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Abstract—Data Center Network (DCN) availability is defined
as the ability of the DCN to handle all demands at a particular
time. DCN availability depends on the type and the availability
of its switches. Similarly, switch availability depends on its
hardware (HW) and software (SW) subcomponents. This work
presents a detailed analysis of DCN availability by modeling
and evaluating the availability of its components like tradi-
tional DCN switches, P4 hardware target switches, and P4
software target switches (and their subcomponents). This work
is intended as a guideline for the DCN operator (i) to identify
the critical subcomponents of the network, (ii) to understand
the effect of different DCN topologies on the availability of
the DCN, and (iii) to improve the availability of the DCN by
replacing some components (and/or subcomponents).
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1. INTRODUCTION

A data center is a dedicated facility to store and process
data. Modern-day data centers are complex structures built
to be operable for an extended period. Cisco’s Annual In-
ternet Report [1] shows that the number of internet users is
expected to increase by 35% from 2018 to 2023. Another
Cisco survey [2] shows an 80% increase in the number of
hyper-scale data centers from 2015 to 2020, corresponding to a
compounded annual growth rate of 13%. This massive increase
in internet traffic can be attributed to the growing need for
faster communication with higher capacity. Uptime Institute’s
Global DCN survey [3] also shows strong growth in global
digital infrastructure. Operators are increasingly investing in
sustainable, resilient, and reliable networks. Thus, DCNs have
evolved into the pillars of communication networks.
Uptime Institute’s 2022 Outage Analysis [4] has stated that
80% of operators have faced some outage in the past three
years. 70% of outages have caused a loss of over $100,000,
while 25% of outages have caused a loss of over $1 million in
2022 (as of September 2022). This trend has shown a steady
increase in outages and associated costs. Another alarming
factor is the duration of the outages. Around 30% of outages
in 2021 have disrupted service for over 24 hours. Moreover,
networking-related issues of all levels of severity have caused
the longest downtime incidents in the past three years. The
outages have been closely linked to the increasing complexities
of using software-defined networks (SDN), cloud services,
and distributed architectures. The outage can be caused by
an unreliable HW or SW component in the network.
For example, consider the Samsung Galaxy Note 7 issue [5].

These phones had a design flaw in their batteries, leading to
overheating and explosion. Consequently, Samsung was forced
to replace 2.5 million sold phones. Though this example is
not DCN-related, it shows the importance of reliable HW
subcomponents. SW subcomponent issues have also caused
significant damage in DCNs. For example, in December 2021,
Canada shut down 4000 government websites because of a
security issue in a third-party library called Apache Log4j [6].
Another example is the data breach in Equifax servers caused
due to the security vulnerability in another third-party library
called Apache Struts [7].
In these examples, some subcomponent was unavailable. Here,
the term ‘unavailable’ does not mean inaccessible. It refers
to the inability of a subcomponent to perform its functions.
These examples advocate the necessity to identify, model, and
evaluate the availabilities of critical subcomponents.
With the upcoming 6G services, the focus is on human-centric
applications [8]. The most impactful applications in 6G com-
munications include massive machine-type communication,
autonomous networks, e-Health, connected mobility, semantic
communication, virtual and augmented reality (VR/AR), per-
vasive computing, ubiquitous computing, and digital twins. All
these applications have different agendas and implementation
patterns. However, they all rely upon three major factors: (i)
storage of vast volumes of data, (ii) latency requirements, and
(iii) robustness of their networks.
All these factors invariably point to the need for a highly
available DCN. Network availability is the probability that a
network offers uninterrupted service at a particular time. In
this work, the focus is on building a highly available DCN by
modeling the components and subcomponents of the network.
This is shown as a top-down approach in Fig. 1. To evaluate
the network availability (Top level in Fig. 1), it is essential to
evaluate the components’ availabilities (Intermediate level in
Fig. 1) used in the network. It is possible to go one step lower
and argue that the component’s availability depends upon the
subcomponents’ availability (Low level in Fig. 1) used by each
component. Therefore, this work aims to calculate the DCN
availability by evaluating the steady-state availabilities of the
subcomponents used in the DCN.
To provide the DCN operators with comprehensive informa-
tion, multiple types of switches and different DCN topologies
have been considered. The combinations of input choices are
discussed in Secs. 3 and 4. This paper follows the workflow
shown in Fig. 2. First, the subcomponents of the components
in a DCN are identified. They are modeled as Stochastic
Activity Networks (SAN). The parameters needed to model
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Figure 1: Top-down breakdown of a DCN

Figure 2: Workflow in this paper

these subcomponents’ availability are determined, and their
values are obtained from an extensive literature survey. The
subcomponents are then simulated to get their steady-state
availabilities. These values are later used to find the switch
availability. Consequently, the switches’ availabilities are used
to find the DCN availability.
This paper aims to provide guidelines to DCN operators
on identifying critical subcomponents of the network and
how to improve DCN availability. This paper is arranged as
follows. Sec. 2 discusses the related work. Secs. 3 and 4
explain the switch and DCN modeling, respectively. Secs. 5
and 6 discuss the results of the switch and DCN availability
analyses, respectively. Sec. 7 presents the guidelines to the
DCN operators on building a reliable DCN.

2. RELATED WORK

Data required to study DCN availability can be gathered from:
(i) DCN statistics on critical issues and their consequences,

(ii) DCN statistics on traffic characterization,
(iii) surveys on relevant modern DCN components, and
(iv) data sheets of said components (and subcomponents) to

model failure characteristics correctly.
Several studies like [9]–[11] summarize the failure data from
real-time DCNs. In these works, the term ’issue’ is used
to denote any incident that occurs in the DCN which is

unaccounted for and affects the DCN’s performance in some
aspect. [10] states that an alarming 29% of intra-DCN issues
at Facebook from 2011 to 2018 have undetermined causes,
and hence it is nearly impossible to prevent these issues from
occurring in the future. SW issues occur at a significantly
higher rate than HW failures [10], [11]. With the increase in
softwarization features of switches, this number is expected to
increase. Though SW issues occur more often, the downtime
caused by them is smaller than that due to HW issues [9].
Top of the Rack (ToR) switch failures cause most of the
downtime [9], [10]. This comes as no surprise because, in
most commercial data centers, there exists no redundancy in
the connection between the servers and the ToR switches.
Fabric-based topologies like the Facebook Fabric (Fb-Fab) are
more robust than cluster-based topologies like the Leaf-Spine
topology [10], [12]. Bigger networks with more nodes and/or
edges take longer to detect and repair failures. [10]. Despite
having redundant paths in the upper layers of switches, switch
failures still cause a noticeable drop in performance [9].
The authors in [13] predict the failing times of the switches
by using a Kaplan-Meier survival estimator. This is a suit-
able method if the network is small, highly predictable, and
consistent in behavior. When the network size increases,
the uncertainty in accuracy may increase. Other works like
[14]–[17] analyze the robustness of a DCN. However, these
works do not consider components’ behavioral characteristics
and subcomponents’ failures. Therefore, these works do not
explicitly capture the minuscule failing patterns of the sub-
components. The authors in [18] analyze the DCN behavior
using analytical methods. Though this model can be further
developed into a Discrete Event Simulator (DES) to simulate
failures of different subcomponents, it is unrealistic due to
the program’s complexity and runtime scaling issues. Most
subcomponents have failing times in the order of tens of
years. Therefore, a DES that simulates traffic and failures
together will never be able to capture the required switch
characteristics.
The authors in [19] perform an analysis similar to our work.
They model the subcomponents of a switch and use a hierar-
chical model to evaluate the DCN availability. However, there
are some limitations in their setup. The subcomponent models
consider that failure reparation is always successful. However,
in reality, this may not be the case. After a failure, the repara-
tion may be unsuccessful, and the HW may have to be entirely
replaced. Another critical factor is that they evaluate their
model for a very small DCN with 16 servers only. Moreover,
they consider only two topologies- Fat tree and Leaf Spine.
Additionally, the DCN traffic matrix is also not considered.
Instead, they consider arbitrary flows connecting different
combinations of servers. This is understandable because they
did not aim to provide a comparison between topologies or
types of switches. Table I summarizes the additional features
of our work compared to [19]. Another work [20] considers
a similar approach to model an SDN controller’s availability.
Though we can not use the values from [20], the approach in
[20] is a good reference point.



TABLE I: Comparing this work with State of the Art

Comparing criteria Work in [19] This work

Topology
3 Tier Leaf-Spine,

Fat tree

3 Tier Leaf-Spine,
Fat tree, AB-Fat tree,

Facebook 4-Post,
Facebook Fabric

Size 16 servers 32000 servers
Server availability Considered Not considered
Switch availability Considered Considered

Traffic matrix Not considered Considered
Traffic routing Not considered Considered

Probability of failed
reparation in

subcomponent
availability modeling

Not considered Considered

Different types
of switches Not considered Considered

Different types
of DCN Not considered Considered

Depending on the DCN requirements, such as size, traffic,
location, latency, and cost, the DCN components vary signifi-
cantly. Thus, it is not fair to say that all switches have the same
behavior. However, the switches have comparable behavior.
Note that in this work, we consider the links to have the same
availability always as in [19]. The DCN model used in this
work is similar to the model used in [12]. In [12], the authors
have captured all the critical DCN traffic characteristics.
The subcomponents of the devices have been modeled indi-
vidually in our work, similar to [19] with appropriate changes
in the modeling parameters. The subcomponents considered
are only related to the networking capacity of the switch. We
do not consider the power supply units of the switches.

3. SWITCH MODELING

Three types of switches and four types of DCNs are considered
in this work, as seen in Table II. In the traditional DCN, all
switches are the same commodity switches found in today’s
DCNs, like the Cisco 9600 series switches [21]. They are
referred to as traditional switches (TS) in this work. Next,
there are more advanced Programming Protocol-independent
Packet Processor switches called P4 switches. P4 switches can
program the data plane functionality of the switch. They are
considered the future of the SDN paradigm. Several works
like [22] discuss the advantages and potential of P4 switches
in DCNs. However, to the best of our knowledge, no work has
evaluated the reliability of this type of switch.
P4 programs are compiled and executed on P4 targets. These
targets can be HW or SW targets. P4 Hardware targets (P4-
HW) include FPGAs like NetFPGA, ASICs like the Tofino,
and NPUs like Netronome SmartNIC [23]. P4 Software targets
(P4-SW) include different SW paradigms like T4P4S [23].
The differences in the architectures and performances of these
switches have been evaluated in [24]. In this work, we do
not go into the performance details but their availability. For
this purpose, we model the switch’s and its subcomponent’s
failures. This work considers an ASIC-based P4-HW switch
and a T4P4S-based P4-SW switch. However, this analysis can
be extended to any other type of switch.

TABLE II: Input options

Type of switch
Commercially available DCN switch (Traditional),

P4 Hardware target switch (P4-HW),
P4 Software target switch (P4-SW)

Type of DCN
Traditional DCN, P4-HW DCN,

P4-SW DCN, Hybrid

Topology
3 Tier Leaf-Spine, Fat tree, AB-Fat tree,

Facebook 4-Post, Facebook Fabric
Size 32000 servers

(a) Traditional (b) P4-HW (c) P4-SW

Figure 3: Switch models and their subcomponents

3.1. Subcomponents of a switch
A switch consists of several subcomponents. This work fo-
cuses only on the subcomponents related to networking. The
various subcomponents considered for the different types of
switches are shown in Fig. 3. The demarcation in HW-SW
is a relative indicator of the degree of softwarization in
these switches. ASIC, Memory (MEM), Chassis, CPU, line
cards (LC), and switch fabric (SF) are the common HW
subcomponents (HWsub) found in a switch [19]. Operating
system (OS), native SW from the switch manufacturer (SN),
and SW from other developers (SO) are the common SW
subcomponents (SWsub) found in the switch [25]. Note that
the HWsub also have some SW associated with them. For
example, the CPU is a HWsub. However, the proper functioning
of the CPU requires some SW, like the BIOS settings. This SW
associated directly with the HWsub is the native SW (SN). SO
refers to third-party libraries that may be used in the devices.
For example, in the Apache Log4j issue discussed in Sec. 1,
Log4j is the third-party library used. Therefore, HWsub has a
small part of SW involved in SN. This is represented by the
connection between SN and the HWsub in Fig. 3.
As seen in Figs. 3a and 3b, the TS and the P4-HW switch
have all the aforementioned subcomponents. The degree of
softwarization in these switches varies clearly. This variation
does not change the models of the subcomponents but impacts
some of the values for parameters like, the type and impact
of failures, mean time between failures (MTBF), mean time
to repair (MTTR), and mean time to replace (MTTReplace).
However, for the P4-SW switch, there is no dedicated HWsub
like the ASIC because the SW target handles the networking
functionality. So the ASIC is removed, but the SW target is
added in Fig. 3c. The SF subcomponent is also removed in
the P4-SW switch because the P4-SW switch is essentially the
SW target program installed in a mini-PC or a server like the
Nokia NDCS16RM AirFrame Compute Node used in [24].
Failures in any of these subcomponents will affect the switch.
Some failures cause complete switch failure (e.g., HW fail-
ures), while others cause some flows to fail (e.g., SW failures).



For example, an issue in the MEM subcomponent may cause
some flows to fail because some registers were inaccessible for
some time. [25] discusses a similar approach to partial switch
failures due to SW issues.

3.2. Subcomponent Modeling
The subcomponents are modeled as Stochastic Activity Net-
works (SAN) using the Möbius modeling tool [26]. For
example, the ASIC subcomponent’s SAN is shown in Fig. 4.
The model starts with one token in the ‘ASIC OK’ place. A
timed activity, ‘ASIC fail’, triggers an ASIC failure. For the
HWsub, the failure can be either HW-related or SW-related.
However, the probability of having a HW failure in the HWsub
is much higher (P(HW failure|failure in HWsub) = 0.95) than
having a SW failure in the HWsub. Rarely the failure in the
HWsub is related to SN. This assumption can be justified
because the SN is a tiny portion compared to the actual HWsub
itself. Moreover, the proprietary piece of SW that arrives with
the HW is well-tested and more bug-free than SO.
If the failure is a HW failure in the ASIC, it is repaired first.
Then, the ASIC unit is restarted to check if the reparation
was successful as an instantaneous activity. If the reparation
worked, the token is returned to the ‘ASIC OK’ place. If
not, the ASIC is replaced, and the token is returned to the
‘ASIC OK’ place. When there is a SW failure, the failure
is repaired, and then the ASIC is restarted. If the reparation
worked, the token is returned to the ‘ASIC OK’ place. If not,
the SW is repaired again. The times taken to fail, repair, and
replace are exponentially distributed. The values are given in
Table III along with their references and justifications.
The times to fail for subcomponents in data sheets range
from tens to hundreds of years. For example, the MTBF
for the Cisco Catalyst 9600X Supervisor Engine 1 (C9600-
SUP-1), which houses the Cisco Unified Access Data
Plane Application-Specific Integrated Circuit (UADP-ASIC),
is 271420 hours (∼31 years) [27]. On the other hand, the
MTBF for the C9606R chassis used in the 9600 series switches
is 4113900 hours (∼470 years) [21]. These numbers may be
unrealistic because of the testing conditions of these devices.
There are no guarantees that the devices perform this well in
real conditions. Previous statistics from DCNs [9]–[11], [13],
[28]–[31] also indicate that (i) HW failures occur more often
than expected from data sheets, and (ii) HW failures cause
most downtime. This may be due to the aging of the HW

Figure 4: SAN model of the ASIC

or SW, or improper physical or networking conditions for the
switch. Therefore, each subcomponent has a second SAN, an
aging-related SAN, to account for the aging issues.
The aging-related SAN has the same structure as the SAN
discussed in Fig. 4. However, the rate of failures is different.
The aforementioned issues are assumed to occur 16 times
faster than the rate from data sheets. For example, the ASIC’s
MTBF is nearly 30 years. According to [32], the ASIC under
good maintenance is expected to last around three years. If
the ASIC is overclocked or subjected to poor conditions, its
lifespan may decrease to a few months. A pessimistic approach
would consider an aging-related issue in the ASIC every few
months. A realistic approach that accounts for some faults in
the management and operational conditions of the ASIC would
consider aging-related issues every two years or so. In [33], the
authors also consider aging failures of virtual machines (VMs).
Here, the ratio of the rate of non-aging failures to aging failures
is around 16. Comparing other subcomponents, aging failures
occurring 16 times faster seems appropriate. However, this is a
variable that can be changed as per the operator’s experience.
After all, this work only aims to provide the operator with a
method to analyze the DCN availability. Apart from the failure
rate, the probability of a HWsub producing a SW error is also
higher in the aging case. This is because aging affects SW
(SN) more than HW. Therefore, P(HW failure|aging failure in
HWsub) is considered 0.9. The SAN is smaller for a SWsub like
the OS because the HW failure section in Fig. 4 is absent.

3.3. Subcomponent modeling- Parameters and values
The parameters to model the subcomponents and their values
are mentioned in Table III. Here, the availability of subcom-
ponent sub is denoted as Asub. Three sets of parameters and
values exist for traditional, P4-HW, and P4-SW switches. The
probability of HW being affected due to a failure in the
HWsub is lower in the case of the P4 switches. This is due
to the increase in the softwarization of modern switches. As a
result, more failures are associated with the SW rather than the
HW. Therefore, P(HW failure| failure in HWsub) and P(HW
failure|aging failure in HWsub) are reduced to 80% of their
original values considered for TSs.
When there is a HW failure, the availability of that subcom-
ponent is 0. When there is a SW failure, it might be a partial
failure, as discussed in Sec. 3-A. Since no previous works
exclusively keep track of the number or type of flows affected
due to a switch’s SW failure, the availability of the failed
SWsub is assumed to be around 0.5. The failure can be severe
(availability less than 0.5) or ineffective (availability more than
0.5). This variation is modeled as a Gaussian random variable
with a mean of 0.5 and a variance of 0.3. Due to the increased
softwarization in P4 switches, two attributes are expected:

(i) The number of SW bugs is significantly high. Therefore,
the SO subcomponent’s MTBF is reduced to 75% of the
original value assumed for TSs.

(ii) The code and functionalities are modular, well-written,
and easy to debug. Therefore, a decrease in the MTTR
by 50% is considered to ensure fairness.



TABLE III: Table with all parameters and their baseline values

Parameter Base line values JustificationTraditional P4-HW P4-SW
Asub, when no failures 1 1 1 Subcomponent is available.
Asub, when HW failures 0 0 0 Subcomponent is unavailable.
Asub, when SW failures

(except SW-target and SO failures)
µ = 0.5,
σ2 = 0.3

µ = 0.5,
σ2 = 0.3

µ = 0.5,
σ2 = 0.3

Subcomponent is partially available.

MTTR for HW failures [hours] 2 2 2 From [19], [20]
MTTR for SW failures [hours] 0.33 0.16 0.16 From [19], [20]. For P4 switches, the MTTR is lesser.

MTTReplace for HW failures [hours] 2 2 2 From [19], [20]. For P4 switches, the MTTR is lesser.
P(HW failure| failure in HWsub) 0.95 0.76 0.76 Assumed based on [33] and justified in Sec. 3-B

P(HW failure| aging failure in HWsub) 0.9 0.72 0.72 Assumed based on [33] and justified in Sec. 3-B

P(Successful HW repair) 0.9 0.9 0.9
Assumption- Left to the operator to decide based on
internal statistics.

P(Successful SW repair) 0.95 0.95 0.95
Assumption- Left to the operator to decide based on
internal statistics.

ASIC non-aging MTBF [hours] 271420 271420 271420
From [27] for the Cisco Catalyst 9600X Supervisor
Engine 1

ASIC aging MTBF [hours] 16963 16963 16963 0.0625× ASIC non-aging MTBF

CPU non-aging MTBF [hours] 386228 386228 386228

Datasheets of CPUs used in modern switches are
unavailable. Thus, from [34], [35], the MTBF of
the Intel Server Board S1200V3RP is used.
Though this is not for a switch, a switch CPU
can be comparable to this CPU in terms of MTBF.

CPU aging MTBF [hours] 24139 24139 24139 0.0625× CPU non-aging MTBF

LC non-aging MTBF [hours] 543000 543000 543000
From [36], the MTBF of the Cisco 9600 series line
card C9600-LC-48TX is used.

LC aging MTBF [hours] 33937 33937 33937 0.0625× LC non-aging MTBF

MEM non-aging MTBF [hours] 40000 40000 40000
From [37], MTBF is calculated from 25000 FITs
experienced in DRAMs as explained in
Sec. 3-C.

MEM aging MTBF [hours] 2500 2500 2500 0.0625× MEM non-aging MTBF

Chassis non-aging MTBF [hours] 4113900 4113900 4113900
From [21], the MTBF of Cisco 9600 chassis
C9606R is taken.

Chassis aging MTBF [hours] 257118 257118 257118 0.0625× Chassis non-aging MTBF

SF non-aging MTBF [hours] 422115 422115 422115
From [19], [38], the MTBF of the GSR12-SFC
switch fabric in the Cisco 12000 switch is used.

SF aging MTBF [hours] 26382 26382 26382 0.0625× SF non-aging MTBF
OS non-aging MTBF [hours] 18000 18000 18000 From [19], [39], the MTBF of the OS is used.

OS aging MTBF [hours] 1125 1125 1125 0.0625× OS non-aging MTBF

SO non-aging MTBF [hours] 8760 6570 6570
Assumed MTBF of 1 year because there is no
previous data available. Left to the operator to
decide based on the SW-target in use.

SO aging MTBF [hours] 547 410 410 0.0625× SO non-aging MTBF

SW-target non-aging MTBF [hours] N.A. N.A. 4380

Assumed to be 6 months because there is no
previous data available. This is a rather optimistic
number. Left to the operator to decide based
on the SW-target in use.

SW-target aging MTBF [hours] N.A. N.A. 273 0.0625× SW-target non-aging MTBF

Asub, when SO failed 0.7 0.5 0.3
Assumption. With the increase in softwarization,
the dependency on SW increases. So, a bug in the
code may cause more failed flows.

Asub, when SW-target failed N.A. N.A. 0
SW target is critical to the P4-SW switch.
If it fails, the switch is unavailable.

The MEM block can be a combination of high-speed DRAM
and a relatively slower ROM. For example, a Seagate SSD
memory unit like Nytro 1000 SATA SSD Series is advertised
as an enterprise-grade solution for data center applications.
It has an MTBF of 2000000 hours (∼228 years). This is
unrealistic for a switch memory because it will be extensively
used in the data center. An extensive statistical study on
DRAM errors by authors in [37] reveals that the DRAM error
rates are significantly greater than previously reported. They
report 25000 to 70000 FITS. An alarming 8% of all dual in-

line memory modules (DIMMs) are affected yearly. 25000
FITs correspond to an MTBF of 40000 hours. This value is
taken in our work for the MTBF of memory modules. Note
that we have taken an optimistic value. A pessimistic approach
would be to consider 70000 FITs (MTBF of 14286 hours).

3.4. Switch model
The availability of a switch is modeled as a Reliability Block
Diagram (RBD) as shown in Fig. 5. The RBD for traditional
and P4-HW switches are similar because they have the same
subcomponents, as seen in Fig. 5a. However, the values for



(a) RBD for traditional and P4-HW switches

(b) RBD for P4-SW switches

Figure 5: RBD for switch availability

the blocks are different. For the P4-SW switch, the necessary
changes have been made in Fig. 5b. IP-LC and OP-LC denote
the input and output line cards. The ASIC has 1+1 redundancy
in this model per the Cisco 9600 series supervisor engine [27]
architecture. There have been several memory architectures
over the years. In this work, a generalized architecture with
three memory modules is used. The MEM block’s availability
(AMEM ) is calculated as shown in Equation 1.

AMEM =





1, if 3/3 memory blocks are functional
0.5, if 2/3 memory blocks are functional
0, otherwise

(1)
The subcomponent blocks are in series in the RBD because
any subcomponent’s unavailability implies the switch’s un-
availability. Numerically, the switch availability can be rep-
resented by Eq. 2 for TS and P4-HW switches and by Eq. 3
for P4-SW switches.

AP4−HW = ATraditional

= AIP−LC ×ACPU ×
�
1− (1−AASIC)

2
�
×

AChassis ×ASF ×AMEM×
ASO

×AOS ×AOP−LC

(2)
AP4−SW = AIP−LC ×ACPU ×ASW−target×

AChassis ×AMEM ×ASO
×AOS ×AOP−LC

(3)

4. DCN MODELING

The previous section concerned the low and intermediate levels
shown in Fig. 1. In this section, the top level in Fig. 1, that is,
the DCN modeling, is discussed. The ToR switch architecture
[40] is used in this study. The DCN simulator uses Python.
Five topologies are examined in this work, as seen in Table
II. Each topology has a core switch (CS), aggregate switch
(AS), and a ToR connected to servers. In the 3-Tier Leaf-
Spine topology (3TLS), the leaf and spine switches in the
lower and upper layers form a pod. Each leaf is connected to
each spine inside the pod. Extending the same arrangement to
a super-spine layer above the spine layer gives the 3TLS, as
seen in Fig. 6a. To improve scalability, a Clos-network-based
topology called Fat Tree (FT) was proposed [41]. Here, each

TABLE IV: Infrastructure for all topologies (32K Servers)

Topology (nS , nT , nA,
NP , NC )

(LST , LTA, LAC ,
LCI , RA, RC )

3TLS (96, 30 8, 11, 6) (10, 40, 100, 400, -, -)
FT, ABFT (64, 16, 5, 32, 40) (10, 40, 40, 40, -, -)

Fb-4P (44, 48, 4, 15, 4) (1, 10, 40, 400, 80, 160)
Fb-Fab (48, 48, 4, 14, 96) (10, 40, 40, 40, -, -)

TABLE V: Notation used in Table IV

nS No.of servers per ToR nT No.of ToRs per pod

nA
No.of aggregate switches

per pod NP No.of pods

NC No.of core switches LST
Server-ToR link
capacity (Gbps)

LTA
ToR-Aggregate link

capacity (Gbps) LAC
Aggregate-Core link

capacity (Gbps)

LCI
Core-Inter-DC link

capacity (Gbps) RA
Aggregate ring
capacity (Gbps)

RC
Core ring

capacity (Gbps)

CS is connected to one AS in each pod. The AB-Fat Tree
topology (AB-FT) was proposed at the cost of complicated
interconnections to improve the FT’s robustness. It is a skewed
FT, as seen in Fig. 6c. In Ab-FT, two types of pods are
placed alternatively. In type-A pods, every AS is linked to
consecutive CSs. In type-B pods, every AS is linked to the
core layer in steps of fixed length. Modifying the 3TLS, with
a ring in the aggregate and core layers, the Facebook 4-Post
topology (Fb-4P) [42] as seen in Fig. 6d was introduced. The
ring structure improved reliability and efficient load balancing.
The Facebook Fabric topology (Fb-Fab) is the most recent
noticeable tree-based topology, as seen in Fig. 6e. There are
four core layer planes. Each of the 4 ASs in a pod is linked
to all the CSs in a plane. Every CS is linked to one AS per
pod.
DCNs vary in size from about 1000 servers to a few thousand
servers. In our work, a medium-sized DCN with 32K servers is
simulated. The number of switches in different layers changes
with the topology. Table IV shows the infrastructure used in
this work. The notation in Table IV is explained in Table V.
The traffic matrix is important in this work as opposed to
[19] because the DCN availability is calculated based on the
generated traffic in the simulation. The key characteristics of
the traffic matrix are as follows.

• The DCN is simulated for 1 second.
• The number of flows per server is around 800 for the

year 2022 as per [12].
• The oversubscription ratio is the ratio of the bandwidth

of southbound ports to northbound ports [43]. It can vary
from 2.5 : 1 to 240 : 1 [44]. However, in our work, similar
to [12], [25], the ToR and ASs are oversubscribed at 3 : 1
and 2 : 1 respectively except for Fb-4P topology. It uses
the architecture explained in [42].

• Around 70% of flows are intra-rack [45].
• Around 90% of the flows are intra-DCN [12].
• The flow sizes are modeled from the previous studies in

[46]–[48]. Around 80% of flows are smaller than 10KB,
about 95% of flows are smaller than 1MB, and nearly



(a) 3 Tier Leaf-Spine (3TLS) (b) Fat Tree topology (FT, k = 4) (c) AB-Fat Tree (AB-FT)

(d) Facebook 4-Post (Fb-4P)
(e) Facebook Fabric (Fb-Fab)

Figure 6: DCN Topologies

99% of flows are smaller than 100MB.
• The traffic volume is generally dominated by the larger

flows that are seen rarely. With this information, the flow
size from the simulator can be modeled as a modified
Pareto distribution as seen in Fig. 7a.

• As an example, the traffic between the source (Y-axis) and
destination (X-axis) ToRs for a small FT topology with
1000 servers plotted in Fig. 7b echoes previous findings
[49]. Note that the last column is the inter-DCN traffic.

• The flows are routed using Equal Cost Multi-Path
(ECMP) method. The load on the links after routing is
similar to that observed in [45], [47].

(a) Flow Size-CDF (b) ToR-TM for flows

Figure 7: Images from the simulator

Once the traffic is generated and routed, the availability for
each flow Af is calculated as the product of the switches’
availabilities in the flow path as indicated in Eq.4.

Af =
�

n∈path

An, ∀f ∈ Flows (4)

The average DCN availability ADCN is calculated as the
weighted numerical mean of all the flows’ availability in the
DCN. The weight of each flow f , denoted by Ff , is the volume
of that flow f while the total volume of all flows is denoted
by Fall. This is given by Eq. 5.

ADCN =
1

Fall
×

�

f∈Flows

(Af × Ff ). (5)

5. SWITCH AVAILABILITY RESULTS

Based on the Möbius modeling explained in Sec. 3, the results
for the subcomponent availability are generated and discussed
in Sec. 5-A. A sensitivity analysis of the various parameters
is also done to identify the most impactful parameters in
Sec. 5-B. These results are later combined as shown in
Sec. 3-D to derive the availability of the different types of
switches. This is discussed in Sec. 5-C.

5.1. Subcomponent availability

Each subcomponent is modeled to find its availability. The
simulations on the Möbius tool took around 5 seconds to
evaluate the steady state availability of a subcomponent for
one set of input parameter values. Fig. 8 shows all the sub-
components’ steady state availabilities considering the base-
line values discussed in Table III. From Fig. 8, the HWsub
have higher availability than the SWsub. Note that the ASIC
availability is calculated for a single ASIC chip. In the RBD,
the ASIC has a 1+1 redundancy that improves its availability
significantly. Similarly, the MEM availability is for a single
MEM module only. Out of all the HWsub, MEM has the least
availability owing to its higher failure rate. The low availability
of the SW-target for the P4-SW switch negatively impacts
the switch’s availability. Notice that the availability of these
subcomponents does not vary much. However, when they are
all considered in series in the switch RBD, the impact of
these subcomponents is noticeable. The comparison between
the different types of switches is discussed in Sec. 5-C.

5.2. Subcomponent availability- Sensitivity analysis

It is essential to know which subcomponent has poor avail-
ability, as discussed in Sec. 5-A. It is equally important
to know which parameter of the subcomponent affects the
subcomponent availability the most. This will help the operator
to make better decisions to improve the DCN availability. For
example, if the most impactful parameter is the failure rate,
then the operator needs to look for better subcomponents. On
the other hand, if the most impactful parameter is the MTTR



Figure 8: Subcomponent availability comparison

of the HW failure, then the operator may want to train the
technicians to perform reparations faster.
For example, the sensitivity analysis for the ASIC availability
for the TS is shown in Fig. 9a. In this figure, along the upper
X-axis, the availabilities are arranged. In the lower X-axis, the
deviations in availability from the center value are arranged.
Note that, for the ASIC in the TS, the center availability (A =
0.99987254) is the availability obtained when all the values
in Table III are applied. Along the Y axis, all the parameters
governing the ASIC availability are mentioned in decreasing
order of their impact on the ASIC availability.
This tornado chart is to be understood as follows. When the
parameter ‘1/rate_ASIC_ageing’ (MTBF of ASIC sub-
component) is increased by 25%, then the ASIC availability
increases by 0.00003. On the other hand, if this parameter
reduces by 50%, then the availability drops by 0.00013. This
is intuitive because fewer failures occur when the MTBF
increases and availability improves. When MTBF decreases,
failures are more frequent, causing the availability to decrease.
Consider the example in Fig. 9b, which shows the tor-
nado chart for the SO subcomponent. Here, changing
the ‘1/rate_SO_ageing’ (MTBF of SO subcomponent)
shows a much more significant impact on the subcomponent
availability. On reducing the MTBF of SO by 50%, the
availability decreases by 0.00023. This means that ASIC
availability plays a minor role in the switch availability. For
a network operator, this means that the operator can focus on
other subcomponents that are more vulnerable than the ASIC.
By combining the results obtained from each subcomponent,
an overall analysis can be made to understand the most
impactful parameters that affect switch availability. Such plots
for the TS and P4-SW switch are shown in Fig. 10. The plot
for the P4-HW switch is very similar to the TS in Fig. 10a.
For the TS and P4-HW switches, the MEM subcomponent’s
MTBF and the MTTR of the HW failures are the most im-
pactful parameters. This is because the MEM subcomponent’s
MTBF is significantly smaller than other HW subcomponents.
The reparation time is also crucial because HW reparation is
two hours, which is six times the SW reparation time. SW
failure rates closely follow these parameters. This is because
SW failures occur more often than HW failures. The proba-
bility of a SW reparation being successful is also substantial
because every time the reparation is unsuccessful, another 20
minutes are required for the reparation. The probability that a

(a) ASIC subcomponent availability

(b) SO subcomponent availability

Figure 9: Tornado plots for subcomponent availability

memory failure is HW-related is an interesting parameter. This
is because when this value is high, more HW failures occur,
causing more significant downtimes.
For the P4-SW switch, the most impactful parameters are all
related to the SW target. This is because of two reasons.

1) A SW target has many bugs (low MTBF) because it is a
software program under constant development.

2) A SW target failure causes complete switch failure.
Therefore, the plots discussed above indicate the most im-
pactful parameters and the values that should be assigned
to ensure higher availability. It is indeed curious that the
deviation in the availability of the most critical parameter
in the switch influences the switch availability to a minimal
extent. Therefore, multiple subcomponent parameters need
to be improved to achieve a substantial improvement. The
analysis in these plots is restricted by the values considered in
Table III. A DCN operator can use this approach to use their
values to understand how the different parameters affect the
switch availability in their DCN.
Another comparison approach is to check the frequency of
failures of subcomponents with the mean downtime caused
by these failures. Fig. 11a shows this comparison for the TS.
On the left, the frequency of failures of the subcomponents is
shown. The SW subcomponents fail very frequently compared
to the HW subcomponents. On the other hand, the downtime
due to the HW subcomponent failures is much longer than the
downtime due to the SW subcomponent failures. This trend



(a) Traditional switch (TS) availability

(b) P4-SW switch availability

Figure 10: Tornado plots for switch availability

is observed in all three switches consistently. This trend also
agrees with previous studies [9]–[11], [13], [28]–[31].

5.3. Switch availability comparison
Fig. 11 shows the comparison between different switches.
Fig. 11b shows the availability of different switches based
on the baseline values mentioned in Table III. The P4-HW
switch availability is the highest. Note that the availability
is higher despite this switch having more failures due to SO
and OS subcomponents. This can be attributed to the decrease
in the MTTR of SW failures in P4-HW switches. The TS
is second in place while the P4-SW switch has the worst
availability. This is because of the increased SW failures in
SO and OS subcomponents. Moreover, the SW target switch
has a comparatively more vulnerable subcomponent- the SW
target. This means the P4-HW switch has the least downtime,
while the P4-SW switch has the highest downtime.
This comparison shows that softwarization has pros and cons.
The switch availability varies depending on the subcompo-
nents that are being softwarized, the degree of softwarization,
and the reliability of the SW being used. The importance of the
target that performs the networking functions in a P4 switch
on the switch availability is seen in the comparison between
the two types of P4 switches.

6. DCN AVAILABILITY RESULTS

Based on the results from Sec. 5, the DCN availability can
also be calculated. The DCN is modeled as discussed in

(a) Failure-Downtime comparison

(b) Availability of different switches

Figure 11: Results of the switch availability analysis

Sec. 4. The different types of DCN are compared in Sec. 6-A
while the potential methods to improve DCN availability are
discussed in Sec. 6-B. The DCN availability was calculated
using Python. The simulations took around 20 seconds to
evaluate the DCN availability for one topology for one type
of DCN.

6.1. DCN availability comparison

As mentioned in Table II, five topologies and four different
types of DCNs are considered. In Fig. 12, the different
constituent switches of the DCN are arranged along the X-
axis, while the availability is seen on the Y-axis. Each color in
the bar graph denotes a different topology. Therefore, Fig. 12
shows two different comparisons.
Topology comparison: In each type of DCN, the variation in
the availability of the different topologies is minimal. This
shows that all topologies have an inherent robustness compa-
rable to each other. Therefore, no decision can be made based
on the availability of the topologies. A similar conclusion
has been derived in [25], where the authors conclude that
all topologies have comparable robustness. The choice in
topology can be made only based on the size and expected
traffic in the DCN.
DCN-switch type comparison: Considering a particular topol-
ogy, the different types of switches that can be used in the
DCN cause a significant change in availability. This graph
echoes Fig. 11b. That is, the DCN constructed only using
the P4-HW target switches outperforms the TS and P4-SW
switches-based DCNs. The fourth column in the graph refers
to a hybrid DCN construction where 50% of the components



Figure 12: DCN topology comparison

Figure 13: Upgrading traditional DCN with P4-HW switches

are TSs while the other 50% of the switches are P4-HW. This
hybrid architecture shows a decisive advantage over the TS-
based DCN. This is because 50% of this hybrid DCN consists
of superior components than the TS-based DCN. This is a
good brownfield scenario when the DCN operator already has
a DCN with TSs but wishes to upgrade his DCN with newer
components. Sec. 6-B further shows how the availability of
an existing DCN can be improved and what significance is
associated with this upgrade.

6.2. Towards improving DCN availability

It is clear from Sec. 6-A that changing the topology does not
improve the DCN availability. Therefore, other strategies must
be tested to improve DCN availability:

(i) Upgrade the switches to switches with higher availability.
(ii) Upgrade the subcomponents in the switches to subcom-

ponents with higher availability.
For example, for a small DCN, the operator may decide
that TSs are sufficient. However, after a couple of years,
the increase in traffic and the necessity to improve the DCN
availability may force the operator to upgrade the DCN.
On the other hand, the operator might want to upgrade the
DCN availability to be classified into a higher tier in the
DCN classification. According to the Uptime Institute’s Tier
classification [50], the recommended availability for a DCN to
be classified as Tier II is 0.9975. From Fig.12, the TS-based
DCN availability is lesser than 0.9975.
In such a case, the operator may upgrade the TSs to P4-HW
switches. Fig. 13 shows the increase in availability when the
traditional DCN (using the Fb-Fab topology) is upgraded with
P4-HW switches. From this graph, to be classified as Tier II, at

Figure 14: Upgrading the traditional DCN
least 60% of the TSs in the DCN must be replaced by P4-HW
switches.
A similar improvement can also be observed by replacing the
TSs with upgraded memory subcomponents, for example. This
is seen in Fig. 14. The analysis in Sec. 3-C identifies the most
impactful parameters and the most influential subcomponents.
Improving these subcomponents improves the entire network’s
availability. In our analysis, the memory subcomponent seems
to be the most vulnerable. Therefore, the operator may try to
upgrade his memory subcomponent. This is seen by the red
bars. If this method is employed, at least 70% of the switches
need to be upgraded for the DCN to achieve the recommended
availability to be classified as Tier II.
A quicker method to improve availability is using a mix
of both approaches. This is shown in the orange bars of
Fig. 14. Here, P4-HW target switches with upgraded memory
subcomponents have replaced the TSs. In this approach, only
40% of the switches in the traditional DCN need to be replaced
to upgrade the DCN classification to Tier II. It has to be
noted that the correct approach to improve DCN availability
ultimately depends upon the operator’s requirements, traffic
estimation, and, most importantly, the incurred expenses.

7. CONCLUSION

This work gives a hierarchical approach to evaluate the avail-
ability of a commercial-grade DCN by modeling the switches
and their subcomponents. This work is a guideline to the
DCN operator on identifying the critical subcomponents of
the network. It further provides insight into modeling different
types of switches and integrates these findings into DCN
topologies of different sizes. The goal of this work is to give
an idea of how to improve DCN availability. The following
inferences can be made from this work.

(i) Data sheets provide MTBF or related values that are
difficult to reproduce in real-world scenarios.

(ii) Subcomponents must be pessimistically modeled to guar-
antee strict availability requirements.

(iii) For a DCN, the topology does not influence the availabil-
ity to a large extent.

(iv) The type of switches and the subcomponents greatly
influence the DCN availability.

(v) A hybrid DCN with different types of switches is the most
practical and feasible solution to improve availability.

Similar work can be extended to cover networks like core and
wireless networks in the future. Another direction would be



to analyze the cost incurred due to upgrading the DCN using
different approaches. A cost analysis would further help the
operator make a well-informed decision to improve the DCN
availability.

ACKNOWLEDGMENT

This work has been funded by the Bavarian Ministry of
Economic Affairs, Regional Development, and Energy under
the project ‘6G Future Lab Bavaria’.

REFERENCES

[1] Cisco, “Cisco annual internet report (2018–2023) white
paper,” Cisco: San Jose, CA, USA, 2020.

[2] Cisco Visual Networking Index, “Forecast and methodol-
ogy, 2015–2020,” Cisco, San Jose, CA, USA, pp. 1–41,
2016.

[3] Uptime Institute, “Uptime institute’s 2022 global data
center survey reveals strong industry growth as operators
brace for expanding sustainability requirements,” Uptime
Institute- Press Release, Jun 2022.

[4] Uptime Institute, “Uptime institute’s 2022 outage anal-
ysis finds downtime costs and consequences worsening
as industry efforts to curb outage frequency fall short,”
Uptime Institute- Press Release, Sep 2022.

[5] M. J. Loveridge, G. Remy, N. Kourra, R. Genieser,
A. Barai, M. J. Lain, Y. Guo, M. Amor-Segan, M. A.
Williams, T. Amietszajew, et al., “Looking deeper into
the galaxy (note 7),” Batteries, vol. 4, no. 1, p. 3, 2018.

[6] A. Rudolph, “What is log4j and why did the government
of canada turn everything off?,” 2022.

[7] J. Luszcz, “Apache struts 2: how technical and develop-
ment gaps caused the equifax breach,” Network Security,
vol. 2018, no. 1, pp. 5–8, 2018.

[8] S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What
should 6g be?,” Nature Electronics, vol. 3, no. 1, pp. 20–
29, 2020.

[9] P. Gill, N. Jain, and N. Nagappan, “Understanding net-
work failures in data centers: measurement, analysis, and
implications,” in Proceedings of the ACM SIGCOMM
2011 Conference, pp. 350–361, 2011.

[10] J. Meza, T. Xu, K. Veeraraghavan, and O. Mutlu, “A
large scale study of data center network reliability,” in
Proceedings of the Internet Measurement Conference
2018, pp. 393–407, 2018.

[11] R. Potharaju and N. Jain, “When the network crumbles:
An empirical study of cloud network failures and their
impact on services,” in Proceedings of the 4th annual
Symposium on Cloud Computing, pp. 1–17, 2013.

[12] S. Janardhanan and C. Mas-Machuca, “Modeling and
evaluation of a data center sovereignty,” in 2022 18th
International Conference on the Design of Reliable Com-
munication Networks (DRCN), pp. 1–8, 2022.

[13] R. Singh, M. Mukhtar, A. Krishna, A. Parkhi, J. Padhye,
and D. Maltz, “Surviving switch failures in cloud dat-
acenters,” ACM SIGCOMM Computer Communication
Review, vol. 51, no. 2, pp. 2–9, 2021.

[14] K. Bilal, M. Manzano, S. U. Khan, E. Calle, K. Li, and
A. Y. Zomaya, “On the characterization of the structural
robustness of data center networks,” IEEE Transactions
on Cloud Computing, vol. 1, no. 1, pp. 1–1, 2013.

[15] M. Manzano, K. Bilal, E. Calle, and S. U. Khan, “On
the connectivity of data center networks,” IEEE Commu-
nications Letters, vol. 17, no. 11, pp. 2172–2175, 2013.

[16] R. D. S. Couto, S. Secci, M. E. M. Campista, and L. H.
M. K. Costa, “Reliability and survivability analysis of
data center network topologies,” Journal of Network and
Systems Management, vol. 24, no. 2, pp. 346–392, 2016.

[17] R. S. Couto, M. E. M. Campista, and L. H. M. K. Costa,
“A reliability analysis of datacenter topologies,” in 2012
IEEE Global Communications Conference (GLOBE-
COM), pp. 1890–1895, 2012.

[18] R. Alshahrani and H. Peyravi, “Modeling and simulation
of data center networks,” in Proceedings of the 2nd ACM
SIGSIM Conference on Principles of Advanced Discrete
Simulation, pp. 75–82, 2014.

[19] T. A. Nguyen, D. Min, E. Choi, and T. D. Tran, “Re-
liability and availability evaluation for cloud data cen-
ter networks using hierarchical models,” IEEE Access,
vol. 7, pp. 9273–9313, 2019.

[20] P. Vizarreta, P. Heegaard, B. Helvik, W. Kellerer, and
C. M. Machuca, “Characterization of failure dynamics
in sdn controllers,” in 2017 9th International Workshop
on Resilient Networks Design and Modeling (RNDM),
pp. 1–7, IEEE, 2017.

[21] Cisco, “Cisco catalyst 9600 series switches data sheet,”
Cisco, San Jose, CA, USA, Sep 2022.

[22] A. Sivaraman, C. Kim, R. Krishnamoorthy, A. Dixit,
and M. Budiu, “Dc. p4: Programming the forwarding
plane of a data-center switch,” in Proceedings of the
1st ACM SIGCOMM Symposium on Software Defined
Networking Research, pp. 1–8, 2015.
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