence select q1 among
the neighbors of q0 on the connectivity graph. In this case, we select q1 among the neighbors
since it has the most legs. Next, we place a CNOT: CXq0,q1 on the circuit and propagate its
counterpart through the Z-Polynomial, leaving us with the following structure:

α0 α1 α3 α4

In the end, we will collect the propagated CNOT in a Parity Map, which we can synthesize
using the steiner-gauss algorithm. We have encountered a single-leg gadget at α3, meaning
that we can remove this gadget and apply the corresponding Rz-Gate on the global quantum
circuit. Also note that should we encounter a row with no legs, we can swap them by applying
a CNOT twice:

At last, we will split out Z-Polynomial among q1 and continue to the base recursion by
removing q1 from the qubits as well as to the one recursion by keeping all qubits, but this
time with row: q1.

Architecture-Awareness and further remarks

Since we are picking CNOT’s along the connectivity graph until single gadgets are reduced
to one leg, this process will map the Z Polynomial towards a quantum circuit that fits the
connectivity graph of our device. We further want to point out to the reader the fundamental
concept of this algorithm: We first select the qubit, which promises us the ability to remove as
many legs as possible; we then select the neighbor, which can remove from this qubit as many
legs as possible. This core concept allows the CNOT-Reduction of both the algorithm by
van de Griend and Duncan [48] and Amy et al. [4]. Amy et al. [4] even showed in evaluations
that their algorithm approximates the optimal solution by a small margin. At last, note
that a direct extension towards noncommuting Pauli-polynomials is not possible in this
algorithm. Even if we assume n-to-n commutativity, we could still introduce a leg by one
of the CNOT-propagation rules in Figure 2.8a. The only alternative in known literature is
applying steiner-gray-synth or gray-synth to an diagonalized Pauli-polynomial. We can make
this Pauli-polynomial as large as possible by splitting it into smaller commuting subsets of
maximal commuting cliques.

21

3 Related Work

As discussed earlier, we focus on the architecture-aware synthesis of Clifford Tableaus
and Pauli-polynomials. We will outline the current state-of-the-art landscape of Clifford
simplification techniques and techniques to synthesize a Pauli-polynomial.

Synthesis of Clifford tableaus

For the synthesis of Clifford Tableaus, our work is based on the stabilizer formalism by
Aaronson and Gottesman [1], enhanced by some explanations and introductions of Gidney
et al. [22]. Hereby our focus is not on simulating the Clifford group but rather on using
Clifford Tableaus as a high-level structure for quantum gate synthesis. In the process of
synthesizing clifford Circuits, most researchers relied on so-called normal forms, such as
the one we have seen by Aaronson and Gottesman [1]: H-C-P-C-P-C-H-P-C-P-C. Dehaene
and De Moor [19] have formulated a courser-grained 5-layer form, which led to improved
versions by Maslov and Roetteler [36] and den Nest [20], respectively. Duncan et al. [21] have
improved their pyzx library of those normal forms listed above. We also want to point the
reader towards Vandaele et al. [51], where they have provided a tableau synthesis algorithm
that is optimal concerning the H-count of the resulting circuit. Amy et al. [5], has shown
that the synthesis of sum-over-paths is cp-NP, but reduced to P if we restrict ourselves to
Clifford circuits. All in all, one can observe remarkable results in the landscape of Clifford
optimization algorithms and that the synthesis of Cliffords may fuel general quantum circuit
simplification and synthesis. In this work, we will focus on creating an architecture-aware
synthesis algorithm for Clifford Tableaus, which to our knowledge, has never been done
before.
At last, we want to point the reader towards the algorithm by Bravyi and Maslov [8], used in
our benchmarks as a state-of-the-art baseline. Their method used a combination of template
matching, designed explicitly for Clifford circuits, to level out CNOT and SWAP gates.
Currently, their algorithm is implemented as the standard when synthesizing a Clifford
tableau in the qiskit software stack.

Synthesis of Pauli-polynomials

As Pauli-polynomials naturally describe Hamiltonian simulation on digital quantum devices,
the field of synthesis is twofold. At once, researchers focus on reducing the corresponding
circuit’s CNOT count. Here Cowtan et al. [13]’s work was fundamental in the definition of
Pauli-polynomials as phase-circuits, as well as the initial idea of decomposing the CNOT-
Ladders introduced, for instance, by Figure 2.6 in a different way, which exposes more CNOT’s

22

3 Related Work

to the Clifford circuit between two Pauli gadgets. This way, Clifford simplification algorithms
could remove more gates than standard optimization could provide. Relating Z-Polynomials a
the posed problem definition by grouping individual Pauli gadgets into mutually commuting
sets allows the application of algorithms like gray-synth by Amy et al. [4] or the steiner-gray-
synth by van de Griend and Duncan [48], which are naturally more powerful at reducing the
CNOT count. On the work of diagonalization of the Pauli-polynomial, de Brugière et al. [18]
have found a graph-state based synthesis approach which outperforms Cowtan et al. [14]. At
last, we want to point the reader towards Paulihedral [34], a compiler targeted precisely for
Hamiltonian simulation. Paulihedral also outperforms the approach by Cowtan et al. [14].
Nonetheless, we used Cowtan et al. [14]’s work as a baseline of our approach since one will
see that it is closely related to our synthesis attempts.

23

4 Architecture Aware Clifford Synthesis

In the following we want to dicuss the architecture aware syntehsis of Clifford tableaus and
the algorithm we have developed in this context. Overall one can note, that our process is
closely related to a Gaussian elimination process and consists of two major parts. Generally
speaking, assume our Clifford tableau as in section 2.3:

X: Z: 0 0 3
1 1 0
1 0 0


 0 0 2

0 2 0
2 2 0


Our goal is to reduce this tableau towards identity; hence we want it to be in the following
form:

X: Z:1 0 0
0 1 0
0 0 1

 2 0 0
0 2 0
0 0 2


We note that overall this requires us to remove the interactions, we can see in the stabilizer and
destabilizer basis (marked in green), and we can see that certain elements of those interactions
are not in the correct basis, e.g., three in row zero and column two. Hence for every pivot
row, we can subdivide the process into the following two steps:

1. Sanitization of interactions

2. Removal of interactions

4.1 Sanitization of interactions

Examining Figure 2.3, we can see that the application of a H gate swaps the z and the x
column of the Clifford tableau, the application of a S gate corresponds towards the addition
from the x to the z column of a Clifford tableau. We can obtain the following rules for
converting the stabilizer and destabilizer parts of the Clifford tableau towards identity when
looking at one particular row 1:

1Also note that this process can introduce non-sanitized elements when computed sequentially for all rows.

24

4 Architecture Aware Clifford Synthesis

Basis Inital value Applied Gates Final value

X

0 – 0
1 – 1
2 H 1
3 S 1

Z

0 – 0
1 H 2
2 – 2
3 S, H 2

With this set of rules, we can iterate through the individual columns of the row, applying the
respective H and S gates; this way, we will sanitize our row, converting it towards only ones
for the stabilizers and two only twos for the destabilizers. See algorithm 1 and algorithm 2
for the methods described in pseudocode.

Algorithm 1: Sanitization process of the Z-Basis

1 Function sanitize z(r, tableau):
2 Z ← Z matrix of the tableau;
3 for c← 0 to tableau.n qubits do
4 if Zr,c = 3 then
5 Apply action ”S” to qubit c;
6 end
7 if Zr,c = 1 then
8 Apply action ”H” to qubit c;
9 end

10 end

Algorithm 2: Sanitization process of the X-Basis

1 Function sanitize x(r, tableau):
2 X ← X matrix of the tableau;
3 for c← 0 to tableau.n qubits do
4 if Xr,c = 3 then
5 Apply action ”S” to qubit c;
6 end
7 if Xr,c = 2 then
8 Apply action ”H” to qubit c;
9 end

10 end

25

4 Architecture Aware Clifford Synthesis

4.2 Removal of interactions

Removing interactions is critical for synthesizing a Clifford tableau in an architecture-aware
fashion since we will apply the CNOT gates required to reduce the specific row to identity.
From section 2.2, we have seen that this can be done by computing and traversing a Steiner
tree on the devices connectivity graph. Hence, we will assume the current row is thoroughly
sanitized, meaning it only consists of ones for the X-Basis and twos for the Z-Basis. We will
then select all non-zero entries of the row and add the pivot column (the column with the
index of the pivot row) towards the non-zero elements. As a second step, we will compute
the Steiner-tree using Kruskals algorithm [32] 2. We then compute a breath-first search (BFS)
of this tree, with the pivot as the root. The following steps differ slightly between the X-
and Z-Basis because the control and target qubits per CNOT gate will be swapped. We can
justify this swap by observing that according to Figure 2.3, the application of a CNOT in the
z columns is an addition to the left, while for the x columns, it is an addition to the right.
We will hence outline the process for the X-Basis, noting that it is analogous to the Z-Basis.
Given the BFS path of the Steiner tree, one can reverse traverse it twice. We obtain a parent
p and child c per iteration step. A CNOT will be applied in the first traversal: CXc,p if the
parent is zero. This way, we can ensure that all nodes in the Steiner tree are one after the
traversal. All children will be emptied by applying the CNOT: CXp,c. This process will ensure
that since the Steiner tree is computed on the connectivity graph, CNOTs are placed in an
architecture-aware fashion. Secondly, it will, in analogy to the steiner-gauss-Process, remove
all interactions of the tableau. See algorithm 3 for the process outlined in pseudocode for the
X-Basis, algorithm 4 for the process outlined in the Z-Basis.

Algorithm 3: Removal of interactions on the X-Basis

1 Function remove interactions x(pivot, nodes, tableau):
2 X ← X matrix of the tableau;
3 nodes← nodes + pivot ; // Add the pivot to nodes if not present

4 tree← Compute the Steiner tree on the connectivity graph;
5 traversal ← DFS through the Steiner tree with pivot as root;
6 foreach (p, c) ∈ traversal do
7 if Xpivot,p = 0 then

// Apply CNOT with c as control and p as target

8 end
9 end

10 foreach (p, c) ∈ traversal do
// Apply CNOT with p as control and c as target

11 end

2In the actual code-base, this is done by the networkx-libary [29].

26

4 Architecture Aware Clifford Synthesis

Algorithm 4: Removal of interactions on the Z-Basis

1 Function remove interactions z(pivot, nodes, tableau):
2 Z ← Z-matrix of the tableau;
3 nodes← nodes + pivot ; // Add the pivot to nodes if not present

4 tree← Compute the steiner tree on the connectivity graph;
5 traversal ← DFS through the steiner tree with pivot as root;
6 foreach (p, c) ∈ traversal do
7 if Xpivot,p = 0 then

// Apply CNOT with p as control and c as target

8 end
9 end

10 foreach (p, c) ∈ traversal do
// Apply CNOT with c as control and p as target

11 end

4.3 Sanitization of Signs

From section 2.3, we note that a Clifford tableau also stores the signs introduced by the term
Y = iZX in a sign column r. When synthesizing such a tableau, we must also take care of the
signs. We can apply a sequence of H and S gates onto the tableau, which will cancel out the
signs, by the vectorized rules we have seen in section 2.3. See algorithm 5 for this process.

4.4 Heuristic Choice of the Pivot

At last, it is required to discuss how to select pivots in our algorithmic structure. Here we
first need to note that a pivot needs to be a noncutting vertex on our connectivity graph. This
is because we cannot allow interactions using this node after reducing the pivot row in X and
Z-Basis. Hence we have to remove it from the graph. Among this removal, the node should
not disconnect our graph so that we can synthesize the remaining pivots. Since our primary
goal is synthesizing the Clifford tableau with as few CNOTs as possible, we want to choose
the row with the minimal Steiner tree. Nevertheless, since the computation of a Steiner-tree is
in O(q2), where q is the number of qubits and the fact that we have to compute it for every
noncutting vertex (O(q) in the worst-case scenario) this results in a computational overhead
of O(n3) for choosing the next row, which is undesirable. We hence decided to pre-compute
the shortest paths using the Floyd–Warshall algorithm, which provides a lookup table for
distances: d. We can then sum up the distances as follows:

sB(r) = ∑
j

{
dr,j Br,j ̸= 0∨ r = j

0 otherwise
(4.1)

27

4 Architecture Aware Clifford Synthesis

Algorithm 5: Removal of interactions on the Z-Basis

1 Function remove interactions z(tableau):
2 signsz← Deepcopy of the Z column of the signs of the tableau;
3 signsx ← Shallowcopy of the X column of the signs of the tableau;
4 for col← 0 to tableau.n qubits do
5 if signszcol ̸= 0 then
6 Apply H to col;
7 end
8 end
9 for col← 0 to tableau.n qubits do

10 if signszcol ̸= 0 then
11 Apply S to col;
12 Apply S to col;
13 end
14 end
15 for col← 0 to tableau.n qubits do
16 if signszcol ̸= 0 then
17 Apply H to col;
18 end
19 end
20 for col← 0 to tableau.n qubits do
21 if signsxcol ̸= 0 then
22 Apply S to col;
23 Apply S to col;
24 end
25 end

28

4 Architecture Aware Clifford Synthesis

Here B can be the Z or X matrix from the respective basis. Overall we can then compute the
heuristic as follows:

s(r) = sX(r) + sZ(r) (4.2)

4.5 The complete elimination process

In the complete process, we can chain the two steps sanitization and removal of interactions
in the folllowing way to reduce one column completely:

1. Choose a pivot row rp

2. Sanitize the X-Basis of rp

3. Remove the interactions on the X-Basis of rp

4. Sanitize the Z-Basis of rp

5. Assure that the reduced X Pivot is one

6. Remove the interactions on the Z-Basis of rp

7. Assure that the reduced Z Pivot is two and the X Pivot is one of rp

8. Sanitize the tableau signs

One can observe the pseudocode of the overall process in algorithm 6. Note that we have
added two extra steps, which we account to the sanitization process. We can have the edge-
case that after sanitizing the Z-Row, the X-Pivot may be three. This can happen when we
apply a S-Gate towards the pivot row. After we have sanitized the row in Z-Basis, we can
simply undo this by applying another S-Gate towards the pivot qubit. This will not have an
effect on the Z-Basis, but will essentially reduce the X-Basis to one again. In the last step we
may encounter the same problem. We can fix this by first transforming the S-Gate to a two
again (By a sequential application of an H and S Gate analogous to the sanitization process)
and next, we can apply an S-Gate in case we encounter a three on the X-Basis again.

4.6 Algorithmic Extension: Allowing Permutations

An extension towards synthesizing a Clifford tableau, described above, can be made when
we allow n-to-n initial and final swaps on the quantum circuit. Such swaps can be easily
removed by permutation of the measurement results from the quantum device. Observe the
scenario in Figure 4.1. If we want to re-synthesize this tableau towards a quantum circuit
requiring a line architecture, we will yield a circuit with five CNOT-Gates, looking as follows:

29

4 Architecture Aware Clifford Synthesis

Algorithm 6: Clifford Tableau Synthesis

1 Function remove interactions z(G, tableau):
2 tableau← tableau−1 ; // Invert the tableau

3 qc← A Quantum Circuit, which all operations are appended to;
4 while G has nodes do

// 1. Choose a pivot row rp

5 rp ← choose a non cutting vertex from G according to s(r);
// 2. Sanitize the X-Basis of rp

// 3. Remove the interactions on the X-Basis of rp

6 sanitize x(rp, tableau);
7 nodes← Non zero entries of Xrp,:;
8 remove interactions x(rp, nodes, tableau);

// 4. Sanitize the Z-Basis of rp

// 5. Assure that the reduced X Pivot is one

// 6. Remove the interactions on the Z-Basis of rp

// 7. Assure that the reduced Z Pivot is two and the X Pivot is one

of rp

9 sanitize z(rp, tableau);
10 if Xpr ,pr = 3 then
11 Apply an S gate to pr;

12 nodes← Non zero entries of Zrp,:;
13 remove interactions x(rp, nodes, tableau);
14 if Zpr ,pr = 3 then
15 Apply an S gate to pr;

16 if Zpr ,pr = 2 then
17 Apply an H gate to pr;

18 if Xpr ,pr ̸= 1 then
19 Apply an S gate to pr;

20 Remove rp from G;

// 8. Sanitize the tableau sings

21 sanitize signs(tableau);
22 return qc ; // Return the quantum circuit which collected the operations

30

4 Architecture Aware Clifford Synthesis

q0

q1

q2

This is undesirable, given that if we swap q1 and q2 on the connectivity graph, we would
only require one CNOT for the same circuit. If we had a Steiner tree with multiple such
occurrences, we would introduce multiple unnecessary gates to adjust our circuit towards
a bad initial placement of qubits. We can overcome this issue partly heuristically by once
computing a Steiner tree and then performing n-times a reverse traversal. If we encounter a
parent with a zero and a child with a non-zero node, both swappable, we can swap them.
Nevertheless, the reader may note that after applying the CNOT, we can no longer swap the
two nodes. Otherwise, one would break the connectivity of the circuit. One can mark the
nodes when the first CNOT is applied between them. In this case, we also note a weight
of two on the graph’s edges connecting the node with the rest of the graph. Initially, all
edges of the graph are marked with weights of zero. With this process, one can allow the
Steiner-tree approximation to route through ”alternative” swappable paths. We took the
weight of two for nodes where a CNOT has to be placed since, in the worst case, one has to
fill the corresponding element in the tableau and afterward remove the edge. This process of
thought will yield algorithm 7. At last, a similar structure can be applied to the choice of the
pivot. Here we can scan all swappable nodes regardless of the fact they are cutting or not if
and only if we can find a noncutting node in our interaction graph that is swappable. We
can then swap the choice of our heuristically-selected row with the noncutting vertex. See
algorithm 8 for an outline of the process.

q0

q1

q2

X: Z:1 0 1
0 1 0
0 0 1

 2 0 0
0 2 0
2 0 2

 q0 q1 q2

Figure 4.1: Quantum Circuit generating the Clifford tableau in the center plus the respective
architecture

31

4 Architecture Aware Clifford Synthesis

Algorithm 7: Extended removal of interactions on the X-Basis

1 Function remove interactions x(pivot, nodes, tableau, swappable nodes):
2 X ← X matrix of the tableau;
3 nodes← nodes + pivot ; // Add the pivot to nodes if not present

4 tree← Compute the Steiner tree on the connectivity graph;
5 foreach ∈ tableau.nodes do
6 traversal ← DFS through the Steiner tree with pivot as root;
7 while traversal do
8 p, c← traversal.pop();
9 if Xpivot,p = 0∧ p ∈ swappable nodes∧ c ∈ swappable nodes then

10 Relabel the nodes on the graph and adjust the global permutation;
11 end
12 end
13 end
14 tree← Compute the steiner tree on the connectivity graph;
15 traversal ← DFS through the Steiner tree with pivot as root;
16 foreach (p, c) ∈ traversal do
17 if Xpivot,p = 0 then

// Apply CNOT with c as control and p as target

18 end
19 end
20 foreach (p, c) ∈ traversal do

// Apply CNOT with p as control and c as target

21 end

32

4 Architecture Aware Clifford Synthesis

Algorithm 8: Clifford Tableau Synthesis

1 Function tableau synth(G, tableau):
2 tableau← tableau−1 ; // Invert the tableau

3 perm← Global permutation qc← A Quantum Circuit, which all operations are
appended to;

4 while G has nodes do
// 1. Choose a pivot row rp

5 rp ← choose a non cutting vertex from G according to s(r);
6 if rp is cutting then
7 r′p ← Noncutting swappable node from G;
8 Swap r′p and r′p on the interaction graph, note the swap on the global

permutation;

// 2. Sanitize the X-Basis of rp

// 3. Remove the interactions on the X-Basis of rp

9 sanitize x(rp, tableau);
10 nodes← Non-zero entries of Xrp,:;
11 remove interactions x(rp, nodes, tableau);

// 4. Sanitize the Z-Basis of rp

// 5. Assure that the reduced X Pivot is one

// 6. Remove the interactions on the Z-Basis of rp

// 7. Assure that the reduced Z Pivot is two and the X Pivot is one

of rp

12 sanitize z(rp, tableau);
13 if Xpr ,pr = 3 then
14 Apply an S gate to pr;

15 nodes← Non zero entries of Zrp,:;
16 remove interactions x(rp, nodes, tableau);
17 if Zpr ,pr = 3 then
18 Apply an S gate to pr;

19 if Zpr ,pr = 2 then
20 Apply an H gate to pr;

21 if Xpr ,pr ̸= 1 then
22 Apply an S gate to pr;

23 Remove rp from G;

// 8. Sanitize the tableau sings

24 sanitize signs(tableau);
25 return qc, perm ; // Return the quantum circuit which collected the

operations and its global permutation

33

4 Architecture Aware Clifford Synthesis

4.7 Example Execution for one Row

To outline the functionality of our algorithm, we will provide an example execution for the
following tableau:

X: Z:0 0 3
1 1 0
1 0 0

 0 0 2
0 2 0
2 2 0

 (4.3)

For simplicity, assume that the tableau in Equation 4.3 already describes the inverse. At first,
we will pick the row with the least amount of interactions, which in our case is row zero
(Denoted as q0 in the following). We will start with the sanitization of the X-Basis, which
yields the row:

(
0 0 3

)
. We will first sanitize the row by applying an S-Gate to q2:

q0 ↔ q0

q1 ↔ q1

q2 ↔ q2 S

Note that we denoted the global swaps to the left for this quantum circuit. This will produce
the following tableau:

X: Z:0 0 1
1 1 0
1 0 0

 0 0 2
0 2 0
2 2 0

 (4.4)

The rows we have to compute the Steiner tree for to remove the interactions are [q0, q2]. This
originates from the fact that q0 is the pivot and q2 is a non-zero entry. Given the interaction
graph:

q0 q1 q2

We can observe that the Steiner tree will be the whole graph. Hence, we can find the
traversal as [(q2, q1), (q1, q0)]. From this, we can see that our algorithm swaps q1 and q2 on
the interaction graph, leaving it in the state:

q0 q1q2

We can hence apply a CXq2,q0 to the tableau to fill the pivot and one CXq0,q2 , which will cancel
out the remaining interaction. This leaves the tableau in the following state:

X: Z:1 0 0
1 1 1
1 0 1

 2 0 2
0 2 0
0 2 2

 (4.5)

34

4 Architecture Aware Clifford Synthesis

Note in Equation 4.5 that we have automatically reduced column zero in the Z-Basis by
reducing row zero in the X-Basis. This holds since all stabilizer and destabilizer states
anticommute. The quantum circuit after this operation will be the following:

q0 ↔ q0

q2 ↔ q1

q1 ↔ q2 S

Moving to the Z-Basis, we can note that the row:
[
2 0 2

]
consists of twos; hence we do not

need to sanitize it. Computing the reverse traversal of on the interaction graph will yield:
[(q0, q2)], we hence can directly apply a CXq2,q0 between the two qubits, which will provide
us with the final state of the tableau for this row:

X: Z:1 0 0
0 1 1
0 0 1

 2 0 0
0 2 0
0 2 2

 (4.6)

We can find the circuit that reduces this row as:

q0 ↔ q0

q2 ↔ q1

q1 ↔ q2 S

When picking the next pivot, we can see that the score of our interactions will be equal. We
hence choose q1 arbitrarily. We further do not need to perform any sanitization and can
entirely focus on the application of the CNOT. In the X-Basis, by taking the row

(
0 1 1

)
,

we can see that this leads towards the reverse-traversal: [(q2, q1)]. An application of a CNOT:
CXq1,q2 , which will produce the identity tableau:

X: Z:1 0 0
0 1 0
0 0 1

 2 0 0
0 2 0
0 0 2


Since we have already achieved identity, q3 will have no further effect on the quantum circuit,
and we can return the final circuit:

q0 ↔ q0

q2 ↔ q1

q1 ↔ q2 S

35

4 Architecture Aware Clifford Synthesis

4.8 Runtime Analysis

Note that in algorithm 6, we are inverting the Clifford tableau as a first step. This process can
be done in O(q3) [22]. Next, all sanitizations and the choice of pivot can be done in linear
time (we iterate once over the number of qubits): O(q). Finally, the last and most expensive
step is the removal of interactions since this requires the computation of a Steiner tree.
Since, generally, this problem is NP-Hard, we relied on heuristic algorithms to approximate
the Steiner tree. Specifically, we are approximating it following the implementation in the
networkx libary [29], which runs in O(|E| log(|E|)) = O(q2 log(q2)). At last, since we remove
one node from the graph every time on execution, we have to update the distance matrix
for our heuristic. We can do this in O(q3) using the Floyd-Warshall algorithm. Since we are
executing both sanitization and interaction removal once for every node of the Graph, this
yields the following runtime:

O(q3 + q(q2 log(q2) + q + q3)) = O(q4) (4.7)

36

5 Architecture Aware Pauli Polynomial
Synthesis

In this chapter, we will move toward the synthesis of Pauli-polynomials. Overall, we have
provided three algorithms to synthesize the problem. First, an extension towards our work
[52] and the work of Gogioso et al. [23], which we will refer to as synth divide and conquer.
Next, using the architecture-aware synthesis algorithm by van de Griend and Duncan [48]
and our architecture-aware synthesis method for Clifford tableaus, we were able to provide an
architecture-aware version of the algorithm by Cowtan et al. [14]. At last, we have provided a
direct architecture-aware synthesis method for Pauli-polynomials based on the thoughts of
van de Griend and Duncan [48]. The following section will outline each method and provide
introductory examples of the synthesis attempts.

5.1 Synth divide and conquer

The core idea of Gogioso and Yeung [23] is to remove as many legs as possible from a
ZX-Polynomial to the sides, such that we do not require that many CNOTs implement the
center part of it. Since most variational ansätze are described by repeating patterns, we can
cancel those CNOT regions and further reduce the CNOT count. In our prior work [52], we
found that splitting the Pauli-polynomial and trying to ”pull” two-qubit Clifford out shows a
more significant effect for larger circuits. We provided a similar approach to our work, which
focused on this splitting of Pauli-polynomials as a case study. In the following, we will extend
our approach towards Pauli-polynomials. At first, note that overall our approach consists of
the following major components:

1. Optimization of the Pauli-polynomial

2. Regrouping of the Pauli-polynomial

3. Splitting of the Pauli-polynomial

5.1.1 Optimization of the Pauli-polynomial

the main goal of the optimization procedure is to remove as many legs as possible of the
current Pauli-polynomial. We herefore utilize the propagation rules of Figure 2.8a, Figure 2.8b
and Figure 2.8c. We start by assuming the Pauli-polynomial (shortened as PP in equations)
is padded with two Clifford regions, Cl and Cr. We can then iterate over all possible
combinations of control qubits c and target qubits t and a combination of two-qubit Clifford

37

5 Architecture Aware Pauli Polynomial Synthesis

gates: g ∈ [CX, CY, CZ]. We now want to estimate the increase or decrease in CNOT-Gartes
required to implement the Pauli-polynomial for each combination. We refer to this increase
or decrease as effect, which we will note as e(c, t, g). For Pauli-polynomials, we can estimate
this effect by once computing the CNOT-Count of the architecture-aware decomposed circuit
representing the Pauli-polynomial:

e(PP, c, t, g) = ∑
m

e(PPm, c, t, g) (5.1)

Here PPm describes the m-th gadget of the Pauli-polynomial. We can describe the minimal
required CNOTs for synthesizing the Pauli-polynomial as e(PPm, c, t, g). We can count the
CNOTs as outlined in section 2.6. The next factor we have to take into account is the effect
on the padded Clifford Regions: emin(Cl , c, t, g) and emin(Cr, c, t, g). We could estimate this
by synthesizing the Clifford tableau at every step and counting the number of CNOTs.
Nevertheless, this is impractical from a runtime perspective; we hence estimate the upper
bound on required CNOTs by the shortest distance between the control and target qubit:
d(c, t) ≥ emin(Cl , c, t, g) and d(c, t) ≥ emin(Cl , c, t, g). Note that this is an loose upper bound
on the number of CNOTs applied towards the Clifford since, in the worst case, we have to
propagate the Steiner tree once to account for the added CNOT. With this, we can describe
the effect a two-qubit Clifford gate will have in terms of the following formula:

e(c, t, g) = emin(PP, c, t, g) + emin(Cl , c, t, g) + emin(Cr, c, t, g)

≤ emin(PP, c, t, g) + 2d(c, t)

< 0

The last statement of this small calculation reflects that we want to remove CNOTs from the
Pauli-polynomial, i.e., we want to heuristically propagate two-qubit Clifford, which will
decrease the effect of CNOTs. We can hence conclude that:

2d(c, t) + emin(PP, c, t, g) < 0 (5.2)

emin(PP, c, t, g) < −2d(c, t) (5.3)

This means that we are only required to compute the effect of propagating the two-qubit
Clifford gates through the Pauli-polynomial for optimization. We can then pick the minimal
effect among the gates: CX, CY, and CZ, and if this effect is smaller than 2d(c, t), where d is
the pre-computed distance of the Floyd-Warshall Algorithm, we can propagate the gate and
continue. This process is described in algorithm 9.

5.1.2 Regrouping of the Pauli-polynomial

As mentioned earlier, a key element of our algorithm is to split the Pauli-polynomial and
further optimize sub-regions. Note that if we do not adjust the Pauli-polynomial correctly, this
will lead to suboptimal results. To make this clear assume the following Pauli-polynomial:

38

5 Architecture Aware Pauli Polynomial Synthesis

Algorithm 9: Optimization process of a Pauli Polynomial

1 Function optimize pauli polynomial(cl , pp, cr):
2 gates← [CX, CY, CZ];
3 for c← 0 to pp.n qubits do
4 for t← 0 to pp.n qubits do
5 if c ̸= t then
6 gmin ← arg ming∈gates {e(pp, c, t, g)};
7 emin = e(pp, c, t, gmin);
8 if emin < −2d(c, t) then
9 Propagate the gate gmin trough the Pauli-polynomial pp;

10 Append the gate gmin to the left clifford region: cl ;
11 Preend the gate gmin to the right clifford region: cr;
12 end
13 end
14 end
15 end
16 return c l, pp, c r;

α0 α1 α2 α3

We can see that if we split it in the middle, we are left with the following two Pauli-
polynomials:

α0 α1 α2 α3

We can see that further optimization is not possible among those two Pauli-polynomials.
Nevertheless, we can also note that α1 and α2 commute; we can hence swap them leaving us
with a Pauli-polynomial that allows optimization of CNOTs among splitting:

α0 α2 α1 α3

Heuristically speaking, regrouping to maximize interactions among Pauli-gadgets is sensible.
For this purpose, we introduce the concept of matching-legs, so legs that are on the same wire,
regardless of their type. With this concept, we can compute the following score function for

39

5 Architecture Aware Pauli Polynomial Synthesis

two Pauli gadgets:

• If two legs are on the same wire, we will add 1 to our score

• If no legs are present, we will add -1 to our score

• If there is a mismatch (one leg is present on the wire and one is not), we add -1 to our
score

With this score, we can obtain the following order for three Pauli-gadgets a, b, and c:

• Compute the score described above for gadgets a and c: sac

• Compute the score described above for gadgets a and b: sab

• The order is then defined as: b <a c = sab < sac

In our example above we can see, that sα0α1 = −1 and sα0α2 = 1. We can hence conclude that
α1 <α0 α2. In other words, α2 is a more desirable neighbor of α0 than α1. With this comparison
and the fact about commutation, we can obtain an insertion sort-like structure for regrouping
the Pauli-polynomial, as outlined in algorithm 10.

Algorithm 10: Regrouping of the Pauli-polynomial

1 Function regroup pauli polynomial(PP):
2 col← 1;
3 while col < n− 1 do
4 colp ← col− 1;
5 colc ← col;
6 coln ← col + 1;
7 while colp < n and PPcolp <PPcolp

PPcoln do
8 Swap the two columns;
9 colp ← col;

10 col← coln;
11 coln ← col + 1;

12 col← col + 1

13 return PP

5.1.3 Splitting of the Pauli-polynomial

Since we want to execute our optimization strategy on local regions of the Pauli-polynomial,
we developed a divide-and-conquer approach to realize this. We organize our Pauli-
polynomial by ”padding” it with two Clifford regions. Next, we try to ”pull” out as many
two-qubit Clifford as possible from the Pauli-polynomial such that each has a negative effect.

40

5 Architecture Aware Pauli Polynomial Synthesis

In the next step, we will regroup our Pauli-polynomial and afterward split it, padding the
center with an identity Clifford tableau. As a next step, we can recurse on the two subre-
gions that are repeating the pattern described above. We will stop the recursion as soon as
we have reached a Pauli-polynomial with two gadgets. In this case, we will optimize the
Pauli-polynomial and return it. See Figure 5.1 for a markup of the splitting and algorithm 11
for the respective pseudocode.

...
...

...
...

...
...Cl PP (left) I PP (right) Cr

Figure 5.1: Markup circuit for the visualisation process of splitting the Pauli-polynomial (PP)
into two subregions: PP (left) and PP (right). I indicates the identity tableau which
the two regions are padded with.

Algorithm 11: Divide and conquer approach to synthesize a Pauli-polynomial

1 Function divide and conquer synth(pp):
2 cl ← I cr ← I cl , pp, cr ← optimize pauli polynomial(cl , pp, cr);
3 regions← divide and conquer(cl , pp, cr);
4 qc← Convert all regions of the synthesized process to a quantum circuit;
5 return qc;
6 Function divide and conquer(cl , pp, cr):
7 if |pp| ≤ 2 then
8 cl , pp, cr ← optimize pauli polynomial(cl , pp, cr);
9 region← Combine cl , pp and cr to a region;

10 return region;
11 end
12 c← I // Optimize the current Pauli-polynomial

13 c, pp, cr ← optimize pauli polynomial(c, pp, cr);
14 cl , pp, c← optimize pauli polynomial(cl , pp, c);

// Regroup the current Pauli-polynomial

15 pp← regroup pauli polynomial(pp);
16 ppl , ppr ← Split the Pauli-polynomial;

// Optimize the subregions

17 regionl ← divide and conquer(cl , pp, c);
18 regionr ← divide and conquer(c, pp, cr);
19 region← Combine regionl and regionr such that c only occurrs once;
20 return region;

41

5 Architecture Aware Pauli Polynomial Synthesis

5.1.4 Runtime Analysis

In summary, we can note that optimization requires us to iterate over all possible combinations
of control and target qubits and then propagate a constant set of two-qubit Clifford (in our
case [CX, CY, CZ]) through the Pauli-polynomial to estimate the effect. The computational
cost of propagation is O(nq2); since we execute it for all combinations, we will produce a
computational overhead of O(nq4) for optimization. Sorting relies on the insertion sort-like
structure, where for each comparison, we have to check all of the legs of the Pauli-polynomial;
we hence can conclude a complexity of O(n2q). So, we have an overall cost of O(nq4 + n2q)
per recursion step. To estimate the computational overhead of the whole process, we can
define the recurrence relation:

T(n) =

{
nq4 + n2q n ≤ 2

T(⌊n/2⌋) + T(⌈n/2⌉) + nq4 + n2q otherwise
(5.4)

We can then utilize the Akara-Bazi theorem [3] to obtain the runtime of our algorithm. Noting
that nq4 + n2q describes the worst-case scenario of our recursion step runtime, we can only
obtain an upper bound. We can determine p = 1 and assume q as constant since the size of
the architecture will not change during execution. This will yield the following upper bound:

T(n) ∈ O
(

n1
(

1 +
∫ n

1

uq4 + u2q
u2 du

))
= O

(
n(1 + q(q3 log(n) + n− 1))

)
= O

(
n + q4n log(n) + qn2 − n

)
= O

(
q4n log(n) + qn2

)
We can hence conclude a runtime of O(q4m log(m) + qm2), with m, the number of Pauli
gadgets in the Pauli-polynomial.

5.2 Architecture-Aware Synthesis of the Unitary Coupled Cluster
Ansatz

As mentioned in the future work suggestions by Cowtan et al. [14], an architecture-aware
adaption of his algorithm may bring the advantage of reducing unnecessary SWAP-Gates,
which are introduced during the routing process for a specific device. We can note that we
are already provided with the architecture-aware version of Gray-Synth by van de Griend and
Duncan [48] and that our Clifford tableau synthesis also provides this out of the box. In this
section, we will focus on the extension of Cowtan et al. [14]’s ansatz in an architecture-aware
manner. We will refer to his approach as UCCSD-Synth in the following. Generally speaking,

42

5 Architecture Aware Pauli Polynomial Synthesis

UCCSD-Synth consists of three parts:

• Effective regrouping of the individual gadgets in the Pauli-polynomial into commuting
regions

• Diagonalisation of each commuting region

• Synthesis of the Z-Polynomial, which is a result of diagonalization

5.2.1 Regrouping of the individual gadgets

In UCCSD-Synth, we assume that optimizing the CNOT-Count will outweigh the trotter
error introduced by possible badly placed Pauli-gadgets. Hence the goal of this step is to
regroup the gadgets of the Pauli-polynomial, such that the commuting regions are maximal.
Cowtan et al. [14] refer to this as term-sequencing. They realize this process by providing a
graph with nodes belonging to all Pauli-gadgets in the Pauli-polynomial. An edge is added
in case the gadgets of the two vertices anti-commute. From this process, we can find a set of
commuting regions by approximating the graph-coloring problem known as NP-Hard. The
different colors then correspond to different commuting sets. As a last step, we can sort the
gadgets in the commuting sets, and the commuting sets alphabetically by the type of legs
(X-leg, Y-leg, Z-leg, or I-leg). Which will provide us with a set of commuting regions.

5.2.2 Diagonalisation of each commuting region

Next, given a commuting region, we have to diagonalize it. We have already outlined this
process in subsection 2.6.3, which we refer the reader to. We adjusted the process slightly by
always choosing the two-qubit gates with control and a target of minimal distance to match
the architecture better. After diagonalizing the commuting sub-region of the Pauli-polynomial,
we can store the operations to the left of the Z-Polynomial in a Clifford-Tableau and optimize
them via re-synthesis. Additionally, we can propagate the operations at the right through
the rest of the Pauli-polynomial, using the propagation rules from Figure 2.7 and Figure 2.8
collecting them in a Clifford-Tableau at the end.

5.2.3 Synthesis of the Z-Polynomial

As a last step, it remains to synthesize the Z-Polynomial onto a quantum circuit, for which we
will utilize the synthesis algorithm by van de Griend and Duncan [48]. We have outlined the
functionality in subsection 2.6.4. We want to point out that van de Griend and Duncan [48]’s
work stores the CNOTs pulled out in a pure CNOT-Circuit. Again, we can propagate all the
CNOT-Gates through the remaining Pauli-polynomial and store them in our final Clifford.

5.2.4 Overall Process

Having identified the major components of synthesizing our Pauli-polynomial, we can
combine them into a process. We will first sequence the Pauli-polynomial into different

43

5 Architecture Aware Pauli Polynomial Synthesis

commuting regions. Then, we will first diagonalize each of the k commuting sets. The
left part of the Clifford is added towards our final circuit, and the right part is propagated
through the Pauli-polynomial. As a last step, we will synthesize the Z-Polynomial of the
diagonalization process, apply it towards the circuit, and propagate the remaining CNOTs
through the remaining Pauli-polynomial. After doing this for all commuting sets, we can
synthesize the final clifford and return the circuit.

5.2.5 Runtime Analysis

Following Cowtan et al. [14], we can note that the process of sequencing requires a computa-
tional overhead of O(m2q), where m is the number of Pauli-gadgets in our Pauli-polynomial
and q is the number of qubits. The diagonalization process runs in O(mq3) and the final
Clifford synthesis in O(q4). At last, it remains to determine the runtime of the synthesis
algorithm of van de Griend and Duncan [48]. Here we can determine the steps required by
the algorithm by the following two recurrence relations:

T0(n, q) =

{
1 n = 0∨ q = 0

T0(n0, q− 1) + T1(n1, q) + nq otherwise
(5.5)

T1(n, q) =

{
1 n = 0

T0(n0, q− 1) + T1(n1, q) + nq otherwise
(5.6)

Here n0 refers to the number of the zeros in a row and n1 to the length of ones in a row,
selected on the specific recursion step. We can see that the most overhead occurs during the
selection of a pivot row in both recursion steps. Here we have to count the numbers of zeros
and ones for each qubit, which yields a runtime of O(nq). Generally, determining the steps of
the alternating recurrence relations is hard since we must know n0 and n1, which are problem
specific. Nevertheless, we can find a loose upper bound for both recursions by considering
the worst case of always removing just one column from the rows. We can hence find an
upper bound for both terms as:

T(n) =

{
1 n = 0∨ q = 0

T(n− 1) + nq otherwise
(5.7)

From the previous line of argument, we can conclude that T0(n, q) ≤ T(n) and T1(n, q) ≤ T(n).
We can see th¡t this inequality holds true, since in the worst case n0 = n− 1 and n1 = 1 for
every step. We can then see that the inequality in Equation 5.7 holds. The closed form of
T(n), can then described as:

T(n) =
n

∑
k=0

kq ∈ O(n2q) (5.8)

We can hence conclude an upper bound of O(m2q) on the runtime of steiner-gray-synth. We
want to point out that according to van de Griend and Duncan [48], their algorithm worked
much better on average in practice, which we account for the assumption of reducing one

44

5 Architecture Aware Pauli Polynomial Synthesis

gadget at a time we have taken. Nevertheless, with this knowledge, we can find the overall
runtime of the architecture-aware version as follows:

O(m2q + k(m2q + q4 + mq3) + q4) = O(k(m2q + q4 + mq3)) (5.9)

5.3 Pauli Steiner Gray Synthesis

After the analysis and implementation of UCCSD-Synth and divide-and-conquer synth, we
remarked one particular weak point in the approaches: Both UCCSD and divide-and-conquer
require us to split the Pauli-polynomial at positions which may not represent the inner
structure of the Pauli-polynomial. On the otherside, a direct extension of the Steiner-gray
synth is not feasible since we may introduce new legs at positions we thought we marked
as already done, even when assuming n-to-n commutativity. This fact, and the fact that we
would have to try every combination of every CNOT at every possible position in-between
gadgets, motivated a different viewpoint. In general, the conjecture is that selecting one
row and splitting it into legs of certain types is helpful. This is what makes both gray-synth
and Steiner-gray-synth so performant on Z-Polynomials. We will add the twist here that
instead of propagating Cliffords to the end, we will store them at intermediate positions,
which we can combine towards a large quantum circuit. In practice, we will follow the
Steiner-gray-synth recursive structure for Pauli polynomials. However, we will compose the
circuits from different recursion paths instead of having one global circuit. We can subdivide
this process into two major steps:

• The Identity Recursion Step

• The Pauli Recursion Step

At last, note that one base assumption we are making here is that we will have all-to-all
connectivity of the Pauli-polynomial regarding commuting gadgets.

5.3.1 Identity recursion step

Here our primary goal is to select a non-cutting row on the connectivity graph that skews
our Pauli-polynomial as well as possible. For our heuristic, let us denote the following two
functions:

max(q) = maxx∈[I,X,Y,Z]
{
|{c ∈ Cols where PPqc = x}|

}
(5.10)

min(q) = minx∈[I,X,Y,Z]
{
|{c ∈ Cols where PPqc = x}|

}
(5.11)

Intuitively, max(q) counts the maximum number of legs of type X, Y, Z, or I, and min(q) is
the minimal type. We want to split the Pauli-polynomial, such that we have one of the most
prominent regions of X, Y, Z, or I, but we also want to consider smaller regions, which we
do not want to be too sparse. With this thought, we can find our heuristic as the difference
between max(q) and min(q):

i = arg max
q∈Non-cutting Vertices

{max(q)−min(q)} (5.12)

45

5 Architecture Aware Pauli Polynomial Synthesis

We will hence pick such a row i and then split the Pauli-polynomial into four sets such that
each subset only contains a row of X, Y, Z, or I legs. See Figure 5.2, for an example. For the
gadgets containing only out-of-identity gates, we can recurse on the identity recurse again,
removing the specific qubits. We will recurse on the Pauli Recursion step for X, Y, and Z,
noting the row type. Ultimately, we will collect all circuits from the particular recursions,
combine them and return them. See algorithm 12 for an outline of the identity recursion step.

Algorithm 12: Identity Recrusion Step
Global : G - Connectivity Graph of the Quantum Device

1 Function identity recurse(columns, qubits):
2 if |columns| = 0∨ |qubits| = 0 then
3 return An Empty Quantum Circuit;
4 end
5 G′ ← Subgraph of G with qubits;
6 i← arg maxq∈Non-cutting Vertices of G′ {max(q)−min(q)};
7 cI , cX, cY, cZ ← Partiton the Pauli-polynomial among i;
8 qr ← Remove i from qubits;
9 qci ← identity recurse(cI , qr);

10 qcx ← precurse recurse(cX, qubits, i, X);
11 qcy ← precurse recurse(cY, qubits, i, Y);
12 qcz ← precurse recurse(cZ, qubits, i, Z);
13 return qci + qcx + qcy + qcz;

5.3.2 Pauli Recursion Step

In the Pauli Recursion step, we aim to remove all interactions from the row we have chosen in
the identity recursion step (i in the following). We will first select a row by the same heuristic
as in Equation 5.12. We will then move on to splitting this row into three sets. One is the
identity set, two is the set of the two largest Paulis, and three is the one remaining Pauli. An
example split can be observed in Figure 5.3. At first, we will sanitize the row i since we know
the Pauli type of this recursion; we can do this by applying a single Clifford gate accordingly
to Figure 2.7 in the following way:

α0

=

α0
α0

=

α0

⊖ ⊕

For the Z-Case scenario, we do not need to make any modifications. Additionally, this can be
applied to the second row containing the individual Paulis. As a last step, we must sanitize
the regrouped regions with the two paulis. For this, we can note that the legs in this group are
either one of {[X, Y], [X, Z], [Z, Y]}. We will assume Z, Y as our standard basis; we first aim
to convert X, Y legs and X, Z legs into the Z, Y basis. Note that, a Y-leg is invariant towards

46

5 Architecture Aware Pauli Polynomial Synthesis

...
...

X, Y, Z, I, Y, . . .

...
...

...
...

...

X, X, . . . Y, Y, . . . Z, Z, . . . I, I, . . .

Figure 5.2: Sample process of splitting the Pauli-polynomial during the identity-Recursion
step.

...
...

Z, Z, Z, . . .

Y, X, Y, Z, X, I, I, . . .

...
...

...

Z, Z, Z, . . . Z, Z, Z, . . .

Y, Z, Z, Y, Y, . . . X, X, . . .

Figure 5.3: Sample process of Splitting the Pauli-polynomial during the Pauli-Recursion step.

47

5 Architecture Aware Pauli Polynomial Synthesis

the H-Gate according to Figure 2.7a but will change an X-leg into a Z-leg. Analogous a Z-leg
is invariant towards the V-Gate, which will change an X-leg towards a Y-leg. Hence we can
hence convert X, Y legs and X, Z legs into Z, Y-legs as follows:

α0 α1

=

−α0 α1

⊖ ⊕
α0 α1

=

α0 −α1

We can then note that all gadgets among the two rows will have one of the following forms:
α0 α1 α0 α1

We can here reduce the row i to identity by applying one CNOT as follows to both of the
regions:

α0 α1 α0 α1

The last edge case one has to consider is the column with identity legs on the second qubit.
Here we cannot reduce the row i; we will sanitize it and swap it with the next row by applying
two CNOTs. Afterward, we will continue with a Z-recurse on the second row. If the second
row is non-cutting, we can perform a base-recursion step onto this row and remove it from
the number of qubits. See Algorithm algorithm 13 for an outline of the pauli recursion step.

5.3.3 Runtime Analysis

Similarly, in our analysis of van de Griend and Duncan [48], we can find the required steps
by the following recurrence relation:

TI(n, q) =

{
1 n = 0∨ q = 0

TP(nx, q) + TP(nY, q) + TP(nZ, q) + TP(nI , q− 1) + nq otherwise
(5.13)

TP(n, q) =

{
1 n = 0∨ q = 0

TP(nZY) + TI(nI) + TP(n− nZY − nI) + nq otherwise
(5.14)

Here nX, nY, nZ, nI and nZY describe the sizes of the individual split. We can again state,
that in terms of runtime, the worst-case scenario will occur when we split into two large sets
of sizes 1 and n− 1. We can hence find the following recurrence relation again as an upper
bound:

T(n) =

{
1 n = 0

T(n− 1) + nq otherwise
(5.15)

We can find again the closed form solution as:

T(n) =
n

∑
k

qk ∈ O(n2q)

48

5 Architecture Aware Pauli Polynomial Synthesis

Algorithm 13: Pauli Recursion Step
Global : G - Connectivity Graph of the Quantum Device

1 Function precurse recurse(columns, qubits, i, type):
2 if |columns| = 0 then
3 return An Empty Quantum Circuit;
4 end
5 G′ ← Subgraph of G with qubits;
6 j← arg maxq∈Neighbouts of i in G′ {max(q)−min(q)};
7 cI , cZY, cO ← Partiton the Pauli-polynomial among j;
8 qcs ← Empty Quantum Circuit;
9 cZY, cO ← Sanatize all Columns by applying the respective single cliffords note them

in qcs;

10 qr ← Remove j from qubits;
11 if j is noncutting in G′ then
12 q′r ← Remove j from qubits;
13 qci ← identity recurse(cI , q′r);
14 end
15 else
16 qci ← CXj,i + CXi,j;
17 Propagate the two CNOTs trought the Pauli-polynmoial;
18 qci ← Check for single legged gadgets and add them to the Pauli-polynomial;
19 qci ← identity recurse(cI , qr);
20 qci ← CXi,j + CXj,i;
21 end

22 qco ← CXi,j;
23 Propagate the CNOT trough the Pauli-polynomial;
24 qco ← Check for single legged gadgets and add them to the Pauli-polynomial;
25 qco ← precurse recurse(cO, qubits, j, Z);
26 qco ← CXi,j;

27 qczy ← CXi,j;
28 Propagate the CNOT trough the Pauli-polynomial;
29 qczy ← Check for single legged gadgets and add them to the Pauli-polynomial;
30 qczy ← precurse recurse(cZY, qubits, j, Z);
31 qczy ← CXi,j;

32 return qcs + qci + qczy + qco + qc−1
s ;

49

5 Architecture Aware Pauli Polynomial Synthesis

Hence we can conclude an upper bound of O(m2q) with m-the number of Pauli-gadgets in
the Pauli-polynomial.

50

6 Experiments

We ran numerical experiments to analyze and verify our algorithms’ performance. We once
evaluated the two-qubit gate count and fidelity of our Clifford-Synthesis algorithms in our ex-
periments. Second, we put further emphasis on evaluating the synthesis of Pauli-polynomials.
For this, we will first provide a qualitative overview of our algorithms, comparing them to the
approaches of Cowtan et al. [13, 14]. Next, we will execute all algorithms on a set of random
Pauli-polynomials to further assess their capabilities and scaling behavior, and at last, we
took the operators of Cowtan et al. [14], which provide a real-world example from our point
of view, to confirm the results we have seen on random Pauli-polynomials. Overall we will
examine this once assuming a complete architecture to outline the optimization capabilities
while also providing data for routed circuits to show the performance of architecture-aware
synthesis in this context.

6.1 Clifford Experiments

We executed the tableau synthesis on different architectures, available in the IBM-Software
stack 1. Specifically the backends: quito, guadalupe and mumbai. See ?? for an outline of their
connectivity graphs and qubit count. At first, we examined the Gate Count for the various
architectures and continued by executing a subset of circuits with 25 gates on the IBM Quito
device.

6.1.1 Evaluation of the Gate Count

Therefore, we generated random circuits with the gate set of {H, S, CX} since this gate set
generates the Clifford group. We varied the gate count, while the number of qubits was fixed
by the IBM-Backend. All gates were picked uniformly at random, which means that in our
experiments, single qubit gates are more likely to be present in the quantum circuit than
CNOTs. At last, we sequentially applied the Cliffords towards a Clifford tableau, which we
synthesized once by our approach (referenced as tableau in the following). Once with the
approach of Bravyi et al. [9], (denoted as qiskit tableau in the following), which is implemented
natively in the qiskit library and is supposed to outperform the algorithm of Aaronson
and Gottesman [1]. At last, we once transpiled and routed the original circuit using the
qiskit transpile method (we will refer to this as qiskit in the following) towards a gate-set
of {H, S, CX} and the specific architecture. We did the same for the tableau synthesis of
Bravyi et al. [9]. One can find the evaluation results in the Figure 6.1. We can note that upon

1In our implementation, we used qiskit version 0.39.0, qiskit-aer 0.11.0. qiskit-ibm-runtime 0.8.0 and
qiskit-ibm-provider 0.19.2. The experiments were conducted on July 16th.

51

6 Experiments

0 10 20 30 40 50 60

Number of input Gates

0

10

20

30

40

50

60

70

N
u

m
b

er
of

C
N

O
T

-G
at

es

CNOT-Gates

method

tableau

qiskit

qiskit tableau

0 10 20 30 40 50 60

Number of input Gates

0

5

10

15

20

25

30

35
N

u
m

b
er

of
H

-G
at

es

H-Gates

method

tableau

qiskit

qiskit tableau

0 10 20 30 40 50 60

Number of input gates

0

5

10

15

20

N
u

m
b

er
of

S
-G

at
es

S-Gates

method

tableau

qiskit

qiskit tableau

(a) Quito (5 Qubits)

0 50 100 150 200 250
Number of input Gates

0

100

200

300

400

500

600

700

Nu
m

be
r o

f C
NO

T-
Ga

te
s

CNOT-Gates
method
tableau
qiskit
qiskit_tableau

0 50 100 150 200 250
Number of input Gates

0

20

40

60

80

100

120

Nu
m

be
r o

f H
-G

at
es

H-Gates
method
tableau
qiskit
qiskit_tableau

0 50 100 150 200 250
Number of input gates

0

20

40

60

80

100

120

Nu
m

be
r o

f S
-G

at
es

S-Gates
method
tableau
qiskit
qiskit_tableau

(b) Guadalupe (16 Qubits)

0 100 200 300 400 500 600

Number of input Gates

0

500

1000

1500

2000

2500

N
u

m
b

er
of

C
N

O
T

-G
at

es

CNOT-Gates

method

tableau

qiskit

qiskit tableau

0 100 200 300 400 500 600

Number of input Gates

0

50

100

150

200

250

300

N
u

m
b

er
of

H
-G

at
es

H-Gates

method

tableau

qiskit

qiskit tableau

0 100 200 300 400 500 600

Number of input gates

0

50

100

150

200

250

N
u

m
b

er
of

S
-G

at
es

S-Gates

method

tableau

qiskit

qiskit tableau

(c) Mumbai (27 Qubits)

Figure 6.1: Comparison of the three different approaches: textitqiskit tableau, tableau and
qiskit. With respect to different architectures for randomly generated circuits, with
a gateset of H, S, CX.

52

6 Experiments

00
00

0
00

00
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

Measured State

0

1000

2000

3000

4000

5000

6000

7000

C
ou

n
ts

Average counts for 20 random Clifford circuits

approach

tableau

qiskit tableau

Figure 6.2: Average Counts of our simulation of CC† for 20 random clifford gates.

convergence, our methods provide an improvement in terms of CNOT-Gates (20/30 ≈ 0.66 for
Quito, 250/700 ≈ 0.35 for Guadalupe and 900/2500 ≈ 0.36 for Mumbai). Nevertheless, we tend
to increase both H-Gates and S-Gates, which accounts for the fact that we must sanitize our
row at every step. At last, we want to point the reader towards the gap we can observe before
convergence when comparing our method to the standard compilation process of Qiskit. We
can see that the larger our circuit and architecture grow, the larger this gap grows. So overall
we can conclude, that before convergence our algorithms tend to introduce additional CNOTs,
compared to other optimization techniques.

6.1.2 Evaluation on Real hardware

To verify our conjecture that reducing the CNOT count will improve the final fidelity of
our circuit, we executed random clifford circuits on real hardware. To provide a reasonable
estimation of the final fidelity, we point out that if a final state is fully entangled, i.e., the
amplitudes all have the same value, it is harder to estimate the influence of noise. Therefore
we executed once the produced Clifford circuit and once its inverse on the IBM-Hardware,
which should precisely provide us with the input state: |0 . . . 0⟩, which we can measure the
fidelity on. We generated 20 random circuits C and executed CC† on the quantum device with

53

6 Experiments

16.000 shots. We here compared qiskit towards our algorithm. In Figure 6.2, one can see the
averaged counts for the 20 experiments. This picture produced a Helliner-fidelity of ≈ 0.1967
for qiskit tableau and a Hellinger-fidelity of ≈ 0.3992 for tableau. At last, we computed the
correlation between the H, S, and CX-Gates and the Hellinger fidelity for our approach. We
here solely relied on our approach since the transpile method of qiskit introduces other gates,
such as the V-Gate 2. Here we found a correlation of ≈ −0.21 for the H-Gates, a correlation of
≈ −0.18 for the S-Gates, and a correlation of ≈ −0.50 for the CX-Gates. From this evaluation,
we can conclude that CNOT-Gates will contribute the most towards reducing the fidelity,
which strengthens our conjecture of reducing as many CNOT-Gates as possible. At last, we
want to focus on the execution time of the individual quantum circuits on the device. Here
we found an execution time of qiskit of ≈ 7.13± 0.13 and an execution time of qiskit tableau of
≈ 6.99± 0.08. We can note that at first, our execution time is, on average less than the one of
qiskit plus additionally shows a better standard deviation, which we again can account for the
fact that we reduced the number of CNOTs describing the Clifford tableau.

6.2 Pauli Polynomial Experiments

For the analysis of Pauli Polynomials in our experiments, we will try to answer the following
questions regarding our developed algorithms:

• What are the analytical key differences among the approaches?

• How large is the trotterization error of our approaches?

• How do our algorithms perform in optimization concerning a fully connected optimiza-
tion strategy and routing?

• How do our algorithms perform on real data?

To answer those questions, we will utilize the set of molecules, Cowtan et al. [14] has
provided as a real-world example 3. We will reference those as the molecule dataset. In the
following, we will answer the first point by providing a comparison with the approach
of Cowtan et al. [14]. We will then compare the trotterization error of our approach with
the one introduced by Cowtan et al. [14]. Next, we will compare the performance of our
algorithms among random Pauli-polynomials. At last, we will perform optimization with
pauli-steiner-gray-synth and architecture-aware-UCCSD-set synth for a complete, line and circle
architecture on the molecule dataset, comparing it to both algorithms of Cowtan et al. [14]
with introduced routing. Note that due the limited capabilities of NISQ-Devices a evaluation
of Pauli-polynomials on real devices was unfeasible Since in a prior test to our evaluations
we reported a fidelity of ≈ 0.0001, which cleary cannot provide clear statements about the
optimization technique.

2Note, that since our approach only covers certain clifford-circuits, those results might not be generally true.
3See: https://github.com/CQCL/tket benchmarking/tree/master/compilation strategy

54

https://github.com/CQCL/tket_benchmarking/tree/master/compilation_strategy

6 Experiments

6.2.1 Analytical Overview

Here we will analyze synth-divide and conquer (SD&C), A-UCCSD-set (architecture-aware-
UCCSD-set), PSGS (pauli-steiner-gray-synth) combined with the two approaches provided
by Cowtan et al. [14]. Specifically, we will reference those as UCCSD-set for the set-based
approach and UCCSD-pair for the pair-based approach. Overall we will look at the runtime
of the different approaches if they require the assumption of n-to-n commutativity. Our
comparison can be found in Table 6.1. Note that we have denoted the number of gadgets
as m and the number of qubits as q. Overall, we have two algorithms, UCCSD-pair and

Algorithm Runtime n-to-n commutativity?
SD&C O(q4m log(m) + qm2) no
A-UCCSD-set O(k(m2q + q4 + mq3)) yes
PSGS O(m2q) yes
UCCSD-set O(m2q + mq3 + mq3)[14] yes (due effectiveness of gray-synth)
UCCSD-pair Unknown[13] no

Table 6.1: Analytical comparison among the algorithms used trough-out this work.

SD&C, which do not generally assume n-to-n commutativity among Pauli-gadgets; we can
hence provide a fair comparison between those two methods. We placed UCCSD-Set into the
category of assuming n-to-n commutativity; we account for this towards the fact that their
main optimization step relies on performing gray-synth on as large Z-Polynomials as possible.
The structure of PSGS requires n-to-n commutativity, which the user cannot influence. It
hence is important to evaluate the trotterization error of this algorithm. We can report PSGS’s
runtime as the best, compared with A-UCCSD-set and UCCSD-set. For UCCSD-pair, we
could not report any runtime. We hence left the comparison with SD&C out of the scope of
this discussion.

6.2.2 Trotterization Error

To evaluate the development of the introduced trotterization error of our approaches, we
will follow the evaluations of Gui et al. [27]. The core idea is to provide a Hamiltonian, with
already fixed prefactors among the various pauli-gadgets. For instance, assume the following:

H = IZ + ZI + ZZ + XX + YY

We will then record the ordering produced by our algorithms, which we can determine by
the order of application of the Rz-Gates of the various phases. Let us assume this produces
the (permutated) Hamiltonian:

H = XX + ZI + YY + IZ + ZZ

Introducing a time variable, t, we can compute the Hamiltonian simulation Uexact = exp
(
−i t

2 H
)
.

We can then make conjectures about the trotterization error by plotting the Fidelity F(Uexact, Ucircuit),

55

6 Experiments

between the exact unitary and the unitary of our produced trotterized circuit Ucircuit, parametrized
with t. Since the work of Gui et al. [27] focused on Hamiltonian simulation, our results here
are to be checked with care since, naturally, UCCSD focuses on finding the ground state
of a molecule. Nevertheless, we found this is a straightforward way to provide statements
about the trotterization error one introduces into his algorithm using our synthesis meth-
ods. For a setup, we took the molecules: H2 P 631g, H4 P sto3g and LiH P sto3g from the
molecules dataset. We focused on molecules encoded in the P basis since the prefactors were
already provided within the Hamiltonians. We once computed Uexact analytically within
the qiskit framework and simulated the unitary of the circuit PSGS provided 4 by using
the unitary simulator of the qiskit package. For UCCSD set, we employed the sequencing
strategies of Cowtan et al. [14], but we did not apply any routing or further optimization
processes. We also simulated the circuit using the unitary simulator of qiskit. At last, we
have provided the trotterization error for the Hamiltonian with no further ordering as a
baseline. See Figure 6.3 for our results. Overall we can see that the regrouping we provided
is quite effective on all three molecules we used. Nevertheless, in the end, we tend to decay
faster than the default setting, meaning that we will indeed be outperformed by regrouping
algorithms like Gui et al. [27]. To verify Cowtan et al. [14]’s conjecture that the trotterization
error will be small, we marked the position, where the time times the maximum value of the
absolute of the interaction strength will be greater than 0.1≪ 1. We found that in this interval,
all approaches continued a high degree of fidelity; hence we can confirm the conjecture based
on our experiments. We can also see that Cowtan et al. [14]’s approach will degenerate
rapidly afterward. At the same time, PSGS can preserve a high fidelity longer.

6.2.3 Optimization Capabilities

To measure the optimization capabilities, we once evaluated the synthesis on random Pauli-
polynomials 5 on 6 and 8 qubits with pauli-gadgets in a range of [10, 20, 30, 40, 50, 70, 90,
100, 200, 300, 500, 1000]. We synthesized every Pauli-polynomial on a line, square, and
circle architecture and counted the CNOTs among them. For the algorithms UCCSD-set
and UCCSD-pair, we used the routing procedure of tket [45]. We counted the SWAP gates
introduced by tket as three CNOTs in our evaluations due to their definition. We then
measured the CNOT-Count as 100 · (#CXnaive−#CXout)/#CXnaive in percent. Here #CXnaive is the
CNOT-Count produced by naive architecture-aware decomposition of the Pauli-gadget and
#CXout, the CNOT-Count provided by the quantum circuit. See Figure 6.4 for an outline of
the performance among a complete architecture. Overall, the algorithms which assumed
n-to-n commutativity performed the best. Among those, PSGS provides the best ratio for
larger Pauli-polynomials, followed by the A-UCCSD-set. Nevertheless, for smaller Pauli-
polynomials, we can see that this trend discontinues, and the A-UCCSD-set even worsens the
CNOT-reduction, meaning it introduces additional CNOTs to the circuit. Among the ones,
which do not assume n-to-n commutativity, we can see that SD&C is quite bad concerning

4Note, that we have omitted SD&C, UCCSD-pair, and A-UCCSD-set since the prior two do not expect n-to-n
commutativity and the latter is an extension of UCCSD-set, i.e., we expect a similar trotterization error.

5We limited the legs between one and the number of qubits. They where choosen uniformly at random.

56

6 Experiments

0 π
2 π 3π

2
2π

Time t

0.0

0.2

0.4

0.6

0.8

1.0

F
id

el
it

y

~tmax > 0.1

Default

PSGS

UCCDS-pair

(a) Fidelity for H2 P 631g, in the range [0; 2π].
The vertical line indicating the position
where t · ⃗tmax > 0.1. Max Interaction:
≈ 0.91

0 π
2 π 3π

2
2π

Time t

0.0

0.2

0.4

0.6

0.8

1.0

F
id

el
it

y

~tmax > 0.1

Default

PSGS

UCCDS-pair

(b) Fidelity for H4 P sto3g, in the range [0; 2π].
The vertical line indicating the position
where t · ⃗tmax > 0.1. Max Interaction: ≈
0.21

0 π
2 π 3π

2
2π

Time t

0.0

0.2

0.4

0.6

0.8

1.0

F
id

el
it

y

~tmax > 0.1

Default

PSGS

UCCDS-pair

(c) Fidelity for LiH P sto3g, in the range
[0; 2π]. The vertical line indicating the po-
sition where t · ⃗tmax > 0.1. Max Interaction:
≈ 1.0

Figure 6.3: Time evolution for the molecules: H2 P 631g, H4 P sto3g and LiH P sto3g in
the interval [0; 2π].The first part of this naming scheme introduces the molecule
name. The second encoding strategy we applied for formulating the fermionic
annihilation and creation operators towards a digital quantum device, which can
be either P, JW, or BK. The last part of the naming scheme describes the basis set
used for the molecule.

57

6 Experiments

10 20 30 40 50 70 90 100
Number of gadgets

−30

−20

−10

0

10

20

30

R
ed

u
ct

io
n

of
C

X
co

u
n

t
[%

]

Algorithm

SD&C

UCCSD-pair

UCCSD-set

A-UCCSD-set

PSGS

(a) Random Pauli-polynomials with pauli-
gadgets in [10, 20, 30, 40, 50, 70, 90, 100].

100 200 300 500 1000
Number of gadgets

−10

0

10

20

30

40

50

60

R
ed

u
ct

io
n

of
C

X
co

u
n

t
[%

]

Algorithm

SD&C

UCCSD-pair

UCCSD-set

A-UCCSD-set

PSGS

(b) Random Pauli-polynomials with pauli-
gadgets in [100, 200, 300, 500, 1000].

Figure 6.4: Evaluation of random Pauli-polynomials for a complete architecture. Once a
subset of smaller Pauli-polynomials and once one of larger once.

optimization on a complete architecture and gets outperformed by UCCSD-pair. The fact
that both SD&C and A-UCCSD-set utilize clifford tableaus for synthesis and perform poorly
could indicate that we are applying to few gates towards the Clifford, leaving too sparse, such
that classical optimization would perform better - something we have seen in section 6.1. We
obtained quite different results when averaging the CNOT-Reduction throughout the three
architectures, line, square, and circle. See Figure 6.5 for our results there. Overall it shows that

10 20 30 40 50 70 90 100
Number of gadgets

−80

−60

−40

−20

0

20

R
ed

u
ct

io
n

of
C

X
co

u
n

t
[%

]

Algorithm

SD&C

UCCSD-pair

UCCSD-set

A-UCCSD-set

PSGS

(a) Random Pauli-polynomials with pauli-
gadgets in [10, 20, 30, 40, 50, 70, 90, 100].

100 200 300 500 1000
Number of gadgets

−60

−40

−20

0

20

40

60

R
ed

u
ct

io
n

of
C

X
co

u
n

t
[%

]

Algorithm

SD&C

UCCSD-pair

UCCSD-set

A-UCCSD-set

PSGS

(b) Random Pauli-polynomials with pauli-
gadgets in [100, 200, 300, 500, 1000].

Figure 6.5: Evaluation of random Pauli-polynomials for a line, square and circle architecture.
Once a subset of smaller Pauli-polynomials and once one of larger once.

due to the placement of CNOTs in the routing process, both UCCSD-set and UCCSD-pair tend
to perform worse. We can also see that PSGS performs the best, and among the algorithms
assuming n-to-n commutativity. For the once which will preserve commutativity, SD&C

58

6 Experiments

shows not worsen the CNOT-Count but does not improve it. Interestingly UCCSD-pair
get shows better scaling behavior than UCCSD-set but converges at a reduction factor of
≈ −20%. We can conclude from those plots that architecture-aware synthesis, especially for
Pauli-polynomials, can significantly affect the CNOT-Count executed on the quantum device.

6.2.4 Synthesis of Molecules

At last, it remains to test our algorithms on real-world examples. We, therefore, used the
molecule dataset and compared UCCSD-set, A-UCCSD-set, and PSGS against the various
molecules. We again routed UCCSD-set using tket and counted the swap gates introduced by
the routing process by three CNOTs. We once executed the algorithms for a line, circle, and
complete architecture, allowing further insights into our algorithms’ optimization process
and routing capabilities. At last, we have to provide the disclaimer that since our algorithms
were prototyped in Python, we ran into scaling issues for larger molecules, so molecules with
a qubit size larger than 15. We hence limited ourselves to those molecules. See Table 6.2
for a comparison among a complete architecture, Table 6.4 for a comparison among a line
and Table 6.3 for a circle architecture. We can, overall, observe that PSGS outperforms both
A-UCCSD-set and UCCSD-set. Additionally, the UCCSD set tends to worsen after being
routed toward a specific architecture, which we attribute to the fact that during the routing
process, additional CNOTs are introduced - something PSGS can avoid. Overall, our results
from the previous section are confirmed; PSGS tends to perform worse on average compared
to UCCSD-set for smaller Pauli-polynomials but increases its capabilities when used on larger
ones. A-UCCSD-set even tends to outperform PSGS, but we found the best strategy for
smaller molecules to be UCCSD-set with routing. At last, we can see that while PSGS is
highly performant in reducing the CNOT-Count, the depth reduction for UCCSD-set and
A-UCCSD-set performs better.

59

6 Experiments

name n qubits gadgets UCCSD-set (cx) UCCSD-set (depth) PSGS (cx) PSGS (depth) A-UCCSD-set (cx) A-UCCSD-set (depth)

H2 BK sto3g 4 12 18 (-60.87) 41 (-45.33) 28 (-39.13) 56 (-25.33) 22 (-52.17) 50 (-33.33)
H2 BK 631g 8 84 180 (-66.04) 334 (-56.45) 306 (-42.26) 485 (-36.77) 245 (-53.77) 311 (-59.45)
H4 BK sto3g 8 160 494 (-57.85) 740 (-52.35) 508 (-56.66) 830 (-46.56) 451 (-61.52) 516 (-66.77)
LiH BK sto3g 12 640 2004 (-67.78) 2912 (-61.56) 2462 (-60.42) 3723 (-50.86) 3621 (-41.78) 3467 (-54.24)
NH BK sto3g 12 640 2164 (-64.43) 3014 (-59.87) 2456 (-59.63) 3744 (-50.15) 2950 (-51.51) 2866 (-61.84)
H2O BK sto3g 14 1000 4045 (-64.60) 5305 (-60.69) 4456 (-61.00) 6440 (-52.29) 6281 (-45.03) 5669 (-58.00)
CH2 BK sto3g 14 1488 6620 (-59.19) 7540 (-61.25) 6056 (-62.67) 8795 (-54.80) 9688 (-40.28) 8559 (-56.02)
BeH2 BK sto3g 14 1488 6313 (-62.12) 7272 (-63.07) 6462 (-61.23) 9487 (-51.82) 10907 (-34.56) 9559 (-51.45)

H2 JW sto3g 4 12 30 (-53.12) 57 (-41.84) 38 (-40.62) 78 (-20.41) 24 (-62.50) 52 (-46.94)
H2 JW 631g 8 84 198 (-71.22) 361 (-61.39) 370 (-46.22) 618 (-33.90) 232 (-66.28) 289 (-69.09)
H4 JW sto3g 8 160 393 (-70.05) 502 (-71.72) 594 (-54.73) 1026 (-42.20) 397 (-69.74) 479 (-73.01)
NH JW sto3g 12 640 1525 (-78.14) 2015 (-77.17) 2090 (-70.04) 3512 (-60.21) 2483 (-64.41) 2354 (-73.33)
LiH JW sto3g 12 640 1559 (-77.65) 2046 (-76.85) 2518 (-63.90) 4120 (-53.38) 2346 (-66.37) 2207 (-75.03)
H2O JW sto3g 14 1000 2649 (-78.36) 3595 (-76.27) 3150 (-74.26) 5269 (-65.22) 4372 (-64.28) 3926 (-74.08)
BeH2 JW sto3g 14 1488 4285 (-76.47) 4989 (-77.89) 5846 (-67.89) 8996 (-60.12) 7798 (-57.17) 6781 (-69.94)
CH2 JW sto3g 14 1488 4052 (-77.75) 4728 (-79.04) 5174 (-71.58) 8169 (-63.79) 7876 (-56.74) 6815 (-69.79)

H2 P sto3g 2 4 4 (0.00) 20 (122.22) 4 (0.00) 9 (0.00) 4 (0.00) 9 (0.00)
H2 P 631g 6 158 264 (-68.42) 434 (-62.59) 350 (-58.13) 636 (-45.17) 280 (-66.51) 283 (-75.60)
H4 P sto3g 6 164 268 (-68.54) 445 (-62.73) 364 (-57.28) 666 (-44.22) 258 (-69.72) 296 (-75.21)
NH P sto3g 10 630 1929 (-61.08) 2303 (-62.27) 1556 (-68.60) 2703 (-55.72) 2113 (-57.36) 2125 (-65.19)
LiH P sto3g 10 630 1929 (-61.08) 2303 (-62.27) 1556 (-68.60) 2703 (-55.72) 2113 (-57.36) 2125 (-65.19)
H2O P sto3g 12 1085 3567 (-64.52) 4095 (-65.61) 2742 (-72.73) 4573 (-61.59) 4353 (-56.70) 3880 (-67.41)
BeH2 P sto3g 12 1085 3723 (-63.41) 4172 (-65.22) 2576 (-74.68) 4067 (-66.10) 4380 (-56.95) 3855 (-67.87)
CH2 P sto3g 12 2109 6521 (-67.08) 7693 (-67.12) 4752 (-76.01) 8488 (-63.72) 8409 (-57.54) 7400 (-68.37)
H4 P 631g 14 2912 8234 (-73.12) 9682 (-72.64) 9368 (-69.42) 14192 (-59.90) 11397 (-62.79) 9098 (-74.29)
H8 P sto3g 14 5792 16820 (-72.50) 20014 (-71.69) 11516 (-81.17) 21199 (-70.01) 25044 (-59.05) 20154 (-71.49)
NH3 P sto3g 14 5792 16820 (-72.50) 20014 (-71.69) 11516 (-81.17) 21199 (-70.01) 25044 (-59.05) 20154 (-71.49)

Table 6.2: Synthesis of the molecule dataset with the algorithms UCCSD-set, PSGS, A-UCCSD-
set on a complete architecture.

name n qubits gadgets UCCSD-set (cx) UCCSD-set (depth) PSGS (cx) PSGS (depth) A-UCCSD-set (cx) A-UCCSD-set (depth)

H2 BK sto3g 4 12 30 (-48.28) 47 (-44.71) 60 (3.45) 91 (7.06) 39 (-32.76) 65 (-23.53)
H2 BK 631g 8 84 484 (-47.51) 543 (-47.79) 580 (-37.09) 729 (-29.90) 746 (-19.09) 679 (-34.71)
H4 BK sto3g 8 160 1584 (-15.57) 1232 (-42.02) 1128 (-39.87) 1488 (-29.98) 1466 (-21.86) 1104 (-48.05)
LiH BK sto3g 12 640 9325 (-18.94) 5634 (-53.36) 5250 (-54.36) 6419 (-46.87) 11472 (-0.28) 6516 (-46.06)
NH BK sto3g 12 640 10686 (-10.50) 5840 (-49.64) 5696 (-52.29) 6580 (-43.26) 10133 (-15.13) 5623 (-51.51)
H2O BK sto3g 14 1000 22679 (2.83) 11988 (-42.25) 8704 (-60.53) 10539 (-49.23) 23130 (4.88) 12189 (-41.28)
CH2 BK sto3g 14 1488 41591 (23.53) 17390 (-46.07) 13964 (-58.53) 16069 (-50.16) 30516 (-9.37) 14691 (-54.44)
BeH2 BK sto3g 14 1488 38666 (18.60) 16442 (-48.10) 13376 (-58.97) 15880 (-49.88) 31365 (-3.79) 14721 (-53.54)

H2 JW sto3g 4 12 54 (-15.62) 74 (-10.84) 44 (-31.25) 86 (3.61) 45 (-29.69) 73 (-12.05)
H2 JW 631g 8 84 575 (-32.19) 650 (-36.09) 444 (-47.64) 689 (-32.25) 654 (-22.88) 589 (-42.08)
H4 JW sto3g 8 160 1171 (-33.47) 742 (-63.16) 768 (-56.36) 1180 (-41.41) 1321 (-24.94) 1015 (-49.60)
NH JW sto3g 12 640 6415 (-39.25) 3630 (-66.83) 2960 (-71.97) 4356 (-60.20) 9193 (-12.95) 5303 (-51.54)
LiH JW sto3g 12 640 6369 (-39.69) 3751 (-68.02) 2952 (-72.05) 4339 (-63.01) 9521 (-9.84) 5250 (-55.25)
H2O JW sto3g 14 1000 13204 (-31.17) 7625 (-60.31) 4708 (-75.46) 6794 (-64.64) 16475 (-14.12) 8759 (-54.41)
BeH2 JW sto3g 14 1488 21787 (-26.24) 10093 (-67.71) 6924 (-76.56) 9709 (-68.94) 25937 (-12.19) 11881 (-61.99)
CH2 JW sto3g 14 1488 20684 (-29.97) 9477 (-68.60) 6436 (-78.21) 9236 (-69.40) 26909 (-8.89) 12812 (-57.55)

H2 P sto3g 2 4 4 (0.00) 20 (122.22) 4 (0.00) 9 (0.00) 4 (0.00) 9 (0.00)
H2 P 631g 6 158 627 (-39.01) 610 (-52.86) 528 (-48.64) 826 (-36.17) 609 (-40.76) 564 (-56.41)
H4 P sto3g 6 164 633 (-40.28) 631 (-53.05) 566 (-46.60) 872 (-35.12) 595 (-43.87) 598 (-55.51)
NH P sto3g 10 630 8113 (12.12) 4328 (-46.41) 2184 (-69.82) 3113 (-61.45) 6846 (-5.39) 4418 (-45.29)
LiH P sto3g 10 630 8113 (12.12) 4328 (-46.41) 2184 (-69.82) 3113 (-61.45) 6846 (-5.39) 4418 (-45.29)
H2O P sto3g 12 1085 18078 (17.65) 8208 (-50.72) 4686 (-69.50) 6275 (-62.33) 14471 (-5.82) 7518 (-54.86)
BeH2 P sto3g 12 1085 19090 (25.21) 8404 (-48.83) 5320 (-65.11) 6656 (-59.47) 14392 (-5.60) 7617 (-53.62)
CH2 P sto3g 12 2109 34090 (14.99) 15271 (-52.65) 5950 (-79.93) 9076 (-71.86) 27647 (-6.74) 14646 (-54.59)
H4 P 631g 14 2912 44589 (-8.03) 19036 (-63.18) 10488 (-78.37) 14476 (-72.00) 40499 (-16.46) 18393 (-64.42)
H8 P sto3g 14 5792 90922 (-5.89) 39910 (-61.41) 12908 (-86.64) 20955 (-79.74) 87114 (-9.83) 39135 (-62.16)
NH3 P sto3g 14 5792 90922 (-5.89) 39910 (-61.41) 12908 (-86.64) 20955 (-79.74) 87114 (-9.83) 39135 (-62.16)

Table 6.3: Synthesis of the molecule dataset with the algorithms UCCSD-set, PSGS, A-UCCSD-
set on a circle architecture.

60

6 Experiments

name n qubits gadgets UCCSD-set (cx) UCCSD-set (depth) PSGS (cx) PSGS (depth) A-UCCSD-set (cx) A-UCCSD-set (depth)

H2 BK sto3g 4 12 33 (-50.00) 53 (-46.46) 60 (-9.09) 90 (-9.09) 46 (-30.30) 77 (-22.22)
H2 BK 631g 8 84 583 (-50.84) 556 (-59.62) 544 (-54.13) 706 (-48.73) 682 (-42.50) 643 (-53.30)
H4 BK sto3g 8 160 1847 (-17.98) 1355 (-48.98) 996 (-55.77) 1323 (-50.19) 1601 (-28.91) 1131 (-57.42)
LiH BK sto3g 12 640 10052 (-31.99) 5730 (-64.97) 4726 (-68.02) 5830 (-64.36) 12098 (-18.15) 6384 (-60.97)
NH BK sto3g 12 640 11326 (-25.78) 6068 (-64.10) 4888 (-67.97) 6233 (-63.12) 10490 (-31.26) 5621 (-66.74)
H2O BK sto3g 14 1000 23688 (-17.80) 12146 (-61.61) 8756 (-69.62) 10610 (-66.47) 21829 (-24.25) 10777 (-65.94)
CH2 BK sto3g 14 1488 46717 (10.37) 18376 (-60.21) 12006 (-71.63) 14681 (-68.21) 31879 (-24.68) 14989 (-67.54)
BeH2 BK sto3g 14 1488 43056 (3.58) 17228 (-62.01) 12594 (-69.70) 15053 (-66.80) 32916 (-20.81) 15126 (-66.64)

H2 JW sto3g 4 12 55 (-14.06) 76 (-23.23) 44 (-31.25) 86 (-13.13) 53 (-17.19) 80 (-19.19)
H2 JW 631g 8 84 637 (-42.30) 610 (-54.07) 484 (-56.16) 729 (-45.11) 590 (-46.56) 542 (-59.19)
H4 JW sto3g 8 160 1509 (-29.62) 829 (-68.02) 768 (-64.18) 1180 (-54.48) 1426 (-33.49) 1059 (-59.14)
NH JW sto3g 12 640 7567 (-45.01) 4030 (-74.12) 2960 (-78.49) 4356 (-72.03) 8236 (-40.15) 4560 (-70.72)
LiH JW sto3g 12 640 7399 (-46.23) 4066 (-73.71) 2992 (-78.26) 4379 (-71.69) 8299 (-39.69) 4906 (-68.28)
H2O JW sto3g 14 1000 13581 (-46.78) 7710 (-72.82) 4708 (-81.55) 6794 (-76.05) 14144 (-44.58) 7574 (-73.30)
BeH2 JW sto3g 14 1488 25531 (-33.01) 11119 (-73.59) 6996 (-81.64) 9781 (-76.77) 26694 (-29.96) 11993 (-71.52)
CH2 JW sto3g 14 1488 24235 (-36.41) 10322 (-75.54) 6436 (-83.11) 9236 (-78.11) 28310 (-25.72) 12376 (-70.67)

H2 P sto3g 2 4 4 (0.00) 20 (122.22) 4 (0.00) 9 (0.00) 4 (0.00) 9 (0.00)
H2 P 631g 6 158 809 (-40.34) 662 (-61.22) 540 (-60.18) 843 (-50.62) 531 (-60.84) 498 (-70.83)
H4 P sto3g 6 164 820 (-40.92) 664 (-62.21) 566 (-59.22) 884 (-49.69) 606 (-56.34) 535 (-69.55)
NH P sto3g 10 630 9727 (3.88) 4729 (-56.37) 2030 (-78.32) 3116 (-71.25) 7303 (-22.01) 4565 (-57.89)
LiH P sto3g 10 630 9727 (3.88) 4729 (-56.37) 2030 (-78.32) 3116 (-71.25) 7303 (-22.01) 4565 (-57.89)
H2O P sto3g 12 1085 21783 (10.03) 9122 (-59.40) 4642 (-76.55) 6260 (-72.14) 14989 (-24.29) 7626 (-66.06)
BeH2 P sto3g 12 1085 22450 (13.35) 9258 (-58.81) 4766 (-75.94) 6246 (-72.21) 14866 (-24.94) 7503 (-66.62)
CH2 P sto3g 12 2109 39439 (2.18) 16475 (-62.47) 4716 (-87.78) 7894 (-82.02) 28609 (-25.88) 14865 (-66.13)
H4 P 631g 14 2912 48980 (-21.54) 19733 (-71.85) 8920 (-85.71) 13054 (-81.38) 42132 (-32.51) 18977 (-72.93)
H8 P sto3g 14 5792 101769 (-18.29) 41715 (-70.17) 10652 (-91.45) 18538 (-86.74) 90113 (-27.65) 39063 (-72.07)
NH3 P sto3g 14 5792 101769 (-18.29) 41715 (-70.17) 10652 (-91.45) 18538 (-86.74) 90113 (-27.65) 39063 (-72.07)

Table 6.4: Synthesis of the molecule dataset with the algorithms UCCSD-set, PSGS, A-UCCSD-
set on a line architecture.

61

7 Conclusion

In this work, we have developed three overall architecture-aware synthesis methods. Our Clif-
ford Tableau Synthesis algorithm shows a reasonable scaling behavior and outperforms the
state-of-the-art algorithms implemented in qiskit. This algorithm enabled us to develop other
synthesis methods, namely synth-divide-and-conquer, and an architecture-aware-UCCSD-set-
based algorithm. Overall we have seen that both suffice their purpose concerning routing,
nevertheless show weak points concerning optimization, which we account for the gap in the
Clifford tableaus for smaller circuits. Further research could shed light on a possible connec-
tion and how to avoid this detail. Regarding PSGS, we have seen outstanding performance on
random circuits and real-world examples combined with a reasonable asymptotically bound
runtime. Additionally, it is worth to point our that PSGS was able to provide a better decay
of the fidelity when comparing the order one trotterization of the hamiltonian with the imple-
mented unitary. Nevertheless, we have seen that this algorithm is relatively weak in reducing
the depth of a circuit and tends to perform worse for smaller circuits. Here the algorithms
of Cowtan et al. [14] outperforms pauli-steiner-gray-synth, which indicates that one could
apply the diagonalization process at every base-recursion-step. This could possibly reduce
the CNOT-Count further and yield the best of both worlds. Apart from that, future work
aspects could be to integrate tests of different Hamiltonians, like the Quantum Alternating
Operator Ansatz [28, 14]. Based on our experiments, we can conclude that architecture-aware
optimization of quantum circuits is beneficial for both the synthesis of Pauli-polynomials and
Clifford-Tableaus.

62

List of Figures

2.1 Example process of synthesizing a Parity Map using gaussian elimination. . . 4
2.2 Example process of reducing one column using the steiner-gauss process. . . . 5
2.3 Appending operations for the Clifford Gates H, S and CNOT on a Tableau. . . 8
2.4 Prepedning operations for the Clifford Gates H, S and CNOT on a Tableau. . . 8
2.5 Pauli gadget representation of e−iαXYZI per notation in [13] (left) and in ZX-

calculus (right) . 14
2.6 Representation of the trotterization of exp(−i⃗α(IZ + ZI + ZZ + XX)). Once

with a Pauli-polynomial and once with a quantum circuuit 15
2.7 Single Qubit clifford Propagation trough a Pauli-polynomial 16
2.8 Two Qubit Clifford Propagation of the CX-, CY- and CZ-Gate. 17
2.9 Decomposition of the Pauli Gadget: e−iαXYZI for a square architecture. We

marked the minimal spanning tree in red in the connectivity graph aside. . . . 19
2.10 Z Polynomial and connectivity graph for outlining the process of steiner-gray-synth 20

4.1 Quantum Circuit generating the Clifford tableau in the center plus the respec-
tive architecture . 31

5.1 Markup circuit for the visualisation process of splitting the Pauli-polynomial
(PP) into two subregions: PP (left) and PP (right). I indicates the identity
tableau which the two regions are padded with. 41

5.2 Sample process of splitting the Pauli-polynomial during the identity-Recursion
step. 47

5.3 Sample process of Splitting the Pauli-polynomial during the Pauli-Recursion
step. 47

6.1 Comparison of the three different approaches: textitqiskit tableau, tableau and
qiskit. With respect to different architectures for randomly generated circuits,
with a gateset of H, S, CX. 52

6.2 Average Counts of our simulation of CC† for 20 random clifford gates. 53
6.3 Time evolution for the molecules: H2 P 631g, H4 P sto3g and LiH P sto3g in

the interval [0; 2π].The first part of this naming scheme introduces the molecule
name. The second encoding strategy we applied for formulating the fermionic
annihilation and creation operators towards a digital quantum device, which
can be either P, JW, or BK. The last part of the naming scheme describes the
basis set used for the molecule. 57

6.4 Evaluation of random Pauli-polynomials for a complete architecture. Once a
subset of smaller Pauli-polynomials and once one of larger once. 58

63

List of Figures

6.5 Evaluation of random Pauli-polynomials for a line, square and circle archi-
tecture. Once a subset of smaller Pauli-polynomials and once one of larger
once. 58

64

List of Tables

6.1 Analytical comparison among the algorithms used trough-out this work. . . . 55
6.2 Synthesis of the molecule dataset with the algorithms UCCSD-set, PSGS, A-

UCCSD-set on a complete architecture. 60
6.3 Synthesis of the molecule dataset with the algorithms UCCSD-set, PSGS, A-

UCCSD-set on a circle architecture. 60
6.4 Synthesis of the molecule dataset with the algorithms UCCSD-set, PSGS, A-

UCCSD-set on a line architecture. 61

65

Bibliography

[1] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits. Physical
Review A, 70(5), nov 2004. doi: 10.1103/physreva.70.052328.

[2] Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols, 2007.

[3] Mohamad Akra and Louay Bazzi. On the solution of linear recurrence equations. Comput.
Optim. Appl., 10:195–210, 1998. doi: 10.1023/A:1018373005182.

[4] Matthew Amy, Parsiad Azimzadeh, and Michele Mosca. On the controlled-NOT complex-
ity of controlled-NOT–phase circuits. Quantum Science and Technology, 4(1):015002, sep
2018. doi: 10.1088/2058-9565/aad8ca. URL https://doi.org/10.1088%2F2058-9565%

2Faad8ca.

[5] Matthew Amy, Owen Bennett-Gibbs, and Neil J. Ross. Symbolic synthesis of clifford
circuits and beyond, 2022.

[6] Panagiotis Kl. Barkoutsos, Jerome F. Gonthier, Igor Sokolov, Nikolaj Moll, Gian
Salis, Andreas Fuhrer, Marc Ganzhorn, Daniel J. Egger, Matthias Troyer, Antonio
Mezzacapo, Stefan Filipp, and Ivano Tavernelli. Quantum algorithms for electronic
structure calculations: Particle-hole hamiltonian and optimized wave-function expan-
sions. Physical Review A, 98(2), aug 2018. doi: 10.1103/physreva.98.022322. URL
https://doi.org/10.1103%2Fphysreva.98.022322.

[7] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Shahnawaz Ahmed, et al.
Pennylane: Automatic differentiation of hybrid quantum-classical computations, 2022.

[8] Sergey Bravyi and Dmitri Maslov. Hadamard-free circuits expose the structure of the
clifford group. IEEE Transactions on Information Theory, 67(7):4546–4563, jul 2021. doi:
10.1109/tit.2021.3081415.

[9] Sergey Bravyi, Ruslan Shaydulin, Shaohan Hu, and Dmitri Maslov. Clifford circuit
optimization with templates and symbolic pauli gates. Quantum, 5:580, nov 2021. doi:
10.22331/q-2021-11-16-580. URL https://doi.org/10.22331%2Fq-2021-11-16-580.

[10] Titouan Carette, Dominic Horsman, and Simon Perdrix. SZX-Calculus: Scalable
Graphical Quantum Reasoning. In Peter Rossmanith, Pinar Heggernes, and Joost-
Pieter Katoen, editors, 44th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2019), volume 138 of Leibniz International Proceedings in Informatics

66

https://doi.org/10.1088%2F2058-9565%2Faad8ca
https://doi.org/10.1088%2F2058-9565%2Faad8ca
https://doi.org/10.1103%2Fphysreva.98.022322
https://doi.org/10.22331%2Fq-2021-11-16-580

Bibliography

(LIPIcs), pages 55:1–55:15, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. ISBN 978-3-95977-117-7. doi: 10.4230/LIPIcs.MFCS.2019.55. URL
http://drops.dagstuhl.de/opus/volltexte/2019/10999.

[11] Nicholas Chancellor, Aleks Kissinger, Joschka Roffe, Stefan Zohren, and Dominic Hors-
man. Graphical structures for design and verification of quantum error correction,
2023.

[12] Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra and
diagrammatics. New Journal of Physics, 13(4):043016, apr 2011. doi: 10.1088/1367-2630/
13/4/043016. URL https://doi.org/10.10882F1367-26302F132F42F043016.

[13] Alexander Cowtan, Silas Dilkes, Ross Duncan, Will Simmons, and Seyon Sivarajah.
Phase gadget synthesis for shallow circuits. Electronic Proceedings in Theoretical Computer
Science, 318:213–228, may 2020. doi: 10.4204/eptcs.318.13.

[14] Alexander Cowtan, Will Simmons, and Ross Duncan. A generic compilation strategy for
the unitary coupled cluster ansatz, 2020.

[15] Niel de Beaudrap and Dominic Horsman. The zx calculus is a language for surface code
lattice surgery, 2020.

[16] Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang. Techniques to reduce π/4-
parity-phase circuits, motivated by the ZX calculus. Electronic Proceedings in Theoretical
Computer Science, 318:131–149, may 2020. doi: 10.4204/eptcs.318.9. URL https://doi.

org/10.42042Feptcs.318.9.

[17] Niel de Beaudrap, Aleks Kissinger, and John van de Wetering. Circuit extraction
for ZX-diagrams can be # p-hard. In Mikołaj Bojańczyk, Emanuela Merelli, and
David P. Woodruff, editors, 49th International Colloquium on Automata, Languages,
and Programming (ICALP 2022), volume 229 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 119:1–119:19, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.ICALP.2022.119. URL https:

//drops.dagstuhl.de/opus/volltexte/2022/16460.

[18] Timothée Goubault de Brugière, Simon Martiel, and Christophe Vuillot. A graph-state
based synthesis framework for clifford isometries, 2022.

[19] Jeroen Dehaene and Bart De Moor. Clifford group, stabilizer states, and linear and
quadratic operations over gf(2). Phys. Rev. A, 68:042318, Oct 2003. doi: 10.1103/PhysRevA.
68.042318. URL https://link.aps.org/doi/10.1103/PhysRevA.68.042318.

[20] M. Van den Nest. Classical simulation of quantum computation, the gottesman-knill
theorem, and slightly beyond, 2009.

[21] Ross Duncan, Aleks Kissinger, Simon Perdrix, and John van de Wetering. Graph-theoretic
simplification of quantum circuits with the ZX-calculus. Quantum, 4:279, jun 2020. doi:
10.22331/q-2020-06-04-279. URL https://doi.org/10.223312Fq-2020-06-04-279.

67

http://drops.dagstuhl.de/opus/volltexte/2019/10999
https://doi.org/10.10882F1367-26302F132F42F043016
https://doi.org/10.42042Feptcs.318.9
https://doi.org/10.42042Feptcs.318.9
https://drops.dagstuhl.de/opus/volltexte/2022/16460
https://drops.dagstuhl.de/opus/volltexte/2022/16460
https://link.aps.org/doi/10.1103/PhysRevA.68.042318
https://doi.org/10.223312Fq-2020-06-04-279

Bibliography

[22] Craig Gidney. Stim: a fast stabilizer circuit simulator. Quantum, 5:497, jul 2021. doi:
10.22331/q-2021-07-06-497.

[23] Stefano Gogioso and Richie Yeung. Annealing optimisation of mixed zx phase circuits,
2022.

[24] Daniel Gottesman. Stabilizer codes and quantum error correction, 1997.

[25] Daniel Grier and Luke Schaeffer. The classification of clifford gates over qubits. Quan-
tum, 6:734, jun 2022. doi: 10.22331/q-2022-06-13-734. URL https://doi.org/10.

223312Fq-2022-06-13-734.

[26] Harper R. Grimsley, Daniel Claudino, Sophia E. Economou, Edwin Barnes, and Nicholas J.
Mayhall. Is the trotterized UCCSD ansatz chemically well-defined? Journal of Chemical
Theory and Computation, 16(1):1–6, dec 2019. doi: 10.1021/acs.jctc.9b01083. URL https:

//doi.org/10.1021%2Facs.jctc.9b01083.

[27] Kaiwen Gui, Teague Tomesh, Pranav Gokhale, Yunong Shi, Frederic T. Chong, Margaret
Martonosi, and Martin Suchara. Term grouping and travelling salesperson for digital
quantum simulation, 2021.

[28] Stuart Hadfield, Zhihui Wang, Bryan O'Gorman, Eleanor Rieffel, Davide Venturelli,
et al. From the quantum approximate optimization algorithm to a quantum alternating
operator ansatz. Algorithms, 12(2):34, feb 2019. doi: 10.3390/a12020034. URL https:

//doi.org/10.3390%2Fa12020034.

[29] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure,
dynamics, and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod
Millman, editors, Proceedings of the 7th Python in Science Conference, pages 11–15, Pasadena,
CA USA, 2008. URL http://conference.scipy.org/proceedings/SciPy2008/paper_

2/.

[30] Aleks Kissinger and Arianne Meijer van de Griend. Cnot circuit extraction for
topologically-constrained quantum memories, 2019.

[31] Aleks Kissinger and John van de Wetering. PyZX: Large Scale Automated Diagrammatic
Reasoning. In Bob Coecke and Matthew Leifer, editors, Proceedings 16th International
Conference on Quantum Physics and Logic, Chapman University, Orange, CA, USA., 10-14 June
2019, volume 318 of Electronic Proceedings in Theoretical Computer Science, pages 229–241.
Open Publishing Association, 2020. doi: 10.4204/EPTCS.318.14.

[32] Jon Kleinberg and Éva Tardos. Algorithm Design. Addison Wesley, 2006.

[33] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for steiner trees. Acta Infor-
matica, 15(2):141–145, 1981. doi: 10.1007/BF00288961. URL https://doi.org/10.1007/

BF00288961.

68

https://doi.org/10.223312Fq-2022-06-13-734
https://doi.org/10.223312Fq-2022-06-13-734
https://doi.org/10.1021%2Facs.jctc.9b01083
https://doi.org/10.1021%2Facs.jctc.9b01083
https://doi.org/10.3390%2Fa12020034
https://doi.org/10.3390%2Fa12020034
http://conference.scipy.org/proceedings/SciPy2008/paper_2/
http://conference.scipy.org/proceedings/SciPy2008/paper_2/
https://doi.org/10.1007/BF00288961
https://doi.org/10.1007/BF00288961

Bibliography

[34] Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, and Yuan Xie.
Paulihedral: a generalized block-wise compiler optimization framework for quantum
simulation kernels. In Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 554–569, 2022.

[35] Guang Hao Low, Vadym Kliuchnikov, and Nathan Wiebe. Well-conditioned multiproduct
hamiltonian simulation, 2019.

[36] Dmitri Maslov and Martin Roetteler. Shorter stabilizer circuits via bruhat decomposition
and quantum circuit transformations. IEEE Transactions on Information Theory, 64(7):
4729–4738, 2018. doi: 10.1109/TIT.2018.2825602.

[37] Jarrod R. McClean, Nicholas C. Rubin, Kevin J. Sung, Ian D. Kivlichan, Xavier
Bonet-Monroig, Yudong Cao, Chengyu Dai, E. Schuyler Fried, Craig Gidney, Brendan
Gimby, Pranav Gokhale, Thomas Haner, Tarini Hardikar, Vojtěch Havlı́ček, Oscar
Higgott, Cupjin Huang, Josh Izaac, Zhang Jiang, Xinle Liu, Sam Mcardle, Matthew
Neeley, Thomas O’Brien, Bryan O’Gorman, Isil Ozfidan, Maxwell D. Radin, Jhonathan
Romero, Nicolas P.D. Sawaya, Bruno Senjean, Kanav Setia, Sukin Sim, Damian S. Steiger,
Mark Steudtner, Qiming Sun, Wei Sun, Daochen Wang, Fang Zhang, and Ryan Babbush.
Openfermion: the electronic structure package for quantum computers. Quantum Science
and Technology, 5:034014, 6 2020. ISSN 2058-9565. doi: 10.1088/2058-9565/AB8EBC.
URL https://iopscience.iop.org/article/10.1088/2058-9565/ab8ebchttps:

//iopscience.iop.org/article/10.1088/2058-9565/ab8ebc/meta.

[38] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri Maslov. Automated
optimization of large quantum circuits with continuous parameters. npj Quantum
Information, 4(1), may 2018. doi: 10.1038/s41534-018-0072-4. URL https://doi.org/10.

1038%2Fs41534-018-0072-4.

[39] Beatrice Nash, Vlad Gheorghiu, and Michele Mosca. Quantum circuit optimizations
for NISQ architectures. Quantum Science and Technology, 5(2):025010, mar 2020. doi:
10.1088/2058-9565/ab79b1.

[40] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge, 2000. URL /bib/nielsen/Nielsen2000/QC10th.pdf.

[41] Ketan N Patel, Igor L Markov, and John P Hayes. Optimal synthesis of linear reversible
circuits. Quantum Inf. Comput., 8(3):282–294, 2008.

[42] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue
solver on a photonic quantum processor. Nature Communications, 5(1), jul 2014. doi:
10.1038/ncomms5213. URL https://doi.org/10.1038%2Fncomms5213.

[43] John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, aug 2018.
doi: 10.22331/q-2018-08-06-79. URL https://doi.org/10.22331%2Fq-2018-08-06-79.

69

https://iopscience.iop.org/article/10.1088/2058-9565/ab8ebc https://iopscience.iop.org/article/10.1088/2058-9565/ab8ebc/meta
https://iopscience.iop.org/article/10.1088/2058-9565/ab8ebc https://iopscience.iop.org/article/10.1088/2058-9565/ab8ebc/meta
https://doi.org/10.1038%2Fs41534-018-0072-4
https://doi.org/10.1038%2Fs41534-018-0072-4
/bib/nielsen/Nielsen2000/QC10th.pdf
https://doi.org/10.1038%2Fncomms5213
https://doi.org/10.22331%2Fq-2018-08-06-79

Bibliography

[44] Jonathan Romero, Ryan Babbush, Jarrod R. McClean, Cornelius Hempel, Peter Love, and
Alán Aspuru-Guzik. Strategies for quantum computing molecular energies using the
unitary coupled cluster ansatz, 2018.

[45] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and
Ross Duncan. t|ket⟩: a retargetable compiler for NISQ devices. Quantum Science
and Technology, 6(1):014003, nov 2020. doi: 10.1088/2058-9565/ab8e92. URL https:

//doi.org/10.1088%2F2058-9565%2Fab8e92.

[46] Masuo Suzuki. General theory of fractal path integrals with applications to many-body
theories and statistical physics. Journal of Mathematical Physics, 32(2):400–407, 02 1991.
ISSN 0022-2488. doi: 10.1063/1.529425. URL https://doi.org/10.1063/1.529425.

[47] Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario Picozzi, Kanav Setia, Ying Li, Edward
Grant, Leonard Wossnig, Ivan Rungger, George H. Booth, and Jonathan Tennyson. The
variational quantum eigensolver: A review of methods and best practices. Physics Reports,
986:1–128, nov 2022. doi: 10.1016/j.physrep.2022.08.003. URL https://doi.org/10.

1016%2Fj.physrep.2022.08.003.

[48] Arianne Meijer van de Griend and Ross Duncan. Architecture-aware synthesis of phase
polynomials for nisq devices, 2020.

[49] Arianne Meijer van de Griend and Sarah Meng Li. Dynamic qubit routing with cnot
circuit synthesis for quantum compilation, 2023.

[50] John van de Wetering. Zx-calculus for the working quantum computer scientist, 2020.

[51] Vivien Vandaele, Simon Martiel, Simon Perdrix, and Christophe Vuillot. Optimal
hadamard gate count for clifford+t synthesis of pauli rotations sequences, 2023.

[52] David Winderl, Qunsheng Huang, and Christian B. Mendl. A recursively partitioned
approach to architecture-aware zx polynomial synthesis and optimization, 2023.

[53] Bujiao Wu, Xiaoyu He, Shuai Yang, Lifu Shou, Guojing Tian, Jialin Zhang, and Xiaoming
Sun. Optimization of CNOT circuits on limited-connectivity architecture. Physical
Review Research, 5(1), jan 2023. doi: 10.1103/physrevresearch.5.013065. URL https:

//doi.org/10.1103%2Fphysrevresearch.5.013065.

[54] Yanqiu Xiao, Fudong Zhang, Guangzhen Cui, Development Khaled AbdElazim,
Ramadan Moawad, Essam Elfakharany, Mark Steudtner, and Stephanie Wehner. Fermion-
to-qubit mappings with varying resource requirements for quantum simulation. New
Journal of Physics, 20:063010, 6 2018. ISSN 1367-2630. doi: 10.1088/1367-2630/AAC54F.
URL https://iopscience.iop.org/article/10.1088/1367-2630/aac54fhttps:

//iopscience.iop.org/article/10.1088/1367-2630/aac54f/meta.

[55] Richie Yeung. Diagrammatic design and study of ansätze for quantum machine learning,
2020.

70

https://doi.org/10.1088%2F2058-9565%2Fab8e92
https://doi.org/10.1088%2F2058-9565%2Fab8e92
https://doi.org/10.1063/1.529425
https://doi.org/10.1016%2Fj.physrep.2022.08.003
https://doi.org/10.1016%2Fj.physrep.2022.08.003
https://doi.org/10.1103%2Fphysrevresearch.5.013065
https://doi.org/10.1103%2Fphysrevresearch.5.013065
https://iopscience.iop.org/article/10.1088/1367-2630/aac54f https://iopscience.iop.org/article/10.1088/1367-2630/aac54f/meta
https://iopscience.iop.org/article/10.1088/1367-2630/aac54f https://iopscience.iop.org/article/10.1088/1367-2630/aac54f/meta

Bibliography

[56] Ed Younis, Costin C Iancu, Wim Lavrijsen, Marc Davis, Ethan Smith, and USDOE.
Berkeley quantum synthesis toolkit (bqskit) v1, 4 2021. URL https://www.osti.gov/

/servlets/purl/1785933.

71

https://www.osti.gov//servlets/purl/1785933
https://www.osti.gov//servlets/purl/1785933

	Acknowledgments
	Abstract
	Contents
	Introduction
	Preliminaries
	Fidelity
	Parity Maps
	Clifford Tableaus and the stabilizer Formalism
	The ZX Calculus
	Resemblance of Quantum Circuits and the ZX Calculus

	The VQE Framework
	Z- and Pauli-polynomials
	Propagation of Cliffords
	Commutation of Pauli-polynomials
	Diagonalisation of Pauli-polynomials
	Architecture Aware Decomposition of Pauli-polynomials
	Architecture Aware Synthesis of Z-Polynomials

	Related Work
	Architecture Aware Clifford Synthesis
	Sanitization of interactions
	Removal of interactions
	Sanitization of Signs
	Heuristic Choice of the Pivot
	The complete elimination process
	Algorithmic Extension: Allowing Permutations
	Example Execution for one Row
	Runtime Analysis

	Architecture Aware Pauli Polynomial Synthesis
	Synth divide and conquer
	Optimization of the Pauli-polynomial
	Regrouping of the Pauli-polynomial
	Splitting of the Pauli-polynomial
	Runtime Analysis

	Architecture-Aware Synthesis of the Unitary Coupled Cluster Ansatz
	Regrouping of the individual gadgets
	Diagonalisation of each commuting region
	Synthesis of the Z-Polynomial
	Overall Process
	Runtime Analysis

	Pauli Steiner Gray Synthesis
	Identity recursion step
	Pauli Recursion Step
	Runtime Analysis

	Experiments
	Clifford Experiments
	Evaluation of the Gate Count
	Evaluation on Real hardware

	Pauli Polynomial Experiments
	Analytical Overview
	Trotterization Error
	Optimization Capabilities
	Synthesis of Molecules

	Conclusion
	List of Figures
	List of Tables
	Bibliography

